

Dr.S.MURUGAN

Associate Professor (Retd.) & Research Supervisor

PG & Research Department of Computer Science

Nehru Memorial College (Autonomous)

Puthanampatti - 621 007

Tiruchirappalli - Dt., Tamil Nadu

CERTIFICATE

This is to certify that the thesis entitled "ENHANCING THE PERFORMANCE OF

FREQUENT PATTERN MINING ALGORITHMS USING VERTICAL DATA

FORMAT" submitted by Ms.P.Sumathi, Research Scholar, PG & Research

Department of Computer Science, Nehru Memorial College (Autonomous),

Puthanampatti - 621 007, for the award of the degree of Doctor of Philosophy in

Computer Science, is a record of original work carried out by her under my

supervision and guidance. The thesis has fulfilled all requirements as per the

regulations of the University and in my opinion, the thesis has reached the standard

needed for submission. The results embodied in this thesis have not been submitted to

any other University or Institute for the award of any degree or diploma.

(Dr.V.UMADEVI)

Research Co-supervisor

(Dr.S.MURUGAN)

Research Supervisor

Date :

Place : Puthanampatti

Mobile: 9486631199, 8825768771, E-Mail ID:murugan_nmc@hotmail.com

P.SUMATHI

Part-Time Research Scholar

PG & Research Department of Computer Science

Nehru Memorial College (Autonomous)

Puthanampatti - 621 007

Tiruchirappalli - Dt.

Tamil Nadu

DECLARATION

I hereby declare that the work embodied in this thesis entitled "ENHANCING THE

PERFORMANCE OF FREQUENT PATTERN MINING ALGORITHMS

USING VERTICAL DATA FORMAT" is a research work done by me under the

supervision and guidance of Dr.S.MURUGAN, Associate Professor (Retd.) and the

co-supervision of Dr.V.UMADEVI, Assistant Professor, PG & Research Department

of Computer Science, Nehru Memorial College (Autonomous), Puthanampatti

- 621 007. The thesis or any part thereof has not formed the basis for the award of any

Degree, Diploma, Fellowship or any other similar titles.

Date :

Place : Puthanampatti P.SUMATHI

PG AND RESEARCH DEPARTMENT OF COMPUTER SCIENCE

NEHRU MEMORIAL COLLEGE (AUTONOMOUS)

(Nationally Accredited with 'A+' Grade by NAAC)

(Affiliated to Bharathidasan University)

PUTHANAMPATTI - 621 007

TIRUCHIRAPPALLI - Dt., TAMIL NADU, INDIA

CERTIFICATE OF PLAGIARISM CHECK

Name of the Research Scholar Ms. P.SUMATHI

Course of Study Ph.D., in Computer Science

Title of the Thesis/Dissertation ENHANCING THE PERFORMANCE OF

FREQUENT PATTERN MINING

ALGORITHMS USING VERTICAL

DATA FORMAT

Name of the Research Supervisor Dr.S.MURUGAN

Associate Professor (Retd.)

Name of the Research Co-supervisor Dr.V.UMADEVI

Assistant Professor

Department/Institution/Research

Centre

PG and Research Department of Computer Science

Nehru Memorial College (Autonomous)

Puthanampatti - 621 007

Acceptable Maximum Limit 10%

Percentage of Similarity of Content

Identified

1%

Software Used URKUND

Date of Verification 15-03-2022

Report on plagiarism check, the item with % of similarity is attached.

Signature of the

Research Co-supervisor

(Dr.V.Umadevi)

Signature of the

Research Supervisor

(Dr.S.Murugan)

Signature of the

Candidate

(Ms.P.Sumathi)

1/52

Document Information

Analyzed document 40007-Ph.D.K3-Computer Science-Part Time-January 2017-P.SUMATHI -

Dr.S.MURUGAN.doc (D130438651)

Submitted 2022-03-15T12:11:00.0000000

Submitted by Srinivasa ragavan S

Submitter email bdulib@gmail.com

Similarity 1%

Analysis address bdulib.bdu@analysis.urkund.com

Sources included in the report

URL: https://www.gauthmath.com/solution/Given-A-1-3-6-8-9-12-15-and-B-6-9-12-which-is-

TRUE-A-B-is-the-complement-of-A-B--1703145423666181

Fetched: 2021-07-07T11:05:38.4570000

4

URL: https://www.doubtnut.com/pcmb-questions/the-mean-of-1-3-4-5-7-4-is-m-the-numbers-

3-2-2-4-3-3-p-have-mean-m-1-and-median-q-then-p-q-a-4-b-5-c-110227

Fetched: 2021-05-04T05:30:20.2730000

8

URL: https://link.springer.com/chapter/10.1007/978-3-319-07821-2_2

Fetched: 2022-03-15T12:11:00.0000000
1

https://www.gauthmath.com/solution/Given-A-1-3-6-8-9-12-15-and-B-6-9-12-which-is-TRUE-A-B-is-the-complement-of-A-B--1703145423666181
https://www.doubtnut.com/pcmb-questions/the-mean-of-1-3-4-5-7-4-is-m-the-numbers-3-2-2-4-3-3-p-have-mean-m-1-and-median-q-then-p-q-a-4-b-5-c-110227
https://link.springer.com/chapter/10.1007/978-3-319-07821-2_2

i

ACKNOWLEDGEMENT

 First and foremost, I would like to place on my sincere devotion to Lord

Almighty for his countless blessings in completing the thesis successfully without any

hurdles.

 The profound gratitude deep from the heart is due to my guide and research

supervisor Dr.S.Murugan, Associate Professor(Retd.), PG & Research Department

of Computer Science, Nehru Memorial College, Puthanampatti for his periodical

monitoring, motivation, intellectual guidance, meticulous way of correcting the thesis,

untiring effort and interest shown in doing real scientific research.

 I wish to express my gratitude to my research co-supervisor Dr.V.Umadevi,

Assistant Professor, PG & Research Department of Computer Science, Nehru

Memorial College, Puthanampatti for her encouragement and support rendered for my

research work.

 It is my bound duty to record my sincere thanks to the benevolent management

of Nehru Memorial College, President Mr.Pon.Balasubramanian, and Secretary

Mr.Pon.Ravichandran, for permitting me to pursue the research work in this

prestigious institution and also all the facilities rendered to carry out the research in a

meticulous way.

 I wish to place on record my sincere thanks to Mr.J.Rajendra Prasad,

Correspondent of Vysya College, Salem for his constant support and encouragement

for my career and research.

 I acknowledge with gratitude my sincere thanks to the doctoral committee

members Dr.K.Mani, Associate Professor, PG & Research Department of Computer

Science, Nehru Memorial College, Puthanampatti and Dr.J.G.R.SATHIASEELAN,

Associate Professor & Head, Department of Computer Science, Bishop Heber

ii

College, Tiruchirappalli for their invaluable suggestions, guidelines and healthy

discussions made during doctoral committee meetings.

 I would like to express my sincere thanks to Dr.A.R.Ponperiasamy, Principal

of Nehru Memorial College, Puthanampatti and Dr.P.Venkatesan, Principal of Vysya

College, Salem for their precious support in carrying out the research work in an

effective manner.

 I am indebted to thank Dr.M.Muralidharan, Associate Professor & Head and

all eminent faculty members of PG & Research Department of Computer Science

for their silent support, suggestions and encouragement throughout the journey of my

research.

 I wish to express my gratitude to all my fellow researchers and my dear

friends for their timely help, suggestion and encouragement.

 I am grateful to my beloved parents Mr.C.Parasuraman and

Mrs.P.Mahalakshmi for their unconditional love, support, dedication and many

efforts made for my life.

 I would like to record my joyful thanks to my siblings Mr.P.Mohan,

M.Pharm., (Ph.D.), Associate Professor, Faculty of Pharmacy, Dr.M.G.R

Educational and Research Institute, Chennai and Dr.P.Kalpana, Associate Professor,

PG & Research Department of Computer Science, Nehru Memorial College,

Puthanampatti for their guidance, constant encouragement and co-operation in all

walks of my life.

 Finally, I thank all the good hearts who helped me directly as well as indirectly

during the journey of my research.

P.SUMATHI

iii

ABSTRACT

 Frequent patterns are patterns/itemsets, subsequences, or substructures that

appear frequently in a dataset with not less than a user-specified threshold.

Researchers realized that Frequent Pattern Mining (FPM) is vital in mining

associations, correlations and other relationships among data. In the modern digital

world, online shopping/e-shopping has become popular and mandatory in human

lives. E-stores like Amazon show up the "Frequently Bought Together" and

"Customers who bought this item also bought" for their customers to promote their

sales and thereby obtains profits considerably. Many transactional data were collected

every day, and finding frequent itemsets from the massive dataset is an issue for the

researchers because it requires more processing time and memory. However, there are

more efficient and scalable FPM algorithms found in the literature and also FPM has a

wide range of applications there is always a need for better algorithms to minimize the

issues. Thus, the research work focuses on developing efficient algorithms for FPM.

 The research work aims to create time and memory-efficient models for

discovering frequent patterns from transactional databases. For that, a framework

named "SUMsFPM" has been proposed comprising of four research models viz.,

RISOTTO, JAB-VDF, TP-NPF-VDF and GNVDF. The RISOTTO has been proposed

to reduce the runtime and JAB-VDF to minimize memory usage in finding the

frequent patterns from large databases. The models namely TP-NPF-VDF and

GNVDF have been contributed to reducing both time and memory.

 The RISOTTO algorithm improves the performance of Apriori by combining

both prefixed-itemset based storage structure and Vertical Data Format (VDF) and it

is abbreviated by taking the uppercase letters from the phrase "pRefixed ItemSet

iv

stOrage verTical daTa fOrmat". The method first finds the candidate 1-itemsets(C1) as

in classical Apriori and transforms them into VDF, then the frequent 1-itemset (L1) is

constructed from C1 by removing the items whose SC < δ (user-specified threshold).

After that, the L1 is stored in the prefixed-itemset storage as prefix-key and values. It is

noted that, in RISOTTO, the values with a single item is not stored in prefixed-itemset

storage as it does not generate successive candidates. During the successive iterations,

the items in values are used for joining and items that satisfy the Apriori property are

combined with the prefix-keys for generating the candidate (i+1)-itemsets, followed

by frequent(i+1)-itemsets and the process is repeated until no more candidate itemsets

found. As this method uses VDF, the SC for the (i+1)-candidate itemsets were

determined using the set intersection method which avoids repeated database scans.

 The VDF format avoids repeated scans of transactional databases for

determining the SC and limits the database scan to one but it requires huge memory

for storing TIDs of each item. To minimize the memory, the JAB-VDF model has

been introduced. It uses a jagged array structure for storing the TIDs, which allocates

memory space exactly needed for the itemsets than the 2-D array.

 The TP-NPF-VDF algorithm has been introduced as an enhancement version

to VDF by incorporating a novel pattern generation method with multithreads. It also

uses the jagged array for storing itemsets. It mainly consists of four phases. The first

and second phase converts the transactional database into VDF and determines the

frequent 1-itemset as in Apriori. The third phase rearranges the frequent 1-itemset in

ascending order based on SC. The fourth phase creates n-1 threads one for each

itemset in a frequent 1-itemset except for the last one. Each thread runs in parallel and

determines from frequent 2-itemsets to k-itemsets until it is non-empty, for each

itemset in frequent 1-itemset, where k ≥ 2 with a novel way of generating patterns.

v

 Though the multithreads reduces the runtime, it is well-known that the GPU

acceleration will enable the execution speed with multiple cores. By considering this,

GNVDF, a GPU-accelerated novel algorithm for finding frequent patterns using the

VDF approach with a jagged array has been introduced. Finding frequent 1-itemset

remain the same as TP-NPF-VDF but it removes the null transactions initially.

The common transactions in L1 (CTID_list) are identified, removed from L1 and updated

the new min_sup as δnew = δ - n. The frequent 1-itemsets are split into two logical

buckets LB1 and LB2 based on δnew. The candidate 2-itemsets patterns are generated by

combining each item Ix in LB1 with each item Iy in LB2 and each item Iz with Iz+1 until

the last item in LB2. The itemset combination that ends with the last item in LB2 will

be placed in C2_2 and the rest in C2_1. From C2_1 and C2_2, L2_1 and L2_2 were

generated based on SC. For generating candidate 3-itemset, each itemset Ix in L2_1 is

combined with the next item Iy in LB2 after the last item in Ix and placed in C3_2 and

C3_1 as previous. The L3_1 and L3_2 were formed by removing the infrequent itemsets

in C3_1 and C3_2. The process is repeated until no more candidates in Ln_1.

 All the proposed algorithms were implemented using Python and tested with

both real-time and synthetic types obtained from the FIMI repository and an open-

source data mining library and measured the runtime and memory usage. It is proved

from the experiments that the proposed models will reduce the runtime and memory

usage significantly than the existing ones.

vi

LIST OF PUBLICATIONS

International Journals

1. P.Sumathi, Dr.S.Murugan, Dr.V.Umadevi, "A Multithread, Novel Pattern

Based Algorithm for Finding Frequent Patterns With Jagged Array and

Vertical Data Format", Indian Journal of Computer Science and Engineering

(IJCSE), e-ISSN : 0976-5166, p-ISSN : 2231-3850, Vol. 12, No. 5,

pp.1353-1363, Sep-Oct 2021. DOI:10.21817/indjcse/2021/v12i5/211205078

(UGC Care List - II, Scopus Indexed).

2. P. Sumathi, S.Murugan, "GNVDF: A GPU-accelerated Novel Algorithm for

Finding Frequent Patterns Using Vertical Data Format Approach and Jagged

Array", International Journal of Modern Education and Computer Science

(IJMECS), ISSN: 2075-0161 (Print), ISSN: 2075-017X (Online), Vol.13,

No.4, pp.28-41, August 2021. DOI: 10.5815/ijmecs.2021.04.03 (UGC Care

List - II, Scopus Indexed).

3. P.Sumathi, S.Murugan, "A Memory Efficient Implementation of Frequent

Itemset Mining with Vertical Data Format Approach", International Journal of

Computer Sciences and Engineering, E-ISSN: 2347-2693, Vol. 6, No. 11,

pp.152-157, December 2018 (UGC Approved Journal).

4. P.Sumathi, S.Murugan, "RISOTTO - A Novel Hybrid Approach for

Enhancing Classical Apriori Algorithm", International Journal of Scientific

Research in Computer Science Applications and Management Studies,

ISSN: 2319-1953, Vol. 7, No. 5, September 2018 (UGC Approved Journal).

vii

International Conference

1. P.Sumathi, S.Murugan, "A Memory Efficient Implementation of Frequent

Itemset Mining with Vertical Data Format Approach", Proceedings of

International Conference on "Blooming Trends in Tech Challenges and

Opportunities", National College (Autonomous), Tiruchirappalli from

27.09.2018 to 29.09.2018.

National Conference

1. P.Sumathi, S.Murugan, "A Survey on Mining Frequent Itemsets" in one-day

National Level Conference (Multidisciplinary) on Emerging Trends in Digital

Transformation - ETDT 2018, Government College for Women, Maddur,

Karnataka - 571 428 on 30.07.2018. ISBN: 978-81-933447-3-6.

Seminars/Webinars/FDPs Attended

1. Completed an FDP on "Data Mining" conducted by NPTEL - AICTE during

Feb - Apr 2021.

2. Attended an FDP on "Applied Research in Multidisciplinary Studies"

organized by Sona College of Technology, Salem from 18.05.2020 to

19.05.2020.

3. Participated in the webinar on "How to use Turnitin Software for your

Research" organized by Guru Nanak Institute of Management Studies,

University of Mumbai held on 04.05.2020.

4. Participated in the webinar on "International Patent Filing Process"

organized by Sri Krishna College of Technology, Coimbatore held on

01.05.2020.

viii

5. Participated in a webinar on "Enhancing Research Effectiveness using

Scopus, ScienceDirect and Mendeley" organized by Kurukshetra University,

Kurukshetra in Collaboration with Elsevier held on 01.05.2020.

6. Participated in a webinar on "An Effective Research Paper Writing Skills",

organized by Bhagwan Mahavir College of Commerce & Management

Studies, Gujarat from 13.04.2020 to 16.04.2020.

7. Participated in a one-day International seminar on "Research Intelligence

and Database (RID-2018)", organized by Periyar University, Salem on

14.12.2018.

ix

CONTENTS

Page

No.

Acknowledgement…………………………………………………………... i

Abstract……………………………………………………………………… iii

List of Publications/Conferences/Seminars/Webinars/FDPs …………….… vi

Table of Contents…………………………………………………………… ix

List of Figures……………………………………………………………….. xiii

List of Tables………………………………………………………………... xv

List of Algorithms and Procedures………………………………………...... xviii

List of Abbreviations………………………………………………………... xix

List of Symbols……………………………………………………………… xxii

 CHAPTER - 1 INTRODUCTION………………………………………... 1-22

 1.1 Background…………………………………………………………… 1

 1.2 Data Mining…………………………………………………………... 1

 1.2.1 Knowledge Discovery in Databases……………………………. 2

 1.3 Frequent Pattern Mining……………………………………………... 3

 1.3.1 Terminologies in FPM………………………………………….. 4

 1.3.2 Basic Definitions……………………………………………….. 6

 1.3.3 Architecture/Layout of Storing Transactional Data……………. 7

 1.4 Association Rule Mining…………………………………………….. 8

 1.4.1 Apriori Algorithm………………………………………………. 10

 1.4.1.1 Disadvantages of Apriori Algorithm…………………... 11

 1.4.2 FP-Growth Algorithm………………………………………….. 12

 1.4.2.1 Advantages of FP-Growth Algorithm………………….. 12

 1.4.2.2 Disadvantages of FP-Growth Algorithm………………. 13

 1.4.3 Eclat Algorithm………………………………………………… 13

 1.4.3.1 Advantages & Disadvantages of Eclat Algorithm……… 13

 1.5 Applications of FPM………………………………………………….. 14

 1.6 Scope of the Research Work………………………………………….. 15

 1.7 Aim & Objectives of the Research Work……………………………... 16

 1.8 Problem Statement…………………………………………………….. 17

 1.9 Problem Description…………………………………………………... 17

x

 1.10 Description of the Datasets…………………………………………... 19

 1.11 Chapter Organization………………………………………………… 20

 CHAPTER - 2 REVIEW OF LITERATURE…………………………….. 23-44

 2.1 Background…………………………………………………………… 23

 2.2 Works Related to Apriori and FP-Growth……………………………. 24

 2.3 Works Related to Matrix-based Apriori……………………………… 27

 2.4 Works Related to Vertical Data Format……………………………… 36

 2.5 Works Related to Eclat……………………………………………….. 38

 2.6 Works Related to GPUs………………………………………………. 39

 2.7 Observations and Limitations of the Existing Literature……………... 42

CHAPTER - 3 RISOTTO: A NOVEL HYBRID APPROACH FOR

ENHANCING CLASSICAL APRIORI ALGORITHM………………... 45-66

 3.1 Background…………………………………………………………… 45

 3.2 Prefix-Itemset Storage Structure……………………………………. 46

 3.3 Vertical Data Format…………………………………………………. 46

 3.4 Proposed Methodology……………………………………………….. 47

 3.4.1 Illustration by an Example……………………………………… 51

 3.5 Experimental Results and Discussion………………………………… 59

 3.5.1 Welch's Two Sample t-test…………………………………....... 63

 3.6 Chapter Summary…………………………………………………….. 65

CHAPTER - 4 JAB-VDF: A JAGGED ARRAY BASED DATA

STRUCTURE FOR VERTICAL DATA FORMAT…………………….. 67-82

 4.1 Background…………………………………………………………… 67

 4.2 Jagged Array …………………………………………………………. 68

 4.3 Proposed Methodology……………………………………………….. 69

 4.3.1 Illustration by an Example……………………………………… 69

 4.4 Experimental Results and Discussion………………………………… 79

 4.5 Chapter Summary…………………………………………………….. 80

xi

CHAPTER - 5 TB-NPF-VDF: A MULTITHREADED, NOVEL

PATTERN FORMATION FOR VERTICAL DATA FORMAT WITH

JAGGED ARRAY …………….. 83-100

 5.1 Background…………………………………………………………… 83

 5.2 Multithreading………………………………………………………... 84

 5.3 Proposed Methodology……………………………………………….. 86

 5.3.1 Illustration by an Example……………………………………… 89

 5.4 Experimental Results and Discussion………………………………… 95

 5.4.1 Welch's Two Sample t-test …………………………………….. 95

 5.5 Chapter Summary…………………………………………………….. 99

CHAPTER - 6 GNVDF: A GPU-ACCELERATED NOVEL

ALGORITHM USING VERTICAL DATA FORMAT AND JAGGED

ARRAY…………………………………………………............................... 101-122

 6.1 Background…………………………………………………………… 101

 6.2 Graphical Processing Unit……………………………………………. 102

 6.2.1 Processing flow of CUDA…………………………………….. 103

 6.3 Proposed Methodology……………………………………………….. 104

 6.3.1 Memory Requirement Calculation……………………………. 109

 6.3.2 Illustration by an Example…………………………………….. 111

 6.4 Experimental Results and Discussion………………………………… 117

 6.5 Chapter Summary…………………………………………………….. 121

CHAPTER - 7 CONCLUSION………………………...…………………. 123-128

 7.1 Summary of the Contributions……………………………………….. 123

 7.2 Limitations and Future Research Directions…………………………. 126

 7.3 Endnote……………………………………………………………….. 127

REFERENCES…………………………………………………………….. 129-142

xii

APPENDICES

 Appendix - A

 Google Scholar Image Showing the Research Scholar Publications

 Papers Included in International Digital Libraries

 Appendix - B

 Papers Published in the International Journals

xiii

LIST OF FIGURES

Figure

No.
Title

Page

No.

1.1 KDD Process 4

1.2 Classification of Frequent Pattern Mining Algorithm 9

1.3 An Example for Apriori Algorithm 12

1.4 An Example of Eclat Algorithm 14

1.5 Workflow of the Research 19

3.1 Workflow of RISOTTO 50

3.2 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for

chess Dataset
61

3.3 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for

mushroom Dataset
61

3.4 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for

t25i10d10k Dataset
62

3.5 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for

c20d10k Dataset
62

4.1 Jagged Array Representations 68

4.2 Comparison of Memory Consumption (in GB) between JAB-VDF

and VDF with δ=20%
80

5.1 Multithreading 85

5.2 Workflow of TB-NPF-VDF 89

5.3 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF

for chess Dataset
97

5.4
Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF

for mushroom Dataset.
97

5.5
Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF

for t25i10d10k Dataset
98

5.6
Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF

for c20d10k Dataset
98

xiv

Figure

No.
Title

Page

No.

6.1 Processing Flow of CUDA 104

6.2 Workflow of GNVDF 109

6.3 Runtime Performance of GNVDF with and without

GPU-acceleration for chess Dataset
119

6.4 Runtime Performance of GNVDF with and without

GPU-acceleration for mushroom Dataset
119

6.5 Runtime Performance of GNVDF with and without

GPU-acceleration for t25i10d10k Dataset
120

6.6
Runtime Performance of GNVDF with and without

GPU-acceleration for c20d10k Dataset
120

xv

LIST OF TABLES

Table

No.
Title

Page

No.

1.1 A Sample Transactional Dataset of a Grocery Store 5

1.2 Transactional Database D in HDF 8

1.3 VDF of D 8

1.4 Characteristics of Datasets 20

3.1 Prefixed-Itemset Storage Structure 46

3.2 Transactional Database D 51

3.3 Computation of C1 52

3.4 Computation of L1 52

3.5 Prefixed-Itemset Storage with frequent 1-itemset 52

3.6 Computation of C2 53

3.7 Computation of L2 54

3.8
The Original Prefixed-Itemset Storage after Appending frequent

2-itemset
54

3.9
The Prefixed-Itemset Storage after Appending frequent 2-itemset

in RISOTTO
55

3.10 Computation of C3 55

3.11 Computation of L3 56

3.12
The Original Prefixed-Itemset Storage after Appending frequent

3-itemset
56

3.13
The Prefixed-Itemset Storage after Appending frequent 3-itemset

in RISOTTO
57

3.14 Computation of C4 57

3.15 Computation of L4 57

3.16
The Original Prefixed-Itemset Storage after Appending frequent

4-itemset
58

3.17
The Prefixed-Itemset Storage after Appending frequent 4-itemset

in RISOTTO
58

3.18 Performance Results of RISOTTO in seconds 60

xvi

Table

No.
Title

Page

No.

3.19 Results of t-test 64

4.1 Transactional Database D 70

4.2 D in VDF 70

4.3 Frequent 1-itemset in VDF 71

4.4 VDF of frequent 2-itemsets 73

4.5 VDF of frequent 3-itemsets 73

4.6 VDF of frequent 4-itemsets 73

4.7 Jagged Array Representation of frequent 1-itemset 75

4.8 Jagged Array Representation of frequent 2-itemset 76

4.9 Jagged Array Representation of frequent 3-itemset 77

4.10 Jagged Array Representation of frequent 4-itemsets 78

4.11
Comparison of Memory Consumption (in GB) between JAB-VDF

and VDF with δ=20%
79

5.1 Transactional Database D 90

5.2 D in VDF 90

5.3 Candidate 1-itemset 91

5.4 Jagged Array Representation of frequent 1-itemset 91

5.5 Sorted frequent 1-itemset 92

5.6 Frequent 2-itemset for <a> by Thread-1 92

5.7 Frequent 3-itemsets for <a> by Thread-1 93

5.8 Frequent 4-itemsets for <a> by Thread-1 93

5.9 Frequent 2-itemset for <f> by Thread-2 93

5.10 Frequent 2-itemset for <i> by Thread-3 93

5.11 Frequent 3-itemset for <i> by Thread-3 93

5.12 Frequent 2-itemset for <d> by Thread-4 94

5.13 Frequent 3-itemset for <d> by Thread-4 94

5.14 Frequent 4-itemset for <d> by Thread-4 94

5.15 Frequent 2-itemset for <m> by Thread-5 94

5.16 Frequent 3-itemset for <m> by Thread-5 94

5.17 Frequent 2-itemset for <c> by Thread-6 94

xvii

Table

No.
Title

Page

No.

5.18 Frequent 3-itemset for <c> by Thread-6 94

5.19 Frequent 2-itemset for <e> by Thread-7 94

5.20 Details of Itemsets for D 95

5.21 Performance Results of TB-NPF-VDF in seconds 96

5.22 Results of t-test 99

6.1 Vertical Data Format of D 111

6.2 Candidate 1-itemset (C1). 112

6.3 Frequent 1-itemset (L1) 112

6.4 Common Transaction List (CTL) 113

6.5 Final frequent 1-itemset (L1) 113

6.6 Logical Bucket-1(LB1) 113

6.7 Logical Bucket-2 (LB2) 113

6.8 Candidate 2-itemset - Part I 114

6.9 Candidate 2-itemset - Part II 114

6.10 Frequent 2-itemset - Part I 115

6.11 Frequent 2-itemset - Part II 115

6.12 Candidate 3-itemset - Part I 115

6.13 Candidate 3-itemset - Part II 115

6.14 Frequent 3-itemset - Part I 116

6.15 Frequent 3-itemset - Part II 116

6.16 Candidate 4-itemset - Part I 116

6.17 Candidate 4-itemset - Part II 116

6.18 Frequent 4-itemset - Part II 116

6.19
Runtime (in ms) Performance of the Proposed Algorithm without

GPU
118

6.20
Runtime (in ms) Performance of the Proposed Algorithm with

GPU-acceleration
118

xviii

LIST OF ALGORITHMS AND PROCEDURES

Algorithm

No.
Title

Page

No.

3.1 RISOTTO: An algorithm for finding frequent itemsets 49

5.1 TB-NPF-VDF: An algorithm for finding frequent itemsets 87

6.1 GNVDF: An algorithm for finding frequent itemsets 106

 Procedures in GNVDF 106-108

6.1.1 eliminate_null: A procedure to eliminate the null

transactions in a dataset
106

6.1.2 one_frequent_itemset: A procedure to find the frequent

1-itemset
107

 6.1.3 find_common_TID: A procedure to find the common

transaction ID's
107

 6.1.4 two_freq_itemset: A procedure to find the frequent

2-itemset
107

 6.1.5 n_frequent_itemset: A procedure to find the frequent

i-itemset where 3 ≤ i ≤ n
108

xix

LIST OF ABBREVIATIONS

AA - Apriori Algorithm

AMA - Advanced Matrix Algorithm

APFMS - Accelerating Parallel Frequent Itemset Mining on Graphics

 Processors with Sorting

ARAA - Advanced Reverse Apriori Algorithm

ARM - Association Rule Mining

BSRI - Boolean array Setting and Retrieval by Indexes of transactions

CGMM - CPU & GPU based Multi-strategy Mining

CGSS - Cluster based Single Scan on a GPU

CMR - Apriori - Coding and Map/Reduce - Apriori

CPU - Central Processing Unit

CSS - Single Scan on a Cluster

CTL - Common Transaction List

CUDA - Compute Unified Device Architecture

D2P - Dynamic Queue and Deep Parallel

DHP - Direct Hashing and Pruning

DM - Data Mining

DS - Data Structure

Eclat - Equivalence CLAss Transformation

ESPE - Efficient Sequential Pattern Enumeration

FBCM - Fast update pruning Based on a Compression Matrix

FIM - Frequent Itemset Mining

FIMI - Frequent Itemset Mining Implementations

FIUT - Frequent Item Ultra metric Tree

FMA - Frequent Matrix Apriori

FP-Growth - Frequent Pattern Growth

http://fimi.uantwerpen.be/src/

xx

FPM - Frequent Pattern Mining

FPMBM - Frequent Pattern Mining using a Boolean Matrix

FUP - Fast Update Pruning

GNVDF - GPU-accelerated Novel Algorithm using Vertical Data Format

GPGPU - General-Purpose computing on GPUs

GPU - Graphical Processing Unit

GSS - Single Scan on a GPU

HDF - Horizontal Data Format

HPC - High-Performance Computing

IMA - Incremental Matrix Apriori

JAB-VDF - Jagged Array based Vertical Data Format

JCUDA - Java for CUDA

JNI - Java Native Interface

KDD - Knowledge Discovery in Databases

MAPRIORI - Matrix-based Apriori algorithm

MATLAB - MATrix LABoratory

MBAT - Matrix Based Algorithm with Tags

MB-MFIM - Matrix Based Maximal Frequent Itemset Mining

MFI - Maximal Frequent Itemset

MFIF - Maximal Frequent Itemset First

MFIWDSIM - Mining Frequent Itemsets with Weights over a Data Stream using

 Inverted Matrix

MMS-FPM - Multiple Minimum Support - Frequent Pattern Mining

MOA - Matrix-Over-Apriori

MSApriori - Multiple Support Apriori

MTPAPRIORI - Matrix-based Apriori algorithm with pruning optimization and

 transaction reduction strategy

NPF-VDF - Novel Pattern Formations with Vertical Data Format

xxi

NSFI - N-list and Subsume-based algorithm for mining Frequent Itemset

PRFP - Parallel Regular Frequent Pattern

PSPM - Parallel Sequential Pattern Mining

RAA - Reverse Apriori Algorithm

RBFI - Rehashing Based Frequent Itemset

RISOTTO - pRefixed ItemSet stOrage verTical daTa fOrmat

SIM - Sorting Index Matrix

SIMD - Single Instruction, Multiple Data

SS - Single Scan

SUMsFPM - Sumathi Murugan Frequent Pattern Mining

TB-NPF-VDF - Thread Based, Novel Pattern Formations with Vertical Data Format

VBM - Vertical Boolean Mining

VDF - Vertical Data Format

VDSRP - Vertical Data Stream Regular Patterns

VFFM - Vertical Format Frequent Mining

YAFIM - Yet Another Frequent Itemset Mining

xxii

LIST OF SYMBOLS

0H ,
1H - Null and Alternate hypothesis

{in-frequenti} - Set of in-frequent items in candidate i-itemset

{itemseti} - Set of frequent i-itemset

|D| - Number of transactions in a dataset

|I| - Number of items in a dataset

∩ - Set intersection

∪ - Set union

⋈ - Natural join

µ1,µ2 - Means of two groups

A, B, X, Y - Items in transactional database D

2

1s
and 2

2s - Variances of the two groups

arr - Jagged array

c - Number of columns

Ci - Candidate i-itemset

Ci_1 - Part I of candidate i-itemset

Ci_2 - Part II of candidate i-itemset

CM - Memory space required for CTID

CTID - Common TID's

CTID_list - Common Transaction List

D - Transactional Database

I - Itemset

I1,I2,…,Im - List of items in Itemset I

i-itemset - i
th

 itemset

itemi1 - First item in the candidate i-itemset

itemseti_1 - Number of items in the first part of frequent i-itemsets

xxiii

itemseti_2 - Number of items in the second part of frequent i-itemsets

Ix, Iy - Each item in LB1 and LB2

Iz ,Iz+1 - Items in LB2

k-itemset - k
th

 itemset

L - List of frequent itemsets

LB1 - Logical Bucket - 1

LB2 - Logical Bucket - 2

Li - Frequent i-itemset

Li_1 - Part I of frequent i-itemsets

Li_2 - Part II of frequent i-itemsets

LKk - Prefix keys in prefixed itemset storage

LVk - Values in the prefixed itemset storage

m,p,x - Lengths of each array in a jagged array

Mi - Memory required for frequent i-itemset

min_conf - Minimum confidence

min_sup - Minimum support

MS - Memory saved for the entire dataset D

 n - Total number of transactions in D

n1 and n2 - Sizes of two groups

Ø - Null set

PIDS - Prefixed-itemset storage

r - Number of items in the grocery shop

rbytesi - Number of bytes of memory removed from the candidate

 i-itemset as in-frequent

rr1 - Number of rows to be removed as in-frequent

SC - Support Count

SCitem - Support Count of the item item

T - Transaction

xxiv

tci - Possible i-item combinations

TID/tid - Transaction ID

TID-List1,

TID-List2,

TID-List3,…,

TID-Listn

- List of TIDs

TID-set - Set of Transaction ID's

TM - Total memory required

TMfinal - Total memory required for the frequent itemsets in GNVDF

TMi - Memory required for candidate i-itemset

TNT - Total Number of Transactions

tx - Thread x

X - Itemset

X1 and X2 - Means of X1 and X2

δ - Minimum support

δnew - New support threshold

Chapter - 1

INTRODUCTION

 1

CHAPTER - 1

INTRODUCTION

 A journey of thousand miles begins with a single step

--LAO-TZU

1.1 Background

 In recent days, the quantity of data generated or collected from various sources

has been increasing enormously. Data Mining (DM) is an interdisciplinary field, has

been widely used to analyze those data. Frequent Pattern Mining (FPM) plays a core

role in DM, and it enables us to find relationships among the items in transactional

databases [AH,14]. Thus, the research incorporates various novel FPM algorithms to

mine frequent patterns efficiently with less time and memory usage.

 This chapter provides background information necessary for understanding the

contributions made in this research. In particular, section 1.2 outlines the basics of

DM, section 1.3 deals with FPM, the importance of Association Rule Mining (ARM)

is discussed in section 1.4, section 1.5 mentions the various applications of FPM,

the scope, aim & objectives of the research work were presented in sections 1.6 and

1.7 respectively. Similarly, the statement of the problem and its description were

discussed in sections 1.8 and 1.9 respectively. The elaborate description of the

datasets was illustrated in section 1.10 and finally, the chapter organization of the

thesis is covered in section 1.11.

1.2 Data Mining

 DM is the most commonly used process for exploring and analyzing a large

quantity of data to acquire novel, valid, potentially valuable and intelligent patterns

hidden in the database [VD,19],[FPS,96]. Databases, data warehouses, the Web,

 2

other information repositories, and streaming data are examples of data sources.

The significant tasks of DM are:

i. Anomaly detection – unusual items or events in the unlabeled datasets are

identified for further analysis.

ii. Association rule mining – identifies the relationships between variables.

Using this task, the supermarket can find out the products that are purchased

together frequently by the customers and use this information for marketing

purposes.

iii. Clustering – determining the similar groups and structures in the data without

using the known structures.

iv. Classification – accurately predict the target class for the new data from the

model.

v. Regression – predict a range of numeric values for the given dataset.

vi. Summarization – presenting a more compact representation of the dataset

e.g. visualization and report generation.

1.2.1 Knowledge Discovery in Databases

 Knowledge Discovery in Databases (KDD) is a repetitive and interactive

process of discovering useful knowledge from a collection of data in the context of

large databases. Knowledge Discovery and DM are distinct terms. It consists of the

following steps:

i. Data cleaning – removing noise and inconsistent data.

ii. Data integration – combining numerous data sources.

https://en.wikipedia.org/wiki/Anomaly_detection
https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Automatic_summarization

 3

iii. Data selection – retrieving relevant data from the database for the analysis

task.

iv. Data transformation – transforming and consolidating the data into forms

that are appropriate for mining by performing summary or aggregation

operations.

v. Data mining – extracting data patterns by applying intelligent methods.

vi. Pattern evaluation – identifying the interesting patterns representing

knowledge based on interestingness measures.

vii. Knowledge presentation – presenting the mined knowledge to the users by

using visualization and knowledge representation techniques.

 Steps 1 through 4 are the data pre-processing techniques, which makes the

data for mining ready. The DM step may interact with the user or a knowledge base.

The interesting patterns are presented to the user and they may be stored as new

knowledge in the knowledge base by the last two steps [HPK, 12]. The diagrammatic

representation of the KDD process is shown in Figure 1.1.

1.3 Frequent Pattern Mining

 FPM is an essential task and plays a vital role in DM tasks such as various

kinds of ARM, sequential pattern mining, associative classification and frequent

pattern-based clustering. It is widely used in mining associations, correlations,

and many other relationships among the data. Mining frequent patterns from large

scale databases have become a significant research problem in DM and knowledge

discovery community.

 4

Figure 1.1 KDD Process

1.3.1 Terminologies in FPM

k-Itemset

 An itemset or set of items that contain k unique items is called k-itemset.

For example, a set of a desktop computer, a printer that occur frequently in a dataset is

called a 2-itemset [HPK,12].

Subsequence

 It contains a set of items purchased in sequential order i.e. buying a personal

computer first, then a wireless keyboard, and then a wireless mouse that occurs

frequently in a shopping history database [HPK,12].

Substructure

 It can refer to different structural forms, such as subgraphs, subtrees,

or sublattices, which may be combined with itemsets or subsequences. If a

substructure occurs frequently with not less than a user-specified threshold is called

structured patterns [HPK,12].

 5

Frequent patterns

 These are the patterns/itemsets/subsequences that appear frequently together in

transactional datasets or supermarket datasets.

Minimum support count threshold

 Users or decision-makers are interested to identify the occurrence of k-items

with specified numbers of times, which is known as the minimum support count

threshold.

Transactional/Supermarket dataset

 A transactional dataset is a dataset that contains the items are purchased in

each transaction. A transaction T in D is represented as a pair defined as

T = <TID, list of items>, where TID is the unique identification number for the list of

items purchased by each transaction. Table 1.1 showed below is an example

transactional dataset for a grocery store.

Table 1.1 A Sample Transactional Dataset of a Grocery Store

TID List of items

1 Milk, Butter, Bread

2 Milk, Dry grapes

3 Bread, Butter, Rusk

4 Rusk, Butter

5 Dry grapes, Bread, Butter

6 Ghee, Bread, Dry grapes

7 Milk, Bread, Butter

8 Yummy apple, Grapes

9 Yummy apple, Milk, Ghee

10 Budget milk, Butter, Dry grapes

 The discovery of frequent patterns plays an essential role in DM. A commonly

used application is the market basket analysis, where the frequently purchased items

 6

are discovered from the transactional entries of a grocery store for making business

decisions. Many efficient and scalable algorithms have been developed for FPM,

from which the association and/or correlation rules can be derived, which helps in

making business decisions and predictions. These algorithms are categorized into

three major groups [HPK,12].

i. Apriori-like algorithms

ii. Frequent pattern growth-based algorithms such as FP-growth

iii. Algorithms that use the Vertical Data Format (VDF)

1.3.2 Basic Definitions

 Let I={I1, I2,…, Im} be an itemset, and D is a transactional database containing

a set of transactions T and is a non-empty itemset such that T ⊆ I and each transaction

T is holding a unique identifier TID. Let A be a set of items. A transaction T is said to

contain in A if A ⊆ T. The format of the association rule is AB, where A ⊂ I,

B ⊂ I, A ≠ Ø, B ≠ Ø, and A∩B = Ø [HH,16]. Association rule AB that holds in D

with support (s) and confidence (c) [HD,16].

Support(s): The support of an association rule AB is defined as the percentage of

records that contain A∪B to the total number of records in the database [ST,16].

It is noted that the support count is increased when an item is present in numerous

transactions in the database D [ST,16].

support() ()A B p AUB  … Equation (1.1)

Confidence(c): The confidence of a rule A  B is defined as s(AB)/s(A). It is the

ratio of the number of transactions that contain all items in the consequent (B), as well

https://www.sciencedirect.com/topics/computer-science/frequent-itemsets

 7

as the antecedent (A) to the number of transactions that include all items in the

antecedent (A) [PP,15].

Support_count()
confidence()

Support_count()

AUB
A B

A
  … Equation (1.2)

 The minimum support threshold is used to obtain the frequent itemsets from

the databases. In contrast, the minimum confidence constraint is applied to those

frequent itemsets found previously in determining the best rules.

1.3.3 Architecture/Layout of Storing Transactional Data

 There are two formats in which a transactional database can be represented.

i) Horizontal Data Format(HDF) ii) Vertical Data Format(VDF).

i) Horizontal Data Format

 This representation consists of two columns namely TID and List of Item IDs,

where TID is a transaction ID and List of item IDs specifies the items bought by the

customer for the TID. Both the Apriori and FP-growth algorithms mine the frequent

patterns in HDF and it is shown in Table 1.2.

ii) Vertical Data Format

 In VDF, the data can be expressed in {itemset:TID_set} format where the

itemset is the name of the item and TID_set is the transaction set that contains the

itemset. The VDF is used in the Eclat algorithm that minimizes the database scan and

it uses a set intersection of TIDs for finding the Support Count (SC) for k-itemsets

whereak=2,3,...,n. The VDF of D is shown in Table 1.3.

 8

Table 1.2 Transactional Database D in HDF

TID List of item IDs

T1 A,B,E

T2 B,D

T3 B,C

T4 A,B,D

T5 A,C

T6 B,C

T7 A,C

T8 A,B,C

T9 A,B,C,E

Table 1.3 VDF of D

itemset TID_set

A T1,T4,T5,T7,T8,T9

B T1,T2,T3,T4,T6,T8,T9

C T3,T5,T6,T7,T8,T9

D T2,T4

E T1,T9

1.4 Association Rule Mining

 ARM is a process for finding interesting associations and relationships

between data items in datasets. It is a successful technique for extracting knowledge

from databases. It discovers the frequent if-then rules called association rules and it is

used for analyzing and predicting customer behaviour. They are essential in customer

analytics, product clustering, market basket analysis, catalogue design and store

layout. Every association rule has two parts: i) an antecedent (if) and ii) a consequent

(then). An antecedent refers to the item found within the data whereas the consequent

is an item found in combination with the antecedent. It uses the criteria namely

https://searchbusinessanalytics.techtarget.com/definition/customer-analytics
https://searchbusinessanalytics.techtarget.com/definition/customer-analytics

 9

support and confidence to identify the most important relationships. Support indicates

how frequently the items appear in the data. Confidence indicates the number of times

in the if-then statements is found true [HPK,12].

