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ABSTRACT 

 Frequent patterns are patterns/itemsets, subsequences, or substructures that 

appear frequently in a dataset with not less than a user-specified threshold. 

Researchers realized that Frequent Pattern Mining (FPM) is vital in mining 

associations, correlations and other relationships among data. In the modern digital 

world, online shopping/e-shopping has become popular and mandatory in human 

lives. E-stores like Amazon show up the "Frequently Bought Together" and 

"Customers who bought this item also bought" for their customers to promote their 

sales and thereby obtains profits considerably. Many transactional data were collected 

every day, and finding frequent itemsets from the massive dataset is an issue for the 

researchers because it requires more processing time and memory. However, there are 

more efficient and scalable FPM algorithms found in the literature and also FPM has a 

wide range of applications there is always a need for better algorithms to minimize the 

issues. Thus, the research work focuses on developing efficient algorithms for FPM.  

 The research work aims to create time and memory-efficient models for 

discovering frequent patterns from transactional databases. For that, a framework 

named "SUMsFPM" has been proposed comprising of four research models viz., 

RISOTTO, JAB-VDF, TP-NPF-VDF and GNVDF. The RISOTTO has been proposed 

to reduce the runtime and JAB-VDF to minimize memory usage in finding the 

frequent patterns from large databases. The models namely TP-NPF-VDF and 

GNVDF have been contributed to reducing both time and memory.  

 The RISOTTO algorithm improves the performance of Apriori by combining 

both prefixed-itemset based storage structure and Vertical Data Format (VDF) and it 

is abbreviated by taking the uppercase letters from the phrase "pRefixed ItemSet 
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stOrage verTical daTa fOrmat". The method first finds the candidate 1-itemsets(C1) as 

in classical Apriori and transforms them into VDF, then the frequent 1-itemset (L1) is 

constructed from C1 by removing the items whose SC < δ (user-specified threshold). 

After that, the L1 is stored in the prefixed-itemset storage as prefix-key and values. It is 

noted that, in RISOTTO, the values with a single item is not stored in prefixed-itemset 

storage as it does not generate successive candidates. During the successive iterations, 

the items in values are used for joining and items that satisfy the Apriori property are 

combined with the prefix-keys for generating the candidate (i+1)-itemsets, followed 

by frequent(i+1)-itemsets and the process is repeated until no more candidate itemsets 

found. As this method uses VDF, the SC for the (i+1)-candidate itemsets were 

determined using the set intersection method which avoids repeated database scans.  

 The VDF format avoids repeated scans of transactional databases for 

determining the SC and limits the database scan to one but it requires huge memory 

for storing TIDs of each item. To minimize the memory, the JAB-VDF model has 

been introduced. It uses a jagged array structure for storing the TIDs, which allocates 

memory space exactly needed for the itemsets than the 2-D array.  

 The TP-NPF-VDF algorithm has been introduced as an enhancement version 

to VDF by incorporating a novel pattern generation method with multithreads. It also 

uses the jagged array for storing itemsets. It mainly consists of four phases. The first 

and second phase converts the transactional database into VDF and determines the 

frequent 1-itemset as in Apriori. The third phase rearranges the frequent 1-itemset in 

ascending order based on SC. The fourth phase creates n-1 threads one for each 

itemset in a frequent 1-itemset except for the last one. Each thread runs in parallel and 

determines from frequent 2-itemsets to k-itemsets until it is non-empty, for each 

itemset in frequent 1-itemset, where k  ≥ 2 with a novel way of generating patterns. 
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 Though the multithreads reduces the runtime, it is well-known that the GPU 

acceleration will enable the execution speed with multiple cores. By considering this, 

GNVDF, a GPU-accelerated novel algorithm for finding frequent patterns using the 

VDF approach with a jagged array has been introduced. Finding frequent 1-itemset 

remain the same as TP-NPF-VDF but it removes the null transactions initially.                      

The common transactions in L1 (CTID_list) are identified, removed from L1 and updated 

the new min_sup as δnew = δ - n. The frequent 1-itemsets are split into two logical 

buckets LB1 and LB2 based on δnew. The candidate 2-itemsets patterns are generated by 

combining each item Ix in LB1 with each item Iy in LB2 and each item Iz with Iz+1 until 

the last item in LB2. The itemset combination that ends with the last item in LB2 will 

be placed in C2_2 and the rest in C2_1. From C2_1 and  C2_2,  L2_1 and  L2_2 were 

generated based on SC. For generating candidate 3-itemset, each itemset Ix in L2_1 is 

combined with the next item Iy in LB2 after the last item in Ix and placed in C3_2 and 

C3_1 as previous. The L3_1 and L3_2 were formed by removing the infrequent itemsets 

in C3_1 and C3_2. The process is repeated until no more candidates in Ln_1.              

 All the proposed algorithms were implemented using Python and tested with 

both real-time and synthetic types obtained from the FIMI repository and an open-

source data mining library and measured the runtime and memory usage. It is proved 

from the experiments that the proposed models will reduce the runtime and memory 

usage significantly than the existing ones. 
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CHAPTER - 1 

INTRODUCTION 

 A journey of thousand miles begins with a single step  

--LAO-TZU 

1.1 Background 

 In recent days, the quantity of data generated or collected from various sources 

has been increasing enormously. Data Mining (DM) is an interdisciplinary field, has 

been widely used to analyze those data. Frequent Pattern Mining (FPM) plays a core 

role in DM, and it enables us to find relationships among the items in transactional 

databases [AH,14]. Thus, the research incorporates various novel FPM algorithms to 

mine frequent patterns efficiently with less time and memory usage. 

 This chapter provides background information necessary for understanding the 

contributions made in this research. In particular, section 1.2 outlines the basics of 

DM, section 1.3 deals with FPM, the importance of Association Rule Mining (ARM) 

is discussed in section 1.4, section 1.5 mentions the various applications of FPM,                  

the scope, aim & objectives of the research work were presented in sections 1.6 and 

1.7 respectively. Similarly, the statement of the problem and its description were 

discussed in sections 1.8 and 1.9 respectively. The elaborate description of the 

datasets was illustrated in section 1.10 and finally, the chapter organization of the 

thesis is covered in section 1.11. 

1.2 Data Mining  

 DM is the most commonly used process for exploring and analyzing a large 

quantity of data to acquire novel, valid, potentially valuable and intelligent patterns 

hidden in the database [VD,19],[FPS,96]. Databases, data warehouses, the Web,  
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other information repositories, and streaming data are examples of data sources.           

