(For candidates admitted from 2016-2021 Batch)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Physics — Elective

NUMERICAL METHODS AND C++ PROGRAMMING

Time: Three hours Maximum: 75 marks

SECTION A — $(10 \times 2 = 20)$

Answer ALL the questions.

- 1. What is C++?
- 2. Write the syntax of class declaration.
- 3. Define inverse interpolation.
- 4. What is curve fitting?
- 5. Explain augmented matrix.
- 6. When does the Newton-Raphson method fail?
- 7. Why is trapezoidal rule called so?
- 8. State Simpson's one-third rule.
- 9. What are the distinguished properties of R.K. method?
- 10. Write about the First Order Euler Equation.

SECTION B — $(5 \times 5 = 25)$

Answer ALL the questions, choosing either (a) or (b).

- 11. (a) What are the applications of C++?
 - (b) What are the two types of functions? List and explain them.
- 12. (a) Derive the equation for exponential law fit in curve fitting.

Or

- (b) Using Newton's interpolating polynomials, find the interpolating polynomial to the data: (1, 1), (2, 5), (3, 2), (3.2, 7), (3.9, 4).
- 13. (a) Compare Gauss elimination method and Gauss-Jordan method for solving a linear system.

Or

- (b) What is the criteria for convergence while using Newton-Raphson method?
- 14. (a) Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$ with $h = \frac{1}{6}$ by trapezoidal rule.

Or

(b) Derive the gaussian two point formula.

15. (a) Using modified Euler's method, compare y(0.1) with h = 0.1 from $y' = y - \frac{2x}{y}$, y(0) = 1.

Or

(b) Derive third order Runge-Kutta equation.

SECTION C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

- 16. Write detailed note on conditional statement in C++ with suitable examples.
- 17. Elaborate the theorems that explain the properties of divided differences.
- 18. Using N.R. method, solve $x \log_{10} x = 12.34$ start with $x_0 = 10$.
- 19. Dividing the range into 10 equal parts, find the value of $\int_{0}^{\pi/2} \sin x dx$ by
 - (a) Trapezoidal rule
 - (b) Simpson's rule.
- 20. Derive Euler's equation to solve ordinary differential equation.

3