 The discovery of association rules involves two major steps. They are:

i. Finding frequent patterns/itemsets

ii. Generating reliable and strong association rules from the frequent

itemsets [HPK,12]

 Step 1 of ARM is a challenging task [SD,15] and plays a vital role in mining

associations and correlations [DS,16]. This research work focuses on FPM algorithms.

In general, the FPM can be categorized into three main groups viz., Join-Based,

Tree-Based, and Pattern Growth [ABH,14] as shown in Figure 1.2.

Figure 1.2 Classification of Frequent Pattern Mining Algorithm

 The Join-Based algorithms use a bottom-up approach to discover frequent

patterns in a dataset and find the larger itemsets as long as their itemsets appear more

than a prescribed threshold defined by the user in a database. The Tree-Based

algorithms use set-enumeration concepts by constructing a lexicographic tree that

Frequent Pattern Mining

Join-Based Algorithms Tree-Based Algorithms Pattern Growth Algorithms

Apriori

DHP

AprioriTID

AprioriHybrid

Sandwich-Apriori

MR-Apriori

HP-Aprriori

etc.

Eclat

AIS

TreeProjection

VIPER

MAFIA

DIFFSET

TM

etc.

FP-Growth

TFP

SSR

P-Mine

LP-Growth

Can-Mining

Extract

etc.

https://link.springer.com/article/10.1007/s10462-018-9629-z#Fig12

 10

enables the items to be mined with either breadth-first or depth-first order. Finally,

the Pattern Growth algorithms implement a divide-and-conquer approach to partition

and project databases depending on the presently identified frequent patterns and

expand them into longer ones in the projected databases.

 Apriori Algorithm, FP-Growth and Eclat (Equivalence CLAss

Transformation) are the popular static DM techniques for finding frequent patterns

[Sin,16] using the above strategies.

1.4.1 Apriori Algorithm

 It is one of the most popular algorithms and it is the first algorithm proposed

by R.Agrawal and R.Srikant in 1994 in the field of DM and it is a classical algorithm

of ARM. It generates frequent itemsets for the Boolean association rule. Since the

algorithm uses the prior knowledge of the frequent itemset properties it is named

Apriori. It uses an iterative approach called level-wise search, where k
th

itemset is

used to explore (k+1)
th

- itemsets. There are two steps involved in each iteration and

it is repeated when no candidate itemsets can be found. They are:

i. Generation of candidate itemsets

ii. Finding the occurrence of each candidate itemset in a database and pruning all

disqualified candidate itemsets based on support count(threshold) and closure

property i.e. if a set of items is frequent, then all of its proper subsets are also

frequent [HPK,12]

 After finding the frequent itemsets, the association rules are generated from

those large itemsets with the constraints of minimal confidence (min_conf)

 11

and minimum support (min_sup) thresholds. Figure 1.3 shows an illustration of the

Apriori algorithm [CJAH
+
,19].

 In this example, the transactional database D contains four transactions and the

items sold are A, B, C, D and E. Let the min_sup be 2. Initially, the D is scanned

once to create candidate 1-itemset C1. From Figure 1.3, it is identified that the SC of

{D} is less than the min_sup and it is removed. The L1 contains the items A, B, C,

and E. After finding L1, L1 ⋈ L1 is performed and to find the SC for C2, D is scanned

again. In this case, the itemset combinations {A,B} and {A,E} doesn't satisfy the

min_sup and they are removed. The item combinations after removing the items viz.,

{A,C},{B,C},{B,E} and {C,E} forms L2. This process is iterated until no more

candidate and/or frequent itemsets are found.

1.4.1.1 Disadvantages of Apriori Algorithm

The classical Apriori algorithm is inefficient because

i. It is not suitable for large databases

ii. It defines the presence and absence of an item

iii. It allows uniform min_sup threshold

iv. More scanning of the transactional database is needed for generating

frequent itemsets

v. More I/O cost is required

vi. Generation of candidate itemsets and support counting is expensive and

also memory consuming [CJAH
+
,19]

 12

Figure 1.3 An Example for Apriori Algorithm

1.4.2 FP-Growth Algorithm

 FP-growth depends on a prefix-tree configuration which stores the database

into a compact form known as FP-tree. It follows the divide-and-conquer approach.

It first compresses the database representing frequent items into an FP-tree, which

keeps the association information of the itemsets. It then divides the FP-tree into

sub-trees called conditional FP-trees using the dataset called conditional pattern base.

[SBE,21],[CJAH
+
,19],[HPK,12].

1.4.2.1 Advantages of FP-Growth Algorithm

i. Faster than Apriori algorithm

 13

ii. No candidates are generated

iii. Only two passes over the dataset

1.4.2.2 Disadvantages of FP-Growth Algorithm

i. FP tree may not fit in memory

ii. FP tree is expensive to build

1.4.3 Eclat Algorithm

 It uses VDF and finds all frequent itemsets by intersecting the TID-list. It first

scans the database and determines the TIDs in which the item occurs for each item.

The (k+1)-itemsets were generated from k-itemset using Apriori property and

depth-first search computation. The TIDs of (k+1)-itemsets are generated by

intersecting the TID-sets of frequent k-Itemset. This process continues until no more

candidate itemsets are found. An example of the Eclat algorithm is shown in

Figure 1.4 [CJAH
+
,19].

1.4.3.1 Advantages & Disadvantages of Eclat Algorithm

i. It does not require repeated scanning of the database to find the support of k+1

itemsets and it is obtained using the set intersection method from k-itemsets

ii. It is faster than the Apriori algorithm as it uses depth-first search

iii. Though it requires less memory consumption than Apriori, the usage of array

storage structure requires huge memory and computational time for

intersecting the sets when there are many transactions

 Thus, to eradicate the said disadvantages, a vast amount of research has been

contributed to FPM and many remarkable algorithms have been proposed in the last

 14

two decades. Further, the research contributions proposed in this thesis provides

modifications to the standard and/or existing algorithms to reduce the execution

time/runtime and memory space in finding the frequent patterns.

Figure 1.4 An Example of Eclat Algorithm

1.5 Applications of FPM

 FPM has been used in a variety of real-world applications to improve

decision-making and management.

 In the business world, mining frequent patterns assist the business people in

designing promotion schemes, providing discounts, organizing self and store layout,

posting special advertisements, storage management and forecasting potential markets

[CGGK,00].

 15

 In the medical domain, the frequent patterns enable the doctors to make

treatment decisions and uncover the gene actions [OKSI,00],[Wet,02].

 In education, mining frequent patterns enable the teachers in modifying the

teaching methods to improve their teaching quality, to facilitate students to be trained

better and select the contents of teaching based on the student's calibre [MLWY
+
,00].

 In disaster prevention, mining frequent patterns assist in weather forecasting

by analyzing different environmental factors and help to prevent impending

[ZWH,04].

 Similar to the previous it can be used in many other fields like police

department, engineering design, software bug detection and recommendation systems

[ABH,14]. Thus, mining frequent patterns plays a hot topic of research for the past

twenty decades.

1.6 Scope of the Research Work

 FPM has been a purposeful research area in DM for the past two decades.

Many researchers contributed numerous competent and scalable techniques for

determining the frequent itemsets from transactional databases. Nowadays, online

shopping become a mandatory mode of purchase in human lives and amazon like

e-stores display the items which are "frequently bought together" to their customers

and provides offers based on that. In this way, the e-stores increase their sales and

profit considerably. Also, they display "Customers who bought this item also bought"

in their web portal along with the product description and reviews. For displaying this

information, FPM is an essential task and though there are scalable algorithms exists,

the prolonged processing time and more memory consumptions are the major issues

 16

in mining frequently bought items. So, there is always a need for developing better

algorithms with reduced runtime requirements and memory usage.

 Thus, this research work focuses on developing efficient FPM methods in

finding frequent patterns in such a way that the runtime and usage of memory to be

reduced than the existing algorithms.

1.7 Aim & Objectives of the Research Work

 Even though an enormous amount of remarkable research works have been

contributed by many researchers for FPM to efficiently mine the frequent patterns

from transactional datasets, the requirement of prolonged processing time and a large

amount of memory space are still the two major issues that the FPM faces, especially

when the amount of data is large.

 To solve the above said issues, the research work aims to devise novel FPM

algorithms to determine the frequent patterns from the static datasets to achieve the

following objectives:

i. To develop FPM algorithms that efficiently mine the frequent patterns

with a minimum runtime

ii. To formulate the FPM algorithms to consume less memory in mining

frequent patterns

 Thus, the research work focuses on developing robust FPM algorithms for

reducing the runtime and consumption of memory in mining the frequent itemsets

from transactional datasets. To evaluate the proposed FPM algorithms, they were

compared with some existing algorithms to prove that the proposed algorithms will

detect the frequent patterns faster with less memory.

 17

1.8 Problem Statement

 To accomplish the said objectives, four research models have been proposed

in this research work as a research framework called SUMsFPM. They are:

i. RISOTTO – A Novel Hybrid Approach for Enhancing Classical Apriori

Algorithm

ii. JAB-VDF – A Memory Efficient Implementation of Frequent Itemset Mining

with Vertical Data Format Approach

iii. TB-NPF-VDF – A Multithread, Novel Pattern based Algorithm for Finding

Frequent Patterns with Jagged Array and Vertical Data Format

iv. GNVDF – A GPU-accelerated Novel Algorithm for Finding Frequent Patterns

Using Vertical Data Format Approach and Jagged Array

1.9 Problem Description

 The RISOTTO algorithm has been developed by combining both

Prefixed-itemset based storage structure and VDF approach to reduce runtime needed

to find the frequent patterns from the transactional datasets. The Prefixed-itemset

based storage structure utilized in this research work generates a fewer number of

candidate itemset in each iteration of the algorithm. Similarly, the usage of VDF

restricts the number of database scans to one rather than (2
|I|
 - 1) times where |I| is the

number of items in a dataset.

 The array storage structure utilized in the VDF normally requires more storage

space as there are enormous numbers of TIDs for each item in the transactional

database. So to reduce the memory space, a Jagged Array Based - Vertical Data

Format (JAB-VDF) has been proposed in this research.

 18

 Further, to minimize runtime and memory requirements, TB-NPF-VDF and

GNVDF have been developed. The TB-NPF-VDF method generates frequent patterns

by adopting a novel pattern generation method with multiple threads. Usage of

multiple threads reduces the runtime required in generating frequent patterns and also

utilizes the CPU effectively. Further, it uses the jagged array storage representation to

minimize the memory requirement in preserving the frequent patterns.

 To reduce runtime and memory space further, a GPU-accelerated method for

finding frequent patterns with novel pattern generation using VDF with jagged array

has been proposed. The adaptation of the novel pattern generation method in this

research contribution generates lesser candidate itemsets than TB-NPF-VDF which

reduces the runtime requirement. To reduce memory space further when compared to

JAB-VDF, GNVDF adopts a data structure called Common Transaction List (CTL),

which preserves the common TIDs of all items in frequent 1-itemset and they were

removed from it. The removal of the items in CTL from frequent 1-itemset reduces

memory space significantly. Thus, all the methods proposed in the research work

reduces the runtime and memory space.

 The workflow of the proposed research is shown in Figure 1.5. The proposed

framework is called SUMsFPM which is coined by taking the first two characters

from my name Ms.P.SUMATHI, the first character from my research supervisor

name Dr.S.MURUGAN and the first characters from the phrase "FREQUENT

PATTERN MINING".

 19

Figure 1.5 Workflow of the Research

1.10 Description of the Datasets

 All the proposed algorithms were implemented using Python programming

language (version 3.8.2), and GNVDF was implemented with CUDA Toolkit with

NVIDIA GPU. To do a uniform and fair comparison, the experiments of all

algorithms were conducted using the same software and hardware configurations.

The experiments were performed using 8.00GB RAM, Intel Core i7 with 2.40GHz

64-bit processor and Windows 8.1. To evaluate the effectiveness of the proposed

methods, an empirical study was conducted with four datasets viz., chess, mushroom,

t25i10d10k and c20d10k. Out of the four datasets, chess and mushroom are the

real-time datasets, t25i10d10k and c20d10k are the synthetic datasets. The synthetic

datasets were normally generated through computer algorithms as an alternative to

real-time datasets i.e. they are spawned digitally and not collected in the real world.

All the datasets were obtained from the FIMI repository (http://fimi.ua.ac.be) and an

open-source Data Mining Library (http://www.philippe-fournier-viger.com/spmf).

The characteristics of the datasets were illustrated in Table 1.4.

http://www.philippe-fournier-viger.com/spmf

 20

Table 1.4 Characteristics of Datasets

Datasets/

Databases

Number of

transactions

#|D|

Number

of items

#|I|

Average

item count

per

transaction

Maximum

length
Density %

chess 3196 75 37.00 37 49.33%

mushroom 8416 119 23.00 23 19.33%

t25i10d10k 9976 929 24.77 63 2.66%

c20d10k 10000 192 20.00 27 10.42%

 The reason for choosing those datasets is that many researchers used them as

bench-mark datasets for Frequent Itemset Mining and ARM-based research.

1.11 Chapter Organization

The organization of the thesis is given below.

 In Chapter 2, a thorough investigation of the review of literature is made about

finding frequent itemsets with their limitations since 2003. The investigation paves

way for the proposed methodologies.

 Chapter 3 presents a hybrid model called RISOTTO proposed in this thesis for

finding frequent itemsets with an illustrative example. It also describes the basics of

Prefix-itemset storage structure and VDF. Further, it analyzes the results of RISOTTO

by comparing it with Prefixed-Itemset Storage and VDF.

 Chapter 4 presents a memory-efficient data structure called jagged array for

the VDF approach in finding frequent itemsets. It describes how the jagged array

reduces the memory requirements mathematically along with an illustrative example.

Further, it discusses the memory comparison in GB between JAB-VDF and VDF with

δ=20%.

 21

 An FPM algorithm using the multithreaded concept with a novel way of

pattern generation and jagged array using VDF called TB-NPF-VDF has been

presented in chapter 5 along with an appropriate illustration. It also describes the

importance of multithreading with its advantages. Further, it discusses the results of

the comparison with Matrix-Apriori, VDF and NPF-VDF.

 Chapter 6 illustrates the background of the Graphical Processing Unit (GPU)

and the processing flow of CUDA. It explains the proposed methodology,

GNVDF: a GPU-accelerated novel algorithm for finding frequent patterns using the

VDF approach and jagged array with an appropriate illustration. It also describes

memory usage required using the mathematical equations and how much amount of

memory is saved in comparison with the JAB-VDF. Further, it discusses how the

GPU enables the execution speed when compared with the same method without the

usage of GPU.

 The last chapter, chapter 7 is devoted to the summary of the key contributions

along with possible future extensions.

 By implementing the proposed FPM algorithm, the business users can make

better decision making and increase the profit of their organizations by identifying the

significant frequent patterns with minimum runtime and memory consumption.

 22

Chapter - 2

REVIEW OF LITERATURE

 23

CHAPTER - 2

REVIEW OF LITERATURE

You need to understand things in order to invent beyond them

--Bill Gates

2.1 Background

 In general Data Mining (DM) tasks are classified into two categories. They are

i) Descriptive Mining and ii) Predictive Mining. Descriptive mining is the process of

generating patterns from the existing data and is used for creating meaningful

subgraphs, whereas predictive mining is to forecast the explicit values based on the

patterns determined from the known results. Association Rule Mining (ARM) is a

descriptive mining technique of DM. It is the process of discovering items, which tend

to occur together in transactions i.e. which items are most frequently purchased by the

customers. Association rules will help the retailer to develop marketing strategies and

inventory management to increase the sale of their organization.

Finding association rules can be decomposed into the following two subtasks.

i. Discovering all itemsets whose support is greater than the user-specified

minimum support is called FPM.

ii. Generating the desired rules from the frequent itemsets with at least the

specified minimum confidence.

 FPM is a vital part of ARM which investigates the frequent patterns from the

transactional databases. As the data are to be mined is large, a huge amount of time

and memory is needed for accessing data and to store the frequent patterns

respectively. Though there are two decades of research in FPM, research in reducing

the time and minimizing the memory requirement is a quite common issue in finding

frequent patterns in FPM because there are huge data generated every day from

http://www.azquotes.com/quote/844330
http://www.azquotes.com/author/5382-Bill_Gates

 24

various sources. Several FPM algorithms have been proposed in the literature and this

chapter presents a brief overview of the relevant research works and which provides a

stronger lead to the proposed research models.

2.2 Works Related to Apriori and FP-Growth

 In [THY,09], the authors have introduced a novel method for mining frequent

itemsets called FIUT (Frequent Item Ultrametric Tree). In that, the authors have used

a special UT for enhancing the efficiency in obtaining frequent itemsets. Based on the

comparison with the FP-growth algorithm, it was proved by them that the FIUT

outperforms FP-growth by reducing I/O overhead and search space.

The FIUT generates the frequent itemsets only by checking the leaves of the FIU tree

without traversing the tree recursively and also using compressed storage.

 An improved version based on Coding and Map/Reduce (CMR-Apriori) has

been proposed in [GR,13]. They compared the traditional Apriori, Apriori algorithm

with parallel processing and CMR-Apriori and proved that the CMR-Apriori

algorithm outperforms others with twice Map/Reduce processes.

 A new algorithm called enhanced Apriori algorithms has been introduced in

[LVSM,14], which takes less scanning time and reduces the I/O spending time by

cutting down the unwanted transaction records in the database. A new algorithm

called semi-Apriori using a binary-based data structure for mining frequent itemsets

as well as association rule has been proposed in [FAB,14] and proved that this

technique outperforms Apriori in terms of execution time.

 An improved Apriori has been designed in [SNM,15]. In this method,

the transaction IDs along with the support count is maintained in the frequent itemsets

and they generated the k+1 itemset by set intersection and proved that the number of

database scans is reduced than the classical Apriori algorithm.

 25

 In [BGD,15], the authors have proposed an improved version of Apriori for

reducing the time for searching the database and the memory space by partitioning.

A novel Apriori algorithm has been proposed in [JS,15] to overcome the limitations of

the classical Apriori algorithm based on local and global power set and observed that

the novel algorithm requires only two scans instead of many scans as in the classical

Apriori algorithm. In [PD,16], the authors surveyed the improved approaches of

Apriori from 2012 to 2015.

 In [LS, 16], the authors have introduced a Modified Apriori algorithm using

the greedy and vectorization method. They compared the execution time of traditional

Apriori and Modified Apriori by varying the number of transactions and proved that

the Modified Apriori requires less time than the Apriori. They also proved that the

proposed method reduces the number of rules generated than the original Apriori.

 The authors in [BDH, 16] have developed a new recursive algorithm based on

Apriori called Meta-Apriori. In that, they partitioned the whole database into smaller

ones using the divide and conquer approach. After partitioning, they applied

Meta-Apriori if the partition is huge or Apriori if it is of reasonable size. Finally,

they merged the achieved results to get the result for the whole database and proved

that Meta-Apriori requires less time than the Apriori.

 In [DZZC,16], the authors have proposed a modified Apriori called

DC_Apriori. In this, the authors have restructured the storage structure of the database

and they generated k-frequent itemsets by joining the 1-frequent itemsets with

(k-1)-frequent itemsets. It prevents generating invalid candidate itemsets, reduces the

database scans and also enhances the itemset generation.

 26

 A modified Apriori has been proposed in [KSG,16] using the transposition

technique and proved that it is less complex than the classical Apriori. An improved

Apriori algorithm has been presented in [RS1,16] and made a comparison between

conventional Apriori and Improved Apriori algorithms. It was proved that the

improved Apriori provides better performance than the classical Apriori algorithm.

 A prefixed-itemset based data structure for candidate itemset generation has

been proposed in [YZ,16]. It requires smaller memory space and carried out the

connection and pruning operations much faster than Apriori. It was analyzed that the

proposed structure improved the efficiency of the classical Apriori algorithm.

 The authors in [VLC+,16] proposed a new algorithm for mining frequent

itemsets based on the idea of N-lists, an improved version of PrePost called NSFI

algorithm which uses a hash table. The empirical results showed that NSFI

outperforms PrePost and Eclat.

 A method called Advanced Reverse Apriori Algorithm (ARAA) has been

proposed in [BPG,17], which is opposite to Apriori. In that, the authors have

generated the k
th

 itemset first and moved on to the lower level sets i.e. k-1,k-2,…,1.

They compared Apriori Algorithm (AA), Reverse Apriori Algorithm (RAA) and

ARAA and proved that the number of scans in ARAA is less than the AA but greater

than RAA and is equal to the number of transactions in the database. Also, proved that

the ARAA is more suitable for all types of datasets but RAA is applicable for higher

datasets because it drastically reduced the multiple scans, execution time and also

increased throughput.

 27

2.3 Works Related to Matrix-based Apriori

 In [EZ,03], the authors have introduced a new disk-based ARM algorithm

called Inverted Matrix. In this method, the transactional data is first converted into a

new database layout called Inverted Matrix to avoid multiple scanning of the

database. Using this, the frequent pattern could be found in less than a full scan with

random access. They have also built a small independent tree by summarizing the

co-occurrences for each frequent item and finally, a non-recursive mining process

could be applied to reduce the memory requirements with minimum candidate

generation. From the experimental studies, they have revealed that the Inverted Matrix

approach outperformed the FP-Tree algorithm, especially in mining very large

transactional databases.

 The authors in [YH,05] have proposed a new matrix algorithm for generating a

large frequent candidate itemset efficiently. It generates a matrix and the frequent

candidate sets were obtained from that matrix. Numerical experiments and

comparisons were performed using the Apriori algorithm for small, medium, and

large size datasets. The experimental result confirms that the proposed algorithm

outperforms the Apriori algorithm.

 The authors in [PVG,06], have introduced a novel method called Matrix

Apriori, which utilizes simple data structures viz., matrices, and vectors to generate

frequent patterns. They have found that the algorithm minimizes the number of

candidate itemsets generated, thereby efficient computation is achieved than Apriori

and FP-growth algorithms.

 In [HYW,08], the authors have developed a novel method called

Efficient Sequential Pattern Enumeration (ESPE) based on a 2-sequence matrix to

 28

mine sequential patterns without setting minimum support in advance. This approach

finds frequent sequences from all 2-sequences by scanning the sequence database only

once. It uses simple mathematical equations and an efficient storage structure for

computing the index of all 2-sequences. Further, it supports the incremental addition

of new items and sequences. They have proved that the performance of ESPE is better

than the AprioriAll and PrefixSpan for various datasets.

 In [ZLZ,08], the authors have initiated a novel algorithm based on the Boolean

matrix. It finds outs the maximum frequent itemsets in a short time and scans the

database once through the vector and matrix operations. Further, it does not produce

any candidate itemsets. The authors in [YE,10] compared the novel matrix Apriori

and FP-growth algorithms and revealed that both the algorithms are better alternatives

to the Apriori algorithm in terms of database scan and candidate generation.

The FP-growth is better than Apriori when the minimum support value is decreased.

Matrix Apriori algorithm was proposed as a faster and simpler alternative by

combining both Apriori and FP-growth.

 The authors in [Jin,10] have presented a new mining algorithm for discovering

Maximal Frequent Itemset (MFI). It eliminates and plotting blocks to the matrix by

simply counting the value of rows and columns and the experimental result showed

that the proposed algorithm provides an efficient result. In [ZWX,10], the authors

have presented a method called MaxMatrix which does MFI checking by using the

pseudo-projection matrix of the MFS matrix. It uses only logical operation for MFI

checking which saves system resources significantly because it does not allocate new

memory space for the pseudo-projection matrix. Further, they proved that the method

reduces the MFI generation time and the number of subsets used for ARM.

 29

 The authors in [YWWJ,11] have developed an innovative method called

Boolean matrix. In that, they used the Boolean matrix array to replace the transaction

database and removed the non-frequent itemsets from the matrix. To generate the

k-frequent itemsets, the vector operation "AND" and the random access characteristics

of an array are used in the Hadoop Platform and proved that it exponentially increases

the efficiency of the algorithm. Y.S.He and P.Du [HD,11] have built a new algorithm

based on compressed matrices which improve the efficiency of creating k-frequent

itemsets, by scanning the database once, and thereby mining association rules is also

improved. The newly created algorithm reduces I/O load and also improves the speed

of discovering frequent itemsets, especially in large itemsets.

 To overcome the disadvantages of the Apriori algorithm, the authors in

[WS,11] have initiated a Boolean matrix, and the transaction data is converted to

Boolean values and stored in place. It generates frequent itemsets directly from the

Boolean matrix and also saves a lot of memory space. This approach requires only

one database scan and reduces the number of candidate sets and system costs.

 The authors in [MDA,11] have proposed an Advanced Matrix Algorithm

(AMA) for finding out frequent itemsets from the transactional database using the

Boolean matrix by scanning the database only once. The proposed algorithm is more

efficient and effective in generating frequent itemsets and removed the most

significant issue of ARM, especially on computational complexity which handles

huge transactional databases.

 The authors in [Wan,11] have proposed an improved algorithm for

ARM-based on a relation matrix. The transaction database is scanned and stored in

the matrix with entries either one or zero. The frequent itemsets are generated from

 30

the relation matrix and then the association rules are derived from the frequent

itemsets. They have shown that the proposed algorithm is efficient both in theoretical

and experimental analysis.

 The authors have developed a matrix algorithm [DD,12], which transforms the

database into a matrix database. In this, the frequent k-itemset is obtained from the

matrix which avoids the repeated database scan and proved that it greatly reduced the

number of candidate itemsets and improved the efficiency of computing.

 In [OE,12], the authors have focused on the solution to an incremental update

problem by proposing the Incremental Matrix Apriori (IMA) algorithm. It scans only

new transactions, allows the change of minimum support, and handles new items in

increments. The matrix Apriori works without candidate generation and scans the

database twice. The experimental results showed that the IMA provides speed-up

between 41% and 92% while increment size is varied between 5% and 100%.

 T.N.Mujawar et al. [MSB,12] have presented an approach for mining

association rules from XML data using XQuery and Apriori algorithms without any

pre and post-processing. In this research article, a Matrix-based Apriori algorithm

(MAPRIORI) and an improved matrix-based Apriori algorithm with pruning

optimization and transaction reduction strategy (MTPAPRIORI) were implemented.

The result showed that the database is scanned only once in both of these algorithms.

Further, it is observed that the number of frequent itemsets generated and the running

time by the MTPAPRIORI algorithm is less than the MAPRIORI with different

support levels. Also, it reduces the scale of the transaction database to be scanned and

provides overall efficiency.

 A Matrix-based multidimensional sequential pattern mining algorithm has

been introduced in [QL,12]. It does not need the repeated scan of the database to

 31

generate a 1_Large sequence k-Itemset. During the first scan, 1_Large itemsets are

obtained. The frequent patterns are obtained from the Boolean sequenced matrix using

set and matrix theory in the second database scan. It occupies less memory, improves

mining efficiency, and runs faster than other algorithms. H. Singh and R. Dhir

[SD,13] have presented a new Matrix Based Algorithm with Tags called MBAT.

It is based on transactional matrix and transaction reduction to find the frequent

itemsets and proved that the MBAT is more efficient than the classical Apriori

algorithm in ARM.

 A.R.H.Alwa and B.A.V.Patil [AP,13] have launched a novel approach to

improve the Apriori algorithm using Matrix-File. This approach extracts particular

rows and columns and performs a function on that rather than scanning the entire

database. It outperforms the classical Apriori algorithm because the pruning process

is applied to those columns whose item count is less than the minimum support.

It also saves time and speed by reducing the redundant scanning of the database.

 To solve the problem in Apriori the authors in [YXHJ
+
,13] have proposed an

improved frequent itemset mining algorithm based on Sorting Index Matrix (SIM).

It generates frequent 2-itemset from 1-itemset vector and the corresponding matrix

multiplication sequentially. From the frequent 3-itemset, it creates a simple SIM for

frequent k-itemsets. The entire process simply scans the database only once and does

not produce candidate itemsets. From the experimental outcomes, they have shown

that the SIM improves the efficiency of mining frequent itemsets than the existing

methods.

 Using dynamic matrix Apriori and Multiple Support Apriori (MSApriori),

the authors in [Cha,14] have built a methodology to mine association rules over

 32

dynamic databases. From the experiments, it was found that a remarkable

improvement has been achieved in terms of time, and the number of frequent items

and generated rules. A Matrix Apriori with an incremental approach for ARM has

been proposed in [BML,14] which were based on Apriori and FP-growth algorithms.

It uses simple data structures namely matrix and vector, generates frequent patterns,

and minimizes the number of itemsets. It improved the speed of the mining process

and also increased efficiency than the previous algorithms.

 A new method named Dynamic Matrix Apriori has been proposed by

R.Chaudhary et al. [CSS,15] using the dynamic matrix technique, which is much

faster when compared to traditional Apriori in the generation of candidate itemsets.

They also have proposed a new framework that uses the Map Reduce programming

model. From the experiments on a large set of databases, they have achieved an

improved result in terms of runtime, the number of generated frequent itemsets and

rules. In [VP,15], the authors have proposed a method based on transaction reduction

techniques for mining frequent patterns from large databases. In this, the data is

compressed in the form of a bit array matrix and the whole database is scanned only

once. To achieve efficiency, the frequent patterns are mined from this matrix by using

the count-based transaction reduction and support count method.

 The authors in [AH,15] have introduced a novel method to find frequent

itemset using probability and matrix in two steps. In the first step, a preliminary

matrix is generated for the dataset. The regular itemsets are directly generated from

the probability matrix in the second step. The improved algorithm reduces the number

of comparisons and scans.

 In [TG,15], the authors have introduced a vertical format approach for finding

frequent itemsets using the Boolean matrix. The presence of an item for the TIDs is

 33

represented as 1 and 0 otherwise. It uses logical AND operation for finding the SC

from frequent 2-itemset to frequent n-itemsets until it is not empty. It also uses the

additional information in the Boolean matrix namely "number of iterations" to control

the number of iterations for candidate generation. Finally, they have demonstrated that

the FPMBM is more efficient and scalable than the existing ones.

 In [MR,16], the authors have created an algorithm called Matrix-Over-Apriori

(MOA) by using elementary matrix and AND operation. They compared MOA with

all other existing techniques for ARM and proved that MOA is scalable, precise,

simple, clear, easy to implement, and also reduces the memory and time requirements

than the existing ones. A new method for Mining Frequent Itemsets with Weights

over a Data Stream using Inverted Matrix called MFIWDSIM has been proposed by

L.N.Hung and T.N.T.Thu [HT,16]. In this, the data stream is converted into an

inverted matrix and saved in the computer disks and mines them many times with

different support thresholds and alternative minimum weights. With the analysis and

evaluation, they proved that the MFIWDSIM is better than WSWFP-stream.

 In [NJGC
+
,17], the authors have proposed a modified Apriori algorithm

named Frequent Matrix Apriori (FMA), for reducing the time complexity. In that,

the database information is stored in the frequent matrix by scanning it only once and

then the matrix is discretized using minimum support parameters and the most

frequent itemsets are found recursively by scanning the discretized dataset.

By the theoretical and experimental way, the authors have proved that FMA is more

efficient than the original AA in terms of time.

 In [KK,17], the authors have presented a new top-down approach called

MB-MFIM by using a transaction Boolean matrix. In this method, the maximal

frequent itemsets are directly generated without the help of a subset based on the

 34

compressed matrix. The proposed algorithm provides a better result than the

Maximal Frequent Itemset First (MFIF) algorithm with datasets of different sizes and

thresholds.

 An improved Apriori algorithm based on relational algebra theory has been

proposed in [ZZ,17]. The relationship matrix and correlation operations are obtained

by Optimization Relation Association Rule. The database is scanned only once with a

relation matrix which reduces the running time of the algorithm to mine frequent

itemsets. The simulation results showed that the improved algorithm works more

efficiently than the existing one.

 Judith Pavón et al. [PVG,06] have introduced a method called Matrix-Apriori

to increase the speed of finding frequent itemsets. It creates a Boolean matrix MFI by

scanning the transactional database which contains the frequent 1-itemset. The vector

STE maintains the SC of the candidate itemset. To accelerate the search of frequent

patterns, the first row of MFI writes the indexes. For producing frequent patterns,

a conditional pattern generation method was used in this method and proved that it

outperforms Apriori and FP-Growth algorithms.

 In [Lan,18], the author has introduced an improved matrix pruning and weight

analysis Apriori algorithm by using matrix compression and weight analysis

algorithms as reference. This algorithm constructs the Boolean transaction matrix and

removes infrequent itemset and generates a new candidate itemset. Then it calculates

the item's weight, transaction's weight, and weight support. With the experimental

results, the author has proved that the improved Apriori algorithm not only reduces

the number of repeated scans of the database but also improves the efficiency of data

correlation mining.

 35

 A new incremental ARM algorithm called FBCM has been proposed in

[ZOKL
+
,19] by combining the Fast Update Pruning (FUP) algorithm with a

compressed Boolean matrix to suit the dynamically changing data. It requires only a

single scan of the database and provides support for incremental databases.

While scanning, it obtains two compressible Boolean matrices and applies ARM to

those matrices. When compared with existing algorithms, it improved the

computational efficiency of incremental ARM and proved that it is suitable for

knowledge discovery in the edge nodes of cloud systems.

 The authors in [XJW,19], have introduced a modified Apriori algorithm based

on the Boolean matrix and weight function. In this algorithm, they have trimmed the

duplicate transactions by adding weight rows to the matrix and also compressed the

matrix to reduce storage space. Self-join and intersection operations were used to

obtain k-frequent itemsets. They have paralleled it using Hadoop and each map

activity finds the frequent itemset for the subset of the large matrix which shortens the

processing time in the big data environment.

 Research has been contributed by Sun et al. by applying the prefixed-itemset

storage and the compression matrix to optimize the connection, pruning, support

counting steps, and transaction storage mode of the Apriori algorithm. It uses an

intersection strategy for determining SC. The optimized Apriori is based on the

MapReduce technique for massive data and they have proved that the optimized

Apriori outperforms others [SL,20].

 The authors in [SS,20], have presented a novel algorithm for generating

frequent patterns from a large dataset. Initially, they transformed the transactional

dataset into a Boolean matrix to generate a 1-frequent itemset matrix, and then it is

 36

divided into multiple loads based on the available nodes in the system. To discover all

frequent itemsets, they have used AND operation on individual load and proved from

the experiment that the computational time and consumption of memory reduced.

 The authors have initiated an algorithm for finding frequent itemsets based on

the transaction matrix, itemset matrix, and item index list in [SJ,20]. It reduces the

number of database scans to one and avoids frequent I/O operation by compressing

the matrix and then performing bitwise AND operation on the compressed matrix.

The frequent itemsets were generated using the itemset count and index list.

The main advantage of this method is that no candidate itemsets are generated and

outperforms the existing method.

2.4 Works Related to Vertical Data Format

 A novel VDF representation called Diffset has been developed by the authors

in [ZG,03], which keep track of the differences in the TIDs of a candidate pattern and

from which it generates frequent patterns. The method cut down the size of memory

required to store intermediate results and also increased performance significantly.

 Y. M. Guo et al. [GW,10] have initiated a new algorithm for mining frequent

itemsets with VDF. It only needs a single scan of the entire database and uses the

AND operation for finding the frequent itemsets. Furthermore, it was demonstrated

that the algorithm requires less storage and enhances mining efficiency.

 In [KSK,12], the authors have presented a VDSRP method to generate a

complete set of regular patterns over a data stream at a user given regularity threshold

using a sliding window and VDF. It has been proved that the proposed method

outperforms both in execution and memory consumption.

 37

 The authors in [VV,13] have introduced a Parallel Regular Frequent Pattern

(PRFP) method to find out the regular-frequent patterns from large databases using

VDF format and proved from the experiments that the algorithm reduced the number

of database scans, I/O cost and inter-process communication.

 In [AR,14], a new Rehashing Based Frequent Itemset (RBFI) generation

algorithm of the VDF for the transactional database has been proposed. Rehashing has

been introduced to avoid hash collision and secondary clustering problems in hashing.

It was proved that RBFI provides better performance than Apriori and Hash-based

algorithms.

 In [IMA,15], a method called Vertical Boolean Mining (VBM) has been

introduced to eliminate the pitfalls of vertical mining by compressing the bit vectors

of frequent itemsets. It intersects two compressed bit vectors without requiring a

time-consuming decompression step. They found that the VBM is superior to both

Apriori and classical vertical ARM in terms of time and memory usage.

 Jen, T. Y., et al. have created a novel vertical format based parallel method for

finding frequent patterns called Apriori_V with MapReduce platform. They proved

that it provides a significant improvement in reducing the number of operations and

decreasing computational complexity [JMG,16].

 A Vertical Format Frequent Mining (VFFM) algorithm has been proposed in

[GSG,16] to find frequent items from the database. It first transforms the database into

VDF, as <item, {transaction-id}> and finds the candidate itemsets after the first scan

of the transactional database. The SC of each (k+1)-candidate itemsets is counted by

the intersection of every pair of frequent single items instead of the database scan.

It was proved by them that the VFFM is efficient when compared with AA, FUP and

sampling method.

 38

 In [TC,16], a tokenization based approach for optimizing enhancing the

Apriori algorithm has been proposed. Ravikiran, D., et. al, have proposed a new

model called RCP to mine regular sort of crimes in crime databases using VDF which

requires only one database scan. From the experimental results, they proved that RCP

is more efficient than the existing RPtree [RS2,16]. In [Sin,16], the authors have

focused on the various FPM techniques, their challenges in static and stream data

environments.

 Subashini et al. [SK,19] have studied ARM methods in HDF and VDF

approaches viz., Apriori, APRIORITID, APRIORI_RARE and APRIORIRARE_TID.

They analyzed the pros and cons of each technique.

2.5 Works Related to Eclat

 In [AR,14], the authors have built the enhanced versions of Apriori and Eclat

algorithms. In these enhanced versions, the authors have used individual thresholds

for each itemset and proved that the enhanced-AA performs best when compared with

the Enhanced-Eclat Algorithm.

 In [MYZL,16], the authors have presented an improved version of Eclat called

the Eclat-growth algorithm using an increased search strategy. For reducing the

runtime in generating an intersection of two itemsets and support degree calculation, a

BSRI (Boolean array Setting and Retrieval by Indexes of transactions) method has

been introduced. It has been proved by them that the Eclat-growth outperforms Eclat,

Eclat-diffsets, Eclat-opt and hEclat in mining association rules.

 An enhanced Apriori and Eclat have been introduced in [SV,17], in which

different thresholds are maintained for each itemset. They compared different sizes of

dataset and items and proved from the experiment that the enhanced-Apriori

 39

algorithm is better than the Enhanced-Eclat algorithm in terms of the number of

frequent items and rules.

2.6 Works Related to GPUs

 W. Fang et al. [FLXH+,09] have introduced two implementations for Apriori

using GPUs with Single Instruction, Multiple Data (SIMD) architectures.

Both methods use a bitmap data structure. To prevent the data transformation between

the GPU and CPU memory, the first one was executed using GPU. The second one

uses both the CPU and GPU for processing with trie structure. They proved that both

implementations speed up the processing than the classical Apriori algorithm.

 The authors J. Zhou et al. have designed [ZYW,10] a GPU-based Apriori

algorithm with OpenGL to accelerate ARM and proved that it is better than the

traditional ones.

 S. M. Fakhrahmad et al. [FD,11] have developed different parallel versions of

a novel sequential mining algorithm for finding frequent itemsets. The approaches

are: i) allocating a processor to each partition, ii) allocating a processor to each

column, and iii) allocating the k
th

 processor to mine the [FD,11] k
th

-itemsets.

 A compressed bit matrix-based parallel algorithm for exploring frequent

itemsets has been introduced by Zong-Yu et al., which uses both bottom-up and

top-down approaches for efficient pruning [ZY,12]. It also uses OpenMP's parallel

multithreaded, dynamic scheduling approach to extract frequent itemsets.

Finally, they demonstrated that this approach reduced memory space, I/O overhead

with a single database scan compared to the Apriori algorithm.

 Authors in [HYZH+,13] have suggested a novel algorithm,

namely Accelerating Parallel Frequent Itemset Mining on Graphics Processors with

 40

Sorting (APFMS). This parallel frequent itemset mining employs GPUs in the process

of mining. GPUs speed up the process using the OpenCL platform and proved that the

APFMS outperforms the previous computation time-based methods.

 William Albert et al. [AFB
a
,14], and it is based on the parallel processing

nature of GPU. In the proposed method, a bitset representation was used for parallel

processing and proved that the HSApriori is faster than traditional HorgeltAprirori.

 M. Tiwary et al. [TSM,14] developed a parallel Apriori Map Reduce model by

employing high-performance GPU to address the issues of Apriori. In this, every node

in a Hadoop cluster has a GPU attached to it. They also employed NVIDIA's GPU,

as well as JCUDA and JNI, to complete the integration. From the results,

they finalized that the proposed method requires less run time. The disadvantage of

the algorithm is that an additional hardware cost is linked with the GPUs in each node

in the Hadoop cluster.

 In [QGYH,14], the authors have designed a Spark-based parallel Apriori

algorithm called YAFIM (Yet Another Frequent Itemset Mining) and revealed that the

YAFIM is faster than the Apriori's MapReduce implementation by 18 times.

 To remove the limitations in the traditional cluster-based map-reduce,

J. Li et al. [LSHW,15] have designed a multi-GPU based parallel Apriori algorithm to

accelerate the calculation process of Apriori. It has been initiated especially to mine

association rules in medical data. The analytical results have proved that the proposed

method significantly improves the execution speed with a lower cost for medical data.

 A novel method called CGMM to suit both sparse and dense datasets has been

introduced by L. Vu et al. [VA,15]. To enhance the speediness of the FPM process,

the CPU is combined with GPU. In this method, the CPU uses the FP-tree data

structure to perform mining, and the GPU converts the data to bit vectors.

 41

They demonstrated that the performance of CGMM is faster when compared with the

existing sequential FPM and GPApriori by testing with AMD CPUs and NVIDIA

GPU.

 A new multi-core based parallel mining algorithm for finding frequent

itemsets has been presented in [HL,15] using LINQ queries. It decomposes the

transactional database into smaller datasets known as conditional patterns.

Many threads ran concurrently on a multi-core computing system, one for each

conditional pattern. They proved that the algorithm is faster by 2x and 4x times than

the fast Eclat and FP-growth algorithms, respectively.