The significant tasks of DM are: 

i. Anomaly detection – unusual items or events in the unlabeled datasets are 

identified for further analysis. 

ii. Association rule mining – identifies the relationships between variables. 

Using this task, the supermarket can find out the products that are purchased 

together frequently by the customers and use this information for marketing 

purposes.  

iii. Clustering – determining the similar groups and structures in the data without 

using the known structures. 

iv. Classification  – accurately predict the target class for the new data from the 

model.  

v. Regression – predict a range of numeric values for the given dataset. 

vi. Summarization  – presenting a more compact representation of the dataset 

e.g. visualization and report generation. 

1.2.1 Knowledge Discovery in Databases 

 Knowledge Discovery in Databases (KDD) is a repetitive and interactive 

process of discovering useful knowledge from a collection of data in the context of 

large databases. Knowledge Discovery and DM are distinct terms. It consists of the 

following steps: 

i. Data cleaning – removing noise and inconsistent data.  

ii. Data integration – combining numerous data sources. 

https://en.wikipedia.org/wiki/Anomaly_detection
https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Automatic_summarization
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iii. Data selection – retrieving relevant data from the database for the analysis 

task. 

iv. Data transformation – transforming and consolidating the data into forms 

that are appropriate for mining by performing summary or aggregation 

operations. 

v. Data mining – extracting data patterns by applying intelligent methods. 

vi. Pattern evaluation – identifying the interesting patterns representing 

knowledge based on interestingness measures. 

vii. Knowledge presentation – presenting the mined knowledge to the users by 

using visualization and knowledge representation techniques. 

 Steps 1 through 4 are the data pre-processing techniques, which makes the 

data for mining ready. The DM step may interact with the user or a knowledge base. 

The interesting patterns are presented to the user and they may be stored as new 

knowledge in the knowledge base by the last two steps [HPK, 12]. The diagrammatic 

representation of the KDD process is shown in Figure 1.1. 

1.3 Frequent Pattern Mining 

 FPM is an essential task and plays a vital role in DM tasks such as various 

kinds of ARM, sequential pattern mining, associative classification and frequent 

pattern-based clustering. It is widely used in mining associations, correlations,                         

and many other relationships among the data. Mining frequent patterns from large 

scale databases have become a significant research problem in DM and knowledge 

discovery community. 
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Figure 1.1 KDD Process  

1.3.1 Terminologies in FPM 

k-Itemset  

 An itemset or set of items that contain k unique items is called k-itemset.              

For example, a set of a desktop computer, a printer that occur frequently in a dataset is 

called a 2-itemset [HPK,12]. 

Subsequence  

 It contains a set of items purchased in sequential order i.e. buying a personal 

computer first, then a wireless keyboard, and then a wireless mouse that occurs 

frequently in a shopping history database [HPK,12]. 

Substructure  

 It can refer to different structural forms, such as subgraphs, subtrees,                          

or sublattices, which may be combined with itemsets or subsequences. If a 

substructure occurs frequently with not less than a user-specified threshold is called 

structured patterns [HPK,12].  
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Frequent patterns  

 These are the patterns/itemsets/subsequences that appear frequently together in 

transactional datasets or supermarket datasets. 

Minimum support count threshold 

 Users or decision-makers are interested to identify the occurrence of k-items 

with specified numbers of times, which is known as the minimum support count 

threshold. 

Transactional/Supermarket dataset  

 A transactional dataset is a dataset that contains the items are purchased in 

each transaction. A transaction T in D is represented as a pair defined as                                      

T = <TID, list of items>, where TID is the unique identification number for the list of 

items purchased by each transaction. Table 1.1 showed below is an example 

transactional dataset for a grocery store.  

Table 1.1 A Sample Transactional Dataset of a Grocery Store 

TID List of items 

1 Milk, Butter, Bread 

2 Milk, Dry grapes 

3 Bread, Butter, Rusk 

4 Rusk, Butter 

5 Dry grapes, Bread, Butter 

6 Ghee, Bread, Dry grapes 

7 Milk, Bread, Butter 

8 Yummy apple, Grapes 

9 Yummy apple, Milk, Ghee 

10 Budget milk, Butter, Dry grapes 
 

 The discovery of frequent patterns plays an essential role in DM. A commonly 

used application is the market basket analysis, where the frequently purchased items 
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are discovered from the transactional entries of a grocery store for making business 

decisions. Many efficient and scalable algorithms have been developed for FPM,   

from which the association and/or correlation rules can be derived, which helps in 

making business decisions and predictions. These algorithms are categorized into 

three major groups [HPK,12].  

i. Apriori-like algorithms  

ii. Frequent pattern growth-based algorithms such as FP-growth  

iii. Algorithms that use the Vertical Data Format (VDF) 

1.3.2 Basic Definitions 

 Let I={I1, I2,…, Im} be an itemset, and D is a transactional database containing 

a set of transactions T and is a non-empty itemset such that T ⊆ I and each transaction 

T is holding a unique identifier TID. Let A be a set of items. A transaction T is said to 

contain in A if A ⊆ T. The format of the association rule is AB, where A ⊂ I,                 

B ⊂ I, A ≠ Ø, B ≠ Ø, and A∩B = Ø [HH,16]. Association rule AB that holds in D 

with support (s) and confidence (c) [HD,16].    

Support(s): The support of an association rule AB is defined as the percentage of 

records that contain A∪B to the total number of records in the database [ST,16].                     

It is noted that the support count is increased when an item is present in numerous 

transactions in the database D [ST,16]. 

support( ) ( )A B p AUB                           … Equation (1.1) 

Confidence(c): The confidence of a rule A  B is defined as s(AB)/s(A). It is the 

ratio of the number of transactions that contain all items in the consequent (B), as well 

https://www.sciencedirect.com/topics/computer-science/frequent-itemsets
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as the antecedent (A) to the number of transactions that include all items in the 

antecedent (A) [PP,15]. 

Support_count( )
confidence( )

Support_count( )

AUB
A B

A
           … Equation (1.2) 

 The minimum support threshold is used to obtain the frequent itemsets from 

the databases. In contrast, the minimum confidence constraint is applied to those 

frequent itemsets found previously in determining the best rules.  

