(6 pages)

S.No. 6866

P 22 MACC 12

(For candidates admitted from 2022-2023 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Mathematics

REAL ANALYSIS

Time: Three hours

Maximum: 75 marks

SECTION A — (20 Marks)

Answer ALL questions.

- Multiple choice questions: $(5 \times 1 = 5)$ I.
- A finite set has ———— limit points.
 - (a) ∞

(c) 1

- (d) no
- Let f be real on (a, b). Then f is strictly monotonically increasing on (a, b) if a < x < y < bimplies
 - (a) $f(x) \le f(y)$ (b) $f(x) \ge f(y)$
- - (c) f(x) < f(y) (d) f(x) > f(y)

- Every differentiable function is -3.
 - discontinuous
 - bi-continuous
 - continuous
 - none of the above
- $\int f(x)d\alpha(x)$ is called -
 - Riemann integral
 - Complete integral
 - Riemann-Stielties integral
 - None of the above
- There is a real function on the real line 5. which is nowhere differentiable.
 - continuous
- (b) differentiable

real

- bounded (d)
- Fill in the blanks: **(B)**

- $(5 \times 1 = 5)$
- Compact subset of metric spaces are -6.
- $\lim \sqrt[n]{n} =$ 7.
- Monotonic functions have no discontinuities of the 8.

9.
$$\alpha(x_i) - \alpha(x_{i-1}) = -$$

10. If
$$f_n(x) = n^2 x (1-x^2)^n$$
 then
$$\int_0^1 \left[\lim_{n \to \infty} f_n(x) \right] dx =$$

- II. Answer the following questions: $(5 \times 2 = 10)$
- 11. Define connected set with an example.
- 12. Give an example:
 - (a) The series which is absolutely convergent but not convergent.
 - (b) The series which is convergent but not absolutely convergent.
- 13. Define limit of a function.
- 14. Define unit step function.
- 15. State the Stone-Weierstrass theorem.

SECTION B —
$$(5 \times 5 = 25)$$

Answer ALL the questions, choosing either (a) or (b).

16. (a) State and prove Schwarz inequality.

Or

(b) Suppose $K \subset Y \subset X$. Then prove that K is compact relative to X iff K is compact relative to Y.

17. '(a) Prove that the subsequential limits of a sequence $\{p_n\}$ is a metric space X form a closed subset of X.

Or

- (b) If $\sum a_n = A$ and $\sum b_n = B$ then prove that $\sum (a_n + b_n) = A + B$ and $\sum ca_n = cA$, for any fixed c.
- 18. (a) Prove that the mapping f of a metric space X into a metric space Y is continuous on X iff $f^{-1}(V)$ is open in X for every open set V in Y.

Or

- (b) Suppose f is a continuous mapping of [a, b] into R^k and f is differentiable in (a, b). Then prove that there exists $x \in (a, b)$ such that $|f(b) f(a)| \le (b a)f'(x)$.
- 19. (a) If f is continuous on [a,b] then prove that $f \in \mathcal{R}(\alpha)$ on [a,b].

Or

4

(b) If γ' is continuous on [a, b] then prove that γ is rectifiable and $\wedge(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$.

S.No. 6866

S.No. 6866

20. (a) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim_{t\to x} f_n(t) = a_n (n = 1, 2, 3, ...)$. Then prove that $[A_n]$ converges and $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$.

Or

(b) Let \mathcal{B} be the uniform closure of an algebra \mathcal{A} of a bounded function. Then prove that \mathcal{B} is a uniformly closed algebra.

SECTION C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

- 21. Prove that for every real x > 0 and every integer n > 0 there is one and only one positive real y such that $y^n = x$.
- 22. State and prove root test and ratio test.
- 23. State and prove Taylor's theorem.
- 24. Assume α increases monotonically and $\alpha' \in \mathcal{R}$ on [a,b]. Let f be a bounded real function on [a,b]. Then prove that $f \in \mathcal{R}(\alpha)$ iff $f\alpha' \in \mathcal{R}$. In that case $\int_a^b f \, d\alpha = \int_a^b f(x)\alpha'(x)dx$.

- 25. If K is compact, $f_n \in \mathbb{C}$ (k) for n = 1, 2, 3, ... and $\{f_n\}$ is pointwise bounded and equicontinuous on K then prove the followings.
 - (a) $\{f_n\}$ is uniformly bounded on K.
 - (b) $\{f_n\}$ contains a uniformly convergent subsequence.