 Y. Li et al. [LXYC,17] have developed a GPU-based algorithm called

Multi-level Vertical Closed FIM. It uses a multi-layer vertical data structure to reduce

memory usage. The implementation is being accelerated with GPU to achieve

high-speed computation, mainly for large sparse datasets.

 A Dynamic Queue and Deep Parallel (D2P) Apriori algorithm were generated

by Y. Wang et al. in [WXXS,18]. They parallelized the candidate generation task

with a dynamic bitmap queue and Graph-join. It also uses a vertical bitmap structure

with low-latency memory on GPU. They found that the D2P-Apriori is faster by 23

times than modern CPU methods.

 A fast GPU-based frequent itemset mining algorithm for massive datasets

called GMiner has been introduced in [CHK,18] to overcome the limitations of

various parallelism methods viz., multi-core CPU, multiple machines and many-core

GPU, particularly the workload skewness. It extracts the patterns fastly from the

enumeration tree by using the computational power of GPU. From the

experimentation, they showed that the GMiner is better than the existing sequential

and parallel methods.

 42

 The authors Y. Djenouri et al. [DDBC,19] have created three

High-Performance Computing (HPC)-based versions of Single Scan (SS) for FIM

viz., GSS, CSS, and CGSS. The GSS, CSS, and CGSS have been implemented by SS

with GPU, cluster architecture, and GPU with multiple cluster nodes. They also

proposed three methods for reducing GPU thread divergence and cluster load

balancing. Experiments have shown that the CGSS outperforms the SS, GSS, and

CSS in terms of speed.

 In [GLFC
+
,19], the authors have reviewed the works related to

Parallel Sequential Pattern Mining (PSPM), viz., partition-based, Apriori-based,

pattern growth-based, and hybridized algorithms for PSPM. They also reviewed the

open-source software utilized in PSPM. Further, they summarized the issues and uses

of PSPM on big data.

 In [HTDV,19], the authors have proposed an FPM algorithm with a multi-core

processor and Multiple Minimum Support called MMS-FPM. It quickly generated

frequent patterns. It has been designed mainly to solve rare item problems. They have

proved that the MMS-FPM is superior to MSApriori and also scalable.

2.7 Observations and Limitations of the Existing Literature

 From the existing literature, the following observations were identified which

paves the way for the researcher to select the research problem.

i. Some of the existing methods generate more candidate itemset and requires

much disk access

ii. Though the VDF approach restricts the database scan to one, the memory

required for storing TIDs for each item is huge

 43

iii. Some of the data structures utilized in the existing literature may generate a

reduced set of candidate itemsets but requires more memory

iv. Some of the pattern generation methods may need more execution time in

generating the frequent patterns for the transactional databases

v. There are still issues related to data size and scalability

 From the above observations, it has been identified that there is always a need

for speedy algorithms for frequent pattern generation with a minimum amount of time

and memory usage. Thus, this research work focuses on developing novel FPM

algorithms with the compact data structure called jagged array by creating novel

pattern generation approaches using multithreading and GPU usage with the VDF

approach.

 44

Chapter - 3

RISOTTO: A NOVEL HYBRID APPROACH FOR

ENHANCING CLASSICAL APRIORI ALGORITHM

 45

CHAPTER - 3

RISOTTO: A NOVEL HYBRID APPROACH FOR

ENHANCING CLASSICAL APRIORI ALGORITHM

The POSITIVE THINKER sees the INVISIBLE, feels the INTANGIBLE,

and achieves the IMPOSSIBLE

--Winston Churchill

3.1 Background

 Association Rule Mining (ARM) is a successful technique for finding relations

between data items in databases. Finding frequent itemsets is one of the

computationally crucial steps in the task of mining association rules. The Apriori is

one of the most important algorithms for finding frequent itemsets. The main

challenge in classical Apriori is that the mining often needs to generate a huge number

of candidate itemsets and require more database scans, increasing time and decreasing

efficiency. It also increases the I/O cost and requires more memory. To eradicate these

issues, a lot of improvements to Apriori have been proposed in the literature.

 Research in improving the Apriori is a common issue and is an ongoing

research topic these days. A refinement to the Apriori, which uses a

Data Structure (DS) called prefixed-itemset for candidate itemset generation and

Vertical Data Format (VDF) approaches, has been proposed in the literature.

Prefixed-itemset storage shortens the time for generating candidate itemsets but still

needs more database scans as in Apriori, and VDF scans the database only once.

RISOTTO, a novel hybrid approach for generating frequent patterns has been

contributed to this research by considering these advantages. It combines both the

prefixed-itemset storage structure and VDF.

http://www.azquotes.com/quote/504464
http://www.azquotes.com/quote/504464
http://www.azquotes.com/author/2886-Winston_Churchill

 46

 The proposed work minimizes the number of database scans to one and

reduces the time needed for candidate itemset generation.

3.2 Prefixed-itemset Storage Structure

 It is a new way of storing itemsets [YZ,16] that uses <Prefix-key, Values> pair

for each itemset. The Prefix-key column stores the (k-1)-items in the k
th

 itemset,

and the last item in k
th

itemset are stored in the Values column. If there is no prefix for

an itemset, NULL is stored in the prefix-key. Suppose if the 1-itemset contains {A, B,

C, D, E} and 2-itemsets contains {AB, AC, AE, BC, BD, BE}, then the

prefixed-itemset based storage structure for the same is illustrated in Table 3.1.

Table 3.1 Prefixed-Itemset Storage Structure

Itemset Prefix-key Values

1-itemset NULL {A,B,C,D,E}

2-itemset A {B,C,E}

B {C,D,E}

 After the k-itemsets are stored in the prefixed-itemset storage, in the joining

step, the (k+1)-itemset are generated by first joining or connecting the values of

k-itemset, and then the key values are prefixed with each (k+1)-itemset which forms

Ck+1. In the pruning step, the (k+1)-itemset which does not satisfy the Apriori property

is removed from Ck+1.

3.3 Vertical Data Format

 In general, there are two ways in which a transactional database can be

represented in frequent pattern mining algorithms. They are Horizontal Data Format

(HDF) and VDF. In VDF the data can be expressed in {item - TID_set} notation

where the item is the name of the item in the database and TID_set is the set of

transactions that the item belongs to.

 47

 This method first transforms the HDF dataset into VDF by scanning the

dataset once, which forms candidate 1-itemset. Among them, the itemset that satisfies

the minimum support (δ) will be considered as a frequent 1-itemset. It is noted that

the support count for an itemset is the length of the TID_set. Starting with k=2,

the frequent k-itemsets can be used to construct the candidate (k+1) itemsets based on

the Apriori property. The TID_set for the candidate (k+1) is computed by intersecting

the TID_sets of the corresponding item in k-itemsets. This process is repeated by

incrementing k by one until no frequent itemsets or candidate itemsets can be found.

 The main advantage of VDF is that there is no database scan is required for

finding the support of (k+1)-itemsets because the TID_set of k-itemset holds the

complete information for finding such support. The disadvantage is that if the TID_set

is long, it will take substantial memory space and more computation time to intersect

the long sets.

3.4 Proposed Methodology

 It combines both prefixed-itemset based storage structure [YZ,16] and the

VDF approach [SNM,15] for enhancing the performance of the classical Apriori

algorithm in terms of time and the number of database scans. It progresses as follows:

 In the first step, the algorithm finds the candidate 1-itemset (C1) from the

transactional database by scanning it once as in classical Apriori, and it is transformed

into VDF, i.e. it maintains the TID_set in which the frequent 1-itemset occurs along

with the Support Count (SC) or Total Number of Transactions (TNT). The frequent

1-itemset (L1) is constructed from C1 by removing the items whose SC is less than δ.

After finding L1, the information regarding this is stored in the new DS called

 48

prefixed-itemset based storage, as in Table 3.1. The prefix for frequent 1-itemset is

always NULL, and the values are the items in L1. In general, the frequent k-itemset

where k=2,3,…,n contains (k-1)-items as prefix-key (LKk) and the last item as the

value (LVk).

 In the second step, the values in frequent 1-itemset in the prefixed-itemset

based storage LV1 is joined by itself (LV1 ⋈ LV1) instead L1⋈ L1 and the items which

do not satisfy the Apriori property is removed, and then they are combined with the

prefix-key which forms C2. To improve the efficiency by reducing the search space by

considering the Apriori property, i.e. all nonempty subsets of a frequent itemset must

also be frequent. The SC for the items in C2 is calculated just by performing the

intersection of the TID_set in L1 instead of scanning the database as in classical

Apriori, which minimizes the database scans. From C2, L2 is formed by removing

those elements from C2 whose SC<δ. Similar to the previous step, the frequent

2-itemsets are stored in the prefixed-itemset based storage with the appropriate

prefix-key and values. The second step is repeated with k=3,4,5,…,n until there are no

more candidate itemsets found.

 The proposed approach is named RISOTTO
1
, which is abbreviated by taking

the boldface uppercase letters from the phrase "pRefixed ItemSet stOrage verTical

daTa fOrmat". The algorithm for RISOTTO is shown below. The workflow of

RISOTTO is illustrated in Figure 3.1.

1P.Sumathi, S.Murugan, "RISOTTO - A Novel Hybrid Approach for Enhancing Classical Apriori Algorithm",

International Journal of Scientific Research in Computer Science Applications and Management Studies,

ISSN: 2319 – 1953, Vol. 7, No. 5, September 2018 (UGC Approved Journal).

 49

Algorithm 3.1: RISOTTO - An algorithm for finding frequent itemsets

Input:

 A dataset D with n transactions;

 δ - minimum support threshold.

Output:

 Frequent itemsets (L) in D.

Method:

(1) LØ;

(2) C1scan D and generate candidate 1-itemsets;

(3) L1generate frequent 1-itemsets based on δ;

(4) LL ∪ L1;

(5) PIDScreate a prefixed-itemset storage DS;

(6) PIDS(LK1)NULL;

(7) PIDS(LV1)items in L1;

(8) for (k=2; Lk-1 ≠ Ø; k++) do

begin

 Ck_initPIDS(LVk-1) ⋈ PIDS(LVk-1);

 Ck_initprune Ck_init;

 CkPIDS(LKk-1) ⋈ Ck_init;

 Lk{Ck | SC(Ck) ≥ δ};

 PIDS(LKk)(k-1)-items in Lk;

 PIDS(LVk)k
th

 item in Lk;

 LL ∪ Lk

 endfor

(9) return L;

 50

Figure 3.1 Workflow of RISOTTO

 51

 The main advantage of this hybrid approach is that it restricts the database

scan to one because for finding the SC for frequent k-itemsets where k=2,3,4,…,n

the database need not be scanned, and it is found by set intersection method from the

TID_sets of Lk-1 which in turn minimizes the I/O cost. Using the prefixed-itemset

storage, the number of candidate k-itemsets generated is reduced when compared with

the classical Apriori algorithm because it uses the values of the prefix-key items

stored for joining rather than the values in Lk.

3.4.1 Illustration by an Example

 A sample transactional database D shown in Table 3.2 has been taken for

illustrating the proposed methodology. It consists of ten transactions. Each transaction

comprises Transaction ID (TID) and items bought from the business enterprise a, b, c,

d, e, f, g, h, i, k, p, and m. Let the δ = 6. The frequent 1-itemset is computed as in the

classical Apriori but the L1 in the proposed method contains TID_set and TNT or SC.

The computation of C1 and L1 are shown in Table 3.3 and 3.4, respectively.

Table 3.2 Transactional Database D

TID Items Purchased

0 c, d, e, g, h, i, k, p, m

1 b, e, f, g, h, i, p, m

2 c, e, m

3 a, b, c, d, e, f, g, i, p

4 a, b, c, d, e, p

5 a ,b ,c, d, f, h, p

6 b, e, f, h, i, p, m

7 a, c, d, e, k, p, m

8 a, c , d, e, f, i, p, m

9 a, c, d, e, f, h, i, p, m

 After computing L1 with one database scan, it is stored in prefixed-itemset

storage with the values viz., 1-itemset in Itemset column, NULL in Prefix-key column

and the frequent 1-itemset, i.e. {a, c, d, e, f, i, m, p} in Values column as shown in

 52

Table 3.5. Next {a, c, d, e, f, i, m, p} ⋈ {a, c, d, e, f, i, m, p} is performed and it is

{ac, ad, ae, af, ai, am, ap, cd, ce, cf, ci, cm, cp, de, df, di, dm, dp, ef, ei, em, ep, fi, fm,

fp, im, ip, mp} and all satisfies the Apriori property and forms C2.

Table 3.3 Computation of C1

Item TID_set TNT or SC

a {3, 4, 5, 7, 8, 9} 6

b {1, 3, 4, 5, 6} 5

c {0, 2, 3, 4, 5, 7, 8, 9} 8

d {0, 3, 4, 5, 7, 8, 9} 7

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9

f {1, 3, 5, 6, 8, 9} 6

g {0, 1, 3} 3

h {0, 1, 5, 6, 9} 5

i {0, 1, 3, 6, 8, 9} 6

k {0, 7} 2

m {0, 1, 2, 6, 7, 8, 9} 7

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9

Table 3.4 Computation of L1

Item TID_set TNT or SC

a {3, 4, 5, 7, 8, 9} 6

c {0, 2, 3, 4, 5, 7, 8, 9} 8

d {0, 3, 4, 5, 7, 8, 9} 7

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9

f {1, 3, 5, 6, 8, 9} 6

i {0, 1, 3, 6, 8, 9} 6

m {0, 1, 2, 6, 7, 8, 9} 7

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9

Table 3.5 Prefixed-Itemset Storage with frequent 1-itemset

Itemset Prefix-key Values

1-itemset NULL {a, c, d, e , f , i, m, p}

 The TID_set of an item say ac is calculated by intersecting the TID_sets of the

items a and c respectively.

TID_set of {ac}={3,4,5,7,8,9}∩{0,2,3,4,5,7,8,9}

 ={3,4,5,7,8,9}

 53

 The SC for each item is determined by counting the number of items in

TID_set.

SC of {ac} = length({3,4,5,7,8,9})=6

 Similarly, the SC for other items in C2 is computed, and it is shown in

Table 3.6. Out of these items, only the items ac, ad, ap, cd, ce, cp, de, dp, ei, em, ep,

fp, ip and mp satisfy δ hence forms L2, and it is shown in Table 3.7.

Table 3.6 Computation of C2

Itemset TID_set

(by set

intersection)

SC Itemset TID_set

(by set

intersection)

SC

{ac} {3,4,5,7,8,9} 6 {df} {3,5,8,9} 4

{ad} {3,4,5,7,8,9} 6 {di} {0,3,8,9} 4

{ae} {3,4,7,8,9} 5 {dm} {0,7,8,9} 4

{af} {3,5,8,9} 4 {dp} {0,3,4,5,7,8,9} 7

{ai} {3,8,9} 3 {ef} {1,3,6,8,9} 5

{am} {7,8,9} 3 {ei} {0,1,3,6,8,9} 6

{ap} {3,4,5,7,8,9} 6 {em} {0,1,2,6,7,8,9} 7

{cd} {0,3,4,5,7,8,9} 7 {ep} {0,1,3,4,6,7,8,9} 8

{ce} {0,2,3,4,7,8,9} 7 {fi} {1,3,6,8,9} 5

{cf} {3,5,8,9} 4 {fm} {1,6,8,9} 4

{ci} {0,3,8,9} 4 {fp} {1,3,5,6,8,9} 6

{cm} {0,2,7,8,9} 5 {im} {0,1,6,8,9} 5

{cp} {0,3,4,5,7,8,9} 7 {ip} {0,1,3,6,8,9} 6

{de} {0,3,4,7,8,9} 6 {mp} {0,1,6,7,8,9} 6

 Similar to frequent 1-itemset, the frequent 2-itemsets are appended to

prefixed-itemset storage. In L2, the items ac, ad and ap have the common prefix a and

values are {c,d,p}. Similarly, the items cd, ce and cp have the common prefix c and

values are {d,e,p}, the items {de,dp} has the common prefix d and values are {e,p},

the items {ei,em,ep} has the common prefix e and values are {i,m,p}, the items fp has

the prefix f and value is p, the items ip has the prefix i and value is p and the item mp

has the prefix m and value is p. The original prefixed-itemset storage after appending

frequent 2-itemset is shown in Table 3.8.

 54

Table 3.7 Computation of L2

Itemset
TID_set

(by set intersection)
SC

{ac} {3,4,5,7,8,9} 6

{ad} {3,4,5,7,8,9} 6

{ap} {3,4,5,7,8,9} 6

{cd} {0,3,4,5,7,8,9} 7

{ce} {0,2,3,4,7,8,9} 7

{cp} {0,3,4,5,7,8,9} 7

{de} {0,3,4,7,8,9} 6

{dp} {0,3,4,5,7,8,9} 7

{ei} {0,1,3,6,8,9} 6

{em} {0,1,2,6,7,8,9} 7

{ep} {0,1,3,4,6,7,8,9} 8

{fp} {1,3,5,6,8,9} 6

{ip} {0,1,3,6,8,9} 6

{mp} {0,1,6,7,8,9} 6

Table 3.8 The Original Prefixed-Itemset Storage after Appending frequent 2-itemset

Itemset Prefix-key Values

1-itemset NULL {a, c, d, e , f , i, m, p}

2-itemset

a {c, d, p}

c {d, e, p}

d {e, p}

e {i, m, p}

f {p}

i {p}

m {p}

 But for the prefix-keys f, i, and m the values column contains only one value.

With one value, there is no possibility of generating a frequent 3-itemset. So, they are

not stored in the prefixed-itemset storage of the RISOTTO algorithm which further

helps to reduce the time and storage. The prefixed-itemset storage after appending

frequent 2-itemset in RISOTTO is shown in Table 3.9. To find candidate 3-itemset,

the values of frequent 2-itemset in prefixed-itemset storage is considered.

 55

Table 3.9 The Prefixed-Itemset Storage after Appending frequent 2-itemset in RISOTTO

Itemset Prefix-key Values

1-itemset NULL {a, c, d, e, f, i, m, p}

2-itemset

a {c, d, p}

c {d, e, p}

d {e, p}

e {i, m, p}

 From Table 3.9, first {c,d,p} ⋈ {c,d,p} is calculated and it is {cd,cp,dp} and

all the item satisfies the Apriori property so each item is prefixed with the prefix-key a

which gives {acd,acp,adp}. Next {d,e, p} ⋈ {d,e,p} is calculated and it is {de,dp,ep}

and each item is prefixed with the prefix-key c which gives {cde,cdp,cep} because the

items {de,dp,ep} satisfies Apriori property. Similarly, for the values {e,p} and {i,m,p}

the combinations were generated and forms {dep} and {eim, eip, emp} as candidate

3-itemset. After determining the candidate 3-itemset, the transactions in which the

combination occurs and SC is calculated as

TID_set of {acd} = {3,4,5,7,8,9}∩{0,3,4,5,7,8,9} = {3,4,5,7,8,9}

SC of {acd} = length({3,4,5,7,8,9}) = 6

 Likewise, it is calculated for the remaining candidate 3-itemset, and it is

shown in Table 3.10.

Table 3.10 Computation of C3

Itemset TID_set (by set intersection) SC

{acd} {3,4,5,7,8,9} 6

{acp} {3,4,5,7,8,9} 6

{adp} {3,4,5,7,8,9} 6

{cde} {0,3,4,7,8,9} 6

{cdp} {0,3,4,5,7,8,9} 7

{cep} {0,3,4,7,8,9} 6

{dep} {0,3,4,7,8,9} 6

{eim} {0,1,6,8,9} 5

{eip} {0,1,3,6,8,9} 6

{emp} {0,1,6,7,8,9} 6

 56

 From Table 3.10, the item {eim} does not satisfy δ so it is removed from

candidate 3-itemset and L3 shown in Table 3.11 is formed. Like frequent 1- and

2-itemsets, the frequent 3-itemsets are also appended into prefixed-itemset storage by

separating them into prefix-key and values, as shown in Table 3.12. The prefix-keys

in Table 3.12 such as ad, ce, de, ei and em contains only one item in the values

column. So as in the 2-itemset, the entries for those prefix-keys will not be saved in

the prefixed-itemset storage of RISOTTO.

Table 3.11 Computation of L3

Itemset TID_set (by set intersection) SC

{acd} {3,4,5,7,8,9} 6

{acp} {3,4,5,7,8,9} 6

{adp} {3,4,5,7,8,9} 6

{cde} {0,3,4,7,8,9} 6

{cdp} {0,3,4,5,7,8,9} 7

{cep} {0,3,4,7,8,9} 6

{dep} {0,3,4,7,8,9} 6

{eip} {0,1,3,6,8,9} 6

{emp} {0,1,6,7,8,9} 6

Table 3.12 The Original Prefixed-Itemset Storage after Appending frequent 3-itemset

Itemset Prefix-key Values

1-itemset NULL {a, c, d, e , f , i, m, p}

2-itemset

a {c, d, p}

c {d, e, p}

d {e, p}

e {i, m, p}

f {p}

i {p}

m {p}

3-itemset

ac {d, p}

ad {p}

cd {e, p}

ce {p}

de {p}

ei {p}

em {p}

 57

 Table 3.13 shows the prefixed-itemset storage after appending frequent

3-itemsets in RISOTTO.

Table 3.13 The Prefixed-Itemset Storage after Appending frequent 3-itemset in RISOTTO

Itemset Prefix-key Values

1-itemset NULL {a, c, d, e , f , i, m, p}

2-itemset

a {c, d, p}

c {d, e, p}

d {e, p}

e {i, m, p}

3-itemset
ac {d, p}

cd {e, p}

 From the above table, {d,p}⋈{d,p} is performed and it gives {dp} which is

prefixed with the prefix-key {ac} which forms {acdp} as the first candidate 4-itemset.

Likewise, it is performed for other values for the frequent 3-itemset in

prefixed-itemset storage. The candidate 4-itemset C4 for the sample example is shown

in Table 3.14. All the candidate 4-itemsets in Table 3.14 satisfies the minimum

support and forms L4, as shown in Table 3.15.

Table 3.14 Computation of C4

Itemset TID_set

(by set intersection)

SC

{acdp} {3,4,5,7,8,9} 6

{cdep} {0,3,4,7,8,9} 6

Table 3.15 Computation of L4

Itemset TID_set

(by set intersection)

SC

{acdp} {3,4,5,7,8,9} 6

{cdep} {0,3,4,7,8,9} 6

 Similarly, the frequent 4-itemset is also appended in the original

prefixed-itemset storage with appropriate prefix-key and values, and it is shown in

Table 3.16.

 58

Table 3.16 The Original Prefixed-Itemset Storage after Appending frequent 4-itemset

 Table 3.17 shows the prefixed-itemset storage after appending frequent

4-itemset in the RISOTTO algorithm. All the values in the frequent 4-itemset of the

original prefixed-itemset storage contain only one value. They will not be stored in

the RISOTTO algorithm as it is impossible to form any candidate 5-itemset.

Therefore, the candidate 5-itemset is Ø, and the algorithm terminates.

Table 3.17 The Prefixed-Itemset Storage after Appending frequent 4-itemset in RISOTTO

Itemset Prefix-key Values

1-itemset NULL {a, c, d, e, f, i, m, p}

2-itemset

a {c, d, p}

c {d, e, p}

d {e, p}

e {i, m, p}

f {p}

i {p}

m {p}

3-itemset

ac {d,p}

ad {p}

cd {e,p}

ce {p}

de {p}

ei {p}

em {p}

4-itemset
acd {p}

cde {p}

Itemset Prefix-key Values

1-itemset NULL {a, c, d, e , f , i, m, p}

2-itemset

a {c, d, p}

c {d, e, p}

d {e, p}

e {i, m, p}

3-itemset
ac {d, p}

cd {e, p}

 59

 It is noted that the prefixed-itemset storage after appending frequent 4-itemset

remains the same as the prefixed-itemset storage after appending frequent 3-itemset

and the RISOTTO algorithm terminates.

3.5 Experimental Results and Discussion

 To analyze the effectiveness of the proposed method, an empirical study has

been performed using the datasets shown in Table 1.4. The algorithms were

implemented in Python. The runtime performance of RISOTTO is compared with

prefixed-itemset storage and VDF for the four datasets with different δ is carried out,

and it is tabulated in Table 3.18. The δ varied from 20% to 70%. Figures 3.2 to 3.5

show the graphical representation of the runtime comparison between the algorithms

viz., prefixed-itemset storage, VDF, and the proposed RISOTTO algorithm for the

datasets, namely chess, mushroom, t25i10d10k and c20d10k, respectively.

 From Table 3.18 and figures 3.2 through 3.5, it is observed that the RISOTTO

outperforms the existing algorithms, namely prefixed-itemset storage and VDF,

i.e. the runtime required is reduced from 22.0163 to 13.5594 seconds on an average.

The reason is that the number of candidate itemsets produced in RISOTTO is less

when compared to VDF. Also, it uses the values in the prefixed-itemset storage for

creating candidate itemsets whose length is greater than one at any point of time.

It minimizes the database scan to one compared with the prefixed-itemset storage

method because RISOTTO uses VDF, which maintains the transaction in which

frequent itemset occurs.

 60

Table 3.18 Performance Results of RISOTTO in seconds

min_sup (δ) in

%

Runtime in Sec.

Prefixed-Itemset

Storage
VDF RISOTTO

chess

20 21.0054 16.8578 11.5625

30 20.9810 16.0452 11.0023

40 18.0054 14.0750 9.0531

50 17.5612 13.3017 8.9234

60 16.2378 12.7943 7.3456

70 15.9301 11.9825 6.8421

Average 18.2868 14.1761 9.1215

mushroom

20 24.1790 21.1215 16.6217

30 23.6723 20.0462 15.7312

40 22.5724 19.7083 14.4581

50 22.0245 18.2058 13.9210

60 20.8256 17.7898 12.8521

70 19.9310 15.9575 10.6719

Average 22.2008 18.8049 14.0427

t25i10d10k

20 26.6373 23.3254 19.2415

30 25.6037 21.4578 17.5689

40 24.9612 20.0025 15.9121

50 22.5817 18.7621 13.7321

60 21.7630 18.0056 13.0012

70 19.0175 16.0527 11.9801

Average 23.4274 19.6010 15.2393

c20d10k

20 27.9152 24.4253 19.6142

30 25.2081 22.6752 17.5127

40 24.3574 21.9546 16.3382

50 23.6490 19.4316 14.9102

60 22.7518 19.0012 14.0045

70 21.0186 17.5242 12.6251

Average 24.1500 20.8354 15.8342

Overall Average

(All Datasets)
22.0163 18.3543 13.5594

 61

Figure 3.2 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for chess Dataset

Figure 3.3 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for mushroom Dataset

 62

Figure 3.4 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for t25i10d10k Dataset

Figure 3.5 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for c20d10k Dataset

 63

3.5.1 Welch's Two Sample t-test

 The Welch's t-test is a statistical test applied when two groups of samples have

unequal variances and/or unequal sizes with normally distributed data. It is named

after the inventor Bernard Lewis Welch. It is also called an unequal variances t-test.

It is calculated by taking the differences between the sample means and then dividing

it by the standard error of that difference as shown in Equation 3.1.

1 2

2 2

1 2

1 2

X X
t

s s

n n






 …Equation (3.1)

where, 1X and 2X are the means, 2

1s and 2

2s are the variances, and 1n and 2n are the

sizes of the two groups respectively.

 The following hypothesis and level of significance (α) = 5% were considered

for the statistical test.

Null Hypothesis (0H)

 There is no difference between the (true) means of the two groups i.e. 1 2  .

Alternate Hypothesis (1H)

 There is a difference between the (true) means of the two groups. i.e. 1 2 

or 1 2  or 1 2  .

 To prove statistically, a Welch's Two Sample t-test between the runtimes of

the prefixed-itemset storage method and RISOTTO were performed in this research

work using the R tool. The below example illustrates how to apply the t-test between

the runtimes of the chess dataset for the prefixed-itemset storage and RISOTTO.

https://en.wikipedia.org/wiki/Bernard_Lewis_Welch

 64

> prefix_chess = c(21.0054, 20.9810, 18.0054, 17.5612, 16.2378, 15.9301)

> RISOTTO_chess = c(11.5625, 11.0023, 9.0531, 8.9234,7.3456, 6.8421)

> t.test(prefix_chess,RISOTTO_chess)

 Welch Two Sample t-test

data: prefix_chess and RISOTTO_chess

t = 7.6647, df = 9.732, p-value = 1.999e-05

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

 6.490968 11.839666

sample estimates:

mean of x mean of y

 18.28682 9.12150

 The p-value for chess dataset is 1.999×10
-05

 ≤ 0.05 (5%). Thus, the 0H is

rejected and 1H is accepted. Therefore, it is concluded that the two means are not

equal which means that there are significant differences between the runtimes of

prefixed-itemset storage and RISOTTO. Similarly, the test is conducted for the

remaining datasets used in the experiments and the results are tabulated in Table 3.19.

Table 3.19 Results of t-test

 It is observed from Table 3.19 is that the p-values for all datasets are ≤ 0.05

(5%). So, it is concluded that there are significant differences between the runtimes.

Therefore, the proposed method RISOTTO is more efficient in terms of runtime than

prefixed-itemset storage.

Dataset p-value

chess 1.999×10
-05

mushroom 3.031×10
-05

t25i10d10k 0.0005294

c20d10k 0.0001506

 65

3.6 Chapter Summary

 The research work has introduced an enhanced Apriori algorithm called

RISOTTO, a new hybrid approach for generating frequent itemsets that combine VDF

and prefixed-itemset based storage DS. In the proposed method, the frequent

1-itemset stores the transactions in which the frequent 1-itemset occurs and restricts

the number of database scans required to find the frequent itemsets to one and thereby

reducing the I/O cost. The joining and pruning steps are performed using the values in

the prefixed-itemset DS rather than the values in frequent itemsets as in classical

Apriori, which reduced the time required to generate the candidate itemsets and also

minimizes the number of candidate itemsets. Thus, the RISOTTO method enhances

the existing Apriori algorithm. Though this algorithm reduces the running time when

compared with the existing algorithms, it lacks in reducing memory consumption.

To minimize the memory requirement, a memory-efficient implementation has been

proposed in the next chapter and it also used the VDF approach for storing the

database.

 66

Chapter - 4

JAB-VDF: A JAGGED ARRAY BASED DATA

STRUCTURE FOR VERTICAL DATA FORMAT

 67

CHAPTER - 4

JAB-VDF: A JAGGED ARRAY BASED DATA

STRUCTURE FOR VERTICAL DATA FORMAT

The purpose of critical thinking is rethinking: that is, reviewing, evaluating, and revising thought

--Jon Stratton

4.1 Background

 Nowadays, volumes of data are exploding both in scientific and commercial

domains. Data mining techniques are used to extract unknown information from a

massive amount of data and became popular in many applications. But, the real-world

datasets are sparse, dirt and also contain hundreds of items. Association Rule Mining

(ARM) is an essential core data mining technique to discover patterns/rules among the

items in large databases of variable-length transactions. Its goal is to identify the

groups of items that most often occur together, i.e. it focuses on finding frequent

itemsets, each occurring at more than a minimum support frequency (min_sup) among

all transactions. It is widely used in market basket analysis and graph mining

applications such as pattern finding in web browsing, substructure discovery in

chemical compounds, word occurrence analysis in text documents, and so on

[LLCL,08].

 Apriori is one of the premier and classical data mining algorithms for finding

frequent patterns but it is not an optimized one. Over the last two decades, remarkable

variations and improvements were made to overcome the inefficiencies of the Apriori

algorithm, such as FPGrowth, TreeProjection, Charm, LCM, Eclat and Direct Hashing

and Pruning (DHP), RARM, ASPMS etc. In these algorithms, a minor enhancement

improves the mining process considerably. The significant risks associated with

 68

finding frequent itemsets are computational time and memory requirement.

Even with a moderate-sized dataset, the search space and memory utilization of

Frequent Pattern Mining (FPM) is enormous and exponential to the length of the

transactions in the dataset. Therefore, it is essential to perform FPM analysis in a

space-and-time efficient way.

 Frequent itemset mining with Vertical Data Format (VDF) approach has been

proposed in the literature to improve the classical Apriori. It reduces the number of

database scans and uses an array storage structure. Since the VDF approach uses only

one scan of the database, many researchers used this to reduce computational time to

find frequent itemsets. Thus, this work reduces memory utilization using a

space-efficient data structure called a jagged array with VDF.

4.2 Jagged Array

 A jagged array or ragged grid is a data structure whose elements are arrays.

The elements of a jagged array can be of different dimensions and sizes and it is

possible to create a 2-D array with a variable number of columns in each row.

These types of arrays are sometimes called an "array of arrays" [Sch,07].

It is diagrammatically represented in Figure 4.1.

Figure 4.1 Jagged Array Representations

.

.

. arr

.

.

.

.

.

 arr[n]

arr[1]

arr[0] Element-1 Element-2 Element-m …

Element-1 Element-2 Element-p …

Element-1 Element-2 Element-x …

 69

 In the above diagram, arr is a jagged array that consists of n array and the

length of each array can differ, i.e. m ≠ p ≠ x.

4.3 Proposed Methodology

 Both Apriori and FP-growth algorithms mine frequent patterns using

Horizontal Data Format (HDF), whereas the Eclat algorithm uses VDF. Both HDF

and VDF approaches used array storage structures and observed that the VDF is a

speedy method [IR,16]. To reduce the memory space further, this research work

implements the VDF using the jagged array
2
. This concept is available in JAVA,

Python, VB.NET and C#.NET [Sch,07].

 The reason for choosing this data structure is that the customers will not buy

all the items in the grocery shops. Each transaction in the transactional database

contains a varied number of items purchased.

4.3.1 Illustration by an Example

 To illustrate the memory requirement for VDF with jagged array

representation, let us consider the transactional database (D) shown in Table 4.1.

From Table 4.1, it is observed that the grocery shop sells n (12) items viz., a, b, c, d, e,

f, g, h, i, k, p and m. D consists of t (10) transactions, and the TID's are ranging

from 0 to 9.

 The VDF of Table 4.1 is illustrated in Table 4.2. The VDF is stored as a 2-D

array in the memory, where the number of rows (r) = items in the grocery shop and

the number of columns (c) = t. Here r = 12 and c = 10.

2P.Sumathi, S.Murugan, "A Memory Efficient Implementation of Frequent Itemset Mining with Vertical Data

Format Approach", International Journal of Computer Sciences and Engineering, E-ISSN: 2347-2693, Vol. 6,

No. 11, pp.152-157, December 2018. (UGC Approved Journal).

 70

Table 4.1 Transactional Database D

TID Items Purchased

0 c, d, e, g, h, i, k, p, m

1 b, e, f, g, h, i, p, m

2 c, e, m

3 a, b, c, d, e, f, g, i, p

4 a, b, c, d, e, p

5 a, b, c, d, f, h, p

6 b, e, f, h, i, p, m

7 a, c, d, e, k, p, m

8 a, c, d, e, f, i, p, m

9 a, c, d, e, f, h, i, p, m

Table 4.2 D in VDF

Item Transaction ID's (TID's)

a {3, 4, 5, 7, 8, 9}

b {1, 3, 4, 5, 6}

c {0, 2, 3, 4, 5, 7, 8, 9}

d {0, 3, 4, 5, 7, 8, 9}

e {0, 1, 2, 3, 4, 6, 7, 8, 9}

f {1, 3, 5, 6, 8, 9}

g {0, 1, 3}

h {0, 1, 5, 6, 9}

i {0, 1, 3, 6, 8, 9}

k {0, 7}

m {0, 1, 2, 6, 7, 8, 9}

p {0, 1, 3, 4, 5, 6, 7, 8, 9}

The memory required for storing candidate 1-itemset in the 2-D array for VDF is

(()) (())1 11TM r c sizeof tid sizeof item r     … Equation (4.1)

where, 11item is the first item in the candidate 1-itemset, tid is the transaction-id,

and sizeof is a built-in function that says the number of bytes required for the

 71

argument. Here each tid requires 2-bytes and 11item requires 1-byte of memory,

respectively. Therefore the VDF of candidate 1-itemset requires (12×10×2) + (1×12)

= 252 bytes of memory i.e. 1TM = 252 bytes.

 The Support Count (SC) for each item is the number of tid's that it contains,

i.e. the SC of a, SCa=count(a)=6. Similarly, SCb=5, SCc=8, SCd=7, SCe=9, SCf=6,

SCg=3, SCh=5, SCi=6, SCk=2, SCm=7 and SCp=9. Let the min_sup be 6. The frequent

1-itemset contains {a, c, d, e, f, i, m, p} and it is shown in Table 4.3.

Table 4.3 Frequent 1-itemset in VDF

Item TID's

a {3, 4, 5, 7, 8, 9}

c {0, 2, 3, 4, 5, 7, 8, 9}

d {0, 3, 4, 5, 7, 8, 9}

e {0, 1, 2, 3, 4, 6, 7, 8, 9}

f {1, 3, 5, 6, 8, 9}

i {0, 1, 3, 6, 8, 9}

m {0, 1, 2, 6, 7, 8, 9}

p {0, 1, 3, 4, 5, 6, 7, 8, 9}

 The spaces occupied by the in-frequent items say b, g, h and k in candidate

1-itemsets can be removed, saving memory considerably. The number of bytes of

memory removed from candidate 1-itemset is computed as

(()) (())1 1 1 11rbytes rr c sizeof tid rr sizeof item     …Equation (4.2)

where, 1rr is the number of rows to be removed as in-frequent items. For this example

1rr = 4. Therefore, 1rbytes = (4×10×2) + (4×1) = 84 bytes. Therefore the total bytes of

memory for a frequent 1-itemset is

1 1 1M TM rbytes  … Equation (4.3)

Here 1M = 252 - 84 = 168 bytes.

 72

 Similarly, in iteration 2, the possible 2-itemsets combinations are generated

from frequent 1-itemsets, and it is {ac, ad, ae, af, ai, am, ap, cd, ce, cf, ci, cm, cp, de,

df, di, dm, dp, ef, ei, em, ep, fi, fm, fp, im, ip, mp}. Suppose if there are n items in

1-itemset, the possible two-item combinations are n×(n-1)/2 say tc2. The numbers of

itemset combinations say x may be in-frequent which need not be placed in VDF.

Therefore, the memory required for a frequent 2-itemset is calculated using

Equation 4.4.

(() ()) (() ())2 2 221
TM tc x c sizeof tid sizeof item tc x       … Equation (4.4)

where, 21item is the first item in the frequent 2-itemset. In this example, the item

combinations viz., {ae, af, ai, am, cf, ci, cm, df, di, dm, ef, fi, fm, im} are in-frequent.

Based on Equation 4.4, the VDF of frequent 2-itemset requires ((28 - 14) × 10 × 2)

+ (2 × (28 - 14)) = 280 + 28 = 308 bytes and the frequent 2-itemsets is shown in

Table 4.4.

 Similarly, from Table 4.4, the 3-itemset combinations satisfy the Apriori

property viz., {acd, acp, adp, cde, cdp, cep, dep, emp, eip} are the candidate

3-itemset. In this case, all candidate 3-itemsets are frequent itemsets. Therefore the

frequent 3-itemset requires ((9 - 0) × 10 × 2) + (3 × (9 - 0)) = 180 + 27 = 207 bytes of

memory and it is shown in Table 4.5.

 Similarly, the 4-itemsets combinations generated from frequent 3-itemsets are

acdp, acde, acep, adep, cdep, cemp, ceip, demp, deip and eimp. Among them,

the items acdp and cdep are satisfied Apriori property, which forms the candidate

4-itemset. All the candidate 4-itemsets satisfy the minimum support. The frequent

4-itemset is shown in Table 4.6.

 73

Therefore, the frequent 4-itemset requires ((10 - 0) × 10 × 2) + (4 × (10 - 0))

= 200 + 40 = 240 bytes.

Table 4.4 VDF of frequent 2-itemsets

Item TID's

ac 3, 4, 5, 7, 8, 9

ad 3, 4, 5, 7, 8, 9

ap 3, 4, 5, 7, 8, 9

cd 0, 3, 4, 5, 7, 8, 9

ce 0, 2, 3, 4, 7, 8, 9

cp 0, 3, 4, 5, 7, 8, 9

de 0, 3, 4, 7, 8, 9

dp 0, 3, 4, 5, 7, 8, 9

ei 0, 1, 3, 6, 8, 9

em 0, 1, 2, 6, 7, 8, 9

ep 0, 1, 3, 4, 6, 7, 8, 9

fp 1, 3, 5, 6, 8, 9

ip 0, 1, 3, 6, 8, 9

mp 0, 1, 6, 7, 8, 9

Table 4.5 VDF of frequent 3-itemsets

Item TID's

acd 3, 4, 5, 7, 8, 9

acp 3, 4, 5, 7, 8, 9

adp 3, 4, 5, 7, 8, 9

cde 0, 3, 4, 7, 8, 9

cdp 0, 3, 4, 5, 7, 8, 9

cep 0, 3, 4, 7, 8, 9

dep 0, 3, 4, 7, 8, 9

emp 0, 1, 6, 7, 8, 9

eip 0, 1, 3, 6, 8, 9

Table 4.6 VDF of frequent 4-itemsets

Item TID's

acdp 3, 4, 5, 7, 8, 9

cdep 0, 3, 4, 7, 8, 9

 This process is repeated until no frequent itemsets are found. Now the

candidate 5-itemset contains only one item, i.e. {acdep} and it is not frequent.

 74

So the frequent 5-itemset is empty (Ø), and the process is terminated. Therefore,

the total memory required for VDF using a 2-D array is

1 2

itemseti
TM M TMi

i



 


 … Equation (4.5)

where, 1M is calculated using Equation 4.3 and TMi are calculated using

Equation 4.6.

)((()) (() ())
1

x xTM tc c sizeof tid sizeof item tci i ii
      … Equation (4.6)

where, tci and x is the number of frequent and in-frequent items in the candidate

i-frequent itemset. For the above example TM = 168 + 308 + 207 + 240 = 923 bytes

of memory. If the same is implemented using the jagged array, the memory

requirement is reduced considerably. The memory required for candidate 1-itemset

TM1 is calculated as

() ()
1

{ }1

TM SC sizeof tid sizeof itemitem
item itemset

  
 

 … Equation (4.7)

 As in 2-D representation, there may be x in-frequent items in candidate

1-itemset say {in-frequent} = {item1,item2,…,itemx} then the memory for

{in-frequent} can be saved by removing it and the amount of memory removed is

computed as shown in Equation 4.8.

() ()1
{ }

rbytes SC sizeof tid sizeof itemitem
item in frequent

  
  

 … Equation (4.8)

 Therefore the total memory required for frequent 1-itemset in jagged array

representation is computed using Equation 4.3 with the values calculated using

Equations 4.7 and 4.8, respectively. The jagged array representation for frequent

1-itemset for D is shown in Table 4.7.