1.3.3 Architecture/Layout of Storing Transactional Data 

 There are two formats in which a transactional database can be represented.                         

i) Horizontal Data Format(HDF)  ii) Vertical Data Format(VDF). 

i) Horizontal Data Format 

 This representation consists of two columns namely TID and List of Item IDs, 

where TID is a transaction ID and List of item IDs specifies the items bought by the 

customer for the TID. Both the Apriori and FP-growth algorithms mine the frequent 

patterns in HDF and it is shown in Table 1.2. 

ii) Vertical Data Format 

 In VDF, the data can be expressed in {itemset:TID_set} format where the 

itemset is the name of the item and TID_set is the transaction set that contains the 

itemset. The VDF is used in the Eclat algorithm that minimizes the database scan and 

it uses a set intersection of TIDs for finding the Support Count (SC) for k-itemsets 

whereak=2,3,...,n. The VDF of D is shown in Table 1.3. 
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Table 1.2 Transactional Database D in HDF 

TID List of item IDs 

T1 A,B,E 

T2 B,D 

T3 B,C 

T4 A,B,D 

T5 A,C 

T6 B,C 

T7 A,C 

T8 A,B,C 

T9 A,B,C,E 

 

Table 1.3 VDF of D 

itemset TID_set 

A T1,T4,T5,T7,T8,T9 

B T1,T2,T3,T4,T6,T8,T9 

C T3,T5,T6,T7,T8,T9 

D T2,T4 

E T1,T9 

 

1.4 Association Rule Mining  

 ARM is a process for finding interesting associations and relationships 

between data items in datasets. It is a successful technique for extracting knowledge 

from databases. It discovers the frequent if-then rules called association rules and it is 

used for analyzing and predicting customer behaviour. They are essential in customer 

analytics, product clustering, market basket analysis, catalogue design and store 

layout. Every association rule has two parts: i) an antecedent (if) and ii) a consequent 

(then). An antecedent refers to the item found within the data whereas the consequent 

is an item found in combination with the antecedent. It uses the criteria namely 

https://searchbusinessanalytics.techtarget.com/definition/customer-analytics
https://searchbusinessanalytics.techtarget.com/definition/customer-analytics
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support and confidence to identify the most important relationships. Support indicates 

how frequently the items appear in the data. Confidence indicates the number of times 

in the if-then statements is found true [HPK,12].  

 The discovery of association rules involves two major steps. They are: 

i. Finding frequent patterns/itemsets 

ii. Generating reliable and strong association rules from the frequent 

itemsets [HPK,12] 

 Step 1 of ARM is a challenging task [SD,15] and plays a vital role in mining 

associations and correlations [DS,16]. This research work focuses on FPM algorithms. 

In general, the FPM can be categorized into three main groups viz., Join-Based,                

Tree-Based, and Pattern Growth [ABH,14]  as shown in Figure 1.2.   

 

 

 

 

 

 

 

 

 

Figure 1.2 Classification of Frequent Pattern Mining Algorithm 

 The Join-Based algorithms use a bottom-up approach to discover frequent 

patterns in a dataset and find the larger itemsets as long as their itemsets appear more 

than a prescribed threshold defined by the user in a database. The Tree-Based 

algorithms use set-enumeration concepts by constructing a lexicographic tree that 
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https://link.springer.com/article/10.1007/s10462-018-9629-z#Fig12


 10 
 

enables the items to be mined with either breadth-first or depth-first order. Finally,    

the Pattern Growth algorithms implement a divide-and-conquer approach to partition 

and project databases depending on the presently identified frequent patterns and 

expand them into longer ones in the projected databases.  

 Apriori Algorithm, FP-Growth and Eclat (Equivalence CLAss 

Transformation) are the popular static DM techniques for finding frequent patterns 

[Sin,16] using the above strategies.  

1.4.1 Apriori Algorithm 

 It is one of the most popular algorithms and it is the first algorithm proposed 

by R.Agrawal and R.Srikant in 1994 in the field of DM and it is a classical algorithm 

of ARM. It generates frequent itemsets for the Boolean association rule. Since the 

algorithm uses the prior knowledge of the frequent itemset properties it is named 

Apriori. It uses an iterative approach called level-wise search, where k
th 

itemset is 

used to explore (k+1)
th 

- itemsets. There are two steps involved in each iteration and                

it is repeated when no candidate itemsets can be found. They are: 

i. Generation of candidate itemsets 

ii. Finding the occurrence of each candidate itemset in a database and pruning all 

disqualified candidate itemsets based on support count(threshold) and closure 

property i.e. if a set of items is frequent, then all of its proper subsets are also 

frequent [HPK,12] 

 After finding the frequent itemsets, the association rules are generated from 

those large itemsets with the constraints of minimal confidence (min_conf)                      
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and minimum support (min_sup) thresholds. Figure 1.3 shows an illustration of the 

Apriori algorithm [CJAH
+
,19].  

 In this example, the transactional database D contains four transactions and the 

items sold are A, B, C, D and E.  Let the min_sup be 2. Initially, the D is scanned 

once to create candidate 1-itemset C1. From Figure 1.3, it is identified that the SC of 

{D} is less than the min_sup and it is removed. The L1 contains the items A, B, C,               

and E. After finding L1, L1 ⋈ L1 is performed and to find the SC for C2, D is scanned 

again. In this case, the itemset combinations {A,B} and {A,E} doesn't satisfy the 

min_sup and they are removed. The item combinations after removing the items viz., 

{A,C},{B,C},{B,E} and {C,E} forms L2. This process is iterated until no more 

candidate and/or frequent itemsets are found. 

1.4.1.1 Disadvantages of Apriori Algorithm 

The classical Apriori algorithm is inefficient because 

i. It is not suitable for large databases 

ii. It defines the presence and absence of an item 

iii. It allows uniform min_sup threshold 

iv. More scanning of the transactional database is needed for generating 

frequent itemsets 

v. More I/O cost is required 

vi. Generation of candidate itemsets and support counting is expensive and 

also memory consuming [CJAH
+
,19] 
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Figure 1.3 An Example for Apriori Algorithm 

1.4.2 FP-Growth Algorithm 

 FP-growth depends on a prefix-tree configuration which stores the database 

into a compact form known as FP-tree. It follows the divide-and-conquer approach.        

It first compresses the database representing frequent items into an FP-tree, which 

keeps the association information of the itemsets. It then divides the FP-tree into                

sub-trees called conditional FP-trees using the dataset called conditional pattern base. 

[SBE,21],[CJAH
+
,19],[HPK,12].  

