S.No. 6887

P 22 MAE 3 A

(For candidates admitted from 2022-2023 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Mathematics - Elective

INTEGRAL EQUATIONS AND CALCULUS OF VARIATIONS

Time: Three hours

Maximum: 75 marks

PART A — (20 Marks)

Answer ALL questions.

- I. (A) Choose the correct answer. $(5 \times 1 = 5)$
- A functional v[y(x)] is called continuous if to a small change of _____ there corresponds a small change in the functional v[y(x)].
 - (a) y(v)
- (b) v(y)
- (c) v(x)

- (d) y(x)
- If a field is formed by a family of extremals of a certain variational problem, then it is called an extremal field.
 - (a) extremal
- (b) central
- (c) extremum
- (d) minimal

- The function $f(x_1, x_2, ... x_n)$ becomes a function $\Phi(x_{m+1}, x_{m+2}, \dots x_n)$ only of the ——— variables.
 - (a) n

(b) *m*

(c) n+m

- (d) n-m
- If $h(s)g(s)=f(s)+\lambda \int_{0}^{b} K(s,t),g(t)dt$, then what is the value of h(x) in Fredholm integral equation of second kind?
 - (a) 1

- (b) 0
- (c) any positive value (d) any value
- Fredholm's first theorem does not hold when λ is 5. a root of the equation —
 - (a) $D(\lambda)=0$
- (b) $D(\lambda) \neq 0$
- (c) $D(\lambda)=1$
- (d) $D(\lambda) \neq 1$
- (B) Fill in the blanks:

- $(5 \times 1 = 5)$
- If the kernel approaches infinity at one or more 6. points within the range of integration, then the integral equation is called ———.
- Resolvent kernel $\Gamma(s,t;\lambda) =$ 7.
- 8. The increment $\delta y = ----$.

- 9. The slope of the tangent line p(x,y) to the curve of the family y = y(x,C) that passes through the point (x,y) is called the of the field at the point (x,y).
- 10. ____ is the condition for Isoperimetric.
- II. Answer the following questions: $(5 \times 2 = 10)$
- 11. Define separable kernel.
- 12. State Fredholm's third theorem.
- 13. Define geodesics.
- 14. State the transversality condition
- 15. Define holonomic constraints.

PART B —
$$(5 \times 5 = 25)$$

Answer ALL questions.

16. (a) Solve the homogenous Fredholm integral equation $g(s) = \lambda \int_0^1 e^s e^t g(t) dt$.

Or

3

(b) Solve the integral equation $g(s) = f(s) + (1/\pi) \int_{0}^{2\pi} [\sin(s+t)] g(t) dt.$

17. (a) Solve the integral equation $g(s) = f(s) + \lambda \int_0^s e^{s-t} g(t) dt.$

 Ω

- (b) Solve the integral equation $g(s) = s + \lambda \int_0^1 \left[st + (st)^{\frac{1}{2}} \right] g(t) dt.$
- 18. (a) Find the extremals of the functional $v[y(x), z(x)] = \int_0^{\frac{\pi}{2}} [y'^2 + z'^2 + 2yz] dx$, with y(0) = 0, $y(\frac{\pi}{2}) = 1$, z(0) = 0, $z(\frac{\pi}{2}) = -1$.

Or

(b) Given a system of particles with masses m_i (i=1,2,...,n) and coordinates (x_i,y_i,z_i) acted upon by forces $\overline{F_l}$, that possess the force function (potential) -U, which is dependent solely on the coordinates:

$$F_{ix} = -\frac{\partial U}{\partial x_i}; \ F_{iy} = \frac{\partial U}{\partial y_i}; \ F_{iz} - \frac{\partial U}{\partial z_i},$$

where, F_{ix} , F_{iy} , F_{i2} are the coordinates of the vector \overline{F}_i acting on the point (x_i, y_i, z_i) . Find the differential equations of motion of the system.

19. (a) Test for an extremum of the functional $v = \frac{x_0}{x_1} \left(y'^2 + z'^2 + 2yz \right) dx \qquad \text{given} \qquad \text{that}$ $y(0) = 0; \ z(0) = 0 \quad \text{and the point} \quad (x_1, y_1, z_1) \quad \text{can}$ $\text{move over the plane } x = x_1.$

Or

- (b) If the Jacobi condition fulfilled for the extremal of the functional, $v = \int_0^a (y'^2 y^2) dx$ then verify that passes through the points A(0,0) and B(a,0).
- 20. (a) Find the shortest distance between two points $A(x_0, y_0, z_0)$ and $B(x_1, y_1, z_1)$ on the surface $\varphi(x, y, z) = 0$.

Or

(b) Find the form of an absolutely flexible, non-extensible homogeneous rope of length 1 suspended at the points A and B.

PART C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

- 21. Solve the integral equation $g(s) = f(s) + \lambda \int_0^1 (s+t)g(t)dt$ and find the eigen values.
- 22. Solve the integral equation $g(s) = 1 + \lambda \int_0^{\pi} [\sin(s+t)g(t)]dt.$

- 23. State and prove minimum-surface-of-revolution problem.
- 24. Write a summary on sufficient conditions for a minimum of the elementary functional.
- 25. Find the curve y = y(x) of given length l, for which the area S of the curvilinear trapezoid is a maximum. Also, find the extreme functional of the curve.

6