 75

Table 4.7 Jagged Array Representation of frequent 1-itemset

Item TID's

a 3 4 5 7 8 9

c 0 2 3 4 5 7 8 9

d 0 3 4 5 7 8 9

e 0 1 2 3 4 6 7 8 9

f 1 3 5 6 8 9

i 0 1 3 6 8 9

m 0 1 2 6 7 8 9

p 0 1 3 4 5 6 7 8 9

The memory required for the above table is calculated as shown below.

1TM
 = (6×2+1) + (5×2+1) + (8×2+1) + (7×2+1) + (9×2+1) + (6×2+1) + (3×2+1)

 + (5×2+1) + (6×2+1) + (2×2+1) + (7×2+1) + (9×2+1)

 = 13+11+17+15+19+13+7+11+13+5+15+19

 = 158 bytes

1rbytes = (5×2+1) + (3×2+1) + (5×2+1) + (2×2+1)

 = 11+7+11+5 = 34 bytes

 Therefore, 1M = 158 - 34 = 124 bytes. Similarly, the jagged array

representation of frequent 2-itemsets shown in Table 4.8, requires 2 2TM rbytes bytes

of memory space where, 2TM and 2rbytes are calculated by using Equations 4.9

and 4.10 respectively.

() ()
2

{ }2

TM SC sizeof tid sizeof itemitem
item itemset

  
 

 … Equation (4.9)

() ()2
{ }

rbytes SC sizeof tid sizeof itemitem
item in frequent

  
  

 … Equation (4.10)

 76

Table 4.8 Jagged Array Representation of frequent 2-itemset

Item TID's

ac 3 4 5 7 8 9

ad 3 4 5 7 8 9

ap 3 4 5 7 8 9

cd 0 3 4 5 7 8 9

ce 0 2 3 4 7 8 9

cp 0 3 4 5 7 8 9

de 0 3 4 7 8 9

dp 0 3 4 5 7 8 9

ei 0 1 3 6 8 9

em 0 1 2 6 7 8 9

ep 0 1 3 4 6 7 8 9

fp 1 3 5 6 8 9

ip 0 1 3 6 8 9

mp 0 1 6 7 8 9

For the above table,

2TM = (6×2+2) + (6×2+2) + (5×2+2) + (4×2+2) + (3×2+2) + (3×2+2) +

 (6×2+2) + (7×2+2) + (7×2+2) + (4×2+2) + (4×2+2) + (5×2+2) +

 (7×2+2) + (6×2+2) + (4×2+2) + (4×2+2) + (4×2+2) + (7×2+2) +

 (5×2+2) + (6×2+2) + (7×2+2) + (8×2+2) + (5×2+2) + (4×2+2) +

 (6×2+2) + (5×2+2) + (6×2+2) + (6×2+2)

 = 14+14+12+10+8+8+14+16+16+10+10+12+16+14+10+10+10+16+12+14+16

 +18+12+10+14+12+14+14

 = 356 bytes

2rbytes = (5×2+2) + (4×2+2) + (3×2+2) + (3×2+2) + (4×2+2) + (4×2+2) +

 (5×2+2) + (4×2+2) + (4×2+2) + (4×2+2) + (5×2+2) + (5×2+2) +

 (4×2+2) + (5×2+2)

 77

 = 12+10+8+8+10+10+12+10+10+10+12+12+10+12

 = 146 bytes

and therefore, 2M requires 356 - 146 = 210 bytes of memory. Similarly, the jagged

array representation of frequent 3-itemsets shown in Table 4.9 requires

3 3TM rbytes memory.

Table 4.9 Jagged Array Representation of frequent 3-itemset

Item TID's

acd 3 4 5 7 8 9

acp 3 4 5 7 8 9

adp 3 4 5 7 8 9

cde 0 3 4 7 8 9

cdp 0 3 4 5 7 8 9

cep 0 3 4 7 8 9

dep 0 3 4 7 8 9

emp 0 1 6 7 8 9

eip 0 1 3 6 8 9

For Table 4.9,

3TM = (6×2+3) + (6×2+3) + (6×2+3) + (6×2+3) + (7×2+3) + (6×2+3) + (6×2+3)

 + (6×2+3) + (6×2+3)

 = 15+15+15+15+17+15+15+15+15

 = 137 bytes

3rbytes = 0 bytes

and therefore 3M requires 137 - 0 = 137 bytes of memory.

Similar to the previous cases, the memory for frequent 4-itemsets is calculated as

4TM = (6×2+4) + (6×2+4) = 16 + 16 = 32 bytes.

 78

4rbytes = 0 bytes

and

4M = 32 - 0 = 32 bytes of memory for Table 4.10.

Table 4.10 Jagged Array Representation of frequent 4-itemsets

Item TID's

acdp 3 4 5 7 8 9

cdep 0 3 4 7 8 9

 This process continues until no more frequent itemsets are found. For this

case, the candidate 5-itemset is NULL, and the algorithm terminates. Therefore, the

total memory required for the jagged implementation is calculated using

Equation 4.11.

1

itemseti
TM TM rbytesi ii



 


 … Equation (4.11)

where, TMi and rbytesi are calculated using Equations 4.12 and 4.13, respectively.

() ()
{ }

TM SC sizeof tid sizeof itemitemi
item itemseti

  
 

 … Equation (4.12)

() ()
{ }

rbytes SC sizeof tid sizeof itemitemi
item in frequenti

  
  

 … Equation (4.13)

 Therefore, the jagged array representation for the sample transactional

database D requires

1 2 3 4TM M M M M   

 TM = 124 + 210 + 137 + 32 = 503 bytes of memory and it is less when compared to

the original 2-D array representation.

 79

The jagged array representation of VDF has several advantages. They are:

i. No memory space is wasted as in a 2-D array because a jagged array allocates

space only to the transactions in which the item occurs

ii. Minimizes the memory space required than the original array implementation

 Thus, it is finalized that the jagged representation saves memory significantly

and also it is fast when compared with the HDF approaches.

4.4 Experimental Results and Discussion

 To analyze the memory usage of VDF using the jagged array, an empirical

study has been performed for the datasets namely chess, mushroom, t25i10d10k and

c20d10k using Python implementation. All the datasets were obtained from the FIMI

repository (http://fimi.ua.ac.be) and the open-source data mining library

(http://www.philippe-fournier-viger.com/spmf). The chess dataset contains 3196

transactions, 75 items and 37 average item count per transaction. Similarly, the

mushroom, t25i10d10k and c20d10k contain 8416, 9976, and 10000 transactions,

119, 929 and 192 items and 23, 24.77 and 20 average item count per transaction

respectively. The memory usage of JAB-VDF is compared with VDF (2-D array) is

carried for the four datasets with δ=20% and it is tabulated in Table 4.11 and

Figure 4.2.

Table 4.11 Comparison of Memory Consumption (in GB) between JAB-VDF and VDF with δ=20%

Datasets VDF JAB-VDF

chess 1.2500 0.7500

mushroom 1.5000 0.6750

t25i10d10k 1.7500 0.7000

c20d10k 1.6700 0.9185

Average 1.5425 0.7609

 80

Figure 4.2 Comparison of Memory Consumption (in GB) between JAB-VDF and VDF with δ=20%

 From Table 4.11 and Figure 4.2, it was observed that the memory needed for

JAB-VDF is reduced by 49.33% when compared with VDF. Further, to prove

statistically, Welch's two-sample t-test was performed between the memory usage of

JAB-VDF and VDF. The t-test was performed using the R tool and the p-value is

0.0023 which is ≤ 0.05 (5%). It is concluded that the two means are not equal, which

means that there are significant differences between the memory usage of JAB-VDF

and VDF. Therefore, the proposed method JAB-VDF consumes less memory than

VDF considerably.

4.5 Chapter Summary

 From the literature, it is also found that the VDF approaches restrict the

database scans to one and find the support counts by intersection. Though it is best,

the array storage structure used by VDF consumes huge memory space because it

assumes that each item may fall almost in all transactions. But in real-world grocery

datasets, each transaction will not contain all items, and each item may not be present

 81

in all transactions. Thus, to reduce memory consumption and utilize memory

efficiently, this research work used the jagged array representation. From the

experimental results, it has been observed that the JAB-VDF reduces memory

consumption for storing frequent itemsets when compared with the traditional

2-D array. The next chapter focuses on developing an algorithm for finding frequent

patterns by reducing both time and memory using a multithreaded approach and

jagged array.

 82

Chapter - 5

TB-NPF-VDF: A MULTITHREADED, NOVEL PATTERN

FORMATION FOR VERTICAL DATA FORMAT

WITH JAGGED ARRAY

 83

CHAPTER - 5

TB-NPF-VDF: A MULTITHREADED, NOVEL PATTERN

FORMATION FOR VERTICAL DATA FORMAT

WITH JAGGED ARRAY

Imagination encircles the entire world, stimulating progress, giving birth to evolution

--Albert Einstein

5.1 Background

 Association Rule Mining (ARM) is one of the most extensively used

knowledge discovery techniques and a promising area in the mining domain

[AHGA
+
,18]. ARM is used in several applications such as inventory control, mobile

mining, educational mining, market basket analysis, risk management,

telecommunication networks, graph mining, etc. [SK,19]. The problem of mining

frequent itemset/pattern is a sub-problem of ARM [GAF,17]. Frequent patterns are

patterns that frequently appear in a dataset with a frequency more than a

user-specified threshold. Frequent Pattern Mining (FPM) is an essential task of

discovering hidden items from a database with more than a prescribed threshold.

It generates qualitative knowledge that helps the decision makers make good business

insights [HPK,12].

 Many researchers narrated novel algorithms for finding frequent itemset

mining, which is achieved using a single thread, but still, there is a need for time,

memory efficient and scalable one. Therefore, the research study proposed an

approach for finding frequent patterns, namely TB-NPF-VDF (Thread Based, Novel

Pattern Formations with Vertical Data Format), which uses a new way of generating

candidate items to minimize the time. Also, it employs multithreading which runs

 84

several threads simultaneously, one for each frequent 1-itemset to generate the

remaining frequent itemsets (frequent 2-itemsets, frequent 3-itemsets, etc.) for that

item until the candidate or frequent itemsets are not empty. Further, to reduce the

memory requirement significantly, it also employs a jagged array structure for storing

the frequent patterns, as illustrated in chapter 4.

 The research work has been implemented and tested using four standard

benchmark datasets from the frequent itemset mining repository. Further, it is

compared with VDF and NPF-VDF (without multithread), and the experimental

results revealed that TB-NPF-VDF outperforms in terms of execution time and

memory significantly.

5.2 Multithreading

 It is a process of executing multiple threads simultaneously, i.e. thread-based

multitasking. A thread is a lightweight sub-process, and it is the smallest unit of a

process. Each thread has a separate path of execution and executed inside a process.

The multithreading uses a shared memory area and thus saves memory space

considerably. Similarly, the context switching between threads takes less time than the

process. The pictorial representation of multithreading is shown in Figure 5.1.

 Concurrent activity speeds applications up is one of the main benefits of

multithreading. Apart from this, it has numerous advantages. They are:

i. Requires less overhead to create, maintain, and manage threads than a

traditional process

ii. Improves throughput

iii. Improves the application and server responsiveness

 85

iv. Minimizes the usage of system resources

v. Simplifies the structure of a complex program

vi. The cost of communication between threads is low

vii. It doesn't block users or affect other threads if an exception occurs because

threads are independent

viii. Saves time to complete the task

Figure 5.1 Multithreading

 By considering these advantages, the research work proposed in this chapter

uses the multithreading concept to increase the runtime speed.

 86

5.3 Proposed Methodology

 The main idea of the proposed work is to find the frequent patterns for the

transactional database. It consists of four phases. The first phase scans D and converts

it into VDF. The second phase determines the frequent 1-itemset from VDF. The third

phase sorts the frequent 1-itemset in ascending order based on the min_sup (δ)

threshold, and it is stored in a matrix form using a jagged array. The δ of an itemset X

is calculated by dividing the number of transactions in which X appears by a total

number of transactions [Kal,17]. The fourth phase creates n-1 threads, one for each

frequent 1-itemset except for the last one, where n is the number of items in frequent

1-itemset. Let the frequent 1-itemset be L1={I1,I2,…,In}, each thread generates

frequent itemsets starting from frequent 2-itemset to frequent k-itemset until it is

non-empty, where k ≥ 2.

 For finding frequent i-itemset, i ≥ 2, each thread (tx,1≤x≤n-1) uses the following

procedure.

i. When i=2, the thread forms the candidate patterns by combining Ix with Ix+1

and finds the transactions in which the combination IxIx+1 occur by intersecting

the transactions in Ix and Ix+1. The item combinations whose Support Count

(SC) ≥ δ is selected as frequent i-itemset for item x.

ii. For i>2, each item in frequent (i-1)-itemset is combined with each frequent

1-itemset starting from the next item in the last item of the frequent(i-1)-item

and finds the transactions in which the combination occurs is determined by

intersecting the item infrequent(i-1)-itemset and the appropriate item in

frequent 1-itemset. This process is repeated until the frequent k-itemset is not

empty.

 87

 As the proposed method uses multithreads, novel pattern formation with VDF

to find frequent patterns is named TB-NPF-VDF
3
. The main advantage of this method

is that it generates less number of candidate itemsets when compared with the

classical Apriori and VDF because it avoids the items whose SC is lesser than the item

at any instance of time for generating the patterns. As threads are used, the CPU is

effectively utilized, and they are faster when compared to processes. This method

avoids checking the pattern for the Apriori property because the candidate patterns

generated satisfies the Apriori property by default. Further, the time required for

TB-NPF-VDF is less when compared to VDF. Since the algorithm also uses the

matrix notation using a jagged array, the memory requirement is also minimized

[SM,18]. The algorithm for the proposed method is shown in Algorithm 5.1 and the

workflow of TB-NPF-VDF is illustrated in Figure 5.2.

Algorithm 5.1: TB-NPF-VDF: An algorithm for finding frequent itemsets

Input:

 A dataset D with n transactions;

 δ - minimum support threshold.

Output: Frequent patterns.

Method:

(1) vdfscan D and store it in <itemset, TID list> format;

(2) C1Ø;

(3) for each itemi in vdf do

3P.Sumathi, Dr.S.Murugan, Dr.V.Umadevi, "A Multithread, Novel Pattern Based Algorithm for Finding Frequent

Patterns With Jagged Array and Vertical Data Format", Indian Journal of Computer Science and Engineering

(IJCSE), e-ISSN:0976-5166, p-ISSN:2231-3850, Vol.12, No.5, pp.1353-1363, Sep-Oct 2021.

DOI:10.21817/indjcse/2021/v12i5/211205078 (UGC Care List - II, Scopus Indexed).

 88

 begin

 SCcount(TID_listitemi); //determines the number of transactions in itemi

 C1C1.append ({itemset, TID list, SC}) // adds a row into C1

 endfor

(4) for each itemi in C1 do

 begin

 L1{itemi | SC(itemi) ≥ δ}

 endfor

(5) L1jagged(sort(L1)); //sorts L1 and converts it into a jagged matrix format

(6) no_freq1_itemsetcount(L1); //determines the number of itemset in L1

(7) for (x=1; x ≤ (no_freq1_itemset-1); x++) do

 begin

 txcreate(thread); // creates a thread for the item L1[x]

 for (k=2; Lk ≠ Ø; k++) do

 begin

 if k==2 then

 new_pattern<IxIx+1>;

 new_TID_listTransactions(Ix) ∩Transactions(Ix+1);

 else if k ≥ 2 then

 for each itemj in Lk-1 do

 begin

 new_itemlast item in itemj;

 new_pattern{<itemjIy>| Iynext(new_item)};

 new_TID_listTransactions(itemj)∩Transactions(Iy)

 endfor

 89

 end if

 SCcount(new_TID_list);

 CkCk.append({new_pattern, new_TID_list});

 Lk{Ck | SC(Ck) ≥ δ}

 endfor

 endfor

Figure 5.2 Workflow of TB-NPF-VDF

5.3.1 Illustration by an Example

 The transactional database D shown in Table 5.1 is taken to illustrate the

proposed work. It contains 12 items viz., {a, b, c, d, e, f, g, h, i, k, m, p}. The vertical

 90

representation of D is shown in Table 5.2. Each item is represented by a row

containing the name of the item and the transactions in which the item occurs.

Table 5.1 Transactional Database D

TID Items Purchased

0 c, d, e, g, h, i, k, p, m

1 b, e, f, g, h, i, p, m

2 c, e, m

3 a, b, c, d, e, f, g, i, p

4 a, b, c, d, e, p

5 a ,b ,c, d, f, h, p

6 b, e, f, h, i, p, m

7 a, c, d, e, k, p, m

8 a, c , d, e, f, i, p, m

9 a, c, d, e, f, h, i, p, m

Table 5.2 D in VDF

Item Transaction ID's (TID's)

a {3, 4, 5, 7, 8, 9}

b {1, 3, 4, 5, 6}

c {0, 2, 3, 4, 5, 7, 8, 9}

d {0, 3, 4, 5, 7, 8, 9}

e {0, 1, 2, 3, 4, 6, 7, 8, 9}

f {1, 3, 5, 6, 8, 9}

g {0, 1, 3}

h {0, 1, 5, 6, 9}

i {0, 1, 3, 6, 8, 9}

k {0, 7}

m {0, 1, 2, 6, 7, 8, 9}

p {0, 1, 3, 4, 5, 6, 7, 8, 9}

 Let δ is 6. The candidate 1-itemset (C1) contains all the items in D, the

transactions in which the item occurs, and also the SC, i.e. the number of transactions

in which the item appears. The C1 for D is shown in Table 5.3. Among them, the

items {a, c, d, e, f, i, m, p} satisfies the δ and hence forms the frequent 1-itemset.

The jagged array representation of the same is shown in Table 5.4.

 To generate fewer candidate itemsets, this research work uses a novel pattern

generation method rather than the natural join used in the Apriori algorithm. For that,

the frequent 1-itemset (L1) is sorted in ascending order based on SC, and it is replaced

with L1. The frequent 1-itemset after sorting is illustrated in Table 5.5.

 91

Table 5.3 Candidate 1-itemset

C1

Itemset TID's SC

a {3, 4, 5, 7, 8, 9} 6

b {1, 3, 4, 5, 6} 5

c {0, 2, 3, 4, 5, 7, 8, 9} 8

d {0, 3, 4, 5, 7, 8, 9} 7

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9

f {1, 3, 5, 6, 8, 9} 6

g {0, 1, 3} 3

h {0, 1, 5, 6, 9} 5

i {0, 1, 3, 6, 8, 9} 6

k {0, 7} 2

m {0, 1, 2, 6, 7, 8, 9} 7

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9

Table 5.4 Jagged Array Representation of frequent 1-itemset

L1

1- Itemset TID's

a 3 4 5 7 8 9

c 0 2 3 4 5 7 8 9

d 0 3 4 5 7 8 9

e 0 1 2 3 4 6 7 8 9

f 1 3 5 6 8 9

i 0 1 3 6 8 9

m 0 1 2 6 7 8 9

p 0 1 3 4 5 6 7 8 9

 Now this work creates seven threads because the frequent 1-itemset contains

eight items. Thread-1 is for the item <a>, Thread-2 is for item <f> and so on.

The Thread-1 first generates the following patterns.

<af>, <ai>, <ad>, <am>, <ac>, <ae> and <ap>

and for each pattern, set intersection is calculated by using the TID's in each item of

the pattern. For example, for the pattern <af> the set intersection is calculated as

{3, 4, 5, 7, 8, 9}∩{1, 3, 5, 6, 8, 9} = {3,5,8,9} and SC=4. Similarly, the SC for other

patterns viz., <ai>, <ad>, <am>, <ac>, <ae> and <ap> is calculated as stated above.

The patterns namely <ad>, <ac> and <ap> satisfies the δ will be considered as the

frequent 2-itemset for the item <a> and are represented in Table 5.6.

 92

Table 5.5 Sorted frequent 1-itemset

L1

1- Itemset TID's

a 3 4 5 7 8 9

f 1 3 5 6 8 9

i 0 1 3 6 8 9

d 0 3 4 5 7 8 9

m 0 1 2 6 7 8 9

c 0 2 3 4 5 7 8 9

e 0 1 2 3 4 6 7 8 9

p 0 1 3 4 5 6 7 8 9

Table 5.6 Frequent 2-itemset for <a> by Thread-1

Item TID's

<ad> 3 4 5 7 8 9

<ac> 3 4 5 7 8 9

<ap> 3 4 5 7 8 9

 Next, the method generates the candidate 3-itemsets for each frequent

2-itemset in Table 5.6 as follows:

i. For the frequent 2-item <ad>, the items viz., <m>, <c>, <e> and <p> are

considered from frequent-1 itemset because <m> is the next item after <d>

where <d> is the last item in frequent 2-itemset <ad>. The patterns generated

are <adm>, <adc>, <ade> and <adp> and for them, the transactions in which

the pattern occurs and SC is calculated as follows:

 From Table 5.6 TID's of <ad> is {3, 4, 5, 7, 8, 9} and from Table 5.5 the TID's

of <m> is {0, 1, 2, 6, 7, 8, 9}. Therefore, {3, 4, 5, 7, 8, 9}∩{0, 1, 2, 6, 7, 8, 9}

={7,8,9} and SC=3. Similarly, for <adc>, <ade> and <adp> is also calculated.

ii. For the frequent 2-item <ac>, the items from <e> i.e. <e> and <p> are

considered. The patterns generated are <ace> and <acp> and SC is calculated

as above.

iii. For the frequent 2-item <ap>, there is no candidate 3-itemset because there is

no next item after <p>.

 93

 The candidate 3-itemset generated by Thread-1 are <adm>, <adc>, <ade>,

<adp>, <ace> and <acp>. Among them the patterns viz., <adc>, <adp> and <acp>

satisfies δ forms frequent 3-itemset and it is shown in Table 5.7.

Table 5.7 Frequent 3-itemsets for <a> by Thread-1

Itemset TID's

<adc> 3 4 5 7 8 9

<adp> 3 4 5 7 8 9

<acp> 3 4 5 7 8 9

 The frequent 3-itemset for <a> is not empty, so the method generates the

candidate 4-itemset. They are <adce> and <adcp>. The SC for <adce> is calculated as

{3, 4, 5, 7, 8, 9}∩{0, 1, 2, 3, 4, 6, 7, 8, 9} = {3,4,7,8,9} and SC of <adcp> is 5.

Similarly, for <adcp> is {3, 4, 5, 7, 8, 9}∩{0, 1, 3, 4, 5, 6, 7, 8, 9}={3,4,5,7,8,9} and

the SC=6 and is shown in Table 5.8.

Table 5.8 Frequent 4-itemsets for <a> by Thread-1

Itemset TID's

<adcp> 3 4 5 7 8 9

 Now, candidate 5-itemset for the item <a> is Ø. So Thread-1 stops its

execution and returns <ad>, <ac>, <ap>, <adc>, <adp>, <acp> and <adcp> as

frequent items for <a>. Similarly, the other threads generate frequent itemsets for

other frequent 1-itemset in parallel and are shown from Table 5.9 to Table 5.19.

Table 5.9 Frequent 2-itemset for <f> by Thread-2

Itemset TID's

<fp> 1 3 5 6 8 9

Table 5.10 Frequent 2-itemset for <i> by Thread-3

Itemset TID's

<ie> 0 1 3 6 8 9

<ip> 0 1 3 6 8 9

Table 5.11 Frequent 3-itemset for <i> by Thread-3

Itemset TID's

<iep> 0 1 3 6 8 9

 94

Table 5.12 Frequent 2-itemset for <d> by Thread-4

Itemset TID's

<dc> 0 3 4 5 7 8 9

<de> 0 3 4 7 8 9

<dp> 0 3 4 5 7 8 9

Table 5.13 Frequent 3-itemset for <d> by Thread-4

Itemset TID's

<dce> 0 3 4 7 8 9

<dcp> 0 3 4 5 7 8 9

<dep> 0 3 4 7 8 9

Table 5.14 Frequent 4-itemset for <d> by Thread-4

Itemset TID's

<dcep> 0 3 4 7 8 9

Table 5.15 Frequent 2-itemset for <m> by Thread-5

Itemset TID's

<me> 0 1 2 6 7 8 9

<mp> 0 1 6 7 8 9

Table 5.16 Frequent 3-itemset for <m> by Thread-5

Itemset TID's

<mep> 0 1 6 7 8 9

Table 5.17 Frequent 2-itemset for <c> by Thread-6

Itemset TID's

<ce> 0 2 3 4 7 8 9

<cp> 0 3 4 5 7 8 9

Table 5.18 Frequent 3-itemset for <c> by Thread-6

Itemset TID's

<cep> 0 3 4 7 8 9

Table 5.19 Frequent 2-itemset for <e> by Thread-7

Itemset TID's

<ep> 0 1 3 4 6 7 8 9

 Table 5.20 depicts the candidate items, frequent items, number of candidates

and frequent items generated by the TB-NPF-VDF for D. The total number of

candidate items generated using TB-NPF-VDF is 56, which is less when compared to

VDF.

 95

5.4 Experimental Results and Discussion

 The runtime performance of all algorithms (Matrix-Apriori [PVG,06], VDF,

NPF-VDF, TB-NPF-VDF) for the four datasets depicted in Table 1.4 with different

min_sup percentage were tabulated in Table 5.21. The min_sup is varied from 20% to

70%. Figures 5.3 to 5.6 show the graphical representation of the runtime comparison

between the algorithms viz., Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for

the datasets, namely chess, mushroom, t25i10d10k and c20d10k, respectively.

Table 5.20 Details of Itemsets for D

Itemset Candidate Items Total

 Frequent Items Total

$

1-itemset {a, b, c, d, e, f, g, h, i, k,

m, p, m}

13 {a, c, d, e, f, i, m, p} 8

2-itemset {af, ai, ad, am, ac, ae, ap,

fi, fd, fm, fc, fe, fp, id, im,

ic, ie, ip, dm, dc, de, dp,

mc, me, mp, ce, cp, ep}

28 {ad, ac, ap, fp, ie, ip,

dc, de, dp, me, mp, ce,

cp, ep}

14

3-itemset {adm, adc, ade, adp, ace,

acp, iep, dce, dcp, dep,

mep, cep}

12 {adc, adp, acp, iep,

dce, dcp, dep, mep,

cep}

9

4-itemset {adce, adcp, dcep} 3 {adcp, dcep} 2

Total 56 33
 #

Number of Candidate Items
$

number of Frequent Items

 From Table 5.21 and Figures 5.3 to 5.6, the TB-NPF-VDF outperforms than

the other existing methods viz., Matrix-Apriori, VDF and NPF-VDF. On an average,

the runtime is reduced from 20.3092 to 9.9094.

5.4.1 Welch's Two Sample t-test

 To prove statistically, a Welch's two sample t-test is being performed between

the runtimes of Matrix-Apriori and TB-NPF-VDF and it is used to determine whether

the means of the two groups are equal to each other or not. The null hypothesis is

taken as that the two means are equal i.e. 1 2  , and the alternative is that they are

not equal i.e. 1 2  or 1 2  or 1 2  . The test is performed using the R tool for

 96

each dataset shown in Table 1.4, and the results are tabulated in Table 5.22.

From Table 5.22, it was observed that the p-values for all datasets are ≤ 0.05 (5%) and

it is concluded that the two means are not equal, which means that there are

significant differences between the runtimes. Therefore, the proposed method

TB-NPF-VDF is more efficient in terms of runtime than the others.

Table 5.21 Performance Results of TB-NPF-VDF in seconds

min_sup (%) Runtime (in Sec.)

 Matrix-

Apriori

VDF NPF-VDF TB-NPF-VDF

chess

20 20.7578 16.8578 13.3578 6.5267

30 19.6365 16.0452 12.1455 5.0325

40 17.7750 14.0750 10.0720 4.5635

50 16.3028 13.3017 9.0017 3.2634

60 15.3625 12.7943 8.2934 2.4571

70 14.8546 11.9825 7.4822 2.0012

Average 17.4482 14.1761 10.0588 3.9741

mushroom

20 23.2135 21.1215 18.0016 12.1024

30 21.3426 20.0462 17.0642 11.5642

40 20.0035 19.7083 14.1038 10.7869

50 19.2002 18.2058 13.2044 10.0063

60 18.0805 17.7898 12.7240 8.5698

70 17.5652 15.9575 11.4530 7.9586

Average 19.9009 18.8049 14.4252 10.1647

t25i10d10k

20 25.2145 23.3254 20.3325 15.1267

30 23.9625 21.4578 19.4258 13.9568

40 21.5467 20.0025 17.9857 12.0127

50 20.3859 18.7621 16.2456 11.6321

60 19.5321 18.0056 15.0012 10.5212

70 18.4521 16.0527 13.7564 9.2451

Average 21.5156 19.6010 17.1245 12.0824

c20d10k

20 26.0014 24.4253 22.8342 17.7586

30 24.9532 22.6752 21.5062 15.9802

40 22.4251 21.9546 20.0412 13.7542

50 21.5621 19.4316 18.8562 11.9892

60 20.1425 19.0012 17.0124 11.0016

70 19.1478 17.5242 15.9351 10.0142

Average 22.3720 20.8354 19.3642 13.4163

Overall Average

(All Datasets)
20.3092 18.3543 15.2432 9.9094

 97

Figure 5.3 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for chess Dataset

Figure 5.4 Runime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for mushroom Dataset

 98

Figure 5.5 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for t25i10d10k Dataset

Figure 5.6 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for c20d10k Dataset

 99

Table 5.22 Results of t-test

 The reason for enhancing the performance is that the concurrent tasks using a

multithreaded approach speeds applications up, reduce the time required for execution

and utilizes CPU effectively. With novel pattern generation, it generates less number

of candidate itemsets than the existing ones. Further, it scans the database only once

during the entire process.

5.5 Chapter Summary

 Numerous FPM algorithms have been introduced in the field of Data Mining.

Each algorithm has its own merits and demerits and not suits for many real-life

scenarios. In this research article, a new approach, TB-NPF-VDF has been introduced

to discover the frequent patterns that combine the power of VDF, NPF and

multithread concept in an efficient way. Experiments were carried out with real-time

datasets using Python implementation for the existing and proposed method, and it

has been proved that the TB-NPF-VDF outperforms the other sequential approaches

in terms of execution time and memory. The main advantage of this method is that it

discovers the frequent patterns with less amount of time and saves memory with

jagged array representation for the VDF matrix. Though, the TB-NPF-VDF reduces

the runtime and memory with multithreading and jagged array, the multithreading has

inherent demerits, thus the usage of GPU has been introduced in the next chapter for

reducing the runtime and memory significantly than the TB-NPF-VDF.

Dataset p-value

chess 1.207×10
-06

mushroom 6.785 ×10
-06

t25i10d10k 5.611×10
-05

c20d10k 0.0002914

 100

Chapter - 6

GNVDF: A GPU-ACCELERATED NOVEL ALGORITHM

USING VERTICAL DATA FORMAT AND

JAGGED ARRAY

 101

CHAPTER - 6

GNVDF: A GPU-ACCELERATED NOVEL ALGORITHM

USING VERTICAL DATA FORMAT AND

JAGGED ARRAY

Research is to see what everybody else has seen, and to think what nobody else has taught

-- Albert Szent-Gyorgyi

6.1 Background

 Data Mining (DM) is a part of Knowledge Discovery in Databases (KDD)

[HD,16] and explores the hidden patterns from transactional databases for making

business decisions. It is being associated with many fields such as database systems,

data warehousing, statistics, machine learning, information retrieval, and high-level

computing [HPK,12],[LS,20]. It is also supported by other sciences like neural

networks, pattern recognition, spatial data analysis, image databases and signal

processing [HPK,12],[LS,20]. Frequent Pattern Mining (FPM) is a computationally

crucial step in DM [VA,15]. It is used to determine the frequent patterns and

associations from databases such as relational and transactional databases and other

data repositories. The Apriori is one of the most significant algorithms,

which generate the frequent itemsets for the boolean association rule. It has many

problems such as more database scan and I/O cost, a large amount of time and

memory in finding frequent itemsets. So, the researchers have done several

enhancements to Apriori in the last two decades.

 However, enhancing execution speed and reducing memory requirements are

the essential parameters while determining the frequent patterns nowadays because of

the rise of big data in various domains and sources in human endeavour. Also, when

 102

the transactional database size increases, demand for storage is increased and requires

high-speed algorithms to find frequent patterns. But with a single-threaded approach,

it's tough to minimize time. The GPU accelerated computing employs GPUs along

with CPUs. It enables superior performance by supporting a parallel programming

paradigm with multiple cores. It saves time and cost in scientific and other high

computing tasks [AFB
b
,14].

 Thus, the research work introduced in this chapter uses GPU acceleration for

finding the frequent patterns with Novel pattern formation using Vertical Data Format

(GNVDF). In this, the candidate i-itemsets is divided into two buckets viz., Bucket-1

and Bucket-2. Bucket-1 contain all the possible items to form candidate-(i+1)

itemsets. Bucket-2 has the items that cannot include in the candidate-(i+1) itemsets.

It also employs a compact data structure called jagged array to minimize the memory

requirement and also remove common transactions among the frequent 1-itemsets.

It also utilizes a vertical representation of data for efficiently extracting the frequent

itemsets by scanning the database only once. Further, the GPU acceleration enhances

the execution speed of the algorithm. The proposed algorithm was implemented using

Python and tested with four standard benchmark datasets and compared the same

without the GPU usage. The comparison result revealed that GNVDF with GPU

acceleration is faster by 94% than the method without GPU acceleration.

6.2 Graphical Processing Unit

 It is a device specifically designed for graphics processing. Two types of

GPUs exist in the market are i) integrated and ii) discrete. The integrated GPUs are

embedded alongside the CPU whereas the discrete GPUs comes as a distinct chip

built up in a separate circuit board and is typically attached to a PCI express slot.

 103

GPUs are widely used in large-scale hashing and matrix computations because it

supports parallelism and serve as the base for mining and machine learning.

CUDA and OpenCL are two popular GPGPU programming framework tools.

NVIDIA has designed a parallel computing platform and programming called

Compute Unified Device Architecture (CUDA) [LSHW,15],[WDY,13].

The CUDA-based program can only be run on the NVIDIA-produced GPU. A typical

CPU may contain four or eight cores, an NVIDIA GPU consists of thousands of

CUDA cores and a pipeline that supports parallel processing on thousands of threads,

increasing the speed significantly.

 With Numba, the Python developer can quickly enter into GPU-accelerated

computing. It makes use of both GPU and CPU to facilitate processing-intensive

operations viz., deep learning, analytics, and engineering applications. The CUDA

Python and Numba help to enhance the speed by targeting both CPUs and NVIDIA

GPUs. With this advantage of CUDA python and Numba, the implementation of this

proposed work will be GPU accelerated. Numba is compatible with Windows 7 and

later (32-bit and 64-bit), Python 3.6 or later, and Numpy versions 1.15 or later.

6.2.1 Processing Flow of CUDA

 In a typical CUDA programming, the data is first sent from the main memory

to the GPU memory, then the CPU sends instructions to the GPU, then the GPU

schedules and executes the kernel on the available parallel hardware, and finally

resulting data are copied back from the GPU memory to the main memory.

The processing flow of CUDA is illustrated in Figure 6.1. When using CUDA,

the developers can program in popular languages such as C, C++, Fortran, Python and

MATLAB and express parallelism through extensions in the form of a few keywords.

 104

Figure 6.1 Processing Flow of CUDA

6.3 Proposed Methodology

 The main objective of the proposed work is to find the essential frequent

itemsets from the transactional database with less memory space and time by ignoring

the least probable ones. The method used a jagged array storage structure [WXXS,18]

and GPU to minimize memory usage and execution time. The proposed method

GNVDF
4

first removes the null/void transactions in the dataset. Null/void transactions

are those which contain only one item. Then the dataset is scanned once and

converted into VDF format.

4Sumathi, S.Murugan, "GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using

Vertical Data Format Approach and Jagged Array", International Journal of Modern Education and Computer

Science (IJMECS), ISSN: 2075-0161 (Print), ISSN: 2075-017X (Online), Vol.13, No.4, pp. 28-41, August 2021.

DOI: 10.5815/ijmecs.2021.04.03 (UGC Care List - II, Scopus Indexed).

 105

 The Support Count (SC) for each item is calculated by counting the number of

transactions that contain each item. Now the candidate 1-itemset C1 is formed.

Next, the frequent 1-itemset is formed by removing the items whose SC˂min_sup(δ)

and storing it in jagged array representation [SM,18] in sorted order based on SC.

From L1 the common transactions among all items are determined either by

intersecting or ANDing the transaction in each item, and it is preserved in the

Common Transaction List (CTID_list). The transactions in CTID_list's are removed from

each item in L1, forming the final frequent 1-itemset. The SC for each item in L1 is

updated by SC - n, where n is the number of transactions in CTID_list. Next, the new

min_sup (δnew) is determined as δnew = δ - n, and it will be the min_sup from the

2
nd

 iteration onwards.

 Before finding the frequent 2-itemset, the final frequent 1-itemset is divided

into two logical buckets, LB1 and LB2 respectively. LB1 contains all the items whose

SC = δnew, and the rest will be placed in LB2. The itemset combinations among the

items in LB1 are least probable of being a candidate 2-itemset because the SC of each

item is equal to δnew. So it is not considered for generating candidate 2-itemset.

The candidate 2-itemsets patterns are generated by combining each item Ix in LB1 with

each item Iy in LB2 and each item Iz in LB2 with Iz+1 in LB2 until the last item in LB2.

The itemset combination that ends with the last item in LB2 will be placed in C2_2 and

the rest in C2_1. From C2_1 and C2_2, the items whose SC below the δnew is removed as

infrequent and formed L2_1 and L2_2.

 For generating candidate 3-itemset, each itemset Ix in L2_1 is combined with the

next item Iy in LB2 after the last item in Ix. Similar to the previous iteration,

the combinations that end with the last item in LB2 are placed in C3_2 and the

 106

rest in C3_1. It is noted that the itemset combinations in L2_2 are not used in the

formation of candidate 3-itemsets. The L3_1 and L3_2 were formed by removing the

infrequent itemsets in C3_1 and C3_2. The process is continued until Ln_1 is not null.

Further, to increase the execution speed of the proposed method, it is being

accelerated with GPU. The proposed algorithm is shown in Algorithm 6.1, and the

workflow diagram in Figure 6.2.

Algorithm 6.1 GNVDF: An algorithm for finding frequent itemsets

 Input : D - a dataset with n transactions;

 δ - minimum support threshold;

 Output : Frequent patterns;

1: D  eliminate_null(D);

2: vdf  scan D and convert it in VDF;

3: L1 one_frequent_itemset(vdf, δ);

4: CTID_list  find_common_TID(L1);

5: L1 remove the transactions in CTID_list for each item in L1;

6: δnew  δ - number of transactions in CTID_list;

7: LB1  {∀ frequent 1-itemset | SC=δnew };

8: LB2  {∀ frequent 1-itemset | SC > δnew};

9: L2_1, L2_2  find_two_freq_itemset(LB1,LB2,δnew);

10: i=2;

11: while Li_1 ≠ Ø do

12: Li+1_1,Li+1_2  n_frequent_itemset(Li_1,LB2,δnew);

13: i=i+1;

14: end while

procedure eliminate_null(D-a dataset with n transactions)

1: for each Ti ∈ D do

 107

2: cntcount the number of items in Ti;

3: if cnt == 1 then

4: remove Ti from D;

5: end if;

6: end for;

7: return D;

procedure one_frequent_itemset(D: Dataset after removing null transactions;

δ :minimum support threshold)

1: L1Ø;

2: for each itemi in D do

3: TIDlisttransactions in which itemi occurs;

4: SCcount the number of transactions in TIDlist;

5: if SC ≥ δ then

6: add {itemi, TIDlist, SC} into L1;

7: end if

8: end for

9: sort L1 and store it in jagged array format;

10: return L1;

procedure find_common_TID (L1: frequent 1-itemset)

1: nfind the number of items in L1;

2: CTID_list{TIDlist1 ∩ TIDlist2 ∩… ∩ TIDlistn};

3: return CTID_list;

procedure two_freq_itemset (LB1: frequent 1-itemset1, LB2: frequent

1-itemset2, δ:minimum support)

1: last_itemfind last item in LB2;

2: for each itemi in LB1 do

3: for each itemj in LB2 do

4: new_pattern  <itemiitemj>;

5: new_tidTIDs(itemi)∩TIDs(itemj);

 108

6: new_sccount the transactions in new_tid;

7: if new_pattern contains last_item then

8: append{new_pattern,new_tid,new_sc} in C2_2;

9: else

10: append{new_pattern,new_tid,new_sc} in C2_1;

11: end if

12: end for

13: end for

14: L2_1{C2_1 | SC(C2_1) ≥ δ};

15: L2_2{C2_2 | SC(C2_2) ≥ δ};

16: return L2_1, L2_2;

procedure n_frequent_itemset (Li_1: frequent i-itemset1, LB2: frequent

1-itemset2, δnew: minimum support)

1: for each itemi in Li_1 do

2: last_itemfind the last item in itemi;

3: for each itemj in LB2 after last_item do

4: new_item{<itemiitemj>};

5: new_tidTIDs(itemi)∩ TIDs(itemj);

6: new_sccount the transactions in new_tid;

7: if new_item contains last element in LB2 then

8: append{new_item,new_tid,new_sc}in Cn_2;

9: else

10: append{new_item,new_tid,new_sc}in Cn_1;

11: end if

12: end for

13: end for

14: Ln_1{Cn_1 | SC(Cn_1) ≥ δ};

15: Ln_2{Cn_2 | SC(Cn_2) ≥ δ};

16: return Ln_1, Ln_2;

 109

 The main advantage of the proposed method is that it reduces the number of

candidate itemsets to be generated in each iteration because the itemsets in Li_2,

for i ≥ 3 will not be considered for creating candidate itemsets and removal of items in

CTL in final L1. Additionally, GPU and jagged array enhance the performance in

terms of speed and usage of memory.

Figure 6.2 Workflow of GNVDF

6.3.1 Memory Requirement Calculation

 From [DMPW
+
,10],[SM,18], it was observed that the memory requirement

using a jagged array structure for the frequent itemsets could be calculated based on

the following equation:

 110

1

iitemset

i ii
TM TM rbytes




  … Equation (6.1)

where, TMi is the total memory required for the candidate i-itemset, and rbytesi is the

memory occupied by the infrequent/rare items in the candidate i-itemset.

By subtracting rbytesi from TMi, the memory for Li i.e. frequent i-itemsets can be

found. TMi and rbytesi were calculated using Equations 6.2 and 6.3 respectively.