1.4.2.1 Advantages of FP-Growth Algorithm 

i. Faster than Apriori algorithm  
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ii. No candidates are generated 

iii. Only two passes over the dataset 

1.4.2.2 Disadvantages of FP-Growth Algorithm 

i. FP tree may not fit in memory 

ii. FP tree is expensive to build 

1.4.3 Eclat Algorithm 

 It uses VDF and finds all frequent itemsets by intersecting the TID-list. It first 

scans the database and determines the TIDs in which the item occurs for each item.                    

The (k+1)-itemsets were generated from k-itemset using Apriori property and              

depth-first search computation. The TIDs of (k+1)-itemsets are generated by 

intersecting the TID-sets of frequent k-Itemset. This process continues until no more 

candidate itemsets are found. An example of the Eclat algorithm is shown in            

Figure 1.4 [CJAH
+
,19]. 

1.4.3.1 Advantages & Disadvantages of Eclat Algorithm 

i. It does not require repeated scanning of the database to find the support of k+1 

itemsets and it is obtained using the set intersection method from k-itemsets 

ii. It is faster than the Apriori algorithm as it uses depth-first search 

iii. Though it requires less memory consumption than Apriori, the usage of array 

storage structure requires huge memory and computational time for 

intersecting the sets when there are many transactions 

 Thus, to eradicate the said disadvantages, a vast amount of research has been 

contributed to FPM and many remarkable algorithms have been proposed in the last 



 14 
 

two decades. Further, the research contributions proposed in this thesis provides 

modifications to the standard and/or existing algorithms to reduce the execution 

time/runtime and memory space in finding the frequent patterns. 

 

Figure 1.4 An Example of Eclat Algorithm 

1.5 Applications of FPM  

 FPM has been used in a variety of real-world applications to improve 

decision-making and management. 

 In the business world, mining frequent patterns assist the business people in 

designing promotion schemes, providing discounts, organizing self and store layout, 

posting special advertisements, storage management and forecasting potential markets 

[CGGK,00]. 
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 In the medical domain, the frequent patterns enable the doctors to make 

treatment decisions and uncover the gene actions [OKSI,00],[Wet,02]. 

 In education, mining frequent patterns enable the teachers in modifying the 

teaching methods to improve their teaching quality, to facilitate students to be trained 

better and select the contents of teaching based on the student's calibre [MLWY
+
,00].  

 In disaster prevention, mining frequent patterns assist in weather forecasting 

by analyzing different environmental factors and help to prevent impending 

[ZWH,04]. 

 Similar to the previous it can be used in many other fields like police 

department, engineering design, software bug detection and recommendation systems 

[ABH,14]. Thus, mining frequent patterns plays a hot topic of research for the past 

twenty decades. 

1.6 Scope of the Research Work 

 FPM has been a purposeful research area in DM for the past two decades. 

Many researchers contributed numerous competent and scalable techniques for 

determining the frequent itemsets from transactional databases. Nowadays, online 

shopping become a mandatory mode of purchase in human lives and amazon like          

e-stores display the items which are "frequently bought together" to their customers 

and provides offers based on that. In this way, the e-stores increase their sales and 

profit considerably. Also, they display "Customers who bought this item also bought" 

in their web portal along with the product description and reviews. For displaying this 

information, FPM is an essential task and though there are scalable algorithms exists, 

the prolonged processing time and more memory consumptions are the major issues 
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in mining frequently bought items. So, there is always a need for developing better 

algorithms with reduced runtime requirements and memory usage.  

 Thus, this research work focuses on developing efficient FPM methods in 

finding frequent patterns in such a way that the runtime and usage of memory to be 

reduced than the existing algorithms.  

1.7 Aim & Objectives of the Research Work 

 Even though an enormous amount of remarkable research works have been 

contributed by many researchers for FPM to efficiently mine the frequent patterns 

from transactional datasets, the requirement of prolonged processing time and a large 

amount of memory space are still the two major issues that the FPM faces, especially 

when the amount of data is large. 

 To solve the above said issues, the research work aims to devise novel FPM 

algorithms to determine the frequent patterns from the static datasets to achieve the 

following objectives: 

i. To develop FPM algorithms that efficiently mine the frequent patterns 

with a minimum runtime  

ii. To formulate the FPM algorithms to consume less memory in mining 

frequent patterns 

 Thus, the research work focuses on developing robust FPM algorithms for 

reducing the runtime and consumption of memory in mining the frequent itemsets 

from transactional datasets. To evaluate the proposed FPM algorithms, they were 

compared with some existing algorithms to prove that the proposed algorithms will 

detect the frequent patterns faster with less memory. 
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1.8 Problem Statement 

 To accomplish the said objectives, four research models have been proposed 

in this research work as a research framework called SUMsFPM. They are: 

i. RISOTTO – A Novel Hybrid Approach for Enhancing Classical Apriori 

Algorithm 

ii. JAB-VDF – A Memory Efficient Implementation of Frequent Itemset Mining 

with Vertical Data Format Approach 

iii. TB-NPF-VDF  –  A Multithread, Novel Pattern based Algorithm for Finding 

Frequent Patterns with Jagged Array and Vertical Data Format 

iv. GNVDF – A GPU-accelerated Novel Algorithm for Finding Frequent Patterns 

Using Vertical Data Format Approach and Jagged Array 

1.9 Problem Description 

 The RISOTTO algorithm has been developed by combining both                 

Prefixed-itemset based storage structure and VDF approach to reduce runtime needed 

to find the frequent patterns from the transactional datasets. The Prefixed-itemset 

based storage structure utilized in this research work generates a fewer number of 

candidate itemset in each iteration of the algorithm. Similarly, the usage of VDF 

restricts the number of database scans to one rather than (2
|I|
 - 1) times where |I| is the 

number of items in a dataset.  

 The array storage structure utilized in the VDF normally requires more storage 

space as there are enormous numbers of TIDs for each item in the transactional 

database.  So to reduce the memory space, a Jagged Array Based - Vertical Data 

Format (JAB-VDF)  has been proposed in this research.  
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 Further, to minimize runtime and memory requirements, TB-NPF-VDF and 

GNVDF have been developed. The TB-NPF-VDF method generates frequent patterns 

by adopting a novel pattern generation method with multiple threads. Usage of 

multiple threads reduces the runtime required in generating frequent patterns and also 

utilizes the CPU effectively. Further, it uses the jagged array storage representation to 

minimize the memory requirement in preserving the frequent patterns. 

