(For candidates admitted from 2016-2021 Batch)

B.C.A. DEGREE EXAMINATION, NOVEMBER 2023.

Part III — Computer Applications — Major

DIGITAL COMPUTER FUNDAMENTALS

Time: Three hours Maximum: 75 marks

SECTION A — $(10 \times 2 = 20)$

Answer ALL questions.

- 1. Write down the base of decimal, binary and octal number systems.
- 2. Give examples for error detecting and error correcting code.
- 3. What are universal building blocks?
- 4. Write the truth table of XOR gate.
- 5. Expand SOP and POS.
- 6. What are the methods to simplify Boolean expressions?
- 7. What are the inputs and outputs of half adder?

- 8. What is demultiplexer?
- 9. What is D flipflop?
- 10. List out any two sequential circuits.

SECTION B —
$$(5 \times 5 = 25)$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Convert (1C.2)₁₆ into equivalent decimal and binary number.

Or

- (b) Explain about binary addition and subtraction.
- 12. (a) State and prove demorgan's theorem.

Or

- (b) Write short notes on minterm and maxterm.
- 13. (a) Draw the simplified circuit using NAND gate for $F(x, y, z) = \Sigma(0, 1, 6, 7)$.

Or

(b) Simplify $F = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C$ using knap.

14. (a) What are combinational circuits? Explain with example.

Or

- (b) What is Multiplexer? Explain its operation.
- 15. (a) Describe the working principle of JK flip flop with diagram.

 \mathbf{Or}

(b) What is shift register? What are its types?

SECTION C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

- 16. Convert (1110.10101)₂ to its equivalent decimal, octal and hexadecimal number system.
- 17. Describe about AND, OR, NAND, NOR and XNOR gates.
- 18. Draw simplified circuit for $F(x, y, z) = \Sigma(0, 1, 3, 7) + d(2, 5)$ using k-map.
- 19. Explain about full adder circuit with its function table and circuit.
- 20. What is Ripple counter? Explain its operation with neat diagram and operation table.