{ }

() ()
i

i item

item itemset

TM SC sizeof tid sizeof item
 

   … Equation (6.2)

{ }

() ()
i

i item

item in frequent

rbytes SC sizeof tid sizeof item
  

   … Equation (6.3)

 As in [DMPW
+
,10], the GNVDF also used the same jagged storage structure

for storing frequent itemsets, and the amount of memory requirement was calculated

as follows. It first fetches the common transactions among items in the frequent

1-itemsets and then removes them from frequent 1-itemsets. Suppose if the frequent

1-itemset contains n items say item1, item2, item3,…, itemn and the corresponding TID

lists say TID-List1, TID-List2, TID-List3,…,TID-Listn, then the common TIDs(CTID)

among the n items were found by set intersection operation using Equation 6.4 shown

below.

1 2{ } { } ... { }
TID nC TID List TID List TID List       … Equation (6.4)

The memory space required for CTID was calculated using Equation 6.5.

()

1

()
TID

i

length C

TID

i

CM sizeof C


  … Equation (6.5)

 Since the method removes the CTID from frequent 1-itemsets, the CTID need not

be repeated in the subsequent frequent itemsets, saving memory space considerably.

 111

The amount of memory saved (MS) for the entire dataset was calculated using

Equation 6.6.

1 2

2

() { () ()}
iitemset

i i i

i

MS count itemset CM count itemset count itemset CM


 



    

…Equation (6.6)

where, count(itemset1), count(itemseti_1), and count(itemseti_2) refer to the number of

items in frequent 1-itemset, first and the second part of frequent i-itemsets,

respectively. Thus, the total memory required for the frequent itemsets of the entire

dataset using the proposed method was calculated using Equation 6.7.

1

{ }
iitemset

final i i

i

TM TM rbytes MS




   … Equation (6.7)

6.3.2 Illustration by an Example

 The vertical representation of transactional dataset D shown in Table 6.1 is

considered for illustrating the proposed methodology.

Table 6.1 Vertical Data Format of D

Item Transaction ID's (TID's)

a {3, 4, 5, 7, 8, 9}

b {1, 3, 4, 5, 6}

c {0, 2, 3, 4, 5, 7, 8, 9}

d {0, 3, 4, 5, 7, 8, 9}

e {0, 1, 2, 3, 4, 6, 7, 8, 9}

f {1, 3, 5, 6, 8, 9}

g {0, 1, 3}

h {0, 1, 5, 6, 9}

i {0, 1, 3, 6, 8, 9}

k {0, 7}

m {0, 1, 2, 6, 7, 8, 9}

p {0, 1, 3, 4, 5, 6, 7, 8, 9}

 The transaction database D contains 12 items viz., {a, b, c, d, e, f, g, h, i, k,

m, p}. Each item is represented by a row containing the name of the item and the

 112

transactions in which the item occurs (TIDs) [SNM,15]. Let δ is 6. From Table 6.1,

the candidate 1-itemset is calculated. The candidate 1-itemset contains all the items

in D, the TIDs in which the item occurs and the SC. It is shown in Table 6.2.

Table 6.2 Candidate 1-itemset(C1)

Item TIDs SC

a {3, 4, 5, 7, 8, 9} 6

b {1, 3, 4, 5, 6} 5

c {0, 2, 3, 4, 5, 7, 8, 9} 8

d {0, 3, 4, 5, 7, 8, 9} 7

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9

f {1, 3, 5, 6, 8, 9} 6

g {0, 1, 3} 3

h {0, 1, 5, 6, 9} 5

i {0, 1, 3, 6, 8, 9} 6

k {0, 7} 2

m {0, 1, 2, 6, 7, 8, 9} 7

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9

 From the table above, the items viz., b, g, h and k are removed as infrequent

because the items do not satisfy δ. The frequent 1-itemset is shown in Table 6.3.

Since the common transactions (CTL) are stored in Table 6.4, they are removed from

each item in L1, the final L1 is formed, and it is shown in Table 6.5. Now the new_min

is calculated by removing the number of items in CTL as δnew = δ - n = 6 - 2 = 4.

The logical buckets from final L1, i.e. LB1 and LB2, are shown in Tables 6.6 and 6.7.

Table 6.3 Frequent 1-itemset (L1)

1-itemset TIDs

a 3 4 5 7 8 9

f 1 3 5 6 8 9

i 0 1 3 6 8 9

d 0 3 4 5 7 8 9

m 0 1 2 6 7 8 9

c 0 2 3 4 5 7 8 9

e 0 1 2 3 4 6 7 8 9

p 0 1 3 4 5 6 7 8 9

 113

 To reduce the storage space requirement further, this method finds the

common transaction in which the all items occurs either by AND operation or

intersection of the TIDs of all frequent 1-itemset. i.e. {3,4,5,7,8,9}∩{1,3,5,6,8,9}∩

{0,1,3,6,8,9}∩{0,3,4,5,7,8,9}∩{0,1,2,6,7,8,9}∩{0,2,3,4,5,7,8,9}∩{0,1,2,3,4,5,6,7,8,9}∩

{0,1,3,4,5,6,7,8,9} = {8,9} and it is stored in CTL. The CTL is shown in Table 6.4.

Table 6.4 Common Transaction List (CTL)

CTL

8 9

Table 6.5 Final Frequent 1-itemset (L1)

1-itemset TIDs

a 3 4 5 7

f 1 3 5 6

i 0 1 3 6

d 0 3 4 5 7

m 0 1 2 6 7

c 0 2 3 4 5 7

e 0 1 2 3 4 6 7

p 0 1 3 4 5 6 7

Table 6.6 Logical Bucket-1 (LB1)

Table 6.7 Logical Bucket-2 (LB2)

 The 2-itemset combinations viz., ad, am, ac, ae, fd, fm, fc, fe, id, im, ic, ie, dm,

dc, de, mc, me, mp, and ce are in C2_1 and the items viz., ap, fp, ip, dp, mp, cp and ep

1-itemset TIDs

a 3 4 5 7

f 1 3 5 6

i 0 1 3 6

1-itemset TIDs

d 0 3 4 5 7

m 0 1 2 6 7

c 0 2 3 4 5 7

e 0 1 2 3 4 6 7

p 0 1 3 4 5 6 7

 114

are stored in C2_2. The possible combinations viz., af, ai and fi need not be generated.

It is shown in Tables 6.8 and 6.9 respectively.

Table 6.8 Candidate 2-itemset - Part I

C2_1 TIDs SC

ad 3, 4, 5, 7 4

am 7 1

ac 3, 4, 5, 7 4

ae 3,4,7 3

fd 3,5 2

fm 1,6 2

fc 3,5 2

fe 1,3,6 3

id 0,3 2

im 0,1,6 3

ic 0,3 2

ie 0, 1, 3, 6 4

dm 0 1

dc 0, 3, 4, 5, 7 5

de 0, 3, 4, 7 4

mc 0,2 2

me 0, 1, 2, 6, 7 5

ce 0, 2, 3, 4, 7 5

 The items viz., am, ae, fd, fm, fc, fe, id, im, ic, dm and mc are infrequent in

C2_1 and no item is infrequent in C2_2. Therefore, the frequent 2-itemsets are stored in

L2_1 and L2_2 in jagged array notation as shown in Tables 6.10 and 6.11 respectively.

Table 6.9 Candidate 2-itemset - Part II

C2_2 TIDs SC

ap 3, 4, 5, 7 4

fp 1, 3, 5, 6 4

ip 0,1,3,6 4

dp 0, 3, 4, 5, 7 5

mp 0, 1, 6, 7 4

cp 0, 3, 4, 5, 7 5

ep 0, 1, 3, 4, 6, 7 6

 The candidate 3-itemsets from L2_1 and LB2 viz., adm, adc, ade, ace and dce,

 115

stored in C3_1 and the patterns adp, acp, iep, dep, mep, dcp and cep are kept in C3_2 as

shown in Tables 6.12 and 6.13 respectively.

Table 6.10 Frequent 2-itemset - Part I

L2_1 TIDs

ad 3 4 5 7

ac 3 4 5 7

ie 0 1 3 6

dc 0 3 4 5 7

de 0 3 4 7

me 0 1 2 6 7

ce 0 2 3 4 7

Table 6.11 Frequent 2-itemset - Part II

L2_2 TIDs

ap 3 4 5 7

fp 1 3 5 6

ip 0 1 3 6

dp 0 3 4 5 7

mp 0 1 6 7

cp 0 3 4 5 7

ep 0 1 3 4 6 7

Table 6.12 Candidate 3-itemset - Part I

C3_1 TIDs SC

adm 7 1

adc 3, 4, 5, 7 4

ade 3,4,7 3

ace 3,4,7 3

dce 0, 3, 4, 7 4

Table 6.13 Candidate 3-itemset - Part II

C3_2 TIDs SC

adp 3, 4, 5, 7 4

acp 3,4,5,7 4

iep 0, 1, 3, 6 4

dep 0, 3, 4, 7 4

mep 0, 1, 6, 7 4

dcp 0, 3, 4, 5, 7 5

cep 0, 3, 4, 7 4

 116

The L3_1 and L3_2 are shown in Tables 6.14 and 6.15, respectively. Similarly, C4_1 and

C4_2 are shown in Tables 6.16 and 6.17, respectively. L4_1 and L4_2 are L4_1 = {} and

L4_2 is shown in Table 6.18.

Table 6.14 Frequent 3-itemset - Part I

L3_1 TIDs

adc 3 4 5 7

dce 0 3 4 7

Table 6.15 Frequent 3-itemset - Part II

2_3L TIDs

adp 3 4 5 7

acp 3 4 5 7

iep 0 1 3 6

dcp 0 3 4 5 7

dep 0 3 4 7

mep 0 1 6 7

cep 0 3 4 7

Table 6.16 Candidate 4-itemset - Part I

Table 6.17 Candidate 4-itemset - Part II

Table 6.18 Frequent 4-itemset - Part II

 Now, L4_1 is an empty list, so the algorithm terminates. It is observed from the

experiment that the time needed for finding frequent items for sample dataset D in the

example without the use of GPU is 0.8111 sec, whereas the wall time is 0.0073 ms

C4_1 TIDs SC

adce 3,4,7 3

C4_2 TIDs SC

adcp 3, 4, 5, 7 4

dcep 0, 3, 4, 7 4

L4_2 TIDs

adcp 3 4 5 7

dcep 0 3 4 7

 117

with GPU. The total memory requirement for the frequent itemset for the above

dataset using the method in [SM,18] is TM=124+210+137+32=503 bytes. By using

GNVDF, the memory requirement for the common transaction is CM = 2+2 = 4 bytes

and the amount of memory saved using the proposed method is MS = (8×4) + {(7×4 +

7×4) + (2×4 + 7×4) + (0×4 + 2×4)} = 32 + 56 + 36 + 8 = 132 bytes. Therefore, the

final memory requirement is TMfinal = 503 - 132 = 371 which is 26.24% of memory

saved for this example dataset compared to the memory requirement in [SM,18].

It is also noted that the number of common transactions is directly proportional to the

amount of memory saved.

6.4 Experimental Results and Discussion

 The proposed algorithm was implemented using Python with CUDA Toolkit

with NVIDIA GPU. An extensive experiment was conducted using four real-time

datasets viz., chess, mushroom, t25i10d10k and c20d10k to evaluate the performance

of GNVDF. The datasets and their details were shown in Table 1.4. They were

obtained from the FIMI repository and an open-source data mining library. The reason

for choosing those datasets is that many researchers used those bench-mark datasets in

Frequent Itemset Mining (FIM) and Association Rule Mining (ARM) based research.

The runtime performance of the proposed method without GPU acceleration was

obtained for each dataset, with the minimum threshold values ranging from 20% to

70% and is shown in Table 6.19.

 From Tables 6.19 and 6.20 it was observed that when the number of items and

transactions in a dataset increases, the time required for finding frequent patterns also

increases. In general, there is an inverse relationship between the min_sup threshold

and the time needed to determine the frequent patterns. i.e. when the min_sup

 118

threshold is increased, the number of generated candidate itemsets, followed by

frequent patterns, is minimized, consuming less time for the higher threshold.

Table 6.19 Runtime (in ms) Performance of the Proposed Algorithm without GPU

DS
#

MS
*

chess mushroom t25i10d10k c20d10k

20 10759.6 14501.6 16332.5 16334.2

30 9845.5 13464.2 16225.8 16006.2

40 7972.0 11103.8 13885.7 15441.2

50 7101.7 10224.4 12645.6 14956.2

60 6293.4 9834.0 11101.2 13412.4

70 5082.2 8253.0 9256.4 12035.1

Average 7842.4 11230.17 13241.2 14697.55

 #
DS-Dataset

*
MS-min_sup(δ)

 Similarly, the proposed algorithm was executed with GPU acceleration using

the same minimum support range and results were tabulated in Table 6.20.

Table 6.20 Runtime (in ms) Performance of the Proposed algorithm with GPU-acceleration

DS
#

MS
*

chess mushroom t25i10d10k c20d10k

20 119.5511 145.0160 161.7079 161.7248

30 107.0163 138.0940 156.0173 158.4772

40 83.9158 117.2770 129.7729 131.9761

50 73.2134 104.5091 108.3670 110.6496

60 64.2184 88.8096 102.4380 105.3511

70 53.4968 74.0512 83.6424 92.9924

Average 83.57 111.29 123.66 126.86

 #
DS-Dataset

*
MS-min_sup(δ)

 The graphical representation of the runtime performance of each dataset with

and without GPU usage was illustrated in Figures 6.3 to 6.6.

 119

Figure 6.3 Runtime Performance of GNVDF with and without GPU-acceleration for

chess Dataset

Figure 6.4 Runtime Performance of GNVDF with and without GPU-acceleration for

mushroom Dataset

 120

Figure 6.5 Runtime Performance of GNVDF with and without GPU-acceleration for

t25i10d10k Dataset

Figure 6.6 Runtime Performance of GNVDF with and without GPU-acceleration for c20d10k

Dataset

 121

 Figures 6.3 through 6.6 revealed that the GPU acceleration significantly

enables the execution speed of the proposed methodology, and GNVDF with GPU is

faster by 94% when compared with GNVDF without GPU acceleration. The reason

for the performance enhancement is that the GPUs have many computing cores that

allow the parallel execution of computation-intensive tasks. Since the GNVDF uses

the VDF approach, the number of database scans is restricted to one [SK,19] for

determining each item's support count, which in turn reduces the overtime for finding

the frequent patterns. But, VDF requires more memory for additional information

like TIDs than HDF [SK,19], so a jagged array has been used to minimize memory

space is an advantage. Further, the elements in CTL removed from frequent 1-itemset

save the memory space considerably more than the existing classical algorithms.

6.5 Chapter Summary

 A GPU-accelerated novel method for finding the frequent itemset called

GNVDF has been proposed in this research article. It uses an innovative approach to

discover the candidate and frequent itemsets by removing unnecessary itemsets to

form the subsequent itemsets. It also utilizes GPU for speeding up the process. It also

empowers the use of a jagged array storage structure and removes the common

elements in 1-frequent itemsets. With GPU acceleration and an innovative way of

determining itemsets, the time required is significantly decreased. Similarly, with a

jagged storage structure, the memory requirement is also minimized than the classical

algorithms. From the extensive experiments made, it is observed that the GNVDF

with GPU is 94% faster than with GNVDF without GPU and also proved that it suits

both sparse and dense datasets. Further, the use of the VDF approach restricts the

database scan to one.

 122

Chapter - 7

CONCLUSION

 123

CHAPTER - 7

CONCLUSION

In the end, when it's over, all that matters is what you've done

--Alexander the Great

 The discovery of frequent patterns, associations, and correlation relationships

among the huge amounts of data is useful in marketing, decision analysis,

and business management. A popular application is "market basket analysis",

which analyzes the buying behaviours of the customers by searching for itemsets that

are bought together frequently. Many efficient and scalable algorithms have been

contributed by the researchers for Frequent Pattern Mining (FPM), from which the

correlation and association rules can be derived. Though there are two decades of

research in FPM, the prolonged processing time and huge memory consumption have

become the major issues. So, it necessitates developing better algorithms with reduced

runtime and less memory usage. Thus, this research work concentrates on developing

efficient FPM algorithms for finding frequent patterns in such a way that the runtime

and usage of memory to be reduced than the existing algorithms.

7.1 Summary of the Contributions

 In this thesis, a framework called SUMsFPM has been developed to minimize

the runtime and memory usage in discovering the frequent patterns from transactional

databases. The thesis mainly concentrates on two major issues associated with FPM

and it contains three categories of research models viz., time-efficient (RISOTTO),

memory-efficient (JAB-VDF) and both time and memory-efficient (TB-NPF-VDF

and GNVDF) models. All models were implemented using Python programming.

http://www.azquotes.com/quote/684379
http://www.azquotes.com/author/5835-Alexander_the_Great

 124

The key contributions made in this research work are summarized below:

i) The prefixed-itemset storage structure proposed in the literature stores the

frequent i-itemsets as <prefix-key, values>. It uses the values in the frequent

i-itemset of prefixed-itemset storage for generating candidate (i+1)-itemset

combinations, thereby reducing the number of candidate itemsets to be

generated during each iteration. But for determining the Support Count (SC) of

each candidate (i+1)-itemsets, it scans the dataset again and again. So, in order

to reduce the number of database scans and candidate itemsets, the RISOTTO

method proposed in the thesis combines the prefixed-itemset storage structure

with Vertical Data Format (VDF) approach, which restricts the database scans

to one. Further, the RISOTTO algorithm avoids storing the frequent i-itemsets

with only one item in values because with one item, there is no possibility for

(i+1)-itemset combinations which saves both time and memory. It is found

from the experimental results that the RISOTTO algorithm outperforms the

existing algorithms viz., prefixed-itemset storage and VDF i.e. RISOTTO

reduces the runtime from 22.0163 to 13.5594 and from 18.3543 to 13.5594

seconds on an average when compared with prefixed-itemset storage and VDF

respectively.

ii) It is noted that the VDF is faster and requires only one scan of the database

than HDF. With the array storage structure adopted by VDF, the memory

required for storing tid's is huge. With a varied number of tid's for each item,

the memory was underutilized than the assigned. Thus, to save memory space

considerably, JAB-VDF, a jagged array-based VDF has been proposed in this

research work. Based on the experimental results, it has been observed that the

 125

JAB-VDF reduces memory consumption from 1.5425 GB to 0.7609 GB on an

average when compared with the 2-D array used by VDF with δ=20%.

iii) Many of the VDF-based research works in the literature is based on a

single-threaded approach. It is noted that the multithreaded approach saves

time to complete the task and also gives an improved throughput than the

single-threaded approach. By considering these advantages, a multithreaded

based FPM algorithm with a novel way of generating patterns using VDF

called TB-NPF-VDF has been proposed in this thesis. With the extensive

experiments, it has been identified that the TB-NPF-VDF reduced the runtime

from 20.3092 to 9.9094 seconds on an average than the Matrix-Apriori.

Similarly, the TB-NPF-VDF declined the runtime from 18.3543 to 9.9094,

from 15.2432 to 9.9094 on an average when compared with VDF and

NPF-VDF (proposed work with single-threaded approach) respectively.

The usage of the jagged array in TB-NPF-VDF saves memory significantly as

in JAB-VDF.

iv) The usage of multithreading in the TB-NPF-VDF method optimizes the

processor usage and thereby increases the speed of the processes than the

single-threaded approach. But, when the database size increases, it's tough to

minimize runtime even with multithreading on a single CPU. With GPU

accelerated computing, the GPUs can be employed along with CPUs and it

supports parallel programming paradigm with multiple cores. Thus, the

research work used GPU acceleration for finding the frequent patterns with a

novel way of generating patterns using VDF called GNVDF. It is evident from

the experiment that the GNVDF is faster when compared with the GNVDF

 126

without GPU acceleration. i.e. the usage of GPU in GNVDF and the novel

pattern formation enhances the speed by 94% with GPU acceleration.

Further, the removal of common transactions from frequent 1-itemset saves

the memory space considerably than JAB-VDF. It is also evident from the

results the GNVDF is the more efficient method than the other proposed

methods and existing methods viz., prefixed-itemset based storage, VDF,

Matrix-Apriori, NPF-VDF and GNVDF without GPU-acceleration.

7.2 Limitations and Future Research Directions

 The proposed algorithms has achieved an improved efficiency in finding

frequent patterns in terms of time and memory as discussed in the section 7.1, but all

the proposed models were experimented with four real-time and synthetic datasets

downloaded from the repositories and not tested with dynamic transactional datasets

and also suitable only for the transactional databases.

 The following are some of the future research directions that can be done with

the proposed models:

i. The research works may be extended by evaluating with dynamic datasets and

also experimenting with other types of datasets such as unstructured text,

video and audio.

ii. Map-Reduce based parallel processing can be applied with cloud resources

and data can be stored in a distributed storage system in order to handle the big

data.

iii. Mine several kinds of frequent patterns such as frequent closed itemsets,

max-patterns, sequential patterns, and constraint-based frequent patterns.

 127

7.3 Endnote

 This research work has formulated a new architectural framework called

"SUMsFPM", which incorporates four methods viz., RISOTTO, JAB-VDF,

TB-NPF-VDF and GNVDF for minimizing the runtime and memory requirement in

finding frequent patterns from transactional databases than the existing algorithms.

The ideas projected in this thesis are original, innovative and unique and it is not

present elsewhere in the literature and tested its effectiveness using four datasets both

real-time and synthetic types derived from the FIMI repository (http://fimi.ua.ac.be)

and an open-source Data Mining Library (http://www.philippe-fournier-

viger.com/spmf). It has been proved from the experiments that the proposed

algorithms enhance the performance more than the state-of-art methods in terms of

reduced runtime and memory usage. This work is non-existent earlier in literature and

the same is endorsed by a few journals and conferences for its veracity.

http://www.philippe-fournier-viger.com/spmf
http://www.philippe-fournier-viger.com/spmf

 128

REFERENCES

 129

 REFERENCES

[ABH,14]
Aggarwal, C. C., Bhuiyan, M. A., & Hasan, M. A. (2014). Frequent

pattern mining algorithms: A survey. In Frequent pattern mining,

Springer, Cham.

[AFB
a
,14] Albert, D.W., Fayaz, K., & Babu, D.V. (2014). HSApriori: high speed

association rule mining using apriori based algorithm for GPU.

 Int. J. of Multidisciplinary and Current research.

[AFB
b
,14] Albert, D. W., Fayaz, K., & Babu, D. V. (2014). Exploiting Parallel

Processing Power of GPU for High Speed Frequent Pattern Mining.

International Journal of Computer Engineering and Applications, 7(2),

71 - 81.

[AH, 14] Aggarwal, C. C., & Han, J. (2014). Frequent Pattern Mining. Springer

International Publishing Switzerland, ISBN: 978-3-319-07820-5,

ISBN 978-3-319-07821-2 (eBook).

[AH,15] Agyapong, K. B., & Hayfron-Acquah, J. B. (2015). An Improved

Apriori Algorithm Established on Probability Matrix. International

Journal of Scientific & Technology Research, 4(11), 125-128.

[AHGA
+
,18] Aqra, I., Herawan, T., Ghani, N. A., Akhunzada, A., Ali, A., Razali,

R.B., & Choo, K. K. R. (2018). A novel association rule mining

approach using TID intermediate itemset. PloS one, 13(1), 01-32.

[AP,13] Alwa, A. R. H., & Patil, B. A. V. (2013). New Matrix Approach to

Improve Apriori Algorithm. International Journal of Computer

Science and Network Solutions, 1(4), 102-109.

[AR,14] Aguru, S., & Rao, B. M. (2014). A Hash Based Frequent Itemset

Mining using Rehashing. International Journal on Recent and

Innovation Trends in Computing and Communication, 2(12),

4198-4204.

[BDH, 16] Benhamouda, N. C., Drias, H., & Hirèche, C. (2016). Meta-Apriori:

A New Algorithm for Frequent Pattern Detection. In Asian Conference

on Intelligent Information and Database Systems, Springer, Berlin,

Heidelberg, 9622, 277-285.

[BGD,15] Bhandari, A., Gupta, A., & Das, D. (2015). Improvised Apriori

algorithm using frequent pattern tree for real time applications in data

mining. Procedia Computer Science, 46, 644-651.

 130

[BML,14] Bhat, M. P. S., Malviya, M. M., & Lade, M. S. (2014). Optimization of

MDSRRC with Matrix Apriori. International Journal of Operations

and Logistics Management, 3(2), 140-147.

[BPG,17] Bhandari, B., Pant, B., & Goudar, R. H. (2017). ARAA: A Fast

Advanced Reverse Apriori Algorithm for Mining Association Rules in

Web Data. International Journal of Engineering and Technology

(IJET), 8(6), 2956-2963.

[CGGK,00] Chou, P. B., Grossman, E., Gunopulos, D., & Kamesam, P. (2000).

Identifying prospective customers. In Proceedings of the sixth ACM

SIGKDD international conference on Knowledge discovery and data

mining, 447-456.

[Cha,14] Chaudhary, V. (2014). Multiple Minimum Support Implementations

with Dynamic Matrix Apriori Algorithm for Efficient Mining of

Association Rules. International Journal for Scientific Research and

Development, 2(7), 489-500.

[CHK,18] Chon, K. W., Hwang, S. H., & Kim, M. S. (2018). GMiner: A fast

GPU-based frequent itemset mining method for large-scale

data. Information Sciences, 439, 19-38.

[CJAH
+
,19] Chee, C. H., Jaafar, J., Aziz, I. A., Hasan, M. H., & Yeoh, W. (2019).

Algorithms for frequent itemset mining: a literature review. Artificial

Intelligence Review, 52(4), 2603-2621.

[CSS,15] Chaudhary, R., Sharma, S., & Sharma, V. K. (2015). Improving the

performance of MS-Apriori algorithm using dynamic matrix technique

and map-reduce framework. Int. J. Innov. Res. Sci. Technol, 2(5),

2349-6010.

[DD,12] Dhange, N., & Dhande, S. (2012). Matrix based Efficient Apriori

Algorithm. International Journal of Advanced Research in Computer

Science, 3(4), 341-343.

[DDBC,19] Djenouri, Y., Djenouri, D., Belhadi, A., & Cano, A. (2019). Exploiting

GPU and cluster parallelism in single scan frequent itemset

mining. Information Sciences, 496, 363-377.

 131

[DMPW
+
,10] De Alwis, B., Malinga, S., Pradeeban, K., Weerasiri, D., & Perera, S.

(2010). Horizontal format data mining with extended bitmaps.

In International Conference of Soft Computing and Pattern

Recognition, IEEE, 220-223.

[DS,16] Dhak, B. S., & Sawarkar, M. (2016). Apriori: a promising data

warehouse tool for finding frequent itemset and to define association

rules. International Journal of Engineering Research and General

Science, 4(1), 60-65.

[DZZC,16] Du, J., Zhang, X., Zhang, H., & Chen, L. (2016). Research and

improvement of Apriori algorithm. In Sixth International Conference

on Information Science and Technology (ICIST), IEEE, 117-121.

[EZ,03] El-Hajj, M., & Zaïane, O. R. (2003). Inverted matrix: Efficient

discovery of frequent items in large datasets in the context of

interactive mining. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining,

109-118.

[FAB,14] Fageeri, S. O., Ahmad, R., & Baharudin, B. B. (2014). An Enhanced

Semi-Apriori Algorithm for Mining Association Rules. Journal of

Theoretical and Applied Information Technology, 63(2), 298-304.

[FD,11] Fakhrahmad, S.M., & Dastghaibyfard, G. (2011). An Efficient

Frequent Pattern Mining Method and its Parallelization in

Transactional Databases. Journal of Information Science and

Engineering, 27(2), 511-525.

[FLXH
+
,09] Fang, W., Lu, M., Xiao, X., He, B., & Luo, Q. (2009). Frequent

itemset mining on graphics processors. In Proceedings of the fifth

international workshop on data management on new hardware, 34-42.

[FPS,96] Fayyad, U., Piatetsky-shapiro, G., & Smyth, P. (1996). From data

Science to knowledge discovery in databases. AI Magazine, 17(3),

37-54.

[GAF,17] Gawwad, M. A., Ahmed, M. F., & Fayek, M. B. (2017). Frequent

itemset mining for big data using greatest common divisor technique.

Data Science Journal, 16(25), 1-10.

 132

[GLFC
+
,19] Gan, W., Lin, J. C. W., Fournier-Viger, P., Chao, H. C., Yu, P. S.

(2019). A survey of parallel sequential pattern mining. ACM

Transactions on Knowledge Discovery from Data (TKDD),13(3), 1-34.

[GR,13] Guo, J., & Ren, Y. G. (2013). Research on improved Apriori algorithm

based on coding and mapreduce. In Web Information System and

Application Conference (WISA), IEEE, 294-299.

[GSG,16] Ganesh, C., Sathyabhama, B., & Geetha, D. T. (2016). Fast frequent

pattern mining using vertical data format for knowledge

discovery. International Journal of Engineering Research in

Management & Technology, 5, 141-149.

[GW,10] Guo, Y. M., & Wang, Z. J. (2010). A vertical format algorithm for

mining frequent item sets. In 2010 2
nd

 International Conference on

Advanced Computer Control, IEEE, 4, 11-13.

[HD,11] He, Y. S., & Du, P. (2011). Improved Apriori algorithm based on

compressing transactional matrix multiplication. In Key Engineering

Materials, 460, 409-413.

[HD,16] Hamidi, H., & Daraee, A. (2016). Analysis of pre-processing and

post-processing methods and using data mining to diagnose heart

diseases. International Journal of Engineering(IJE), 29(7), 921-930.

[HH,16] Hashemzadeh, E., & Hamidi, H. (2016). Using a data mining tool and

fp-growth algorithm application for extraction of the rules in two

different dataset. International Journal of Engineering, 29(6), 788-796.

[HL,15] Huang, C. H., & Leu, Y. (2015). A LINQ-based conditional pattern

collection algorithm for parallel frequent itemset mining on a

multi-core computer. In Proceedings of the ASE BigData &

SocialInformatics, 1-6.

[HPK,12] Han, J., Pei, J., & Kamber, M. (2012). Data mining: concepts and

techniques. 3
rd

 Ed., Elsevier.

[HT,16] Hung, L. N., & Thu, T. N. T. (2016). Mining Frequent Itemsets with

Weights over Data Stream Using Inverted Matrix. International

Journal of Information Technology and Computer Science

(IJITCS), 8(10), 63-71.

 133

[HTDV,19] Huynh, B., Trinh, C., Dang, V., Vo, B. (2019). A parallel method for

mining frequent patterns with multiple minimum support thresholds.

International Journal of Innovative Computing. Information and

Control, 15(2), 479-488.

[HYW,08] Hsieh, C. Y., Yang, D. L., & Wu, J. (2008). An efficient sequential

pattern mining algorithm based on the 2-sequence matrix. In 2008

IEEE International Conference on Data Mining Workshops, 583-591.

[HYZH
+
,13] Huang, Y. S., Yu, K. M., Zhou, L. W., Hsu, C. H., & Liu, S. H. (2013).

Accelerating parallel frequent itemset mining on graphics processors

with sorting. In IFIP International Conference on Network and

Parallel Computing, Springer, Berlin, Heidelberg, 245-256.

[IMA,15] Ibrahim, H. M., Marghny, M., & Abdelaziz, N. M. (2015).

Fast Vertical Mining Using Boolean Algebra. International Journal of

Advanced Computer Science and Applications, 6(1), 89-96.

[IR,16] Ishita, R., & Rathod, A. (2016). Frequent Itemset Mining in Data

Mining: A Survey. International Journal of Computer Applications,

139(9).

[Jin,10] Jin, H. (2010). A counting mining algorithm of maximum frequent

itemset based on matrix. In IEEE Seventh International Conference on

Fuzzy Systems and Knowledge Discovery, 3, 1418-1422.

[JMG,16] Jen, T. Y., Marinica, C., & Ghariani, A. (2016). Mining frequent

itemsets with vertical data layout in MapReduce. In International

Workshop on Information Search, Integration, and

Personalization, Springer, Cham, 66-82.

[JS,15] Jaiswal, R., & Soni, R. (2015). A Novel Apriori Algorithm for

Association Rules Mining. International Journal of Modern Trends in

Engineering and Research, 2(3), 374-378.

[Kal,17] Kalpana, D. (2017). Data Mining Apriori Algorithm Implementation

Using R. International Research Journal of Engineering and

Technology, 4(11), 1810-1815.

[KK,17] Kumar, B., & Kumar, D. (2017). A Matrix based Maximal Frequent

Itemset Mining Algorithm without Subset Creation. International

Journal of Computer Applications, 159(6), 23-26.

 134

[KSG,16] Kaur, J., Singh, R., & Gurm, R.K. (2016). Performance Evaluation of

Apriori Algorithm using Association Rule Mining Technique.

International Journal of Technology and Computing, 2(5), 126-132.

[KSK,12] Kumar, G. V., Sreedevi, M., & Kumar, N. P. (2012). Mining Regular

Patterns in Data Streams Using Vertical Format. International Journal

of Computer Science and Security (IJCSS), 6(2), 142-149.

[Lan,18] Lang, Z. (2018). The improved Apriori algorithm based on matrix

pruning and weight analysis. In AIP Conference Proceedings, 1955(1),

040113-1-040113-6.

[LLCL,08] Liu, Y., Liao, W. K., Choudhary, A. N., & Li, J. (2008). Parallel Data

Mining Algorithms for Association Rules and Clustering. In Intl. Conf.

on Management of Data, 1-25.

[LS,16] Lodha, A., & Shrivastava, V. (2016). A Modified Apriori Algorithm

for Mining Frequent Pattern and Deriving Association Rules using

Greedy and Vectorization Method. International Journal of Innovative

Research in Computer and Communication Engineering, 4(6),

10722-10726.

[LS,20] Lisnawati, H., & Sinaga, A. (2020). Data Mining with Associated

Methods to Predict Consumer Purchasing Patterns. International

Journal of Modern Education and Computer Science(IJMECS), 12(5),

16-28.

[LSHW,15] Li, J., Sun, F., Hu, X., & Wei, W. (2015). A multi-GPU

implementation of apriori algorithm for mining association rules in

medical data. ICIC Express Letters, 9(5), 1303-1310.

[LVSM,14] Logeswari, T., Valarmathi, N., Sangeetha, A., & Masilamani, M.

(2014) Analysis of Traditional and Enhanced Apriori Algorithms in

Association Rule Mining. International Journal of Computer

Applications, 87(19), 4-8.

[LXYC,17] Li, Y., Xu, J., Yuan, Y. H., & Chen, L. (2017). A new closed frequent

itemset mining algorithm based on GPU and improved vertical

structure. Concurrency and Computation: Practice and

Experience, 29(6), e3904.

 135

[MDA,11] Mohamed, M. H., Darwieesh, M. M., & Ali, A. S. (2011). Advanced

Matrix Algorithm (AMA): reducing number of scans for association

rule generation. International Journal of Business Intelligence and

Data Mining, 6(2), 202-214.

[MLWY
+
,00] Ma,Y., Liu,B., Wong,C.K., Yu,P.S., & Lee,S.M. (2000). Targeting the

right students using data mining. In Proceedings of the 6
th

Int. conference on Knowledge discovery and data mining, 457-464.

[MR,16] Mohan, V., & Rajpoot, D.S. (2016). Matrix-OverApriori:

An Improvement Over Apriori Using Matrix. International Journal of

Computer Science Engineering (IJCSE), 5(1), 1-6.

[MSB,12] Mujawar, T. N., Shinde, S. K., & Bhojane, V. (2012). XML Data

Mining using XQuery and Improved Apriori Algorithm. International

Journal of Advanced Research in Computer Science, 3(3), 516-521.

[MYZL,16] Ma, Z., Yang, J., Zhang, T., & Liu, F. (2016). An improved Eclat

algorithm for mining association rules based on increased search

strategy. International Journal of Database Theory and

Application, 9(5), 251-266.

[NJGC
+
,17] Niu, K., Jiao, H., Gao, Z., Chen, C., & Zhang, H. (2017). A developed

Apriori algorithm based on frequent matrix. In Proceedings of the 5
th

international conference on bioinformatics and computational biology,

55-58.

[OE,12] Oguz, D., & Ergenc, B. (2012). Incremental itemset mining based on

matrix Apriori algorithm. In International Conference on Data

Warehousing and Knowledge Discovery, Springer, Berlin, Heidelberg,

192-204.

[OKSI,00] Oyama, T., Kitano, K., Satou, K., & Ito, T. (2000). Mining association

rules related to protein-protein interactions. Genome Informatics, 11,

358-359.

[PD,16] Patil, S. D., & Deshmukh, R. R. (2016). Review and Analysis of

Apriori Algorithm for Association Rule. International Journal of

Latest Trends in Engineering and Technology, 6(4), 104-112.

 136

[PP,15] Prithiviraj, P., & Porkodi, R. (2015). A comparative analysis of

association rule mining algorithms in data mining: a study. American

Journal of Computer Science and Engineering Survey, 3(98), 98-119.

[PVG,06] Pavón, J., Viana, S., & Gómez, S. (2006). Matrix Apriori: Speeding Up

the Search for Frequent Patterns. In Databases and Applications,

75-82.

[QGYH,14] Qiu, H., Gu, R., Yuan, C., & Huang, Y. (2014): YAFIM: a parallel

frequent itemset mining algorithm with spark. Proceedings of IEEE.

International Parallel & Distributed Processing Symposium

Workshops, 1664-1671.

[QL,12] Qin, X., & Liu, Y. (2012). Matrix-based multidimensional sequential

pattern mining algorithm and application. In IEEE International

Conference on Computer Science and Information Processing (CSIP),

879-882.

[RS1,16] Rathod, S., & Sharma, A. (2016). Implementation of Enhancement of

Apriori Algorithm. International Journal for Research in Applied

Science & Engineering Technology (IJRASET), 4(5), 402- 408.

[RS2,16] Ravikiran, D., & Srinivasu, S. V. N. (2016). Regular Pattern Mining on

Crime Data Set using Vertical Data Format. International Journal of

Computer Applications, 143(13).

[SAR, 20] Sahoo, Anasuya, & Rajiv Senapati. (2020). A Boolean Load-Matrix

Based Frequent Pattern Mining Algorithm. In International

Conference on Artificial Intelligence and Signal Processing (AISP),

IEEE,1-5.

[SBE,21] Shawkat, M., Badawi, M., & Eldesouky, A. I. (2021). A Novel

Approach of Frequent Itemsets Mining for Coronavirus Disease

(COVID-19). European Journal of Electrical Engineering and

Computer Science, 5(2), 5-12.

[Sch, 07]
Schildt, H. (2007). Java

TM
 : The Complete Reference, 7

th
 Edn., Tata

McGraw Hill, , ISBN: 978-0-07-226385-5.

https://www.amazon.in/Herbert-Schildt/e/B001H6PSMG/ref=dp_byline_cont_book_1

 137

[SD,13] Singh, H., & Dhir, R. (2013). A new efficient matrix based frequent

itemset mining algorithm with tags. International Journal of Future

Computer and Communication, 2(4), 355-358.

[SD,15] Surati Sandip, B., & Desai Apurva, A. (2015). Latest Survey on

Frequent Pattern Mining: Mine the Frequent Patterns from Transaction

Database. Vnsgu Journal of Science And Technology, 4(1), 1-7.

[Sin,16] Singla, V. (2016). A Review: Frequent Pattern Mining Techniques in

Static and Stream Data Environment. Indian Journal of Science and

Technology, 9(45), 1-7.

[SJ,20] Shuwen, L., & Jiyi, X. (2020). An improved apriori algorithm based

on matrix. In 2020 12
th

 International Conference on Measuring

Technology and Mechatronics Automation (ICMTMA), IEEE,

488-491.

[SK,19] Subhashini, A., & Karthikeyan, M. (2019). Itemset Mining using

Horizontal and Vertical Data Format. International Journal for

Research in Engineering Application & Management, 5(3), 534-539.

[SL,20] Sun, R., & Li, Y. (2020). Applying Prefixed-Itemset and Compression

Matrix to Optimize the MapReduce-based Apriori Algorithm on

Hadoop. In Proceedings of the 9
th

International Conference on

Software and Computer Applications, 89-93.

[SM,18] Sumathi, P., & Murugan, S. (2018). A Memory Efficient

Implementation of Frequent Itemset Mining with Vertical Data Format

Approach. International Journal of Computer Sciences and

Engineering, 6(11), 152-157.

[SNM,15] Suresh, P., Nithya, K.N., & Murugan, K. (2015). Improved Generation

of Frequent Itemsets using Apriori Algorithm. International Journal of

Advanced Research in Computer and Communication Engineering,

4(10), 25-27.

[SS,20] Sahoo, A., & Senapati, R. (2020). A Boolean load-matrix based

frequent pattern mining algorithm. In 2020 International Conference

on Artificial Intelligence and Signal Processing (AISP), IEEE, 1-5.

 138

[ST,16] Samoliya, M., & Tiwari, A. (2016). On the use of rough set theory for

mining periodic frequent patterns. International Journal of Information

Technology and Computer Sciences, 8(7), 53-60.

[SV,17] Sharmila, S., & Vijayarani, S. (2017). Frequent Itemset Mining and

Association Rule Generation using Enhanced Apriori and Enhanced

Eclat Algorithms. International Journal of Innovative Research in

Computer and Communication Engineering, 5(4), 6793-6804.

[TC,16] Thakur, K., & Chopra, V. (2016). To Enhance & Optimize the Apriori

Algorithm using Tokenization based Association Rule Mining,

International Journal of Advance Engineering and Research

Development, 3(6), 237-242.

[TG,15] Tanna, P., & Ghodasara, Y. (2015). Analytical Study and Newer

Approach towards Frequent Pattern Mining using Boolean Matrix.

IOSR Journal of Computer Engineering, 17(3), 105-109.

[THY,09] Tsay, Y. J., Hsu, T. J., & Yu, J. R. (2009). FIUT: A new method for

mining frequent itemsets. Information Sciences, 179(11), 1724-1737.

[TSM,14] Tiwary, M., Sahoo, A. K., & Misra, R. (2014). Efficient

implementation of apriori algorithm on HDFS using GPU.

In International Conference on High Performance Computing and

Applications (ICHPCA), IEEE.1-7.

[VA,15] Vu, L., & Alaghband, G. (2015). A self-adaptive method for frequent

pattern mining using a CPU-GPU hybrid model. In Proceedings of the

Symposium on High Performance Computing, 192-201.

[VD,19] Vijay, K., & Deshpande, B. (2019). Data Science: Concepts and

Practice, 2
nd

 Edition, 1-18, doi:0.1016/B978-0-12-814761-0.00001-0.

[VLC
+
,16] Vo, B., Le, T., Coenen, F, et al. (2016). Mining frequent itemsets using

the N-list and subsume concepts, International Journal of Machine

Learning and Cybernetics, 7(2), 253-265.