 To reduce runtime and memory space further, a GPU-accelerated method for 

finding frequent patterns with novel pattern generation using VDF with jagged array 

has been proposed. The adaptation of the novel pattern generation method in this 

research contribution generates lesser candidate itemsets than TB-NPF-VDF which 

reduces the runtime requirement. To reduce memory space further when compared to 

JAB-VDF, GNVDF adopts a data structure called Common Transaction List (CTL), 

which preserves the common TIDs of all items in frequent 1-itemset and they were 

removed from it. The removal of the items in CTL from frequent 1-itemset reduces 

memory space significantly. Thus, all the methods proposed in the research work 

reduces the runtime and memory space.  

 The workflow of the proposed research is shown in Figure 1.5. The proposed 

framework is called SUMsFPM which is coined by taking the first two characters 

from my name Ms.P.SUMATHI, the first character from my research supervisor 

name Dr.S.MURUGAN and the first characters from the phrase "FREQUENT 

PATTERN MINING". 
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Figure 1.5 Workflow of the Research 

1.10 Description of the Datasets  

 All the proposed algorithms were implemented using Python programming 

language (version 3.8.2), and GNVDF was implemented with CUDA Toolkit with 

NVIDIA GPU. To do a uniform and fair comparison, the experiments of all 

algorithms were conducted using the same software and hardware configurations.      

The experiments were performed using 8.00GB RAM, Intel Core i7 with 2.40GHz 

64-bit processor and Windows 8.1. To evaluate the effectiveness of the proposed 

methods, an empirical study was conducted with four datasets viz., chess, mushroom, 

t25i10d10k and c20d10k.  Out of the four datasets, chess and mushroom are the           

real-time datasets, t25i10d10k and c20d10k are the synthetic datasets. The synthetic 

datasets were normally generated through computer algorithms as an alternative to 

real-time datasets i.e. they are spawned digitally and not collected in the real world. 

All the datasets were obtained from the FIMI repository (http://fimi.ua.ac.be) and an 

open-source Data Mining Library (http://www.philippe-fournier-viger.com/spmf). 

The characteristics of the datasets were illustrated in Table 1.4.  

http://www.philippe-fournier-viger.com/spmf
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Table 1.4 Characteristics of Datasets 

Datasets/ 

Databases 

Number of 

transactions 

#|D| 

Number 

of items 

#|I| 

Average 

item count 

per 

transaction 

Maximum 

length 
Density % 

chess  3196   75 37.00 37 49.33% 

mushroom   8416 119 23.00 23 19.33% 

t25i10d10k   9976 929 24.77 63   2.66% 

c20d10k 10000 192 20.00 27 10.42% 

 

 The reason for choosing those datasets is that many researchers used them as 

bench-mark datasets for Frequent Itemset Mining and ARM-based research.  

1.11 Chapter Organization 

The organization of the thesis is given below.  

 In Chapter 2, a thorough investigation of the review of literature is made about 

finding frequent itemsets with their limitations since 2003. The investigation paves 

way for the proposed methodologies.   

 Chapter 3 presents a hybrid model called RISOTTO proposed in this thesis for 

finding frequent itemsets with an illustrative example. It also describes the basics of 

Prefix-itemset storage structure and VDF. Further, it analyzes the results of RISOTTO 

by comparing it with Prefixed-Itemset Storage and VDF. 

 Chapter 4 presents a memory-efficient data structure called jagged array for 

the VDF approach in finding frequent itemsets. It describes how the jagged array 

reduces the memory requirements mathematically along with an illustrative example. 

Further, it discusses the memory comparison in GB between JAB-VDF and VDF with 

δ=20%. 
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 An FPM algorithm using the multithreaded concept with a novel way of 

pattern generation and jagged array using VDF called TB-NPF-VDF has been 

presented in chapter 5 along with an appropriate illustration. It also describes the 

importance of multithreading with its advantages. Further, it discusses the results of 

the comparison with Matrix-Apriori, VDF and NPF-VDF. 

 Chapter 6 illustrates the background of the Graphical Processing Unit (GPU) 

and the processing flow of CUDA. It explains the proposed methodology,                  

GNVDF: a GPU-accelerated novel algorithm for finding frequent patterns using the 

VDF approach and jagged array with an appropriate illustration. It also describes 

memory usage required using the mathematical equations and how much amount of 

memory is saved in comparison with the JAB-VDF. Further, it discusses how the 

GPU enables the execution speed when compared with the same method without the 

usage of GPU. 

 The last chapter, chapter 7 is devoted to the summary of the key contributions 

along with possible future extensions. 

 By implementing the proposed FPM algorithm, the business users can make 

better decision making and increase the profit of their organizations by identifying the 

significant frequent patterns with minimum runtime and memory consumption.  
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CHAPTER - 2 

REVIEW OF LITERATURE 

You need to understand things in order to invent beyond them 

--Bill Gates 

2.1 Background 

 In general Data Mining (DM) tasks are classified into two categories. They are                       

i) Descriptive Mining and ii) Predictive Mining. Descriptive mining is the process of 

generating patterns from the existing data and is used for creating meaningful 

subgraphs, whereas predictive mining is to forecast the explicit values based on the 

patterns determined from the known results. Association Rule Mining (ARM) is a 

descriptive mining technique of DM. It is the process of discovering items, which tend 

to occur together in transactions i.e. which items are most frequently purchased by the 

customers. Association rules will help the retailer to develop marketing strategies and 

inventory management to increase the sale of their organization. 

Finding association rules can be decomposed into the following two subtasks.  

i. Discovering all itemsets whose support is greater than the user-specified 

minimum support is called FPM. 

ii. Generating the desired rules from the frequent itemsets with at least the 

specified minimum confidence. 

 FPM is a vital part of ARM which investigates the frequent patterns from the 

transactional databases. As the data are to be mined is large, a huge amount of time 

and memory is needed for accessing data and to store the frequent patterns 

respectively.  Though there are two decades of research in FPM, research in reducing 

the time and minimizing the memory requirement is a quite common issue in finding 

frequent patterns in FPM because there are huge data generated every day from 

http://www.azquotes.com/quote/844330
http://www.azquotes.com/author/5382-Bill_Gates
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various sources. Several FPM algorithms have been proposed in the literature and this 

chapter presents a brief overview of the relevant research works and which provides a 

stronger lead to the proposed research models.  

