(For candidates admitted from 2022-2023 onwards)

M.B.A. DEGREE EXAMINATION, NOVEMBER 2023.

Business Administration

OPERATIONS RESEARCH

Time: Three hours Maximum: 75 marks

PART A — (20 Marks)

Answer ALL questions.

- I. (A) Multiple Choice Questions: $(5 \times 1 = 5)$
- 1. For any primal problem and its dual
 - (a) optimal value of objective function is same
 - (b) dual will have an optimal solution if primal does too
 - (c) primal will have an optimal solution if dual does too
 - (d) both primal and dual cannot be infeasible

2.	The transportation problem deals with the transportation of	5.	While assigning random numbers in Monte Carlo simulation, it is ———
4	(a) a single product from a source to several destinations		(a) not necessary to assign the exact range of random number interval as the probability
	(b) a single product from several sources to		(b) necessary to develop a cumulative probability distribution
	several destinations (c) a single product from several sources to a		(c) necessary to assign the particular appropriate random numbers
	destination		(d) all of the above
	(d) a multi -product from several sources to several destinations		(B) Fill in the blanks: $(5 \times 1 = 5)$
3.	The difference between total and free float is	6.	If any value in XB column of final simplex table is negative then the solution is ————
	(a) total (b) free	7.	The assignment problem is always a matrix.
	(c) independent (d) interference	8.	In the basic EOQ model, if the lead time increases from 2 to 4 days, the EOQ will———.
4.	Which of the following criterion is not used for decision-making under uncertainty?	9.	In game theory, the outcome or consequence of a strategy is referred to as the ————.
-	(a) Maximin	10.	The average arrival rate in a single server
,	(b) Maximax		queuing system is 10 customers per hour and
	(c) Minimax		average service rate is 15 customers per hour. The average time that a customer must wait before it
	(d) Minimize expected loss		is taken up for service shall beminutes.
	2 S.No. 9004		3 S.No. 9004

II. Answer ALL questions:

 $(5 \times 2 = 10)$

S.No. 9004

- 11. List the merits and limitations of operations research.
- 12. What is an unbalanced transportation problem? How do balance it?
- 13. What are the costs associated with EOQ?
- 14. Define Expected Money Value.
- 15. Give the uses of Markovian analysis for business decision making.

PART B —
$$(5 \times 5 = 25)$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Solve the following linear programming problem graphically

Maximize Z = x + 4y

Subject to:

$$x + y \leq 50$$

$$3x + y \le 90$$

$$X \ge 0, y \ge 0$$

Or

(b) Write the steps in finding the duality of a linear programming problem.

17. (a) Find solution using Vogel's Approximation method:

-	Origin	De	stina	Supply		
		1	2	3		
	1	2	7	4	5	
	2	3	3	1	8	
	3	5	4	7	7	
	4	1	6	2 2	14	
Ī	Demand	7	9	18		

Or

(b) A plant manager has four subordinates and four tasks to be performed. The subordinates differ in efficiency and the tasks differ in their intrinsic difficulty. This estimate of the times each man would take to perform each task is given in the effectiveness matrix below.

	I	II	III	IV
1	8	26	17	11
2	13	28	4	26
3	38	19	18	15
4	19	26	24	10

How should the tasks be allocated, one to a man, so as to minimize the total man hours?

18. (a) Draw the network diagram and determine the critical path for the following project.

Activity 1-2 1-3 1-4 2-5 3-6 3-7 4-7 5-8 6-8 7-9 8-9

Time (weeks) 5 6 3 5 7 10 4 2 5 6 4

Or

- (b) ABC Ltd. uses EOQ logic to determine the order quantity for its various components and is planning its orders, The annual consumption is 80,000 units, cost of placing one order is Rs. 1,200, Cost per unit is Rs.50 and carrying cost is 6% of unit cost. Find EOQ, Number of orders per year, ordering cost and carrying cost and Total cost of inventory.
- 19. (a) What are the decision-making environments? Explain with examples.

Or

(b) Find solution of game theory problem using principle of dominance method

Player A						
and a specific section of the sectio	B1	B2	В3	B4	B5	
A1	2	4	8	3	4	
A2	5	6	7	3	-8	
A 3	6	7	8	9	7	
A4	4	2	4	8	3	

S.No. 9004

- 20. (a) The counter of a bank branch performs the transactions with a mean time of 2 minutes. The customers arrive at a mean rate of 20 customers/hour. If we assume that arrivals follow a Poisson process and that the service time is exponential, determine:
 - (i) Percentage of the time the bank teller is idle
 - (ii) Mean waiting time of the customers
 - (iii) Percentage of customers that wit in a queue

Or

(b) Discuss the advantages, disadvantages and limitations of simulation

PART C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

21. Solve the following LPP using simplex method:

Maximize
$$Z = 50x + 60y$$

Subject to:

$$2x + y \le 300$$

$$3x + 4y \le 509$$

$$4x + 7y \le 812$$

$$x, y \ge 0$$

22. A company is producing a single product and selling it through five agencies situated in different cities. All of a sudden, there is a demand for the product in five more cities that do not have any agency of the company. The company is faced with the problem of deciding on how to assign the existing agencies to dispatch the product to the additional cities in such a way that the travelling distance is minimised. The distances (in km) between the surplus and deficit cities are given in the following distance matrix.

Surplus (City	Deficit City						
	I	II	III	IV	\mathbf{v}			
\mathbf{A}^{-1}	160	130	175	190	200			
В	135	120	130	160	175			
C	140	110	155	170	185			
D	50	50	80	80	110			
E	55	35	70	80	105			

Determine the optimum assignment schedule.

23. A project has the following time estimates (days):

20. A project has	OHE	101	TOW	ing t	ime	csum	aces (Jay:	э <i>)</i> .
Activity	Α	В	\mathbf{C}	D	\mathbf{E}_{i}	F	G	Η	I
Predecessor Activity	-	A	A	В	\mathbf{C}^{-1}	D, E	D, E	\mathbf{F}	G.
Least time	2	3	8	9	8	16	19	2	1
Greatest time	4	6	10	12	9	21	22	5	3
Most likely time	6	9	12	15	10	26	25	8	5

- (a) Construct the network diagram
- (b) Estimate the expected time and variance
- (c) Find out the critical path
- (d) What is the probability of completing the project 3 days earlier than critical path?
- 24. Consider the following pay-off matrix:

Alternative		Pay-off			
	A1	A2	A 3	A4	
E 1	7	12	20	27	
 E2	10	9	10	25	
E 3	23	20	14	23	
E4	32	24	21	17	

Using:

- (a) Minimax
- (b) Maximax
- (c) Equally likely and
- (d) Minimax regret criterion, find the best alternative

25. A company manufactures around 200 mopeds. Depending upon the availability of raw materials and other conditions the daily production has been varying from 196 moped to 204 moped, whose probability distribution is as given below:

Production per day 196 197 198 199 200 201 202 203 204
Probability 0.05 0.09 0.12 0.14 0.20 0.15 0.11 0.08 0.06

The finished mopeds are transported in a specially designed three storeyed lorry that can accommodate only 200 mopped. Using the following 15 random numbers 82, 89, 78, 24, 53, 61, 18, 45, 04, 23, 50, 77, 27, 54, 10, simulate the process to find out:

- (a) What will be the average number of mopeds waiting in the factory?
- (b) What will be the average number of empty spaces on the lorry?