[VP,15] Vijayalakshmi, V., & Pethalakshmi, A. (2015). An efficient count

based transaction reduction approach for mining frequent

patterns. Procedia Computer Science, 47, 52-61.

https://www.amazon.in/s/ref=dp_byline_sr_ebooks_2?ie=UTF8&field-author=Bala+Deshpande&text=Bala+Deshpande&sort=relevancerank&search-alias=digital-text
https://link.springer.com/journal/13042
https://link.springer.com/journal/13042

 139

[VV,13] Vijay Kumar, G., & Valli Kumari, V. (2013). Parallel

Regular-Frequent Pattern Mining in Large Databases. International

Journal of Scientific & Engineering Research, 4(6).

[Wan,11] Wang, P. S. (2011). A New Algorithm of Association Rules Mining

Based on Relation Matrix. In Advanced Materials Research, 179,

55-59.

[WDY,13] Wang, F., Dong, J., & Yuan, B. (2013). Graph-based substructure

pattern mining using CUDA dynamic parallelism. In Int. conference on

intelligent data engineering and automated learning, 342-349.

[Wet,02] Wetjen, T. (2002). Discovery of frequent gene patterns in microbial

genomes. TZI-Report, Technologie Zentrum Informatik (TZI), 27.

[WS,11] Wang, B. L., & Shen, Y. G. (2011). Improvement of Apriori algorithm

based on Boolean matrix. In Advanced Materials Research, 159,

144-148.

[WXXS,18] Wang, Y., Xu, T., Xue, S., & Shen, Y. (2018). D2P-Apriori: A deep

parallel frequent itemset mining algorithm with dynamic queue.

In 10
th

 International Conference on Advanced Computational

Intelligence (ICACI), 649-654, IEEE.

[XJW,19] Xuan, Q., Jiuyuan, H., & Weitao, W. (2019). Research on

Improvement of Parallel Apriori Algorithm Based on Boolean Matrix

and Weight. In 12
th

 International Conference on Intelligent

Computation Technology and Automation (ICICTA), IEEE, 96-99.

[YE,10] Yıldız, B., & Ergenç, B. (2010). Comparison of two association rule

mining algorithms without candidate generation. In the 10
th

IASTED

international conference on Artificial Intelligence and Applications,

450-457.

[YH,05] Yuan, Y., & Huang, T. (2005). A matrix algorithm for mining

association rules. In International Conference on Intelligent

Computing, Springer, Berlin, Heidelberg, 3644, 370-379.

[YWWJ,11] Yu, H., Wen, J., Wang, H., & Jun, L. (2011). An improved Apriori

algorithm based on the Boolean matrix and Hadoop. Procedia

Engineering, 15, 1827-1831.

 140

[YXHJ
+
,13] Yongchun, J., Xiaona, L., Hairong, C., Jiao, X., & Yingchun, W.

(2013). Improved mining frequent itemsets algorithm based on

sim. Information Technology Journal, 12(11), 2246-2250.

[YZ,16] Yu, S., & Zhou, Y. (2016). A Prefixed-Itemset-Based Improvement for

Apriori Algorithm. arXiv preprint arXiv:1601.01746.

[ZG,03] Zaki, M. J., & Gouda, K. (2003). Fast vertical mining using diffsets.

In Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, 326-335.

[ZLZ,08] Zhang, Z., Liu, J., & Zhang, J. (2008). A Fast Algorithm for Mining

Association Rules Based on Boolean Matrix. In IEEE 4
th

 International

Conference on Wireless Communications, Networking and Mobile

Computing, 1-3.

[ZOKL
+
,19] Zhou, D., Ouyang, M., Kuang, Z., Li, Z., Zhou, J. P., & Cheng, X.

(2019). Incremental association rule mining based on matrix

compression for edge computing. IEEE Access, 7, 173044-173053.

[ZWH,04] Zhang, Z., Wu, W., & Huang, Y. (2004). Mining dynamic

interdimension association rules for local-scale weather prediction.

In Proceedings of the 28
th

Annual International Computer Software

and Applications Conference, IEEE, 2, 146-149.

[ZWX,10] Zhen-yu, L., Wei-xiang, X., & Xumin, L. (2010). Efficiently using

matrix in mining maximum frequent itemset. In IEEE 3
rd

 International

Conference on Knowledge Discovery and Data Mining, 50-54.

[ZY,12] Zong-Yu, Z., & Ya-Ping, Z. (2012). A parallel algorithm of frequent

itemsets mining based on bit matrix. In IEEE International Conference

on Industrial Control and Electronics Engineering, 1210-1213.

[ZYW,10] Zhou, J., Yu, K. M., & Wu, B. C. (2010). Parallel frequent patterns

mining algorithm on GPU. In IEEE International Conference on

Systems, Man and Cybernetics, IEEE, 435-440.

[ZZ,17] Zheng, J., & Zhang, J. (2017). Improvement of Apriori algorithm

based on matrix compression. In 7
th

 International Conference on

Education, Management, Information and Mechanical Engineering,

76, 131-135.

 141

Web References

[1] http://fimi.ua.ac.be

[2] http://www.philippe-fournier-viger.com/spmf

[3] https://link.springer.com/chapter/10.1007/978-3-319-07821-2_2

[4] https://www.sciencedirect.com/science/article/pii/B978012381479100006X

[5] https://www.sciencedirect.com/topics/computer-science/frequent-patterns

[6] https://www.sciencedirect.com/topics/computer-science/knowledge-discovery-

in-database

[7] https://en.wikipedia.org/wiki/Welch%27s_t-test

http://www.philippe-fournier-viger.com/spmf

APPENDICES

Appendix -A

i) Google Scholar Image Showing the Research Scholar

Publications

ii) Papers Included in International Digital Libraries

Appendix - B

i) Papers Published in the International Journals

ISSN 2319 – 1953
International Journal of Scientific Research in Computer Science Applications and Management Studies

IJSRCSAMS

Volume 7, Issue 5 (September 2018) www.ijsrcsams.com

RISOTTO - A Novel Hybrid Approach for

Enhancing Classical Apriori Algorithm
P.Sumathi

#1
, S. Murugan

*2

#1
Research Scholar, *2

Associate Professor
#1

,
*2

Department of Computer Science, Nehru Memorial College (Autonomous), Puthanampatti, Tiruchirappalli -Dt,

TamilNadu, India
#1
sumiparasu@gmail.com,

*2
smurugan_nmc@hotmail.com

Abstract - Discovering frequent itemsets is the computationally

intensive step in the task of mining association rules and Apriori

is one of the most significant algorithms for finding the frequent

itemsets. The main challenge in the classical Apriori is that, the

mining often needs to generate a huge number of candidate

itemsets and requires more number of database scans which

increases time and decreases efficiency. It also increase the I/O

cost and requires more memory. To eradicate these issues a lot of

improvements to Apriori have been proposed in the literature. In

this series, this research work also introduces a refinement to the

Apriori which uses a data structure called prefixed-itemset and

the horizontal data format approach. Based on the comparative

analysis with the classical Apriori, the proposed approach

truncates the number of database scans and reduces the time

required for finding candidate generation.

Keywords - Apriori, Association Rule Mining, Candidate

itemsets, Frequent itemsets, Horizontal data format, Prefixed-

itemset.

 I. INTRODUCTION

Association Rule Mining (ARM) is a process for finding

relations between data items in datasets. ARM has been a

successful technique for extracting knowledge from databases

[15]. Frequent patterns are the patterns (a set of items,

subsequences, subgraphs, etc.) that occur frequently in a data

set. Frequent pattern mining is an essential data mining task in

the field of data mining and mining frequent patterns from

large scale databases has emerged as an important research

problem in data mining and knowledge discovery community.

Association rules are the main technique used to determine the

frequent item set in data mining. Apriori algorithm is the first

algorithm proposed by R.Agrawal and R.Srikant in 1994 in

the field of data mining and it is a classical algorithm of

ARM. It generates frequent item sets for boolean association

rule. As the Apriori algorithm uses the prior knowledge of

frequent item set properties it is named as Apriori. Apriori

employs an iterative approach known as level-wise search,

where kth item set is used to explore (k+1)th-item sets. There

are two steps involved in each iteration and is repeated when

no candidate set can be generated.

They are

1. Generation of candidate item sets

2. Finding the occurrence of each candidate item set in

database and pruning all disqualified candidate set based

on support count (threshold) first and on closure

property. Ie., if a set of items is frequent, then all of its

proper subsets are also frequent

After finding the frequent item sets, the association rules

are generated from those large item sets with the constraints of

minimal confidence (min_conf) and minimum support

(min_sup) thresholds. But this classical algorithm is

inefficient because

1. It is not suitable for large databases

2. It defines the presence and absence of an item

3. It allows uniform minimum support threshold

4. More scanning of transaction database is needed for

generating frequent item sets

5. More I/O cost is required

6. Generation of candidate item-sets and support counting

are expensive

Thus, to eradicate the said disadvantages, there are many

efficient pattern mining algorithms have been discovered in

the last two decades and some of the recent articles in the

literature are shown in section 2, but still research is going on

in creating efficient frequent pattern mining algorithm and

ARM. In this succession, a novel hybrid approach for

enhancing classical Apriori has been introduced in this paper.

The remaining paper is organized as follows. Section 2

describes the review of literature. The proposed approach of

this paper is presented in section 3. An illustrative example for

the proposed methodology is presented in section 4. Section 5

discusses the results. Finally section 6 ends with conclusion.

 II. REVIEW OF LITERATURE

Association Rule Mining (ARM) is a successful technique

for finding relations between data items in databases. The

most widely used Apriori algorithm for generating association

rule discovers frequent patterns by generating candidate item

sets which is a costly and memory consuming one. Research

in improving the Apriori is a common issue and is an ongoing

research topic these days. This section presents a brief

overview of the recent literature related to enhancing classical

Apriori algorithm and it provides a stronger lead to the

proposed work.

In [1], the authors have introduced a Modified Apriori

algorithm using greedy and vectorization method. They

compared the execution time of traditional Apriori and

Modified Apriori by varying the number of transactions and

proved that the Modified Apriori requires less time than the

ISSN 2319 – 1953
International Journal of Scientific Research in Computer Science Applications and Management Studies

IJSRCSAMS

Volume 7, Issue 5 (September 2018) www.ijsrcsams.com

Apriori. They also proved that the proposed method reduces

the number of rules generated than the original Apriori. The

authors in [2] have developed a new recursive algorithm based

on Apriori called Meta-Apriori. In that, they partitioned the

whole database into smaller ones using divide and conquer

approach. After partitioned them, they applied Meta-Apriori if

the partition is huge or Apriori if it is of reasonable size.

Finally, they merged the achieved results to get the result for

whole database and proved that Meta-Apriori requires less

time than the Apriori.

In [3], the authors have proposed a modified Apriori called

DC_Apriori. In this, the authors have restructured the storage

structure of the database and they generated k-frequent item

sets by joining the 1-frequent item sets with k-1-frequent item

sets. They avoided the unnecessary invalid candidate sets and

also reduced the number of database scanning and also

improved the efficiency of frequent item sets generation. A

modified Apriori have been proposed in [4] using

Transposition technique and proved that it is less complex

than the classical Apriori.

A method called Advanced Reverse Apriori Algorithm

(ARAA) has been proposed in [5], which is opposite to

Apriori. In that the authors have generated the k
th

 itemset first

and move on to the lower level sets i.e., k-1,k-2,…,1. They

compared Apriori Algorithm (AA), Reverse Apriori

Algorithm (RAA) and ARAA and proved that the number of

scans in ARAA is less than the AA but greater than RAA and

is equal to number of transactions in the database. Also,

proved that the ARAA is more suitable for all type of datasets

but RAA is applicable for higher datasets. An enhanced

Apriori algorithm and enhanced Eclat algorithm with different

threshold value for each item have been proposed in [6]. The

authors compared them with different size of dataset and with

different size of items and proved that the enhanced Apriori is

best than the enhanced Eclat in terms of the number of

frequent items and rules.

A modified Apriori algorithm called FMA (Frequent

Matrix Apriori) has been proposed by Kun Nin et al [7]. In

that, they scanned the dataset only once to store frequent item

set information in the frequent matrix, then discretizing the

matrix by minimum support parameter in the frequent matrix

and finally, the most frequent item sets are found recursively

by scanning the discretized dataset. It was proved by them that

the FMA is more effective than the AA in terms of time. An

improved Apriori has been designed in [8]. In this method, the

transaction ID’s along with the support count is maintained in

the frequent item sets and they generated the k+1 itemset by

set intersection and proved that the number of database scans

is reduced than the classical Apriori algorithm.

A prefixed-itemset based data structure for candidate

itemset generation has been proposed in [9]. In that, the

candidate itemsets are stored with smaller storage space and

performed the connecting and the pruning step of the Apriori

algorithm much faster. It was analyzed that the proposed

structure improved the efficiency of the classical Apriori

algorithm. A new algorithm called enhanced Apriori

algorithms has been introduced in [10], which takes less

scanning time and reduces the I/O spending time by cutting

down the unwanted transaction records in the database.

A new algorithm called semi-Apriori using a binary based

data structure for mining frequent itemsets as well as

association rule has been proposed in [11] and proved that this

technique outperforms Apriori in terms of execution time. In

[12], an improved Apriori algorithm has been presented and

made a comparison between conventional Apriori and

Improved Apriori algorithm. It was proved that the improved

Apriori provides better performance than classical Apriori

algorithm. A novel Apriori algorithm has been proposed in

[13] to overcome the limitations of the classical Apriori

algorithm based on local and global power set and observed

that the novel algorithm requires only two scans instead of

many scans in classical Apriori algorithm. in [14], The authors

surveyed the good improved approaches of Apriori from 2012

to 2015.

From the literature it has been found that the Apriori

algorithm has been alleviated to several levels, which pawed

way for enhancing the classical Apriori. In succession, the

RISOTTO algorithm has been proposed in this paper for

enhancing the conventional Apriori.

 III. PROPOSED METHODOLOGY

The proposed methodology combines both prefixed-itemset

based storage concept [9] and horizontal data format approach

[8] for enhancing the conventional Apriori algorithm in terms

of time and database scans. The algorithm progresses as

follows:

In the first step, the proposed algorithm finds the frequent

1-itemset from the transaction database by scanning it once as

in classical Apriori. But, it also maintains the transaction ID's

in which the frequent 1-items occurs along with the support

count (SC) or TNR (Total Number of Transactions) as in

horizontal data format approach which forms the candidate

itemset C1. L1 is constructed from C1 by removing the items

whose SC is less than the minimum support count (min_sup).

The transaction ID's are only maintained in C1 and L1. Also,

the frequent 1-itemset is stored in a new data structure (DS)

called prefixed-itemset based storage which contains a prefix-

key and values. The prefix for frequent 1-itemset is always

NULL and the values are the items in L1. In general, the

frequent k-itemset where k =1,2,3, …,n contains (k-1)-items as

prefix-key (LKk) and the last item content as the value (LVk).

In the second step, the values in frequent 1- itemset in the

prefixed-itemset based storage LV1 is joined by itself (LV1 ⋈

LV1) instead L1⋈ L1 and the items which do not satisfy the

Apriori property is removed and then they are combined with

the prefix key which forms C2. The Apriori property i.e., all

nonempty subsets of a frequent itemset must also be frequent

is considered to improve the efficiency by reducing the search

space. The support count for the items in C2 is calculated just

by performing intersection of the transaction ID's in L1 instead

of scanning the database as in classical Apriori, which

minimizes the database scans. From C2, L2 is formed by

ISSN 2319 – 1953
International Journal of Scientific Research in Computer Science Applications and Management Studies

IJSRCSAMS

Volume 7, Issue 5 (September 2018) www.ijsrcsams.com

removing those elements from C2 whose support count is less

than the min_sup. Similar to the previous step, the frequent 2-

itemsets are appended to the prefixed-itemset based storage

with the appropriate prefix and the values. The second step is

repeated with k = 3,4,5, … until there is no more candidate

itemsets found. The proposed approach is named as

RISOTTO abbreviated from the phrase "pRefixed ItemSet

hOrizonTal daTa fOrmat". The steps involved in RISOTTO

are shown in the algorithm 1.1.

Algorithm 1.1: RISOTTO. Finding frequent itemsets

Input:

 D, a database of transactions.

 min_sup, the minimum support count threshold.

Output:

 L, the frequent itemsets in D.

Method:

(1) LØ

(2) C1scan D and generate candidate 1-itemsets

(3) L1  generate frequent 1-itemsets using min_sup

(4) LL ∪ L1

(5) PIDScreate a prefixed-itemset DS

(6) PIDS(LK1)NULL

(7) PIDS(LV1)items in L1

(8) for (k=2; Lk-1≠Ø; k++) do

(9) Ck_initPIDS(LVk-1)⋈ PIDS(LVk-1)

(10) Prune candidate k-items in Ck_init

(11) Ckjoin PIDS(LKk-1) ⋈ Ck_init

(12) Lk generate frequent k-itemsets using min_sup

(13) PIDS(LKk)(k-1)-items in Lk

(14) PIDS(LVk)k
th

 item in Lk

(15) LL ∪ Lk

 (16) endfor

(17) return L

The main advantage of this hybrid approach is that, it

reduces the number of database scans because it finds the SC

for frequent k-itemsets where k=2,3,4,… by set intersection

method from the transaction ID's in L1 which in turn

minimizes the I/O cost. Using the prefixed- itemset storage,

the number of candidate itemsets produced is reduced than the

classical Apriori algorithm

 A. Proposed methodology: An Example

To illustrate the proposed methodology, a sample

transaction database D shown in Table 1 has been considered

which consists of 9 transactions. Each transaction comprises

of TID (Transaction ID) and items bought from the items

available in the business enterprise namely A, B, C, D and E

respectively. Let the min_sup=2. The frequent 1-itemset is

computed as in the classical Apriori but the L1 in the

proposed method contains TID's and TNR or SC. The

computation of C1 and L1 is shown in Table 2.

TABLE I

 TRANSACTION DATABASE D

Transaction ID

(TID)

Items bought

T1 A,B,E

T2 B,D

T3 B,C

T4 A,B,D

T5 A,C

T6 B,C

T7 A,C

T8 A,B,C

T9 A,B,C,E

TABLE II

COMPUTATION OF C1 AND L1

 C1

 L1

In this case, for computing C1 and L1 one database scan is

performed. Also prefixed-itemset storage is used for keeping

the frequent k-itemset which contains 3 columns. Columns 1,

2 and 3 indicate the type of frequent itemset, prefix-key and

values in frequent k-itemsets. For frequent 1-itemset, the

itemsets contain 1-itemset, the prefix-key is NULL and

values are {A,B,C,D,E} which is shown in Table 3.
TABLE III

PREFIXED-ITEMSET STORAGE WITH FREQUENT 1-ITEMSET

Now {A,B,C,D,E} ⋈ {A,B,C,D,E} is performed which is

{AB,AC,AD,AE,BC,BD,BE,CD, CE,DE}. All items in

{AB,AC,AD,AE,BC,BD,BE,CD,CE,DE} supports Apriori

property and the set of items are the items in C2. The SC of

{AB}=count({T1,T4,T5,T7,T8,T9}∩{T1,T2,T3,T4,T6,T8,T9

})=count({T1,T4,T8,T9})=4.SC of {AC}=count({T1 , T4, T5,

T7,T8,T9}∩{T3,T5,T6,T7,T8,T9})=count({ T5, T7, T8, T9})

= 4. Similarly, the SC for other items in C2 is computed and it

is shown in Table 4. Out of these items in C2, only the items

AB, AC, AE, BC, BD and BE satisfies the min_sup and which

forms L2. The frequent 2-itemsets are appended to prefixed

itemset storage. In L2, the items AB, AC and AE has the

Item Transaction ID’s TNT or SC

{A} T1, T4, T5, T7, T8, T9 6

{B} T1,T2, T3,T4, T6, T8, T9 7

{C} T3, T5, T6, T7, T8, T9 6

{D} T2, T4 2

{E} T1,T9 2

Item Transaction ID’s TNT or SC
{A} T1, T4, T5, T7, T8, T9 6

{B} T1,T2, T3,T4, T6, T8, T9 7

{C} T3, T5, T6, T7, T8, T9 6

{D} T2, T4 2

{E} T1,T9 2

Itemsets Prefix – Key Values

1 - itemset NULL {A,B,C,D,E}

ISSN 2319 – 1953
International Journal of Scientific Research in Computer Science Applications and Management Studies

IJSRCSAMS

Volume 7, Issue 5 (September 2018) www.ijsrcsams.com

common prefix A and values are {B,C,E}. Similarly, the items

BC, BD and BE has the common prefix B and {C,D,E} are

the values and it is shown in Table 5.

From Table 5, {B, C, E} ⋈ {B, C, E}={BC,BE,CE}and the

item CE not satisfies the Apriori property, therefore {B, C, E}

⋈ {B, C, E}={BC,BE} and each item is prefixed with the

prefix-key A gives {ABC,ABE}. Similarly {C, D, E} ⋈ {C,

D, E} = {CD,CE,DE} and the items in {CD,CE,DE} does not

satisfies the Apriori property. There {C, D, E} ⋈ {C, D,

E}=Ø. Now the frequent 3-itemset contains only two items

{ABC,ABE}. The SC for ABC = count({T1, T4, T5, T7, T8,

T9}∩{T1, T2, T3, T4, T6, T8, T9}∩{T3, T5, T6, T7, T8,

T9}) = count ({T8,T9})=2.
TABLE IV

COMPUTATION OF FREQUENT 2-ITEMSET

C2

Itemset SC (By set

intersection)

{AB} 4

{AC} 4

{AD} 1

{AE} 2

{BC} 4

{BD} 2

{BE} 2

{CD} 0

{CE} 1

{DE} 0

TABLE V
PREFIXED-ITEMSET STORAGE WITH 1-ITEMSET AND 2-ITEMSET

 TABLE VI
 COMPUTATION OF 3-FREQUENT ITEMSET

L3 C3

Itemset SC(By set

intersection)
{ABC} 2

{ABE} 2

Similarly, SC for ABE = count ({T1,T4,T5,T7,T8,T9

}∩{T1,T2,T3,T4,T6,T8, T9 }∩{ T1,T9})=count({T1,T9})=2.

Both counts satisfies the min_sup, therefore L3, frequent 3-

itemsets contain {ABC},{ABE} which is shown in Table 6.

The same is appended in the prefixed itemset storage with

{AB} as prefix and {C,E} as values and it is shown shown in

Table 7.

TABLE VII

PREFIXED-ITEMSET STORAGE WITH 1-ITEMSET,2-ITEMSET AND 3-ITEMSET

Itemsets Prefix – Key Values

1-itemset NULL {A,B,C,D,E}

2-itemset A {B, C, E}

B {C, D, E}

3-itemset AB {C,E}

Now {C,E}⋈{C,E}={CE} and the item CE does not

satisfies the Apriori property. Therefore frequent 4-candidate

item set C4 is NULL and the algorithm terminates.

 IV. EXPERIMENTAL RESULTS AND DISCUSSION

An extensive experiment for RISOTTO and Classical

Apriori is made using the transaction database D shown in

Table 1. The candidate itemsets and frequent itemsets

generated using the classical Apriori and RISOTTO

algorithms are shown in Table 8 and 9.
TABLE VIII

CANDIDATE ITEMSETS AND FREQUENT ITEMSETS OF TABLE 1 USING

CLASSICAL APRIORI

Candidate itemsets

using

Classical Apriori

(After Join)

Candidate itemsets

using

Classical Apriori

(After Prune)

Frequent itemsets

using Classical

Apriori

C1 {A,B,C,D,E} C1 {A,B,C,D,E} L1 {A,B,C,D,E}

C2 {AB,AC,AD,
AE,BC,BD,

BE,CD,DE}

C2 {AB,AC,AE.B
C,BD,BE}

L2 {AB,AC,AE.
BC,BD,BE}

C3 {ABC,ABE,

ACE,

BCD,
BCE,BDE}

C3 {ABC,ABE} L3 {ABC,ABE}

C4 {ABCE} C4 Ø L4 Ø

TABLE IX
CANDIDATE ITEMSETS AND FREQUENT ITEMSETS OF TABLE 1 USING

RISOTTO

Candidate

itemsets using

RISOTTO

(After Join)

Candidate

itemsets using

RISOTTO

(After Prune)

RISOTTO

C1 {A,B,C,D,E} C1 {A,B,C,D,E} L1 {A,B,C,D,E}

C2 {AB,AC,AD,
AE,BC,BD,B

E,CD,DE}

C2 {AB,AC,AE.
BC,BD,BE}

L2 {AB,AC,AE.B
C,BD,BE}

C3 {ABC,ABE} C3 {ABC,ABE} L3 {ABC,ABE}

C4 Ø

The RISOTTO outperforms well than the classical Apriori

and the comparison results were shown in Table 10. From

table 10, it is observed that the RISOTTO algorithm

minimizes the database scan to 1 and requires less time for

generating the candidate itemset and frequent itemsets. This is

because the proposed algorithm maintains the transaction in

which frequent 1-itemset occurs and also the prefixed-itemset

Itemset SC

{AB} 4

{AC} 4

{AE} 2

{BC} 4

{BD} 2

{BE} 2

Itemsets Prefix – Key Values

1-itemset NULL {A,B,C,D,E}

2-itemset A {B, C, E}

B {C, D, E}

Itemset SC (By set

intersection)

{ABC} 2

{ABE} 2

L2
Itemset SC

{AB} 4

{AC} 4

{AE} 2

{BC} 4

{BD} 2

{BE} 2

Itemset SC

{AB} 4

{AC} 4

{AE} 2

{BC} 4

{BD} 2

{BE} 2

ISSN 2319 – 1953
International Journal of Scientific Research in Computer Science Applications and Management Studies

IJSRCSAMS

Volume 7, Issue 5 (September 2018) www.ijsrcsams.com

storage DS enhances the time to generate the candidate

itemsets.
TABLE X

COMPARISON OF CLASSICAL APRIORI VS. RISOTTO

Parameters Classical

Apriori

RISOTTO

Number of database

scans

3 1

Number of
candidate itemsets

More than
RISOTTO

Less than
Apriori

Time Required for
finding candidate

generation

More than
RISSOTTO

Less than
Apriori

 V. CONCLUSION

The research work has introduced an enhanced Apriori

algorithm called RISOTTO, a new hybrid approach for

generating frequent itemsets which combines both horizontal

data format approach and prefixed-itemset based storage DS.

In the proposed method, frequent 1-itemset stores the

transactions in which the frequent 1-itemset occurs which

reduces the number of database scans required to find the

frequent itemsets and also reduces the I/O cost. The joining

and pruning steps are performed using the values in the

prefixed-itemset DS rather than the values in frequent itemsets

as in classical Apriori which reduced the time required to

generate the candidate itemsets. Thus the RISOTTO, method

enhances the existing Apriori algorithm.

 REFERENCES

[1]. Lodha, A., & Shrivastava, V. (2016, June). A Modified Apriori

Algorithm for Mining Frequent Pattern and Deriving Association
Rules using Greedy and Vectorization Method", International Journal

of Innovative Research in Computer and Communication Engineering,

vol. 4, issue 6, pp. 10722-10726.
[2]. Benhamouda, N. C., Drias, H., & Hirèche, C. (2016, March). Meta-

Apriori: A New Algorithm for Frequent Pattern Detection. In Asian

Conference on Intelligent Information and Database Systems, Springer,
Berlin, Heidelberg, vol.9622, pp. 277-285.

[3]. Du, J., Zhang, X., Zhang, H., & Chen, L. (2016, May). Research and

improvement of Apriori algorithm. In Sixth International Conference
on Information Science and Technology (ICIST), IEEE, pp. 117-121.

[4]. Kaur, J., Singh, R., and Gurm, R.K. (2016, May). Performance

Evaluation Of Apriori Algorithm Using Association Rule Mining
Technique, International Journal of Technology and Computing, vol.

2, issue 5, pp.126-132.

[5]. Bhandari, B., Pant, B., and Goudar, R. H. (Dec 2016-Jan 2017).
ARAA: A Fast Advanced Reverse Apriori Algorithm for Mining

Association Rules in Web Data, International Journal of Engineering

and Technology (IJET),vol. 8, issue 6, pp.2956-2963.
[6]. Sharmila, S., and Vijayarani, S. (2017). Frequent Itemset Mining and

Association Rule Generation using Enhanced Apriori and Enhanced

Eclat Algorithms, International Journal of Innovative Research in
Computer and Communication Engineering, vol. 5, issue 4, pp. 6793-

6804.

[7]. Niu, K., Jiao, H., Gao, Z., Chen, C., and Zhang, H. (2017, January). A
developed apriori algorithm based on frequent matrix. In Proceedings

of the 5th international conference on bioinformatics and

computational biology, ACM, pp. 55-58.
[8]. Suresh,P., Nithya, K.N., & Murugan, K. (2015, October). Improved

Generation of Frequent Item Sets using Apriori Algorithm,

International Journal of Advanced Research in Computer and
Communication Engineering, vol. 4, issue 10, pp. 25-27.

[9]. Yu, S., & Zhou, Y. (2016). A Prefixed-Itemset-Based Improvement

For Apriori Algorithm. arXiv preprint arXiv:1601.01746.

[10]. Logeswari, T., Valarmathi, N., Sangeetha, A., and Masilamani, M.
(2014) Analysis of Traditional and Enhanced Apriori Algorithms in

Association Rule Mining, International Journal of Computer

Applications,vol. 87, issue 19,pp.4-8.
[11]. Fageeri,S.O., Ahmad, R., Baharudin,B.B. (2014). An Enhanced Semi-

Apriori Algorithm For Mining Association Rules, Journal of

Theoretical and Applied Information Technology, vol. 63, issue 2, pp.
298-304.

[12]. Rathod, S., and Sharma, A. (2016, May). Implementation of

Enhancement of Apriori Algorithm, International Journal for Research
in Applied Science & Engineering Technology (IJRASET), vol. 4, issue

5, pp.402- 408.

[13]. Jaiswal, R., and Soni, R. (2015, March). A Novel Apriori Algorithm
for Association Rules Mining, International Journal of Modern Trends

in Engineering and Research, vol. 02, issue 03, pp.374-378.

[14]. Patil, S.D., and Deshmukh, R.R. (2016, March). Review and Analysis
of Apriori Algorithm for Association Rule, International Journal of

Latest Trends in Engineering and Technology, voal.6, issue 4, pp. 104-

112.
[15]. Yuan, Y. and Huang, T. (2005, August). "A Matrix Algorithm for

Mining Association Rules", Lecture Notes in Computer Science,

Springer-Verlag Berlin Heidelberg, vol. 3644, pp. 370–379.

 © 2018, IJCSE All Rights Reserved 152

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.6, Special Issue.11, Dec 2018 E-ISSN: 2347-2693

A Memory Efficient Implementation of Frequent Itemset Mining with

Vertical Data Format Approach

P. Sumathi
1*

, Dr. S. Murugan
2

1
Department of Computer Science, Nehru Memorial College (Autonomous), Tiruchirappalli, India

2
Department of Computer Science, Nehru Memorial College (Autonomous), Tiruchirappalli, India

*
Corresponding Author: sumiparasu@gmail.com

Available online at: www.ijcseonline.org

Abstract— Data mining is the process of extracting the concealed information and rules from large databases. But the real world datasets

are sparse, dirt and also contain hundreds of items. Frequent Pattern Mining (FPM) is one of the most intensive problems in discovering

frequent itemsets from such datasets. Apriori is one of the premier and classical data mining algorithms for finding frequent patterns but it is

not an optimized one. So over last two decades a remarkable variations and improvements were made to overcome the inefficiencies of

Apriori algorithm such as FPGrowth, TreeProjection, Charm, LCM, Eclat and Direct Hashing and Pruning (DHP), RARM, ASPMS etc., In

any case, a little enhancement in the algorithm improves the mining process considerably. Frequent itemset mining with vertical data format

approach has been proposed as an improvement over the basic Apriori, which reduces the number of database scans and also uses array

storage structure. This research paper has proposed a space efficient implementation of finding frequent itemsets with vertical data format

using jagged array. It reduces the usage of memory by allocating exact memory. An experiment is done between the array implementation of

vertical data format approach and jagged array implementation. From the experiment it is proved that the proposed jagged array

implementation method utilizes the memory efficiently when compared with the traditional multidimensional array.

Index Terms — Apriori, Array, Eclat, Frequent Pattern Mining, FPGrowth, Jagged Array, and Vertical Data Format.

I. INTRODUCTION

 Now-a-days, volumes of data are exploding both in

scientific and commercial domains. Data mining techniques

are used to extract unknown information from the huge

amount of data and became popular in many applications.

Association Rule Mining (ARM) is one of an important core

data mining techniques to discover patterns/rules among

items in a large database of variable-length transactions. Its

goal is to identify the groups of items that most often occurs

together i.e., it focuses on finding frequent itemsets each

occurring at more than a minimum support frequency

(min_sup) among all transactions. It is widely used in market

basket transaction data analysis, graph mining applications

like substructure discovery in chemical compounds, pattern

finding in web browsing, word occurrence analysis in text

documents, and so on [1].

 The major risks associated with finding frequent

itemsets are i) computational time and ii) memory needed for

the task because even with a moderate sized dataset, the

search space and memory utilization of FPM is enormous,

which is exponential to the length of the transactions in the

dataset. Therefore, it is essential to perform FPM analysis in

a space-and-time efficient way. Many researchers in this area

focused on reducing computational time to find frequent

patterns and this work focuses on reducing the memory

utilization using jagged array storage structure in the vertical

data mining algorithms.

 Rest of the paper is organized as follows. Section 2

describes the review of literature. The proposed

implementation method of Vertical Data Format (VDF) is

illustrated in section 3. The comparison of existing and the

proposed implementation methods are discussed in section 4

and finally section 5 ends with conclusion.

II. REVIEW OF LITERATURE

 Improving the computational time and memory is

always an issue in ARM and this section briefs the research

contributions made by different researchers in this line which

pawed way for the proposed implementation.

 In [2], the authors have presented a VDSRP method

to generate complete set of regular patterns over a data

stream at a user given regularity threshold using sliding-

window and VDF. It has been proved that the proposed

method outperforms both in execution and memory

consumption.

 Ravikiran, D., et. al, have proposed a new model

called RCP to mine regular sort of crimes in crime database

using VDF which requires only one database scan. From the

experimental results they proved that RCP is more efficient

than the existing RPtree[3]. In [4], the authors have focused

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 153

on the various FPM techniques, their challenges in static and

stream data environment.

 The authors in [6] have presented a new algorithm,

which mine frequent itemsets with vertical format. They

proved that the new algorithm needs a single database scan

and finds new frequent item sets through 'and operation'

between item sets. The new algorithm requires less storage

space, and improves the efficiency of data mining.

 An enhanced Apriori and Eclat has been introduced

in [8], in which individual thresholds for each itemset has

been used and proved that that the enhanced-Apriori

algorithm outperforms Enhanced-Eclat Algorithm.

 In [9], the authors have presented an improved

version of Eclat called Eclat-growth algorithm based on

increased search strategy. For reducing the runtime in

generating an intersection of two itemsets and support degree

calculation, a BSRI (Boolean array Setting and Retrieval by

Indexes of transactions) method has been introduced. It has

been proved by them that the Eclat-growth outperforms

Eclat, Eclat-diffsets, Eclat-opt and hEclat in mining

association rules.

 In [10], a VFFM algorithm has been developed

which represents the transaction database in vertical format

in the form of binary, where the attribute presence and

absence is represented by 1 and 0 respectively. After one

scan of transaction database for transformation it generates

candidate sets and subsets similar to Apriori algorithm. The

support value of each candidate itemsets is counted by

intersection of every pair of frequent single items instead of

database scan and proved that the VFFM outperforms

Apriori.

 Compressed bit vectors of frequent itemsets based

on Boolean algebra named Vertical Boolean Mining (VBM)

has been presented in [11] and it performs the intersection of

two compressed bit vectors without making any costly

decompression operation. They proved from the experiments

that the VBM is better than Apriori and the classical vertical

association rule mining algorithms in terms of mining time

and memory usage.

 A novel VDF representation called Diffset has been

developed by the authors in [12], which keep track of the

differences in the tid's of a candidate pattern and from which

it generates frequent patterns. The method cut down the size

of memory required to store intermediate results and also

increased performance significantly.

 From the existing literatures, it is noted that no

authors have proposed a jagged array implementation of

VDF approach for enhancing the memory requirement of

VDF. Thus, this work implements VDF using the jagged

array for efficient utilization of memory.

III. JAGGED ARRAY IMPLEMENTATION OF

VERTICAL DATA FORMAT APPROACH

 Frequent patterns are itemsets [set of items, such as

milk and bread, that appear frequently together in a

transaction data set], subsequences [buying first a PC, then a

digital camera, and then a memory card, if it occurs

frequently in a shopping history database], or substructures

[subgraphs, subtrees or sublattices] that appear in a dataset

with frequency no less than a user-specified threshold

(min_sup)[7]. Finding frequent patterns plays an essential

role in mining associations, correlations and many other

interesting relationships among data. ARM is one of the data

mining techniques to discover the hidden patterns/rules

among items in a large database of variable-length

transactions that help in making decision and predictions [4].

 Apriori Algorithm, FP-Growth and Eclat [4] are the

popularly available static data mining techniques for finding

frequent patterns. Apriori is the basic algorithm for mining

frequent patterns which suffers from space complexity due to

large number of candidate generation and also requires

multiple scans of database. FP-growth uses a tree structure

for mining frequent itemsets. Due to limited number of

database scans and zero candidates, it is efficient as

compared to Apriori. Both the Apriori and FP-growth

algorithms mine frequent patterns in Horizontal Data Format

(HDF) (i.e., {TID: itemset}), where TID is a transaction-id

and itemset is the set of items in TID and it is shown in

Table I.

TABLE I. TRANSACTION DATABASE D IN HDF

TID List of item IDS

T1 A,B,E

T2 B,D

T3 B,C

T4 A,B,D

T5 A,C

T6 B,C

T7 A,C

T8 A,B,C

T9 A,B,C,E

But the data can also be presented in {item: TID-

set} format where item is an item name and TID-set is the set

of transactions containing the item called VDF. The VDF is

used in Eclat algorithm that minimizes the database scan and

uses set intersection of Tid’s for finding the support count for

k-itemsets where k=2,3,...,n. The VDF of the transaction

database D is shown in Table II. The comparisons between

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 154

the Apriori, FP-Growth and Eclat with different parameters

are shown in Table III. From Table III and in [4] it is

observed that the FP mining algorithms which use VDF are

very fast and requires less memory space when compared

with HDF approaches. But, the VDF approaches use array

storage structure for storing the database in memory.

TABLE II. VDF OF D

itemset TID_set

A T1,T4,T5,T7,T8,T9

B T1, T2, T3, T4, T6, T8,T9

C T3, T5, T6, T7, T8,T9

D T2,T4

E T1,T9

 To reduce memory space further, this research work

implements the VDF using jagged array. It is a special case

of 2-D array and it is an array of array in which the length of

each array can differ. This concept is available in JAVA,

VB.NET and C#.NET. This implementation helps to reduce

the memory needed considerably because in the real life

grocery datasets the customers will not purchase all the items

in the shop. Thus, this implementation utilizes the memory

effectively.

A. An Example

 The first part of this section shows the memory

requirement for the array implementation of VDM. Let the

grocery shop sells n (5) items viz., A, B, C, D and E and

consider the transaction database D shown in Table I. It

contains t (9) transactions and it is scanned first to generate

VDF. The VDF of Table I is shown in Table II.

TABLE III. COMPARISON BETWEEN STATIC DATA MINING TECHNIQUES FOR FINDING FREQUENT PATTERNS [5]

Comparison

Parameters
Apriori FP-Growth ECLAT

Technique
Breadth first search and Apriori

property (for pruning)
Divide and conquer

Depth first search &

intersection of T-id’s

Database Scan
scanned for each time a candidate

item set is generated
Two times Few times

Drawback(s)
1. Requires large memory space.

2. Too many candidate item set.

FP-tree is expensive to build

and consumes more memory

It requires the virtual

memory to perform the

transaction.

Advantage(s)
1. Easy to implement.

2. Use large item set property

Database is scanned two

times

1. No need to scan the

database each time

2. fast

Data format Horizontal Horizontal Vertical

Storage structure Array Tree (FP-tree) Array

Time More execution time
Execution time is less than

Apriori

Execution time is less than

Apriori

 The support count (SC) for each item is the number of

transaction-id's that it contains i.e. the SC of A,

SCA=count(A)=6. Similarly, SCB=7, SCC=6, SCD=2 and

SCE=2. Let the min_sup be 2. The frequent 1-itemset

contains {A, B, C, D, E}. The VDF is actually stored in the

memory as 2-D array, where number of rows (r) = items in

the grocery shop and number of columns(c) = t. Here r=5

and c=9. The memory required for storing 1-itemset in VDF

format is

1 11
(()) (())TM r c sizeof tid sizeof item r= × × + × (1)

 Where item11 is the first item in the frequent

1-itemset, tid is the transaction-id and sizeof is a built-in

function which says the number of bytes required for the

argument.

Here each tid requires 2 bytes and item11 requires 1 byte of

memory respectively. All items say A, B, C, D and E sold in

the grocery shop are frequent 1-itemsets. Therefore the VDF

requires (5×9×2)+(5×1) = 95 bytes of memory i.e., TM1 = 95

bytes. Suppose if there are some in-frequent items in

1-itemsets, they can be removed which saves memory

considerably. The number of bytes of memory removed from

1-itemset is computed as

(()) (())
1 1 1 11

rbytes rr c sizeof tid rr sizeof item= × × + × (2)

 Where, rr1 is the number of rows to be removed as in-

frequent. Therefore the total bytes of memory for frequent

1-itemset is

1 1 1M TM rbytes= − (3)

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 155

 Here M1 = 95 - 0 = 95 bytes. Similarly, in iteration

2, the possible 2-itemsets combinations are generated from

frequent 1-itemsets and it is {AB, AC, AD, AE, BC, BD, BE,

CD, CE, DE}. Suppose if there are n items in 1-itemset, the

possible two item combinations are (n×n-1)/2 say tc2. Among

them, the numbers of itemset combinations say x may be in-

frequent which need not be placed in VDF. Therefore, the

memory required for frequent 2-itemset shown in Table IV is

21
(() ()) (() ())2 2 2TM tc x c sizeof tid sizeof item tc x= − × × + × − (4)

 Where, item21 is the first item in the frequent

2-itemset. In this example, the combinations viz., AD,CD,CE

and DE are in-frequent and based on equation (4), the VDF

requires ((10 - 4) × 9 × 2) + (2 × (10 - 4)) = 108 + 12 = 120

bytes. Similarly from Table IV, the 3-itemset combinations

are {ABC, ABD, ABE, ACE, BCD, BCE, BDE} and the

combinations ABD, ACE, BCD, BCE and BDE are in-

frequent, therefore the frequent 3-itemset requires

((7-5)×9×2)+(7-5)×3)=42 bytes of memory and the VDF of

3-frequent itemsets is shown in Table V. The process is

repeated until no frequent itemsets are found.