2.2 Works Related to Apriori and FP-Growth 

 In [THY,09], the authors have introduced a novel method for mining frequent 

itemsets called FIUT (Frequent Item Ultrametric Tree). In that, the authors have used 

a special UT for enhancing the efficiency in obtaining frequent itemsets.  Based on the 

comparison with the FP-growth algorithm, it was proved by them that the FIUT 

outperforms FP-growth by reducing I/O overhead and search space.                        

The FIUT generates the frequent itemsets only by checking the leaves of the FIU tree 

without traversing the tree recursively and also using compressed storage. 

 An improved version based on Coding and Map/Reduce (CMR-Apriori) has 

been proposed in [GR,13]. They compared the traditional Apriori, Apriori algorithm 

with parallel processing and CMR-Apriori and proved that the CMR-Apriori 

algorithm outperforms others with twice Map/Reduce processes.  

 A new algorithm called enhanced Apriori algorithms has been introduced in 

[LVSM,14], which takes less scanning time and reduces the I/O spending time by 

cutting down the unwanted transaction records in the database. A new algorithm 

called semi-Apriori using a binary-based data structure for mining frequent itemsets 

as well as association rule has been proposed in [FAB,14] and proved that this 

technique outperforms Apriori in terms of execution time.   

 An improved Apriori has been designed in [SNM,15]. In this method,                      

the transaction IDs along with the support count is maintained in the frequent itemsets 

and they generated the k+1 itemset by set intersection and proved that the number of 

database scans is reduced than the classical Apriori algorithm.   
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 In [BGD,15], the authors have proposed an improved version of Apriori for 

reducing the time for searching the database and the memory space by partitioning.              

A novel Apriori algorithm has been proposed in [JS,15] to overcome the limitations of 

the classical Apriori algorithm based on local and global power set and observed that 

the novel algorithm requires only two scans instead of many scans as in the classical 

Apriori algorithm. In [PD,16], the authors surveyed the improved approaches of 

Apriori from 2012 to 2015. 

 In [LS, 16], the authors have introduced a Modified Apriori algorithm using 

the greedy and vectorization method. They compared the execution time of traditional 

Apriori and Modified Apriori by varying the number of transactions and proved that 

the Modified Apriori requires less time than the Apriori. They also proved that the 

proposed method reduces the number of rules generated than the original Apriori.   

 The authors in [BDH, 16] have developed a new recursive algorithm based on 

Apriori called Meta-Apriori. In that, they partitioned the whole database into smaller 

ones using the divide and conquer approach. After partitioning, they applied         

Meta-Apriori if the partition is huge or Apriori if it is of reasonable size. Finally,                

they merged the achieved results to get the result for the whole database and proved 

that Meta-Apriori requires less time than the Apriori.  

 In [DZZC,16], the authors have proposed a modified Apriori called 

DC_Apriori. In this, the authors have restructured the storage structure of the database 

and they generated k-frequent itemsets by joining the 1-frequent itemsets with            

(k-1)-frequent itemsets. It prevents generating invalid candidate itemsets, reduces the 

database scans and also enhances the itemset generation. 
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 A modified Apriori has been proposed in [KSG,16] using the transposition 

technique and proved that it is less complex than the classical Apriori. An improved 

Apriori algorithm has been presented in [RS1,16] and made a comparison between 

conventional Apriori and Improved Apriori algorithms. It was proved that the 

improved Apriori provides better performance than the classical Apriori algorithm.  

 A prefixed-itemset based data structure for candidate itemset generation has 

been proposed in [YZ,16]. It requires smaller memory space and carried out the 

connection and pruning operations much faster than Apriori.  It was analyzed that the 

proposed structure improved the efficiency of the classical Apriori algorithm.  

 The authors in [VLC+,16] proposed a new algorithm for mining frequent 

itemsets based on the idea of N-lists, an improved version of PrePost called NSFI 

algorithm which uses a hash table. The empirical results showed that NSFI 

outperforms PrePost and Eclat. 

 A method called Advanced Reverse Apriori Algorithm (ARAA) has been 

proposed in [BPG,17], which is opposite to Apriori. In that, the authors have 

generated the k
th

 itemset first and moved on to the lower level sets i.e. k-1,k-2,…,1. 

They compared Apriori Algorithm (AA), Reverse Apriori Algorithm (RAA) and 

ARAA and proved that the number of scans in ARAA is less than the AA but greater 

than RAA and is equal to the number of transactions in the database. Also, proved that 

the ARAA is more suitable for all types of datasets but RAA is applicable for higher 

datasets because it drastically reduced the multiple scans, execution time and also 

increased throughput.  
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2.3 Works Related to Matrix-based Apriori 

 In [EZ,03], the authors have introduced a new disk-based ARM algorithm 

called Inverted Matrix. In this method, the transactional data is first converted into a 

new database layout called Inverted Matrix to avoid multiple scanning of the 

database. Using this, the frequent pattern could be found in less than a full scan with 

random access. They have also built a small independent tree by summarizing the             

co-occurrences for each frequent item and finally, a non-recursive mining process 

could be applied to reduce the memory requirements with minimum candidate 

generation. From the experimental studies, they have revealed that the Inverted Matrix 

approach outperformed the FP-Tree algorithm, especially in mining very large 

transactional databases. 

 The authors in [YH,05] have proposed a new matrix algorithm for generating a 

large frequent candidate itemset efficiently. It generates a matrix and the frequent 

candidate sets were obtained from that matrix. Numerical experiments and 

comparisons were performed using the Apriori algorithm for small, medium, and 

large size datasets. The experimental result confirms that the proposed algorithm 

outperforms the Apriori algorithm.  

 The authors in [PVG,06], have introduced a novel method called Matrix 

Apriori, which utilizes simple data structures viz., matrices, and vectors to generate 

frequent patterns. They have found that the algorithm minimizes the number of 

candidate itemsets generated, thereby efficient computation is achieved than Apriori 

and  FP-growth algorithms.  

 In [HYW,08], the authors have developed a novel method called                      

Efficient Sequential Pattern Enumeration (ESPE) based on a 2-sequence matrix to 
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mine sequential patterns without setting minimum support in advance. This approach 

finds frequent sequences from all 2-sequences by scanning the sequence database only 

once. It uses simple mathematical equations and an efficient storage structure for 

computing the index of all 2-sequences. Further, it supports the incremental addition 

of new items and sequences. They have proved that the performance of ESPE is better 

than the AprioriAll and PrefixSpan for various datasets.  

