Answer any THREE questions.

- 16. If W_1 and W_2 are finite-dimensional subspaces of a vector space V, then prove that $W_1 + W_2$ is finite-dimensional and $\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$.
- 17. Let V and W be vector spaces over the field F. Let T and U be linear transformations from V into W. The function (T + U) defined by -

 $(T+U)(\infty) = T \infty + U \infty$

Is a linear transformation from V into W. If c is any element of F, the function (cT) defined by

 $(cT)(\infty) = c(T \infty)$

Is a linear transformation from V into W. Then prove that the set of all linear transformations from V into W, together with the addition and scalar multiplication defined above, is a vector space over the field F.

- 18. State and prove Taylor's formula.
- 19. State and prove Cayley-Hamilton theorem.
- State and prove Primary Decomposition Theorem.

S.No. 6842

(For candidates admitted from 2016-2021 batch)

M.Sc. DEGREE EXAMINATION. NOVEMBER 2023.

Mathematics

LINEAR ALGEBRA

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 2 = 20)$

Answer ALL questions.

- Find the minimal polynomial of $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
- Define linear functional. 2.
- Define Commutative ring.
- Given example for direct sum. 4.
- Find the characteristic values of $\begin{bmatrix} 1 & -5 \\ 0 & 3 \end{bmatrix}$ 5.
- Define a subspace of V. 6.
- Define an annihilator.
- Define T conductor. 8.
- What is the general form of a Vandermonde 9. matrix?
- When the subspaces are said to be independent?

PART B — $(5 \times 5 = 25)$

Answer ALL questions, choosing either (a) or (b).

11. (a) If A and B are row-equivalent $m \times n$ matrices, show that the homogeneous systems of linear equations AX = 0 and BX = 0 have exactly the same solutions.

Or

- (b) If W is a subspace of a finite-dimensional vector space V, then prove that every linearly independent subset of W is finite and is part of a basis for W.
- 12. (a) If A is an $m \times n$ matrix with entries in the field F, then show that $row \ rank \ (A) = column \ rank \ (A)$.
 - (b) Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. If T is invertible, then prove that the inverse function T^{-1} is a linear transformation from W onto V.
- 13. (a) Let F be a field of characteristic zero and f a polynomial over F with deg $f \le n$. Then prove that the scalar c is a root of f of multiplicity r if and only if $(D^*f)(c) = 0$, $0 \le k \le r 1$ and $(D^rf)(c) \ne 0$.

Or

- (b) Let D be an n-linear function on $n \times n$ matrices over K. Suppose D has the property that D(A) = 0 whenever two adjacent rows of A are equal. Then prove that D is alternating.
- 14. (a) Let K be a commutative ring with identity, and let A and B be $n \times n$ matrices over K. Then show that $\det(AB) = (\det A)(\det B)$

Or

- (b) Let T be a linear operator on an n-dimensional vector space V [or, let A be an $n \times n$ matrix]. Then prove that the characteristic and minimal polynomials for T [for A] have the same roots, except for multiplicities.
- 15. (a) Let W be an invariant subspace for T. The characteristic polynomial for the restriction operator T_w divides the characteristic polynomial for T. Then prove that the minimal polynomial for T_w divides the minimal polynomial for T.

Or

- (b) If $V = W_1 \oplus ... \oplus W_k$, then prove that there exist k linear operators $E_1, ..., E_k$ on V such that
 - (i) each E_i is a projection $(E_i^2 = E_i)$;
 - (ii) $E_i E_i = 0$, if $i \neq j$;
 - (iii) $I = E_1 + ... + E_k$;
 - (iv) The range of E_i is W_i .