TABLE IV. VDF OF 2-ITEMSETS

Itemset TID_set

AB T1,T4,T8,T9

AC T5,T7,T8,T9

AE T1,T9

BC T3,T6,T8,T9

BD T2,T4

BE T1,T9

Therefore, the total memory required for VDF using 2-D

array is

1 2

itemseti
TM M TMi

i

≠∅

∑= +
=

 (5)

 Where M1 is calculated using (3) and TMi are

calculated using the equation (6) shown below.

)((()) (() ())
1

x xTM tc c sizeof tid sizeof item tci i ii
− −= × × + × (6)

 Where, tci and x are the number of items and in-

frequent items in the candidate i-frequent itemset. For the

above example TM = 95+120+42 =257 bytes of memory. If

the same is implemented using jagged array, the memory

requirement is reduced considerably. The format of jagged

array representation for candidate 1-itemset is shown in

Table VI and all items in it are frequent which forms

frequent 1-itemset.

TABLE V. VDF OF 3-ITEMSETS

itemset TID_set

ABC T8,T9

ABE T1,T9

 TABLE VI. JAGGED ARRAY REPRESENTATION OF 1-ITEMSET

itemset TID_set

A T1 T4 T5 T7 T8 T9

B T1 T2 T3 T4 T6 T8 T9

C T3 T5 T6 T7 T8 T9

D T2 T4

E T1 T9

 The memory required for candidate 1-itemset TM1

is calculated as

() ()
1

{ }1

TM SC sizeof tid sizeof itemitem
item itemset

∑= × +

∀ ∈

 (7)

 As in two-D representation, there may be x in-

frequent items in candidate 1-itemset say {in-frequent} =

{item1, item2, …,itemx} then the memory for {in-frequent}

be saved by removing it and the amount of memory removed

is computed as shown in equation (8).

()1
{ }

()rbytes SC sizeof itemitem
item in frequent

sizeof tid∑= +

∀ ∈ −

× (8)

 Therefore the total memory required for frequent

1-itemset in jagged representation is computed using (3) with

the values computed using (7) and (8) respectively.

Similarly, the jagged array representation of frequent

2-itemset shown in Table VII requires TM2 - rbytes2 memory

space where TM2 and rbytes2 are calculated by using (9) and

(10) respectively.

() ()
2

{ }2

TM SC sizeof tid sizeof itemitem
item itemset

∑= × +

∀ ∈

 (9)

2 ()

{ }

()rbytes SC sizeof itemitem
item in frequent

sizeof tid∑= +

∀ ∈ −

× (10)

 The jagged representation of frequent 3-itemset is

shown in Table VIII which requires TM3 - rbytes3 memory.

This process continues until no more frequent itemsets are

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 156

found. For this case the candidate 4-itemset is null and the

algorithm terminates. Therefore, the total memory required

for the jagged implementation is calculated using equation

(11).

1

itemseti
TM TM rbytesi ii

≠∅

∑= −
=

 (11)

 Where, TMi and rbytesi are calculated using (12) and

(13) respectively.

 () ()
{ }

TM SC sizeof tid sizeof itemitemi
item itemseti

∑= × +

∀ ∈

 (12)

()

{ }

()
i

rbytes SC sizeof itemitem
item in frequent

sizeof tid

i

∑= +

∀ ∈ −

× (13)

TABLE VII. JAGGED ARRAY REPRESENTATION OF 2-ITEMSET

itemset TID_set

AB T1 T4 T8 T9

AC T5 T7 T8 T9

AE T1 T9

BC T3 T6 T8 T9

BD T2 T4

BE T1 T9

TABLE VIII. JAGGED ARRAY REPRESENTATION OF 3-ITEMSET

itemset TID_set

ABC T8 T9

ABE T1 T9

For this example, the jagged representation requires

TM1 = (6×2 +1)+(7×2+1)+(6×2+1)+(2×2+1)+(6×2+1)

 = 13+15+13+5+5=51 bytes

 rbytes1 = 0

 Therefore M1=51- 0 = bytes

 TM2 = (4×2+2) +(4×2+2)+(1×2+2)+ (2×2+2) +(4×2+2)

+(2×2+2) +(2×2+2) +(0×2+2) +(1×2+2)+ (0×2+2)

 =10+10+4+6+10+6+6+2+4+2=60 bytes

rbytes2 = (1×2+2)+(0×2+2)+(1×2+2)+(0×2+2)=12 bytes

Therefore M2 requires = 60 - 12 = 48 bytes of memory.

Similarly, M3 requires 14 bytes and therefore, the jagged

representation for this example requires

TM=M1+M2+M3 =51+48+14=113 bytes of memory which is

less than 50% in the original array representation.

IV. RESULTS AND DISCUSSION

From the example discussed in section 3.1, the jagged

implementation has several advantages. They are

1. No memory space is wasted as in 2-D array because

jagged array allocates space only to the transactions in

which the items occurs.

2. Minimizes the memory space required than the

original array implementation because for the above

example the array implementation requires 257 bytes

of memory, where as it is 113 bytes when using

jagged implementation i.e., it requires less than 50%

of memory when compared with the array

representation.

 Thus, it is finalized that the jagged implementation

saves memory significantly and also fast when compared

with the horizontal data format approaches.

V. CONCLUSION

 From the literatures, it is observed that there is always a

trade-off between the computational time and memory in

generating frequent itemsets. It is also found that the vertical

data format approaches reduces the database scans and finds

the support counts by intersection. Though it is best, the array

storage structure implementation used by VDF requires more

memory because it takes the assumption that each item may

fall almost in all transactions. But in real world grocery

datasets, each transaction will not contain all items and each

item may not present in all transactions. So to reduce the

memory consumption, this research work used the jagged

array representation for efficient usage of memory and from

the experiments it is proved that the proposed implementation

approach reduces more than 50% of memory when compared

with original 2-D array implementation. In future, this work

can be extended to the test real world grocery datasets of

more dimensions.

REFERENCES

[1]. Liu, Y., Liao, W. K., Choudhary, A. N., & Li, J. (2008). Parallel

Data Mining Algorithms for Association Rules and Clustering, In

Intl. Conf. on Management of Data, pp.1-25.

[2]. Kumar, G. V., Sreedevi, M., & Kumar, N. P. (2012). Mining

Regular Patterns in Data Streams Using Vertical Format.

International Journal of Computer Science and Security (IJCSS),

6(2), pp.142-149.

[3]. Ravikiran, D., & Srinivasu, S. V. N. (2016). Regular Pattern

Mining on Crime Data Set using Vertical Data Format.

International Journal of Computer Applications, 143(13).

[4]. Singla, V. (2016). A Review: Frequent Pattern Mining

Techniques in Static and Stream Data Environment. Indian

Journal of Science and Technology, 9(45), pp.1-7.

[5]. Ishita, R., & Rathod, A. (2016). Frequent Itemset Mining in Data

Mining: A Survey. International Journal of Computer

Applications, 139(9).

 International Journal of Computer Sciences and Engineering Vol.6(11), Dec 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 157

[6]. Guo, Y. M., & Wang, Z. J. (2010, March). A vertical format

algorithm for mining frequent item sets. In Advanced Computer

Control (ICACC), 2010 2nd International Conference on (Vol. 4,

pp. 11-13). IEEE.

[7]. Han, J., Kamber, M. Data Mining Concepts and Techniques,

Morgan Kaufmann Publishers, 2006.

[8]. S.Sharmila, Dr. S.Vijayarani. (2017). Frequent Itemset Mining

and Association Rule Generation using Enhanced Apriori and

Enhanced Eclat Algorithms, International Journal of Innovative

Research in Computer and Communication Engineering, 5(4),

pp. 679- 6804.

[9]. Zhiyong Ma, Juncheng Yang, Taixia Zhang and Fan Liu. (2016).

An Improved Eclat Algorithm for Mining Association Rules

Based on Increased Search Strategy, International Journal of

Database Theory and Application, 9(5), pp.251-266.

[10]. C.Ganesh, B.Sathiyabhama and T.Geetha. (2016). Fast Frequent

Pattern Mining Using Vertical Data Format for Knowledge

Discovery, International Journal of Emerging Research in

Management &Technology, 5(5), pp.141-149.

[11]. Hosny M. Ibrahim, M.H. Marghny and Noha M.A. Abdelaziz.

(2015). Fast Vertical Mining Using Boolean Algebra,

International Journal of Advanced Computer Science and

Applications, 6(1), pp.89-96.

[12]. Mohammed J. Zaki amd Karam Gouda. (2003), Fast Vertical

Mining Using Diffsets SIGKDD ’03, ACM.

Authors Profile

P.Sumathi received her B.Sc and M.Sc degrees in
Computer Science from Seethalakshmi Ramaswami

College, affiliated to Bharathidasan University,

Tiruchirappalli, India in 2001 and 2003 respectively. She
received her M.Phil degree in Computer Science in 2008

from Bharathidasan University. She is presently working as

an Assistant Professor in the Department of Computer
Science, Vysya College, Salem, India. She is currently pursuing Ph.D.,

degree in Computer Science in Bharathidasan University. Her research

interests include Data structures, Database and Data Mining techniques.

S.Murugan received his M.Sc degree in Applied

Mathematics from Anna University in 1984 and M.Phil
degree in Computer Science from Regional Engineering

College, Trichirappalli in 1994. He is an Associate

Professor in the department of Computer Science, Nehru
Memorial College (Autonomous), affiliated to
Bharathidasan University since 1986. He has 32 years of

teaching experience in the field of Computer Science. He
has completed his Ph.D., degree in Computer Science with the specialization

in Data Mining from Bharathiyar University in 2015. His research interest

includes Data and Web Mining. He has published many research articles in
the National and International journals.

A MULTITHREAD, NOVEL PATTERN
BASED ALGORITHM FOR FINDING

FREQUENT PATTERNS WITH JAGGED
ARRAY AND VERTICAL DATA

FORMAT

P.Sumathi
Research Scholar, PG & Research Department of Computer Science, Nehru Memorial College (Autonomous)

(Affiliated to Bharathidasan University), Puthanampatti-621 007, Tiruchirappalli-Dt, Tamil Nadu, India
sumiparasu@gmail.com

Dr.S.Murugan
Associate Professor, PG & Research Department of Computer Science, Nehru Memorial College (Autonomous)

(Affiliated to Bharathidasan University), Puthanampatti-621 007, Tiruchirappalli-Dt, Tamil Nadu, India
murugan_nmc@hotmail.com

 Dr.V.Umadevi
Assistant Professor, PG & Research Department of Computer Science, Nehru Memorial College (Autonomous)

(Affiliated to Bharathidasan University), Puthanampatti-621 007, Tiruchirappalli-Dt, Tamil Nadu, India
yazh1999@gmail.com

Abstract
Frequent pattern mining is essential for discovering hidden items from a database with more than a
prescribed threshold. Knowing frequent patterns helps us to determine the relationship between the
items. Many researchers narrated novel algorithms for sequential frequent itemset mining using a single
thread, but still, there is a need for time, memory efficient and scalable one. Therefore, the research study
proposed an approach for finding frequent patterns, namely TB-NPF-VDF (Thread Based, Novel Pattern
Formations with Vertical Data Format), which uses a new way of generating candidate items to minimize
the time. Also, it employs a multithread concept and runs several threads simultaneously, one for each
frequent 1-itemset to generate the remaining frequent itemsets for that item. Further, it also employs a
jagged array to store the frequent patterns to reduce the memory requirement. The research work has
been implemented and tested using four real-time datasets. Further, it has been compared with Matrix-
Apriori, VDF and NPF-VDF (without multithread), and the experimental results reveal that TB-NPF-
VDF outperforms significantly in terms of runtime and storage.

Keywords: Frequent Patterns; Jagged Array; Multithread; Novel Pattern Formation; Vertical Data
Format.

1. Introduction

Data Mining (DM) is the fastest growing field [1], whose primary goal is to discover or extract information or
patterns from large datasets. It is a multidisciplinary field comprising Computer Science and Statistics. It is an
analysis step of Knowledge Discovery from Databases (KDD) [2]. Several DM techniques are available, such as
Association Rule Mining (ARM), sequential pattern analysis, classification, and clustering. ARM is one of the
most widely used techniques for knowledge discovery in the mining domain [3]. ARM is used in several
applications such as inventory control, mobile mining, educational mining, market basket analysis, risk
management, telecommunication networks and graph mining, etc. [4]. Frequent patterns are the patterns that
occur frequently in a dataset whose frequency is more than that of a threshold value specified by the user. For
instance, a set of items viz., pen and paper appears frequently together in a transactional dataset is a frequent
itemset [1]. Mining frequent patterns is an essential sub-task of ARM [5]. It generates qualitative knowledge,
which helps the decision-makers for making valuable business insights [2].

Apriori is a classical algorithm for finding frequent patterns which uses a horizontal format approach
proposed by Agrawal and Srikant in 1993 [6] for Boolean association rules. The algorithm begins with
generating a 1-itemset, recursively produces a frequent 2-itemset, frequent 3-itemset, and so on until all frequent
itemsets are produced [4]. The main drawback of the algorithm is that it generates numerous candidate itemset,

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1353

especially for huge frequent 1-itemset and needs to scan the database many times. Many algorithms have
evolved over the years to overcome these drawbacks viz., FP-growth, Direct Hashing and Pruning (DHP),
Matrix-Apriori and maximal association rule mining, so on. In this line, this research work also introduces a
paradigm for finding frequent patterns with a multithreaded approach.

The remaining article is organized as follows. The relevant work related to the proposed work is illustrated
in Section 2. Section 3 elaborates the proposed methodology with an analogy. Section 4 discusses the results and
section 5 summarizes the conclusion.

2. Related Work

The problem of mining frequent patterns is an essential task in ARM. Several studies have been carried out in
this domain to improve the time to generate frequent itemsets and reduce the memory space over the years. This
section presents a brief overview of them, providing a strong impetus to the proposed method.

Y. M. Guo et al. [1] have initiated a VDF algorithm for mining frequent itemsets. The new algorithm only
needs a single scan of the entire database and uses AND operation for finding the frequent itemsets.
Additionally, it proved that the algorithm requires less storage and also improves the mining efficiency.
Subashini et al. [4] have studied ARM methods in horizontal and vertical data format approaches viz., Apriori,
APRIORITID, APRIORI_RARE and APRIORIRARE_TID. They analyzed the pros and cons of each
technique.

Judith Pavón et al. [7] have introduced a method called Matrix-Apriori to increase the speed of finding
frequent itemsets. It first generates a Boolean matrix MFI which holds the frequent 1-itemset by traversing the
transaction database. The vector STE stores the support count of the candidate itemset for each row in MFI. To
accelerate the search of frequent patterns, the first row of MFI writes the indexes. It used a conditional pattern
generation method for generating frequent patterns and proved that it performs better than Apriori and FP-
Growth algorithms. Sumathi, P and Murugan, S [8] have designed a memory-efficient VDF approach using a
jagged array and developed a memory usage model. They demonstrated that memory usage was reduced
significantly when compared with multidimensional arrays.

A fast GPU-based frequent itemset mining algorithm for massive datasets called GMiner has been
introduced in [9]. It has been developed to overcome the limitations of various parallelism methods viz., multi-
core CPU, multiple machines and many-core GPU, particularly the workload skewness. It extracts the patterns
from the enumeration tree and uses the computational power of GPU. From the experimentation, they showed
that the GMiner is better than the existing ones. Authors in [10] have suggested a novel algorithm, namely
Accelerating Parallel Frequent Itemset Mining on Graphics Processors with Sorting (APFMS). This parallel
frequent itemset mining utilizes GPU's to accelerate the mining process. GPUs speed-up process using the
OpenCL platform and proved that the APFMS outperforms the previous computation time-based methods.

A new multi-core based parallel mining algorithm for finding frequent itemsets has been presented in [11]
using LINQ queries. It divides the transactional database into sub-datasets known as conditional patterns. Many
threads ran concurrently on a multi-core computing system, one for each conditional pattern. They proved that
the algorithm is faster by 2x and 4x times than the fast Eclat and FP-growth algorithms, respectively. A
compressed bit matrix-based parallel algorithm for exploring frequent itemsets has been introduced by Zong-Yu
et al., which uses both bottom-up and top-down approaches for efficient pruning [12]. It also uses OpenMP's
parallel multithreaded, dynamic scheduling approach to extract frequent itemsets. Finally, they demonstrated
that this approach reduces memory space, I/O overhead with a single database scan compared to the Apriori
algorithm.

In [13], the authors have proposed a VDF approach for finding frequent itemsets using a Boolean matrix
(FPMBM), where the presence of an item for the TID's is 1 and 0 for absence. It uses logical AND operation for
finding support count from frequent 2-itemset to frequent n-itemsets until it is not empty. To control the number
of iterations for candidate generation, it also uses additional information in the Boolean matrix, namely "number
of iterations". Further, they demonstrated from the experiment that the FPMBM is efficient and more scalable
than the existing ones.

Jen, T. Y., et al. have created a novel vertical format based parallel method for finding frequent patterns
called Apriori_V with MapReduce platform. They proved that it provides a significant improvement in reducing
the number of operations and decreasing computational complexity [14]. The authors in [15] have introduced a
Parallel Regular Frequent Pattern (PRF) method to find out the regular-frequent patterns from large databases
using VDF format and proved from the experiments that the algorithm reduced the number of database scans,
I/O cost and inter-process communication.

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1354

In [16], the authors have reviewed the works related to Parallel Sequential Pattern Mining (PSPM), viz.,
partition-based, Apriori-based, pattern growth-based, and hybridized algorithms for PSPM. They also reviewed
the open-source software's utilized in PSPM. Further, they summarized the issues and uses of PSPM in big data.
In [17], the authors have proposed an FPM algorithm with a multi-core processor and Multiple Minimum
Support called MMS-FPM. It quickly generated frequent patterns. It has been designed mainly to solve rare item
problems. They have proved that the MMS-FPM is more superior to MSApriori and also scalable one. In [18],
the authors have designed a Spark-based parallel Apriori algorithm called YAFIM (Yet Another Frequent
Itemset Mining). The experimental result revealed that the proposed method is faster than the Apriori's
MapReduce implementation by 18 times.

The existing literature found that no authors proposed parallel algorithms using a multithreaded approach
with uni-processor systems. Thus, the research work focuses on a multithreaded approach with jagged array
representation for VDF and novel pattern formation in finding frequent patterns, namely TB-NPF-VDF. It also
compares the proposed work with the methods viz., Matrix-Apriori, VDF and NPF-VDF.

3. Proposed Methodology

The proposed work's main idea is to find frequent patterns for the transaction database TD. It contains four
phases. Phase one scans TD first and converts it into VDF, in which a set of TIDs represents each item as in
Eclat [19]. The second phase determines the frequent 1-itemset from VDF. The third phase sorts the frequent 1-
itemset in ascending order based on the min_sup(δ) threshold, and it is stored in a matrix using the jagged array
format. The δ of an itemset X is calculated by dividing the total transactions in which X occurs by the total
number of transactions [20]. The fourth phase creates n-1 threads, one for each frequent 1-itemset except for the
last one; where n represents the total items in frequent 1-itemset (L1). Let L1={I1, I2,…, In}, each thread
generates frequent itemsets starting from frequent 2-itemset to frequent k-itemset until it is non-empty, where k
≥ 2.

For finding frequent i-itemset, i ≥ 2, each thread (tx,1≤x≤n-1) uses the following procedure.
(1) When i=2, the thread forms the candidate patterns by combining Ix with Ix+1 and finds the transactions

in which the combination IxIx+1 occur by intersecting the transactions in Ix and Ix+1. The item
combinations whose support count ≥ δ is selected as frequent i-itemset for item x.

(2) For i>2, each item in frequent (i-1)-itemset is combined with each frequent 1-itemset starting from the
next item in the last item of frequent(i-1)-itemset and the transactions in which the combination exists
is determined by intersecting the item in frequent (i-1)-itemset and the appropriate item in frequent 1-
itemset. This procedure will be repeatedly performed as far as the frequent k-itemset is not null.

The proposed method uses multithreads and novel pattern formation with VDF to find frequent patterns is
named TB-NPF-VDF. The main benefit of this method is that it generates fewer candidate itemsets than the
classical Apriori and VDF because it avoids the items whose support count is lesser than the item at any instance
of time for generating the patterns. As threads are used, the CPU is effectively utilized, and it is faster compared
to processes. This method avoids checking the pattern for the Apriori property because the candidate patterns
generated satisfies the Apriori property by default. Further, the time required for TB-NPF-VDF is less when
compared to VDF. The memory requirement is minimized since the algorithm uses the matrix notation using a
jagged array [8].

The algorithm for the proposed method is shown below, and the workflow of TB-NPF-VDF is illustrated in
Fig.1.

TB-NPF-VDF: Algorithm to discover the frequent patterns
Input: TD - Transactional database;

δ - min_sup threshold;
Output: Frequent itemsets;
1: vdfscan TD and store it in <itemset, TIDlist> format;
2: C1Ø;
3: for each itemi in vdf do
4: SCcount(TIDlist(itemi)); //determines the number of transactions in itemi
5: C1C1.append ({itemset, TIDlist, SC})// adds a row into C1
6: endfor
7: for each itemi in C1 do
8: L1{itemi | SC(itemi) ≥ δ}

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1355

9: endfor
10: L1jagged(sort(L1)) //sorts L1 and converts it into a jagged matrix format
11: no_freq1_itemsetcount(L1) //determines the number of itemset in L1
12: for (x=1; x ≤ (no_freq1_itemset-1); x++)
13: txcreate(thread) //create tx for the L1[x]
14: endfor
15: for each thread tx do
16: for (k=2; Lk ≠ Ø; k++)
17: if k==2 then
18: new_pattern<IxIx+1>;
19: new_TID_listTransactions(Ix)∩Transactions(Ix+1);

20: else if k ≥ 2 then
21: for each itemj in Lk-1 do

22: new_itemlast item in itemj

23: new_pattern{<itemjIy>|Iynext(new_item)}

24: new_TID_listTransactions(itemj)∩Transactions(Iy);

25: endfor
26: endif

27: SCcount(new_TID_list);
28: CkCk.append({new_pattern,new_TID_list});

29: Lk{Ck | SC(Ck) ≥ δ}

30: endfor
31: endfor

Fig. 1. Workflow of TP-NPF-VDF

3.1. Example

To understand the relevance of the proposed work, the Transactional Database (TD) shown in Table 1 has
been considered. It consists of 12 items, namely A,B,C,D,E,F,G,H,I,K,M and P. The vertical representation of
TD is shown in Table 2. Each row represents an item consisting of the item name and the TID's in which the
item belongs. Assume the min_sup (δ) as 6. The candidate 1-itemset (C1) consists of all the items in TD, the
transaction IDs in which the items occurred, and the support count (SC), i.e. the total transactions in which the
item appears. The C1 for TD is shown in Table 3. Among them, the items viz., A,C,D,E,F,I,M and P satisfy the δ
and form the frequent 1-itemset(L1). The jagged array representation of the same is shown in Table 4 [21].

…

k=2 k=2

Generate
Ck-itemset

Generate
Lk-itemset

Compare SC with δ

?
Lk ≠Ø

Generate
Ck-itemset

Generate
Lk-itemset

Compare SC with δ

…

Generate
Ck-itemset

Generate
Lk-itemset

Compare SC with δ

k=2

kk+1

?
Lk ≠Ø

kk+1

?
Lk ≠Ø

kk+1

…

T1 for Item I1 T2 for Item I2 T3 for Item I3… Tn-1 for Item I n-1

Generate
candidate

1-itemset (C1)

Generate frequent
1-itemset (L1) and store it

in VDF in increasing order

1st scan

L1 ={I1,I2,I3,…,In} Create n-1 threads

Prune

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1356

TID Items Purchased
0 D,C,G,E,I,H,P,K,M
1 E,B,G,F,I,H,M,P
2 E,C,M
3 B,A,D,C,F,E,I,G,P
4 B,A,D,C,P,E
5 B,A,D,C,H,F,P
6 E,B,H,F,P,I,M
7 C,A,E,D,P,K,M
8 C,A,E,D,I,F,M,P
9 C,A,E,D,H,F,P,I,M

Table 1. Transactional Database (TD)

Item Transaction ID's (TID's)

A {3, 4, 5, 7, 8, 9}
B {1, 3, 4, 5, 6}
C {0, 2, 3, 4, 5, 7, 8, 9}
D {0, 3, 4, 5, 7, 8, 9}
E {0, 1, 2, 3, 4, 6, 7, 8, 9}
F {1, 3, 5, 6, 8, 9}
G {0, 1, 3}
H {0, 1, 5, 6, 9}
I {0, 1, 3, 6, 8, 9}
K {0, 7}
M {0, 1, 2, 6, 7, 8, 9}
P {0, 1, 3, 4, 5, 6, 7, 8, 9}

Table 2. Transactional Database in VDF

C1
Itemset TID's SC

A {3, 4, 5, 7, 8, 9} 6
B {1, 3, 4, 5, 6} 5
C {0, 2, 3, 4, 5, 7, 8, 9} 8
D {0, 3, 4, 5, 7, 8, 9} 7
E {0, 1, 2, 3, 4, 6, 7, 8, 9} 9
F {1, 3, 5, 6, 8, 9} 6
G {0, 1, 3} 3
H {0, 1, 5, 6, 9} 5
I {0, 1, 3, 6, 8, 9} 6
K {0, 7} 2
M {0, 1, 2, 6, 7, 8, 9} 7
P {0, 1, 3, 4, 5, 6, 7, 8, 9} 9

Table 3. Candidate 1-Itemset

L1
1-Itemset TID's

A 3 4 5 7 8 9
C 0 2 3 4 5 7 8 9
D 0 3 4 5 7 8 9
E 0 1 2 3 4 6 7 8 9
F 1 3 5 6 8 9
I 0 1 3 6 8 9

M 0 1 2 6 7 8 9
P 0 1 3 4 5 6 7 8 9

Table 4. Jagged Array Representation of L1

To generate fewer candidate itemsets, this research work uses a novel pattern generation method rather than
the natural join used in the Apriori algorithm. For that, the L1 is sorted in ascending order based on SC and
replaced with L1 as illustrated in Table 5.

The sorted L1 contains 8 items, and this work creates 7 threads because the frequent 1-itemset contains 8
items. Thread-1 is for the item <A>, Thread-2 is for item , etc. The Thread-1 first generates the following
patterns.

<AF>, <AI>, <AD>, <AM>, <AC>, <AE> and <AP> and for each pattern, set intersection is calculated by
using the TID's in each item of the pattern. For example, for the pattern <AF> the set intersection is calculated
as {3, 4, 5, 7, 8, 9} ∩ {1, 3, 5, 6, 8, 9} = {3, 5, 8, 9} and SC=4.

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1357

L1

1- Itemset TID's

A 3 4 5 7 8 9
F 1 3 5 6 8 9
I 0 1 3 6 8 9
D 0 3 4 5 7 8 9
M 0 1 2 6 7 8 9
C 0 2 3 4 5 7 8 9
E 0 1 2 3 4 6 7 8 9
P 0 1 3 4 5 6 7 8 9

Table 5. Sorted L1

Similarly, the SC for other patterns viz., <AI>, <AD>, <AM>, <AC>, <AE> and <AP> is calculated as
stated above. The patterns whose SC ≥ δ will be considered as the frequent 2-itemset for the item <A> and are
represented in Table 6. For this case, the patterns <AD>, <AC> and <AP> satisfies the δ.

Item TID's

<AD> 3 4 5 7 8 9
<AC> 3 4 5 7 8 9
<AP> 3 4 5 7 8 9

Table 6. Frequent 2-Itemset for <A> by Thread-1

Next, the method generates the candidate 3-itemsets for each frequent 2-itemset in Table 6 as follows.
(1) For the frequent 2-item <AD>, the items viz., <M>, <C>, <E> and <P> are considered from frequent 1-

itemset because <M> is the next item after <D> where, <D> is the last item in frequent 2-itemset
<AD>. The patterns generated are <ADM>, <ADC>, <ADE> and <ADP> and for them, the
transactions in which the pattern occurs and SC is calculated as follows.
From Table 6, the TID's of <AD> is {3, 4, 5, 7, 8, 9} and from Table 5 the TID's of <M> is {0, 1, 2, 6,
7, 8, 9}. Therefore, {3, 4, 5, 7, 8, 9} ∩ {0, 1, 2, 6, 7, 8, 9} = {7, 8,T} and SC=3. Similarly, for <ADC>,
<ADE> and <ADP> is also calculated.

(2) For the frequent 2-item <AC>, the items from <E> i.e. <E> and <P> are considered. The patterns
generated are <ACE> and <ACP> and SC is calculated as above.

(3) For the frequent 2-item <AP>, there is no candidate 3-itemset because there is no next item after <P>.

The candidate 3-itemset generated by Thread-1 are <ADM>, <ADC>, <ADE>, <ADP>, <ACE> and
<ACP>. Among them the patterns viz., <ADC>, <ADP> and <ACP> satisfies δ forms frequent 3-itemset and
represented by Table 7.

Itemset TID's

<ADC> 3 4 5 7 8 9
<ADP> 3 4 5 7 8 9
<ACP> 3 4 5 7 8 9

Table 7. Frequent 3-Itemsets for <A> By Thread-1

The frequent 3-itemset for <A> is not empty, so the method generates the candidate 4-itemset. They are
<ADCE> and <ADCP>. The TID's for <ADCE> is calculated as {3, 4, 5, 7, 8, 9} ∩ {0, 1, 2, 3, 4, 6, 7, 8, 9}={3,
4, 7, 8, 9} and SC of <ADCP> is 5. Similarly, for <ADCP>, the TID's are {3, 4, 5, 7, 8, 9}∩{0, 1, 3, 4, 5, 6, 7,
8, 9} = {3, 4, 5, 7, 8, 9}. The SC of <ADCP> is 6 and it is illustrated in Table 8.

Itemset TID's

<ADCP> 3 4 5 7 8 9

Table 8. Frequent 4-Itemsets for <A> by Thread-1

Now, candidate 5-itemset for the item <A> is Ø. So Thread-1 stops its execution and returns <AD>, <AC>,
<AP>, <ADC>, <ADP>, <ACP> and <ADCP> as frequent items for <A>. Similarly, the other threads generate
frequent itemsets for other frequent 1-itemset in parallel as shown from Table 9 to Table 19.

Itemset TID's

<FP> 1 3 5 6 8 9

Table 9. Frequent 2-Itemset for <F> by Thread-2

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1358

Itemset TID's
<IE> 0 1 3 6 8 9
<IP> 0 1 3 6 8 9

Table 10. Frequent 2-Itemset for <I> by Thread-3

Itemset TID's

<IEP> 0 1 3 6 8 9

Table 11.frequent 3-Itemset for <I> by Thread-3

Itemset TID's

<DC> 0 3 4 5 7 8 9
<DE> 0 3 4 7 8 9
<DP> 0 3 4 5 7 8 9

Table 12. Frequent 2-Itemset for <D> by Thread-4

Itemset TID's

<DCE> 0 3 4 7 8 9
<DCP> 0 3 4 5 7 8 9
<DEP> 0 3 4 7 8 9

Table 13. Frequent 3-Itemset for <D> by Thread-4

Itemset TID's

<DCEP> 0 3 4 7 8 9

Table 14. Frequent 4-Itemset for <D> by Thread-4

Itemset TID's

<ME> 0 1 2 6 7 8 9
<MP> 0 1 6 7 8 9

Table 15. Frequent 2-Iemset for <M> By Thread-5

Itemset TID's

<MEP> 0 1 6 7 8 9

Table 16. Frequent 3-Itemset for <M> by Thread-5

Itemset TID's

<CE> 0 2 3 4 7 8 9
<CP> 0 3 4 5 7 8 9

Table 17. Frequent 2-Itemset for <C> by Thread-6

Itemset TID's

<CEP> 0 3 4 7 8 9

Table 18. Frequent 3-Itemset for <C> by Thread-6

Itemset TID's
<EP> 0 1 3 4 6 7 8 9

Table 19. Frequent 2-Itemset for <E> by Thread-7

Table 20 depicts the candidate and frequent items, the total number of candidates and frequent items
generated by the TB-NPF-VDF for the given TD. The total number of candidate items generated using TB-NPF-
VDF is 56, and it is less when compared to VDF.

Itemset Candidate Items Total# Frequent Items Total$
1-itemset {A,B,C, D, E, F,G, H, I, K, M,P,M} 13 {A,C,D,E,F, I,M, P} 8

2-itemset {AF,AI,AD,AM,AC,AE,AP,FI,FD,FM,FC,FE,FP,ID,I
M, IC,IE,IP,DM,DC,DE,DP,MC,ME,MP,CE,CP,EP}

28 {AD,AC,AP,FP,IE,IP,DC,DE,DP,
ME,MP,CE,CP,EP}

14

3-itemset {ADM,ADC,ADE,ADP,ACE,ACP,IEP,DCE,DCP,DEP
, MEP, CEP}

12 {ADC, ADP, ACP, IEP,DCE, DCP,
DEP,MEP, CEP}

9

4-itemset {ADCE, ADCP,DCEP} 3 {ADCP, DCEP} 2

Total 56 33
 #Number of candidate items $Number of frequent items

Table 20. Details of Itemsets for TD

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1359

4. Experimental Results and Discussion

The algorithms viz., Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF were implemented using the Python
programming language (version 3.8.2). To estimate the performance of TB-NPF-VDF, the research work used
four real-time datasets downloaded from the FIMI repository and an open-source Data Mining Library. Table 21
describes the characteristics of datasets. The purpose of using these datasets is that they have been used as a
reference by researchers primarily for FPM and ARM-based research. To do a uniform and fair comparison, the
experiments for all the datasets of all algorithms were conducted using the same software and hardware
configurations. The experiments were performed using 8.00GB RAM, Intel Core i7 with 2.40GHz 64-bit
processor and Windows 8.1. All algorithms' runtime performance (Matrix-Apriori [7], VDF, NPF-VDF,
TB-NPF-VDF) for the four datasets with different min_sup percentages ranging from 20% to 70% were
tabulated in Table 22.

Datasets Transaction count Item count Average item count/transaction
chess 3196 75 37.00

mushrooms 8416 119 23.00
T25i10d10k 9976 929 24.77

c20d10k 10000 192 20.00

Table 21. Characteristics of Datasets

min_sup (%)
Runtime (in Sec.)

Matrix -Apriori VDF NPF-VDF TB-NPF-VDF
chess

20 20.7578 16.8578 13.3578 6.5267
30 19.6365 16.0452 12.1455 5.0325
40 17.7750 14.0750 10.0720 4.5635
50 16.3028 13.3017 9.0017 3.2634
60 15.3625 12.7943 8.2934 2.4571
70 14.8546 11.9825 7.4822 2.0012

mushroom

20 23.2135 21.1215 18.0016 12.1024
30 21.3426 20.0462 17.0642 11.5642
40 20.0035 19.7083 14.1038 10.7869
50 19.2002 18.2058 13.2044 10.0063
60 18.0805 17.7898 12.7240 8.5698
70 17.5652 15.9575 11.4530 7.9586

t25i10d10k

20 25.2145 23.3254 20.3325 15.1267
30 23.9625 21.4578 19.4258 13.9568
40 21.5467 20.0025 17.9857 12.0127
50 20.3859 18.7621 16.2456 11.6321
60 19.5321 18.0056 15.0012 10.5212
70 18.4521 16.0527 13.7564 9.2451

c20d10k

20 26.0014 24.4253 22.8342 17.7586
30 24.9532 22.6752 21.5062 15.9802
40 22.4251 21.9546 20.0412 13.7542
50 21.5621 19.4316 18.8562 11.9892
60 20.1425 19.0012 17.0124 11.0016
70 19.1478 17.5242 15.9351 10.0142

Table 22. Performance Results

Figures 2 to 5 show the graphical representation of the runtime comparison between the algorithms viz.,
Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for the datasets, namely chess, mushroom, t25i10d10k and
c20d10k, respectively. From Table 22 and from figures 2 to 5, it was observed that the runtime performance of
TB-NPF-VDF outperforms than Matrix-Apriori, VDF and NPF-VDF. On an average, the runtime performance
is improved from 20.3092 to 9.9094.

Further, to prove statistically, a Welch two-sample t-test is being performed between the runtimes of Matrix-
Apriori and TB-NPF-VDF. The test was done to determine whether the mean runtimes of Matrix-Apriori and
TB-NPF-VDF are equal to each other or not. The null hypothesis is taken as that the two mean runtimes are
equal, and the alternative is that they are not equal. The test is performed using the R tool for each dataset, and
the results are tabulated in Table 23.

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1360

Fig. 2. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for chess dataset

Fig. 3. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for mushroom dataset

Fig. 4. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for t25i10d10k dataset

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1361

Fig. 5. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for c20d10k dataset

Dataset p-value
chess 1.207×10-06
mushroom 6.785 ×10-06
t25i10d10k 5.611×10-05
c20d10k 0.0002914

Table 23. Results of t-Test

From the observation of t-test results, it is noted that for all datasets, the p-value is ≤ 0.05 (5%) which

concluded that the two means are not equal, which means that there are significant differences between the
runtimes. Therefore, the proposed method TB-NPF-VDF is more efficient in terms of runtime than the others.

The reason for enhancing the performance is that the concurrent execution of the tasks using a multithreaded
approach speeds applications up and reduced the time required for execution by utilizing the CPU effectively.
With novel pattern generation, the set of candidate elements generated is less than the existing ones. Further, it
scans the database only once during the entire process.

5. Conclusion

Many FPM algorithms were introduced in the field of data mining. Each algorithm has its own merits and
demerits and is unsuited for all real-life situations. A new approach called TB-NPF-VDF has been introduced in
this research article to discover the frequent patterns that efficiently combine the power of VDF, NPF, and
multithread concepts. Experiments were carried out on real-time datasets using python implementation for the
existing and proposed methods. TB-NPF-VDF has been proven to be superior to other sequential approaches
through memory usage and run time. The main advantage is that it discovers frequent patterns with less time and
saves memory with jagged array representation for the VDF matrix. In future, the work can be improved by
applying new and efficient optimization techniques.

References

[1] Guo, Y. M.; Wang, Z. J. (2010): A vertical format algorithm for mining frequent item sets. Proceedings of 2nd International
Conference on Advanced Computer Control (IEEE Xplore), 4, pp. 11-13.

[2] Han, J.; Kamber, M.; Pei, J. (2011): Data mining concepts and techniques, 3rd edn. Morgan Kaufmann.
[3] Aqra, I.; Herawan, T.; Ghani, N. A.; Akhunzada, A.; Ali, A.; Razali, R. B.; Choo, K. K. R. (2018): A novel association rule mining

approach using TID intermediate itemset. PloS one, 13(1), pp. 01-32.
[4] Subhashini, A.; Karthikeyan, M. (2019): Itemset Mining using Horizontal and Vertical Data Format, International Journal for

Research in Engineering Application & Management. 5(3) pp. 534-539.
[5] Gawwad, M. A.; Ahmed, M. F.; Fayek, M. B. (2017): Frequent itemset mining for big data using greatest common divisor technique.

Data Science Journal, 16(25), pp. 1-10.
[6] Usha, D.; Rameshkumar, K. (2014): A Complete Survey on application of Frequent Pattern Mining and Association Rule Mining on

Crime Pattern Mining. International Journal of Advances in Computer Science and Technology, 3(4), pp. 264-275.
[7] Pavón, J.; Viana, S.; Gómez, S. (2006): Matrix Apriori: Speeding up the Search for Frequent Patterns. Databases and Applications,

pp. 75-82.
[8] Sumathi, P.; Murugan, S. (2018): A Memory Efficient Implementation of Frequent Itemset Mining with Vertical Data Format

Approach. International Journal of Computer Sciences and Engineering, 6(11), pp. 152-157.
[9] Chon, K.W.; Hwang, S. H.; Kim, M. S. (2018): GMiner: A fast GPU-based frequent itemset mining method for large-scale

data. Information Sciences, 439, pp. 19-38.

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1362

[10] Huang, Y. S.; Yu, K. M.; Zhou, L. W.; Hsu, C. H.; Liu, S. H. (2013): Accelerating parallel frequent itemset mining on graphics
processors with sorting. Proceedings of IFIP International Conference on Network and Parallel Computing, pp. 245-256.

[11] Huang, C. H.; Leu, Y. (2015): A LINQ-based conditional pattern collection algorithm for parallel frequent itemset mining on a multi-
core computer. Proceedings of ASE BigData & Social Informatics, pp. 1-6.

[12] Zong-Yu, Z.; Ya-Ping, Z. (2012): A parallel algorithm of frequent itemsets mining based on bit matrix. Proceedings of IEEE
International Conference on Industrial Control and Electronics Engineering, pp. 1210-1213.

[13] Tanna, P.; Ghodasara, Y. (2015): Analytical Study and Newer Approach towards Frequent Pattern Mining using Boolean Matrix.
IOSR Journal of Computer Engineering, 17(3), pp. 105-109.

[14] Jen, T. Y.; Marinica, C.; Ghariani, A. (2016): Mining frequent itemsets with vertical data layout in MapReduce. Proceedings of
International Workshop on Information Search, pp. 66-82.

[15] Vijay Kumar, G.; Valli Kumari, V. (2013): Parallel Regular-Frequent Pattern Mining in Large Databases. International Journal of
Scientific & Engineering Research, 4(6).

[16] Gan, W.; Lin, J. C. W.; Fournier-Viger, P.; Chao, H. C.; Yu, P. S. (2019): A survey of parallel sequential pattern mining. ACM
Transactions on Knowledge Discovery from Data (TKDD), 13(3), pp. 1-34.

[17] Huynh, B.; Trinh, C.; Dang, V.; Vo, B. (2019): A parallel method for mining frequent patterns with multiple minimum support
thresholds, International Journal of Innovative Computing. Information and Control, 15(2), pp. 479-488.

[18] Qiu, H.; Gu, R.; Yuan, C.; Huang, Y. (2014): YAFIM: a parallel frequent itemset mining algorithm with spark. Proceedings of IEEE
International Parallel & Distributed Processing Symposium Workshops, pp. 1664-1671.

[19] Shruti, I.; Abhay, K. (2018): Parallel Eclat with Large Data Base Parallel Algorithm and Improve its Effectiveness. International
Journal of Engineering Trends and Technology, 60(3), pp. 180-183.

[20] D. Kalpana, Data Mining Apriori Algorithm Implementation Using R, International Research journal of Engineering and Technology.
4(11), pp. 1810- 1815.

[21] Sumathi, P.; Murugan, S. (2021): GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array. International Journal of Modern Education and Computer Science (IJMECS), 13(4), pp. 28-41.

Authors Profile

P.Sumathi received her B.Sc and M.Sc degrees in Computer Science from Seethalakshmi
Ramaswami College (affiliated to Bharathidasan University), Tiruchirappalli, India in 2001 and
2003 respectively. She received her M.Phil degree in Computer Science in 2008 from Bharathidasan
University. She is presently working as an Assistant Professor in the Department of Computer
Science, Vysya College, Salem. She is currently pursuing Ph.D, a degree in Computer Science in
Bharathidasan University. Her research interests include Data Mining, Data structures and Database
concepts.