 In [ZLZ,08], the authors have initiated a novel algorithm based on the Boolean 

matrix. It finds outs the maximum frequent itemsets in a short time and scans the 

database once through the vector and matrix operations. Further, it does not produce 

any candidate itemsets. The authors in [YE,10] compared the novel matrix Apriori 

and FP-growth algorithms and revealed that both the algorithms are better alternatives 

to the Apriori algorithm in terms of database scan and candidate generation.                

The FP-growth is better than Apriori when the minimum support value is decreased. 

Matrix Apriori algorithm was proposed as a faster and simpler alternative by 

combining both Apriori and FP-growth.  

 The authors in [Jin,10] have presented a new mining algorithm for discovering 

Maximal Frequent Itemset (MFI). It eliminates and plotting blocks to the matrix by 

simply counting the value of rows and columns and the experimental result showed 

that the proposed algorithm provides an efficient result. In [ZWX,10], the authors 

have presented a method called MaxMatrix which does MFI checking by using the 

pseudo-projection matrix of the MFS matrix. It uses only logical operation for MFI 

checking which saves system resources significantly because it does not allocate new 

memory space for the pseudo-projection matrix. Further, they proved that the method 

reduces the MFI generation time and the number of subsets used for ARM.  
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 The authors in [YWWJ,11] have developed an innovative method called 

Boolean matrix. In that, they used the Boolean matrix array to replace the transaction 

database and removed the non-frequent itemsets from the matrix. To generate the               

k-frequent itemsets, the vector operation "AND" and the random access characteristics 

of an array are used in the Hadoop Platform and proved that it exponentially increases 

the efficiency of the algorithm. Y.S.He and P.Du [HD,11] have built a new algorithm 

based on compressed matrices which improve the efficiency of creating k-frequent 

itemsets, by scanning the database once, and thereby mining association rules is also 

improved. The newly created algorithm reduces I/O load and also improves the speed 

of discovering frequent itemsets, especially in large itemsets.  

 To overcome the disadvantages of the Apriori algorithm, the authors in 

[WS,11] have initiated a Boolean matrix, and the transaction data is converted to 

Boolean values and stored in place. It generates frequent itemsets directly from the 

Boolean matrix and also saves a lot of memory space. This approach requires only 

one database scan and reduces the number of candidate sets and system costs.                    

 The authors in [MDA,11] have proposed an Advanced Matrix Algorithm 

(AMA) for finding out frequent itemsets from the transactional database using the 

Boolean matrix by scanning the database only once. The proposed algorithm is more 

efficient and effective in generating frequent itemsets and removed the most 

significant issue of ARM, especially on computational complexity which handles 

huge transactional databases.  

 The authors in [Wan,11] have proposed an improved algorithm for             

ARM-based on a relation matrix. The transaction database is scanned and stored in 

the matrix with entries either one or zero. The frequent itemsets are generated from 
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the relation matrix and then the association rules are derived from the frequent 

itemsets. They have shown that the proposed algorithm is efficient both in theoretical 

and experimental analysis.  

 The authors have developed a matrix algorithm [DD,12], which transforms the 

database into a matrix database. In this, the frequent k-itemset is obtained from the 

matrix which avoids the repeated database scan and proved that it greatly reduced the 

number of candidate itemsets and improved the efficiency of computing.   

 In [OE,12], the authors have focused on the solution to an incremental update 

problem by proposing the Incremental Matrix Apriori (IMA) algorithm. It scans only 

new transactions, allows the change of minimum support, and handles new items in 

increments. The matrix Apriori works without candidate generation and scans the 

database twice. The experimental results showed that the IMA provides speed-up 

between 41% and 92% while increment size is varied between 5% and 100%.  

 T.N.Mujawar et al. [MSB,12] have presented an approach for mining 

association rules from XML data using XQuery and Apriori algorithms without any 

pre and post-processing. In this research article, a Matrix-based Apriori algorithm 

(MAPRIORI) and an improved matrix-based Apriori algorithm with pruning 

optimization and transaction reduction strategy (MTPAPRIORI) were implemented. 

The result showed that the database is scanned only once in both of these algorithms. 

Further, it is observed that the number of frequent itemsets generated and the running 

time by the MTPAPRIORI algorithm is less than the MAPRIORI with different 

support levels. Also, it reduces the scale of the transaction database to be scanned and 

provides overall efficiency.  

 A Matrix-based multidimensional sequential pattern mining algorithm has 

been introduced in [QL,12]. It does not need the repeated scan of the database to 
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generate a 1_Large sequence k-Itemset. During the first scan, 1_Large itemsets are 

obtained. The frequent patterns are obtained from the Boolean sequenced matrix using 

set and matrix theory in the second database scan. It occupies less memory, improves 

mining efficiency, and runs faster than other algorithms. H. Singh and R. Dhir 

[SD,13] have presented a new Matrix Based Algorithm with Tags called MBAT.                  

It is based on transactional matrix and transaction reduction to find the frequent 

itemsets and proved that the MBAT is more efficient than the classical Apriori 

algorithm in  ARM. 

 A.R.H.Alwa and B.A.V.Patil [AP,13] have launched a novel approach to 

improve the Apriori algorithm using Matrix-File. This approach extracts particular 

rows and columns and performs a function on that rather than scanning the entire 

database.  It outperforms the classical Apriori algorithm because the pruning process 

is applied to those columns whose item count is less than the minimum support.          

It also saves time and speed by reducing the redundant scanning of the database.   

 To solve the problem in Apriori the authors in [YXHJ
+
,13] have proposed an 

improved frequent itemset mining algorithm based on Sorting Index Matrix (SIM).            

It generates frequent 2-itemset from 1-itemset vector and the corresponding matrix 

multiplication sequentially. From the frequent 3-itemset, it creates a simple SIM for 

frequent k-itemsets. The entire process simply scans the database only once and does 

not produce candidate itemsets. From the experimental outcomes, they have shown 

that the SIM improves the efficiency of mining frequent itemsets than the existing 

methods.  

 Using dynamic matrix Apriori and Multiple Support Apriori (MSApriori),                

the authors in [Cha,14] have built a methodology to mine association rules over 
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dynamic databases. From the experiments, it was found that a remarkable 

improvement has been achieved in terms of time, and the number of frequent items 

and generated rules. A Matrix Apriori with an incremental approach for ARM has 

been proposed in [BML,14] which were based on Apriori and  FP-growth algorithms. 

