(For candidates admitted from 2022–2023 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Information Technology-Core Choice Course

ADVANCED DATA STRUCTURES

	ree hours		Maximur	n : 75 mark
	PART A —	(20 m	arks)	
	Answer AL	L ques	tions	
(A)	Choose the Corre	ect Ans	wer	$(5\times 1=5$
	data structure re ression contains			
(a)	Stack	(b)	Queue	
(c)	Array	(d)	Tree	
Wh	ich scheme uses a	randon	nization a	pproach?
(a)	hashing by divisi	on		
(b)	hashing by multi	plicati	on	
(c)	universal hashin	g		
(d)	open addressing			
In a	binary max heap	, worst	case con	plexity wil
(a)	O(n)	(b)	O(logn)	
(c)	O(loglogn)	(d)	O(1)	
	at are the operation (logn) time comple			
(a)	insertion, delet successor	ion,	finding 1	predecessor
		ion, i	finding 1	predecessor
(b)	successor			
(b) (c)	successor only insertion			
(b) (c) (d) Floy	successor only insertion only finding pred for sorting		r, success	or
(b) (c) (d) Floy	successor only insertion only finding pred for sorting d Warshall a	ecesson	r, successe	or
(b) (c) (d) Floy solv	successor only insertion only finding pred for sorting od Warshall a ing	ecesson algorith	r, successo nm is	or used for
(b) (c) (d) Floy solv (a)	only insertion only finding pred for sorting d Warshall a ing all pair shortest p single source sho	ecesson algorith path pr	r, successo nm is	or used for
(b) (c) (d) Floy solv (a) (b)	only insertion only finding pred for sorting d Warshall a ing all pair shortest p single source sho network flow pro	ecesson algorith path pr	r, successo nm is	or used for
(b) (c) (d) Floy solv (a) (b) (c)	only insertion only finding pred for sorting d Warshall a ing all pair shortest p single source sho network flow pro sorting problem	ecesson llgorith path pr rtest p blem	r, successo nm is	or used for

8.	can be used as priority queue.		
9.	Double rotation is also called as		
10.	The general method to solve the single-source shortest-path problem is known as		
II.	Answer ALL questions $(5 \times 2 = 10)$		
11.	Write the Difference between stack and queue.		
12.	What is hash function?		
13.	Define percolate down.		
14.	What is double rotation?		
15.	Determine topological Sort.		
	PART B — $(5 \times 5 = 25)$		
Answer ALL the questions choosing either (a) or (b)			
16.	(a) Define circularly list and explain its types.		
	Or		
	(b) Write a short note on merge sort with an example.		
17.	(a) Explain about separate chaining.		
	Or		
	(b) Illustrate the following:		
	(i) Universal hashing		
	(ii) Extendible hashing		
18.	(a) Elucidate Maxheap.		
	Or		
	(b) Give a short note on basic heap operations.		
19.	(a) Explain how to insert and delete an element in a tree.		
Or			
	(b) Mention the properties of red-black tree.		
20.	(a) Discuss about Bellman Ford algorithm.		
	\mathbf{Or}		
	(b) Illustrate Floyd Warshall algorithm.		
	PART C — $(3 \times 10 = 30)$		
	Answer any THREE questions		
21.	Discuss about quick sort algorithm with an example.		
22.	Elucidate Hash Tables without Linked Lists.		
23.	Write a detailed note on Binary Heap.		
24.	Explain how to perform insertion and deletion of an element in red-black tree with suitable example.		
25 .	Demonstrate Shortest-Path Algorithms with example.		