S.Murugan received his M.Sc degree in Applied Mathematics from Anna University in 1984 and
M.Phil degree in Computer Science from Regional Engineering College, Tiruchirappalli in 1994.
He is an Associate Professor in the Department of Computer Science, Nehru Memorial College
(Autonomous), affiliated to Bharathidasan University since 1986. He has 32 years of teaching
experience in the field of Computer Science. He has completed his Ph.D degree in Computer
Science with a specialization in Data Mining from Bharathiyar University in 2015. His research
interest includes Data and Web Mining. He has published more than 25 research articles in reputed
National and International journals.

 V.Umadevi obtained her M.Sc degree in Computer Science & Information Technology and M.Phil
degree in Computer Science from Madurai Kamaraj University. She has completed her Ph.D degree
in Computer Science from CMJ University. Besides, she has received M.Tech and MBA degrees.
She has 15 years of teaching experience in Computer Science. Her area of teaching and research
interests include Management Information Systems, Project Management and Wireless Sensor
Networks. She has published 28 research papers in National and International journals and authored
three books. Also produced one Ph.D candidate. She has received National Award for "South
Indian Achiever" in March 2020 and a "Lifetime Achiever" award from International Lions Club in
March 2021. She has published a patent entitled "AI abetted material synthesising for hybrid metal
rubber composite and 3D Printing" in August 2021.

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1363

I.J. Modern Education and Computer Science, 2021, 4, 28-41
Published Online August 2021 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2021.04.03

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

GNVDF: A GPU-accelerated Novel Algorithm

for Finding Frequent Patterns Using Vertical Data

Format Approach and Jagged Array

P. Sumathi
Research Scholar, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchirappalli-Dt,

Tamil Nadu, India - 621 007

Email:sumiparasu@gmail.com

S.Murugan
Associate Professor, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchirappalli-

Dt, Tamil Nadu, India - 621 007

Email:murugan_nmc@hotmail.com

Received: 01 June 2021; Accepted: 24 July 2021; Published: 08 August 2021

Abstract: In the modern digital world, online shopping becomes essential in human lives. Online shopping stores like

Amazon show up the "Frequently Bought Together" for their customers in their portal to increase sales. Discovering

frequent patterns is a fundamental task in Data Mining that find the frequently bought items together. Many

transactional data were collected every day, and finding frequent itemsets from the massive datasets using the classical

algorithms requires more processing time and I/O cost. A GPU accelerated Novel algorithm for finding the frequent

patterns using Vertical Data Format (GNVDF) has been introduced in this research article. It uses a novel pattern

formation. In this, the candidate i-itemsets is divided into two buckets viz., Bucket-1 and Bucket-2. Bucket-1 contain all

the possible items to form candidate-(i+1) itemsets. Bucket-2 has the items that cannot include in the candidate-(i+1)

itemsets. It compactly employs a jagged array to minimize the memory requirement and remove common transactions

among the frequent 1-itemsets. It also utilizes a vertical representation of data for efficiently extracting the frequent

itemsets by scanning the database only once. Further, it is GPU-accelerated for speeding up the execution of the

algorithm. The proposed algorithm was implemented with and without GPU usage and compared. The comparison

result revealed that GNVDF with GPU acceleration is faster by 90 to 135 times than the method without GPU.

Index Terms: Frequent Patterns, GNVDF, Graphical Processing Unit, Novel Pattern Formation, Vertical Data Format,

and Jagged Array.

1. Introduction

Data Mining (DM) is a part of Knowledge Discovery in Databases (KDD) [1] and explores the hidden patterns for

business people. It is associated with many fields such as database systems, data warehousing, statistics, machine

learning, information retrieval, and high-level computing [2,3]. It is also supported by other sciences like neural

networks, pattern recognition, spatial data analysis, image databases and signal processing [2,3]. There are several

techniques in data mining like classification, clustering, association rule mining and regression [4]. Frequent Pattern

Mining (FPM) is a computationally crucial step in data mining [5]. It is used to determine the frequent patterns and

associations from databases such as relational and transactional databases and other data repositories. The Apriori is one

of the most important algorithms for finding frequent itemsets. It has many problems such as more database scan and

I/O cost, a large amount of time etc., for finding frequent itemsets. So the researchers have made several refinements to

Apriori in the last two decades.

However, enhancing speed and reducing memory requirements are the essential parameters while determining the

frequent patterns nowadays because of the rise of big data in various domains and sources in human endeavour. Also,

when the transactional database size increases, demand for storage is increased and requires high-speed algorithms to

find frequent patterns. But with a single-threaded approach, it's tough to minimize time. The GPU accelerated

computing employs GPUs along with CPUs. It enables superior performance by supporting a parallel programming

paradigm with multiple cores. It saves time and cost in scientific and other high computing tasks [6]. So, researchers

 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 29

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

were utilized GPUs in FPM based research. Some research works based on GPUs that motivate this article's proposed

work were discussed here.
W. Fang et al. [7] have introduced two implementations for Apriori using GPUs with Single Instruction, Multiple

Data (SIMD) architectures. Both methods use a bitmap data structure. They executed the first one on the GPU, avoiding

the intermediate data transfer between the GPU and CPU memory. The second one uses both the CPU and GPU for

processing with trie structure. They proved that both implementations speed up the processing than the classical Apriori

algorithm. S. M. Fakhrahmad et al. [8] have developed different parallel versions of a novel sequential mining

algorithm for finding frequent itemsets. The methods are i) assigning each partition to a processor, ii) assigning each

column to a processor, and iii) devoting the kth processor to mine the kth-itemsets. These methods were compared

experimentally using time complexity, communication rate, and load balancing and proved that the proposed methods

outperformed the existing sequential algorithms.

The authors J. Zhou et al. have designed [9] a GPU-based Apriori algorithm with OpenGL to accelerate association

rules mining. The experiment proved that the proposed algorithm provides better performance than the classical

algorithms. A new pattern-based algorithm called HSApriori has been suggested by D. William Albert et al. [10], and it

is based on the parallel processing nature of GPU. In this, the proposed method was tested using both the tidset and

bitset representation of the dataset and found that the bitset is more appropriate for parallel processing. Further, they

proved from the experiment that the speed of HSApriori is substantially more when compared with traditional

HorgeltAprirori.

To solve the limitations of Apriori, a parallel Apriori Map Reduce model has been presented by M. Tiwary et al.

[11] using high-performance GPU. They have attached a GPU with every node in a Hadoop cluster. Also, they have

used NVIDIA's GPU and JCUDA and JNI for the integration process. From the experiments, it has been proved that it

provides better performance in terms of execution time. The downside of the algorithm is that the extra hardware charge

is associated with the GPUs in each node in the Hadoop cluster. To overcome the drawbacks in the traditional cluster-

based map-reduce, J. Li et al. [12] have designed a multi-GPU based parallel Apriori algorithm to accelerate the

calculation process of Apriori. It has been initiated especially to mine association rules in medical data. The analytical

results have proved that the proposed method significantly improves the execution speed with a lower cost for medical

data.

A novel method called CGMM to suit both sparse and dense datasets has been proposed to mine frequent patterns

has been introduced by L. Vu et al. [13]. To increase the speed of the FPM process, it combines both the CPU and GPU.

In this method, the CPU uses the FP-tree data structure to perform mining, and the GPU converts the data to bit vectors.

The experiments with AMD CPUs and NVIDIA GPU have proved that the performance evaluation of CGMM is faster

than the existing sequential FPM and GPApriori. Y. Li et al. [14] have developed a GPU-based algorithm called Multi-

level Vertical Closed FIM. In this, a multi-layer vertical data structure has been used to minimize the usage of storage.

The implementation is being accelerated with GPU to achieve high-speed computation, mainly on large and sparse

datasets.

K.W. Chon et al. [15] have proposed a novel algorithm called GMiner. It is a GPU-based method for finding

frequent itemsets on large-scale datasets. It determines the patterns from the first level of the enumeration tree rather

than storing and utilizing the patterns at the intermediate levels of the tree. With the computational power of GPUs, the

method achieved fast performance and outperformed significantly than the existing sequential and parallel methods.

The method also eliminates the skewness problem that the parallel algorithms suffer. A Dynamic Queue and Deep

Parallel (D2P) Apriori algorithm was generated by Y. Wang et al. in [16]. In this, the candidate generation process has

been parallelized by using the Graph-join and dynamic bitmap queue. It also uses a vertical bitmap structure with low-

latency memory on GPU. The experiments have explored that the D2P-Apriori obtained high-speed up, i.e. a 23×speed

up ratio compared to the modern CPU methods.

The authors Y. Djenouri et al. [17] have created three High-Performance Computing (HPC)-based versions of

Single Scan (SS) for frequent itemset mining viz., GSS, CSS, and CGSS. The GSS, CSS, and CGSS implement SS with

GPU, cluster architecture, and GPU with multiple cluster nodes. They have also presented three approaches to reduce

cluster load balancing and GPU thread divergence. The experiments have proved that the CGSS performs best in speed

than SS, GSS and CSS.

The authors P.Sumathi et al. [18] have developed a memory-efficient implementation for a vertical data format

approach in finding frequent patterns using jagged array matrix representation. They have formulated mathematical

equations for memory requirements and proved that it reduces the memory requirement than the traditional

multidimensional array.

The numerous GPU based FPM algorithms found in the literature have their own merits. But they have some

performance, data size and scalability issues [19], which provides a more vital lead to the proposed work. The research

article has introduced GNVDF, a novel GPU-accelerated FPM algorithm. It uses a novel pattern generation method to

avoid generating many candidate itemsets as classical algorithms and uses a compact jagged array structure to minimize

storage space [18]. Further, it uses the VDF format of transactional data to reduce the number of disk accesses.

The remaining paper is organized as follows. Section 2 presents the basic terminologies and definitions, vertical

data format, jagged array, and GPU. The description of the proposed methodology with an illustration is presented in

30 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

section 3. Section 4 illustrates the experimental results and discussion. Finally, the research article ends with a

conclusion in section 5.

2. Basic Concepts

Finding frequent itemsets is essential in mining associations, correlations, and many other relationships among the

data. It is used in data classification, clustering, and other data mining tasks. Thus, FPM is focused on data mining

research, and this section briefs the fundamental concepts associated with FPM and the study.

A. Basic Terminology

An itemset (set of items) that contains k items is said to be a k-itemset. The set of laptop, printer is a 2-itemset.

Frequent patterns are the patterns (itemsets, subsequences, or substructures) that frequently appear in a dataset [2,20].

The support count of the itemset is identified by the number of transactions that contain the itemset. A sequence is an

ordered list of itemsets, i.e. set of items purchased together. A subsequence is a sequence of items bought together and

frequently occurs in a transactional database known as a sequential pattern. A substructure can be represented in

different structural forms, such as subgraphs, subtrees, or sublattices, which may be combined with itemsets or

subsequences [2].

B. Basic Definitions

Let I={I1, I2,…, Im} be an itemset, and D is a transaction database contains a set of transactions T is a non-empty

itemset such that T ⊆ I and each transaction T is associated with a unique identifier TID. Let A be a set of items.

A transaction T is said to contain in A if A ⊆ T. The format of the association rule is AB, where A⊂I, B⊂I, A ≠ Ø,

B≠Ø, and A∩B=Ø [21]. Associations rule AB that holds in the transaction database D with support (s) and

confidence(c) [1].

Support(s): The support of an association rule AB is defined as the percentage of records that contain A ∪ B to

the total number of records in the database [22]. It is noted that the support count is increased when an item present in

numerous transactions in the database D [22].

Confidence: The confidence of a rule A  B is defined as s(AB)/s(A). It is the ratio of the number of

transactions that contain all items in the consequent (B), as well as the antecedent (A) to the number of transactions that

include all items in the antecedent (A) [23].

The minimum support threshold is used to discover the frequent itemsets from the databases. In contrast, the

minimum confidence constraint is applied to those frequent itemsets found previously in determining the best rules.

C. Vertical Data Format

The databases can be represented in FPM algorithms in two data formats. They are i) Horizontal Data Format

(HDF) and ii) Vertical Data Format (VDF). HDF represents the items categorized into particular transactions as stored

in the database. i.e. it is denoted as <TID, Itemset>, where TID is the transaction ID, and Itemset refers to the items

purchased by the customer corresponding to TID. The VDF represents data as transactions categorized into particular

items that mean the TIDs are grouped for each item, i.e. VDF is described by <Item, Tid_set>, where item denotes an

item in the shop and Tid_set contains the TID's where the item occurs. Fig.1. and Fig.2. show the HDF and VDF of D.

Fig.1. HDF of Transaction Database D

D. Jagged Array

A jagged array data structure is an array whose elements are arrays known as "array of arrays" with varying

columns in each array/row, and it is shown in Fig.3.

TID Itemset

 0: {c,d,e,g,h,i,k,p,m}

 1: {b,e,f,g,h,i,p,m}

 2: {c,e,m}

 3: {a,b,c,d,e,f,g,i,p}

 4: {a,b,c,d,e,p}

 5: {a,b,c,d,f,h,p}

 6: {b,e,f,h,i,p,m}

 7: {a,c,d,e,k,p,m}

 8: {a,c,d,e,f,i,p,m}

 9: {a,c,d,e,f,h,i,p,m}

 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 31

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

E. Graphical Processing Unit

It is a device specifically designed for graphics processing. It is widely used in large scale hashing and matrix

computations because it supports parallelism and serves as the base for mining and machine learning. CUDA and

OpenCL are two popular GPGPU programming framework tools. NVIDIA has designed a parallel computing platform

and programming called Compute Unified Device Architecture (CUDA) [12,24]. The CUDA-based program can only

be run on the NVIDIA-produced GPU. A typical CPU may contain four or eight cores; an NVIDIA GPU consists of

thousands of CUDA cores and a pipeline that supports parallel processing on thousands of threads, increasing the speed

significantly.

With Numba, the python developer can quickly enter into GPU-accelerated computing. It makes use of both GPU

and CPU to facilitate processing-intensive operations viz., deep learning, analytics, and engineering applications.

The CUDA Python and Numba help to enhance the speed by targeting both CPUs and NVIDIA GPUs. With this

advantage of CUDA python and Numba, the implementation of this proposed work will be GPU accelerated.

Fig.2. VDF of Transaction Database D

Fig.3. Jagged array representation

3. Proposed Methodology

The main objective of the proposed work is to find the essential frequent itemsets from the transaction database

with less memory space and time by ignoring the least probable ones. The method used Jagged array storage structure

[16] and GPU to minimize memory usage and execution time. The proposed method first removes the null/void

transactions in the dataset. Null/void transactions are those which contain only one item. Then the dataset is scanned

once and converted into VDF format. The support count (SC) for each item is calculated by counting the number of

transactions that contain each item. Now the candidate 1-itemset C1 is formed. Next, the frequent 1-itemset is formed by

removing the items whose SC˂min_sup(δ) and stored it in Jagged array representation [18] in sorted order based on SC.

From L1 the common transactions among all items are determined either by intersecting or ANDing the transaction in

each item, and it is preserved in the Common Transaction List (CTID_list). The transactions in CTID_list's are removed from

each item in L1, forming the final frequent 1-itemset. The SC for each item in L1 is updated by SC - n, where n is the

number of transactions in CTID_list. Next, the new min_sup (δnew) is determined as δnew = δ - n, and it will be the min_sup

from the 2nd iteration onwards.

.

.

.

arr

.

.

.

arr[n]

arr[1]

arr[0] Element-1 Element-2 Element-n …

Element-1 Element-2 Element-n …

Element-1 Element-2 Element-n …

Item Tid_set

a: {3,4,5,7,8,9}

b: {1,3,4,5,6}

c: {0,2,3,4,5,7,8,9}

d: {0,3,4,5,7,8,9}

f: {1,3,5,6,8,9}

g: {0,1,3}

h: {0,1,5,6,9}

i: {0,1,3,6,8,9}

k: {0,7}

m: {0,1,2,6,7,8,9}

p: {0,1,3,4,5,6,7,8,9}

32 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

Before finding the frequent 2-itemset, the final frequent 1-itemset is divided into two logical buckets, LB1 and LB2,

respectively. LB1 contains all the items whose SC = δnew, and the rest will be placed LB2. The itemset combinations

among the items in LB1 are least probable of being a candidate 2-itemset because the SC of each item is equal to δnew. So

it is not considered for generating candidate 2-itemset. The candidate 2-itemsets patterns are generated by combining

each item Ix in LB1 with each item Iy in LB2 and each item Iz in LB2 with Iz+1 in LB2 until the last item in LB2. The itemset

combination that ends with the last item in LB2 will be placed in C2_2 and the rest in C2_1. From C2_1 and C2_2, the

items whose SC below the δnew is removed as infrequent and formed L2_1 and L2_2.

For generating candidate 3-itemset, each itemset Ix in L2_1 is combined with the next item Iy in LB2 after the last

item in Ix. Similar to the previous iteration, the combinations that end with the last item in LB2 are placed in C3_2 and

rest in C3_1. It is noted that the itemset combinations in L2_2 are not used in the formation of candidate 3-itemsets. The

L3_1 and L3_2 were formed by removing the infrequent itemsets in C3_1 and C3_2. The process is continued until Ln_1 is not

null. Further, to increase the execution speed of the proposed method, it is being accelerated with GPU. The proposed

algorithm (Algorithm 1) is shown below, and the workflow diagram is shown in Fig.4.

Algorithm 1 Algorithm for finding frequent itemsets

 Input : D - a dataset with n transactions;

 δ - minimum support threshold;

 Output : Frequent patterns;

1: D  eliminate_null(D);

2: vdf  scan D and convert it in vertical data format;

3: L1 one_frequent_itemset(vdf, δ);

4: CTID_list  find_common_TID(L1);

5: L1 remove the transactions in CTID_list for each item in L1;

6: δnew  δ - number of transactions in CTID_list;

7: LB1  {∀ frequent 1-itemset | SC=δnew };

8: LB2  {∀ frequent 1-itemset | SC > δnew};

9: L2_1, L2_2  find_two_freq_itemset(LB1,LB2,δnew);

10: i=2;

11: while Li_1 ≠ Ø do

12: Li+1_1,Li+1_2  n_frequent_itemset(Li_1,LB2,δnew);

13: i=i+1;

14: end while

procedure eliminate_null(D - a dataset with n transactions)

1: for each Ti ∈ D do

2: cntcount the number of items in Ti;

3: if cnt == 1 then

4: remove Ti from D;

5: end if;

6: end for;

7: return D;

procedure one_frequent_itemset(D: Dataset after removing null

transactions; δ :minimum support threshold)

1: L1Ø;

2: for each itemi in D do

3: TIDlisttransactions in which itemi occurs;

4: SCcount the number of transactions in TIDlist

5: if SC ≥ δ then

6: add {itemi, TIDlist, SC}into L1;

7: end if

8: end for

9: sort L1 and store it in jagged array format;

10: return L1;

procedure find_common_TID (L1: frequent 1-itemset)

1: nfind the number of items in L1;

2: CTID_list{TIDlist1 ∩ TIDlist2 ∩… ∩ TIDlistn};

3: return CTID_list;

 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 33

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

procedure two_freq_itemset (LB1: frequent 1-itemset1, LB2: frequent 1-

itemset2, δ:minimum support)

1: last_itemfind last item in LB2;

2: for each itemi in LB1 do

3: for each itemj in LB2 do

4: new_pattern  <itemiitemj>;

5: new_tidTIDs(itemi)∩TIDs(itemj);

6: new_sccount the transactions in new_tid;

7: if new_pattern contains last_item then

8: append{new_pattern,new_tid,new_sc} in C2_2;

9: else

10: append{new_pattern,new_tid,new_sc} in C2_1;

11: end if

12: end for

13: end for

14: L2_1{C2_1 | SC(C2_1) ≥ δ};

15: L2_2{C2_2 | SC(C2_2) ≥ δ};

16: return L2_1, L2_2

procedure n_frequent_itemset(Li_1: frequent i-itemset1, LB2: frequent 1-

itemset2, δnew: minimum support)

1: for each itemi in Li_1 do

2: last_itemfind the last item in itemi;

3: for each itemj in LB2 after last_item do

4: new_item{<itemiitemj>};

5: new_tidTIDs(itemi)∩ TIDs(itemj);

6: new_sccount the transactions in new_tid;

7: if new_item contains last element in LB2 then

8: append{new_item,new_tid,new_sc}in Cn_2;

9: else

10: append{new_item,new_tid,new_sc}in Cn_1;

11: end if

12: end for

13: end for

14: Ln_1{Cn_1 | SC(Cn_1) ≥ δ};

15: Ln_2{Cn_2 | SC(Cn_2) ≥ δ};

16: return Ln_1,Ln_2

The main advantage of the proposed method is that it reduces the number of candidate itemsets to be generated in

each iteration because the itemsets in Li_2, for i ≥ 3 will not be considered for creating candidate itemsets and removal of

items in CTL in final L1. Additionally, GPU and Jagged array enhance the performance in terms of speed and usage of

memory.

A. Memory Requirement Calculation

From [25,18], it was observed that the memory requirement using a jagged array structure for the frequent itemsets

could be calculated based on the following equation.

1

iitemset

i ii
TM TM rbytes




  (1)

where, TMi is the total memory required for the candidate i-itemset, and rbytesi is the memory occupied by the

infrequent/rare items in the candidate i-itemset. By subtracting rbytesi from TMi, the memory for Li i.e., frequent i-

itemsets can be found.

TMi and rbytesi were calculated using equations 2 and 3, respectively.

34 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

{ }

() ()
i

i item

item itemset

TM SC sizeof tid sizeof item
 

   (2)

{ }

() ()
i

i item

item in frequent

rbytes SC sizeof tid sizeof item
  

   (3)

Fig.4. Workflow of GNVDF

As in [25], the GNVDF also used the same jagged storage structure for storing frequent itemsets, and the amount

of memory requirement was calculated as follows. It first fetches the common transactions among items in the frequent

1-itemsets and then removes them from frequent 1-itemsets. Suppose if the frequent 1-itemset contains n items say

item1, item2, item3,…, itemn and the corresponding TID lists say TID-List1, TID-List2, TID-List3,…,TID-Listn, then the

common TIDs(CTID) among the n items were found by set intersection operation using equation (4) shown below.

1 2{ } { } ... { }
TID nC TID List TID List TID List       (4)

The memory space required for CTID was calculated using equation (5).

()

1

()
TID

i

length C

TID

i

CM sizeof C


  (5)

Since the method removes the CTID from frequent 1-itemsets, the CTID need not be repeated in the subsequent

frequent itemsets, saving memory space considerably. The amount of memory saved (MS) for the entire dataset was

calculated using equation (6).

1 2

2

() { () ()}
iitemset

i i i

i

MS count itemset CM count itemset count itemset CM


 



     (6)

where, count(itemset1), count(itemseti_1), and count(itemseti_2) refer to the number of items in frequent 1-itemset, first

and the second part of frequent i-itemsets, respectively. Thus, the total memory required for the frequent itemsets of the

entire dataset using the proposed method was calculated using equation (7).

 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 35

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

1

{ }
iitemset

final i i

i

TM TM rbytes MS




   (7)

B. Proposed Methodology: An Example

The vertical representation of transaction dataset D as shown in Fig. 2 is considered to understand the proposed

methodology. It contains 12 items viz., {a, b, c, d, e, f, g, h, i, k, m, p}. Each item is represented by a row containing the

name of the item and the transactions in which the item occurs (TIDs) [26]. Let δ is 6. From Fig. 2, the candidate

1-itemset is calculated. The candidate 1-itemset contains all the items in D, the TIDs in which the item occurs and the

SC. It is shown in Table 1.

Table 1. Candidate 1-itemset(C1)

Item TIDs SC

a {3, 4, 5, 7, 8, 9} 6

b {1, 3, 4, 5, 6} 5

c {0, 2, 3, 4, 5, 7, 8, 9} 8

d {0, 3, 4, 5, 7, 8, 9} 7

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9

f {1, 3, 5, 6, 8, 9} 6

g {0, 1, 3} 3

h {0, 1, 5, 6, 9} 5

i {0, 1, 3, 6, 8, 9} 6

k {0, 7} 2

m {0, 1, 2, 6, 7, 8, 9} 7

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9

From the table above, the items viz., b, g, h and k are removed as infrequent because the items do not satisfied δ.

The frequent 1-itemset is shown in Table 2. Since the common transactions (CTL) are stored in Table 3, they are

removed from each item in L1, the final L1 is formed, and it is shown in Table 4.

Table 2. Frequent 1-itemset(L1)

1- Itemset TIDs

a 3 4 5 7 8 9

f 1 3 5 6 8 9

i 0 1 3 6 8 9

d 0 3 4 5 7 8 9

m 0 1 2 6 7 8 9

c 0 2 3 4 5 7 8 9

e 0 1 2 3 4 6 7 8 9

p 0 1 3 4 5 6 7 8 9

Now the new_min is calculated by removing the number of items in CTL as δnew = δ - n = 6-2 = 4. The logical

buckets from final L1, i.e. LB1 and LB2, are shown in Tables 5 and 6.

To reduce the storage space requirement further, this method finds the common transaction in which the all items

occurs either by AND operation or intersection of the TIDs of all frequent 1-itemset. i.e.{3,4,5,7,8,9} ∩ {1,3,5,6,8,9} ∩

{0,1,3,6,8,9}∩{0,3,4,5,7,8,9}∩{0,1,2,6,7,8,9}∩{0,2,3,4,5,7, 8,9}∩{0,1,2,3,4,5,6,7,8,9}∩{0,1,3,4,5,6,7,8,9} = {8,9}

and it is stored in CTL. The CTL is shown in Table 5.

Table 3. Common Transaction List(CTL)

CTL

8 9

Table 4. Final Frequent 1-itemset(L1)

1- Itemset TIDs

a 3 4 5 7

f 1 3 5 6

i 0 1 3 6

d 0 3 4 5 7

m 0 1 2 6 7

c 0 2 3 4 5 7

e 0 1 2 3 4 6 7

p 0 1 3 4 5 6 7

36 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

Table 5. Logical Bucket-1(LB1)

Table 6. Logical Bucket-2(LB2)

The 2-itemset combinations viz., ad, am, ac, ae, fd, fm, fc, fe, id, im, ic, ie, dm, dc, de, mc, me, mp, and ce are in

C2_1 and the items viz., ap, fp, ip, dp, mp, cp and ep are stored in C2_2. The possible combinations viz., af, ai and fi need

not be generated. It is shown in Tables 7 and 8 respectively.

Table 7. Candidate 2-itemset - Part I

C2_1 TIDs SC

ad 3, 4, 5, 7 4

am 7 1

ac 3, 4, 5, 7 4

ae 3,4,7 3

fd 3,5 2

fm 1,6 2

fc 3,5 2

fe 1,3,6 3

id 0,3 2

im 0,1,6 3

ic 0,3 2

ie 0, 1, 3, 6 4

dm 0 1

dc 0, 3, 4, 5, 7 5

de 0, 3, 4, 7 4

mc 0,2 2

me 0, 1, 2, 6, 7 5

ce 0, 2, 3, 4, 7 5

Table 8. Candidate 2-itemset - Part II

C2_2 TIDs SC

ap 3, 4, 5, 7 4

fp 1, 3, 5, 6 4

ip 0,1,3,6 4

dp 0, 3, 4, 5, 7 5

mp 0, 1, 6, 7 4

cp 0, 3, 4, 5, 7 5

ep 0, 1, 3, 4, 6, 7 6

The items viz., am, ae, fd, fm, fc, fe, id, im, ic, dm and mc are infrequent in C2_1 and no item is infrequent in C2_2.

Therefore, the frequent 2-itemsets are stored in L2_1 and L2_2 in jagged array notation as shown in Tables 9 and 10

respectively. The candidate 3-itemsets from L2_1 and LB2 viz., adm, adc, ade, ace and dce, stored in C3_1 and the

patterns adp, acp, iep, dep, mep, dcp and cep are kept in C3_2 as shown in Tables 11 and 12 respectively. The L3_1 and

L3_2 are shown in Tables 13 and 14, respectively. Similarly, C4_1 and C4_2 are shown in Tables 15 and 16, respectively.
L4_1 and L4_2 are L4_1 = {} and L4_2 is shown in Table 17.

1- Itemset TIDs

a 3 4 5 7

f 1 3 5 6

i 0 1 3 6

1- Itemset TIDs

d 0 3 4 5 7

m 0 1 2 6 7

c 0 2 3 4 5 7

e 0 1 2 3 4 6 7

p 0 1 3 4 5 6 7

 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 37

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

Table 9. Frequent 2-itemset - Part I

L2_1 TIDs

ad 3 4 5 7

ac 3 4 5 7

ie 0 1 3 6

dc 0 3 4 5 7

de 0 3 4 7

me 0 1 2 6 7

ce 0 2 3 4 7

Table 10. Frequent 2-itemset - Part II

L2_2 TIDs

ap 3 4 5 7

fp 1 3 5 6

ip 0 1 3 6

dp 0 3 4 5 7

mp 0 1 6 7

cp 0 3 4 5 7

ep 0 1 3 4 6 7

Table 11. Candidate 3-itemset - Part I

C3_1 TIDs SC

adm 7 1

adc 3, 4, 5, 7 4

ade 3,4,7 3

ace 3,4,7 3

dce 0, 3, 4, 7 4

Table 12. Candidate 3-itemset - Part II

C3_2 TIDs SC

adp 3, 4, 5, 7 4

acp 3,4,5,7 4

iep 0, 1, 3, 6 4

dep 0, 3, 4, 7 4

mep 0, 1, 6, 7 4

dcp 0, 3, 4, 5, 7 5

cep 0, 3, 4, 7 4

Table 13. Frequent 3-itemset - Part I

L3_1 TIDs

adc 3 4 5 7

dce 0 3 4 7

Table 14. Frequent 3-itemset - Part II

2_3L TIDs

adp 3 4 5 7

acp 3 4 5 7

iep 0 1 3 6

dcp 0 3 4 5 7

dep 0 3 4 7

mep 0 1 6 7

cep 0 3 4 7

Table 15. Candidate 4-itemset - Part I

C4_1 TIDs SC

adce 3,4,7 3

38 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

Table 16. Candidate 4-itemset - Part II

Table 17. Frequent 4-itemset - Part II

Now, L4_1 is an empty list, so the algorithm terminates. It is observed from the experiment that the time needed for

finding frequent items for sample dataset D in the example without the use of GPU is 0.8111 sec, whereas the wall time

is 0.0073ms with GPU. The total memory requirement for the frequent itemset for the above dataset using the method in

[18] is TM = 124+210+137+32=503 bytes. By using GNVDF, the memory requirement for the common transaction is

CM = 2+2 = 4 bytes and the amount of memory saved using the proposed method is MS = (8×4) + {(7×4 + 7×4) + (2×4

+ 7×4) + (0×4 + 2×4)} = 32 + 56 + 36 + 8 = 132 bytes. Therefore, the final memory requirement is

TMfinal = 503 - 132 = 371 which is 26.24% of memory saved for this example dataset compared to the memory

requirement in [18]. It is also noted that the number of common transactions is directly proportional to the amount of

memory saved.

4. Experimental Results and Discussion

The proposed algorithm was implemented using Python with CUDA Toolkit with NVIDIA GPU. An extensive

experiment was conducted using four real-time datasets viz., chess, mushroom, t25i10d10k and c20d10k to evaluate the

performance of GNVDF. The datasets and their details were shown in Table 18. They were obtained from the FIMI

repository and an open-source Data Mining Library. The reason for choosing those datasets is that many researchers

used those bench-mark datasets in Frequent Itemset Mining (FIM) and Association Rule Mining(ARM) based research.

The runtime performance of the proposed method without GPU acceleration was obtained for each dataset, with the

minimum threshold values ranging from 20% to 70% and is shown in Table 19. Similarly, the proposed algorithm was

executed with GPU acceleration using the same minimum support range and results were tabulated in Table 20.

Table 18. Datasets used in experiments with their properties

Datasets
No. of

transactions

No. of

items

Average item count per

transaction

chess 3196 75 37.00

mushrooms 8416 119 23.00

t25i10d10k 9976 929 24.77

c20d10k 10000 192 20.00

Table 19. Runtime (in ms) performance of the proposed algorithm without GPU

DS#

MS*
chess mushroom t25i10d10k c20d10k

20 10759.6 14501.6 16332.5 16334.2

30 9845.5 13464.2 16225.8 16006.2

40 7972 11103.8 13885.7 15441.2

50 7101.7 10224.4 12645.6 14956.2

60 6293.4 9834 11101.2 13412.4

70 5082.2 8253 9256.4 12035.1

Table 20. Runtime (in ms) performance of the proposed algorithm with GPU-acceleration

DS#

MS*
chess mushroom t25i10d10k c20d10k

20 119.5511 145.0160 161.7079 161.7248

30 107.0163 138.0940 156.0173 158.4772

40 83.9158 117.2770 129.7729 131.9761

50 73.2134 104.5091 108.3670 110.6496

60 64.2184 88.8096 102.4380 105.3511

70 53.4968 74.0512 83.6424 92.9924
 #DS-Dataset *MS-min_sup(δ)

L4_2 TIDs

adcp 3 4 5 7

dcep 0 3 4 7

C4_2 TIDs SC

adcp 3, 4, 5, 7 4

dcep 0, 3, 4, 7 4

 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 39

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

The graphical representation of the runtime performance of each dataset with and without GPU usage was

illustrated in Fig.5. From tables 19 and 20, it was observed that when the number of items and transactions in a dataset

increases, the time required for finding frequent patterns also increases. In general, there is an inverse relationship

between the min_sup threshold and the time needed to determine the frequent patterns. i.e., when the min_sup threshold

is increased, the number of generated candidate itemsets, followed by frequent patterns, is minimized, consuming less

time for the higher threshold.

Fig.5. showed that the GPU acceleration significantly enables the execution speed of the proposed methodology,

and GNVDF with GPU is faster by 90 to 135 times when compared with GNVDF without GPU acceleration. The

reason for the performance enhancement is that the GPUs have many computing cores that allow the parallel execution

of computation-intensive tasks. Since the GNVDF uses the VDF approach, the number of database scans is restricted to

one [27] for determining each item's support count, which in turn reduces the overtime for finding the frequent patterns.

But, VDF requires more memory for additional information like TID's than HDF [27], so a Jagged array has been used

to minimise memory space is an advantage. Further, the elements in CTL removed from frequent 1-itemset save the

memory space considerably more than the existing classical algorithms.

Fig.5. Runtime performance of the proposed method with and without GPU acceleration of each dataset

5. Conclusion

A GPU-accelerated novel method for finding the frequent itemset called GNVDF has been proposed in this

research article. It uses an innovative approach to discover the candidate and frequent itemsets by removing

unnecessary itemsets to form the subsequent itemsets. It also utilizes GPU for speeding up the process. It also

empowers the use of a jagged array storage structure and removes the common elements in 1-frequent itemsets. With

GPU-acceleration and innovative way of determining itemsets, the time required is significantly decreased. Similarly,

with a jagged storage structure, the memory requirement is also minimized than the classical algorithms. From the

extensive experiments made, it is observed that the GNVDF with GPU is 90-135 times faster than with GNVDF

without GPU and also proved that it suits both sparse and dense datasets. Further, the use of the VDF approach restricts

the database scan to one.

40 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

References

[1] H. Hamidi and A. Daraei, "Analysis of Pre-processing and Post-processing Methods and Using Data Mining to Diagnose Heart

Diseases," International Journal of Engineering (IJE), TRANSACTIONS A: Basics, vol. 29, no. 7, pp. 921-930, 2016.

[2] J. Han, J. Pei and M. Kamber, Data mining: concepts and techniques, Morgan Kaufmann Publishers, 2011.

[3] H. Lisnawati and A. Sinaga, "Data Mining with Associated Methods to Predict Consumer Purchasing Patterns", International

Journal of Modern Education and Computer Science(IJMECS), vol. 12, no. 5, pp. 16-28, 2020.

[4] A. Sinha, B. Sahoo, S.S.Rautaray and M. Pandey, "An Optimized Model for Breast Cancer Prediction Using Frequent Itemsets

Mining", International Journal of Information Engineering and Electronic Business(IJIEEB), vol.11, no.5, pp. 11-18, 2019.

[5] L. Vu and G. Alaghband, "A self-adaptive method for frequent pattern mining using a CPU-GPU hybrid model," in

Proceedings of the Symposium on High Performance Computing, 2015.

[6] D. Albert, K. William, Fayaz and D. Veerabhadra Babu, "Exploiting Parallel Processing Power of GPU for High Speed

Frequent Pattern Mining", International Journal of Computer Engineering and Applications, vol. 7, no. 2, pp. 71 - 81, 2014.

[7] W. Fang, M. Lu, X. Xiao, B. He and Q. Luo, "Frequent itemset mining on graphics processors," in Proceedings of

International Conference on Network and Parallel Computing, 2009.

[8] S. M. Fakhrahmad and G. Dastghaibyfard, "An Efficient Frequent Pattern Mining Method and its Parallelization in

Transactional Databases," Journal of Information Science and Engineering, vol. 27, no. 2, pp. 511-525, 2011.

[9] J. Zhou, K. M. Yu and B. C. Wu, "Parallel frequent patterns mining algorithm on GPU", in Proceedings of International

Conference on Systems, 2010.

[10] D. William Albert, K. Fayaz and D. Veerabhadra Babu, "HSApriori: high speed association rule mining using apriori based

algorithm for GPU," International Journal of Multidisciplinary and Current Research, vol. 2, pp. 759-763, 2014.

[11] M. Tiwary, A. K. Sahoo and R. Misra, "Efficient implementation of apriori algorithm on HDFS using GPU," in Proceedings of

International Conference on High Performance Computing and Applications, 2014.

[12] J. Li, F. Sun, X. Hu and W. Wei, "A multi-GPU implementation of apriori algorithm for mining association rules in medical

data," ICIC Express Letters, vol. 9, no. 5, pp. 1303-1310, 2015

[13] L. Vu and G. Alaghband, "A self-adaptive method for frequent pattern mining using a CPU-GPU hybrid model," in

Proceedings of the Symposium on High Performance Computing, 2015.

[14] Y. Li, J. Xu, Y. H. Yuan and L. Chen, "A new closed frequent itemset mining algorithm based on GPU and improved vertical

structure," Concurrency and Computation Practice and Experience, vol. 29, no. 06, pp. 1-12, 2016.

[15] K.W. Chon, S. H. Hwang and M. S. Kim, "GMiner: A fast gpu-based frequent itemset mining method for large-scale data,"

Information Sciences, vol. 439-440, pp.19-38, 2018.

[16] Y. Wang, T. Xu, S. Xue and Y. Shen, "D2P-Apriori: A deep parallel frequent itemset mining algorithm with dynamic queue,"

in Proceedings of 10th International Conference on Advanced Computational Intelligence, 2018.

[17] Y. Djenouri, D. Djenouri, A. Belhadi and A. Cano, "Exploiting GPU and cluster parallelism in single scan frequent itemset

mining," Information Sciences, vol. 496, pp. 363-377, 2019.

[18] P. Sumathi, and S. Murugan, A Memory Efficient Implementation of Frequent Itemset Mining with Vertical Data Format

Approach, International Journal of Computer Sciences and Engineering. 6(2018) 152-157.

[19] W. Gan, J. C. Lin, P. Fournier-Viger, H. C. Chao and P. S. Yu, "Survey of parallel sequential pattern mining," ACM

Transactions on Knowledge Discovery from Data (TKDD), vol. 13, no. 3, pp. 1-34, 2019.

[20] Y. M. Guo and Z. J. Wang, "A vertical format algorithm for mining frequent item sets," in Proceedings of 2nd International

Conference on Advanced Computer Control, 2010.

[21] E. Hashemzadeh and H. Hamidi, "Using a Data Mining Tool and FP-growth Algorithm Application for Extraction of the Rules

in Two Different Dataset," International Journal of Engineering (IJE), TRANSACTIONS C: Aspects, vol. 29, no. 6, pp. 788-

796, 2016.

[22] M. Samoliya and A. Tiwari, "On the Use of Rough Set Theory for Mining Periodic Frequent Patterns", International Journal of

Information Technology and Computer Science (IJITCS), vol.8, no.7, pp.53-60, 2016.

[23] P. Prithiviraj and R. Porkodi, "A comparative analysis of association rule mining algorithms in data mining: a study," American

Journal of Computer Science and Engineering Survey, vol. 3, pp. 98-119, 2015.

[24] F. Wang, J. Dong and B. Yuan, "Graph-based substructure pattern mining using cuda dynamic parallelism," in Proceedings of

International conference on intelligent data engineering and automated learning, 2013.

[25] B. De Alwis, S. Malinga, K. Pradeeban, D. Weerasiri and S. Perera, "Horizontal format data mining with extended bitmaps," in

International Conference of Soft Computing and Pattern Recognition,2011.

[26] P. Suresh, K. N. Nithya and K. Murugan, "Improved Generation of Frequent Item Sets using Apriori Algorithm," International

Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 10, pp. 25-27, 2015.

[27] A.Subashini and M. Karthikeyan, "Itemset Mining using Horizontal and Vertical Data Format," International Journal for

Research in Engineering Application & Management, vol. 05, no.03, pp. 534-539, 2019.

https://dl.acm.org/doi/proceedings/10.5555/2872599
https://link.springer.com/conference/npc
https://link.springer.com/conference/npc
https://dl.acm.org/doi/proceedings/10.5555/2872599

 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 41

Format Approach and Jagged Array

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

Authors' Profiles

P.Sumathi received her B.Sc and M.Sc degrees in Computer Science from Seethalakshmi Ramaswami College,

affiliated to Bharathidasan University, Tiruchirappalli, India in 2001 and 2003 respectively. She received her M.Phil

degree in Computer Science in 2008 from Bharathidasan University. She is presently working as an Assistant

Professor in the Department of Computer Science, Vysya College, Salem. She is currently pursuing a Ph.D. degree

in Computer Science at Bharathidasan University. Her research interests include Data Mining, Data structures and

Database concepts.

Dr.S.Murugan received his M.Sc degree in Applied Mathematics from Anna University in 1984 and M.Phil degree

in Computer Science from Regional Engineering College, Tiruchirappalli in 1994. He is an Associate Professor in

the Department of Computer Science, Nehru Memorial College (Autonomous), affiliated to Bharathidasan

University since 1986. He has 32 years of teaching experience in the field of Computer Science. He has completed

his Ph.D. degree in Computer Science with a specialization in Data Mining from Bharathiyar University in 2015.

His research interest includes Data and Web Mining. He has published many research articles in reputed National

and International journals.

How to cite this paper: P. Sumathi, S.Murugan, " GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns

Using Vertical Data Format Approach and Jagged Array ", International Journal of Modern Education and Computer

Science(IJMECS), Vol.13, No.4, pp. 28-41, 2021.DOI: 10.5815/ijmecs.2021.04.03

