S.No. 6865

P 22 MACC 11

(For candidates admitted from 2022-2023 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Mathematics

ALGEBRA

Maximum: 75 marks Time: Three hours

SECTION A — (20 marks)

Answer ALL questions.

- (A) Choose the correct answer. $(5 \times 1 = 5)$ I.
- If n is a positive integer and a is relatively prime 1. to n, then —
 - (a) $a^{\phi(n)} \equiv 1 \mod n$ (b) $a^{\phi(n)} \equiv 0 \mod n$

 - (c) $a^{\phi(n)} \neq 1 \mod 1$ (d) $a^{\phi(n)} \equiv n \mod n$
- A mapping ϕ from a group G into a group \overline{G} is said to be a homomorphism if for all $a, b \in G$
 - (a) $\phi\left(\frac{a}{b}\right) = \frac{\phi(a)}{\phi(b)}$ (b) $\phi(ab) = \phi(a)\phi(b)$
 - (c) $\phi(ab) \neq \phi(a)\phi(b)$ (d) None of the above

- If U is an ideal of a ring R and $1 \in U$, then
 - (a)

(b) R/U

(c) RU

- U/R
- If f(x), g(x) are two non zero element of F[x] then $\deg(f(x)\,g(x)) = ---$
 - (a) $\deg f(x) \deg g(x)$ (b) $\deg f(x) \deg g(x)$
 - (c) $\deg f(x) + \deg g(x)$ (d) $\deg f(x)/\deg g(x)$
- If $a \in K$ is algebraic of degree n over F, then
 - (a) [F(a): F] = n+1 (b) F(a) = F
- $[F(\alpha): F] = n$ (d) $[F(\alpha): F] = n-1$
 - (B) Fill in the blanks:

- $(5 \times 1 = 5)$
- The null set is the set having —
- If G is a finite group, and $H \neq G$ is a subgroup of G such that $o(G) \setminus i(H)!$ then H must contain a — normal subgroup of G.

- 8. In the Euclidean ring R, a and b in R are said to be if their greatest common divisor is a unit of R.
- 9. If $a \in R$ is an and $a \mid bc$, then $a \mid b$ or $a \mid c$.
- 10. If $p(x) \in F[x]$, then an element a lying in some extension field of F is called a root of p(x) if
- II. Answer the following questions. $(5 \times 2 = 10)$
- 11. Define mapping.
- 12. Define Kernel.
- 13. Define homomorphism.
- 14. Define Primitive.
- 15. Define Algebraic extension.

SECTION B —
$$(5 \times 5 = 25)$$

Answer ALL questions, choosing either (a) or (b).

16. (a) If $\sigma: S \to T$, $\tau: T \to U$, and $\mu: U \to V$, then prove that $(\sigma \circ \tau) = \sigma \circ (\tau \circ \mu)$.

Or

(b) Prove that HK is a subgroup of G if and only if HK = KH.

S.No. 6865

17. (a) Show that if ϕ is a homomorphism of G into \vec{G} with kernel K, then K is a normal subgroup of G.

Or

- (b) Prove that conjugacy is an equivalence relation on G.
- 18. (a) If R is a commutative ring with unit element and M is an ideal of R, then prove that M is a maximal ideal of R if and only if R/M is a field.

Or

- (b) If p is a prime number of the form 4n+1, then prove that the congruence $x^2 \equiv -1 \mod p$.
- 19. (a) State and prove the division algorithm.

Or

(b) If $u, v \in V$ then prove that $|(u, v)| \le ||u|| ||v||$.

20. (a) If K is a finite extension of F, then prove that G(K, F) is a finite group and its orders, o(G(K, F)) satisfies $o(G(K, F)) \leq [K:F]$.

Or

(b) Let $f(x) \in F[x]$ be of degree $n \ge 1$, then prove that there is an extension E of F of degree at most n! in which f(x) has n roots.

SECTION C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

- 21. If G is a group, then prove that
 - (a) The identity element of G is unique.
 - (b) Every $a \in G$ has a unique inverse in G.
 - (c) For every $a \in G$, $(a^{-1})^{-1} = a$.
 - (d) For all $a, b \in G, (a, b)^{-1} = b^{-1}.a^{-1}$.
- 22. If p is a prime number and $p \mid o(G)$, then prove that G has an element of order p.

- 23. State and prove Unique Factorization Theorem.
- 24. State and prove Eisenstein criterion.
- 25. Prove that the element $a \in K$ is algebraic over F if and only if F(a) is a finite extension of F.