It uses simple data structures namely matrix and vector, generates frequent patterns, 

and minimizes the number of itemsets. It improved the speed of the mining process 

and also increased efficiency than the previous algorithms.   

 A new method named Dynamic Matrix Apriori has been proposed by 

R.Chaudhary et al. [CSS,15] using the dynamic matrix technique, which is much 

faster when compared to traditional Apriori in the generation of candidate itemsets. 

They also have proposed a new framework that uses the Map Reduce programming 

model. From the experiments on a large set of databases, they have achieved an 

improved result in terms of runtime, the number of generated frequent itemsets and 

rules. In [VP,15], the authors have proposed a method based on transaction reduction 

techniques for mining frequent patterns from large databases. In this, the data is 

compressed in the form of a bit array matrix and the whole database is scanned only 

once. To achieve efficiency, the frequent patterns are mined from this matrix by using 

the count-based transaction reduction and support count method.  

 The authors in [AH,15] have introduced a novel method to find frequent 

itemset using probability and matrix in two steps. In the first step, a preliminary 

matrix is generated for the dataset. The regular itemsets are directly generated from 

the probability matrix in the second step. The improved algorithm reduces the number 

of comparisons and scans. 

 In [TG,15], the authors have introduced a vertical format approach for finding 

frequent itemsets using the Boolean matrix. The presence of an item for the TIDs is 
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represented as 1 and 0 otherwise. It uses logical AND operation for finding the SC 

from frequent 2-itemset to frequent n-itemsets until it is not empty. It also uses the 

additional information in the Boolean matrix namely "number of iterations" to control 

the number of iterations for candidate generation. Finally, they have demonstrated that 

the FPMBM is more efficient and scalable than the existing ones.  

 In [MR,16], the authors have created an algorithm called Matrix-Over-Apriori 

(MOA) by using elementary matrix and AND operation. They compared MOA with 

all other existing techniques for ARM and proved that MOA is scalable, precise, 

simple, clear, easy to implement, and also reduces the memory and time requirements 

than the existing ones. A new method for Mining Frequent Itemsets with Weights 

over a Data Stream using Inverted Matrix called MFIWDSIM has been proposed by 

L.N.Hung and T.N.T.Thu [HT,16]. In this, the data stream is converted into an 

inverted matrix and saved in the computer disks and mines them many times with 

different support thresholds and alternative minimum weights. With the analysis and 

evaluation, they proved that the MFIWDSIM is better than WSWFP-stream.   

 In [NJGC
+
,17], the authors have proposed a modified Apriori algorithm 

named Frequent Matrix Apriori (FMA), for reducing the time complexity. In that,                

the database information is stored in the frequent matrix by scanning it only once and 

then the matrix is discretized using minimum support parameters and the most 

frequent itemsets are found recursively by scanning the discretized dataset.                   

By the theoretical and experimental way, the authors have proved that FMA is more 

efficient than the original AA in terms of time. 

 In [KK,17], the authors have presented a new top-down approach called                 

MB-MFIM by using a transaction Boolean matrix. In this method, the maximal 

frequent itemsets are directly generated without the help of a subset based on the 
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compressed matrix. The proposed algorithm provides a better result than the                  

Maximal Frequent Itemset First (MFIF) algorithm with datasets of different sizes and 

thresholds.  

 An improved Apriori algorithm based on relational algebra theory has been 

proposed in [ZZ,17]. The relationship matrix and correlation operations are obtained 

by Optimization Relation Association Rule. The database is scanned only once with a 

relation matrix which reduces the running time of the algorithm to mine frequent 

itemsets. The simulation results showed that the improved algorithm works more 

efficiently than the existing one.  

 Judith Pavón et al. [PVG,06] have introduced a method called Matrix-Apriori 

to increase the speed of finding frequent itemsets. It creates a Boolean matrix MFI by 

scanning the transactional database which contains the frequent 1-itemset. The vector 

STE maintains the SC of the candidate itemset. To accelerate the search of frequent 

patterns, the first row of MFI writes the indexes. For producing frequent patterns,                   

a conditional pattern generation method was used in this method and proved that it 

outperforms Apriori and FP-Growth algorithms.  

 In [Lan,18], the author has introduced an improved matrix pruning and weight 

analysis Apriori algorithm by using matrix compression and weight analysis 

algorithms as reference. This algorithm constructs the Boolean transaction matrix and 

removes infrequent itemset and generates a new candidate itemset. Then it calculates 

the item's weight, transaction's weight, and weight support. With the experimental 

results, the author has proved that the improved Apriori algorithm not only reduces 

the number of repeated scans of the database but also improves the efficiency of data 

correlation mining.  
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 A new incremental ARM algorithm called FBCM has been proposed in 

[ZOKL
+
,19] by combining the Fast Update Pruning (FUP) algorithm with a 

compressed Boolean matrix to suit the dynamically changing data. It requires only a 

single scan of the database and provides support for incremental databases.                   

While scanning, it obtains two compressible Boolean matrices and applies ARM to 

those matrices. When compared with existing algorithms, it improved the 

computational efficiency of incremental ARM and proved that it is suitable for 

knowledge discovery in the edge nodes of cloud systems.  

 The authors in [XJW,19], have introduced a modified Apriori algorithm based 

on the Boolean matrix and weight function. In this algorithm, they have trimmed the 

duplicate transactions by adding weight rows to the matrix and also compressed the 

matrix to reduce storage space. Self-join and intersection operations were used to 

obtain k-frequent itemsets. They have paralleled it using Hadoop and each map 

activity finds the frequent itemset for the subset of the large matrix which shortens the 

processing time in the big data environment.  

 Research has been contributed by Sun et al. by applying the prefixed-itemset 

storage and the compression matrix to optimize the connection, pruning, support 

counting steps, and transaction storage mode of the Apriori algorithm. It uses an 

intersection strategy for determining SC. The optimized Apriori is based on the 

MapReduce technique for massive data and they have proved that the optimized 

Apriori outperforms others [SL,20].   

 The authors in [SS,20], have presented a novel algorithm for generating 

frequent patterns from a large dataset. Initially, they transformed the transactional 

dataset into a Boolean matrix to generate a 1-frequent itemset matrix, and then it is 
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divided into multiple loads based on the available nodes in the system. To discover all 

frequent itemsets, they have used AND operation on individual load and proved from 

the experiment that the computational time and consumption of memory reduced.  

 The authors have initiated an algorithm for finding frequent itemsets based on 

the transaction matrix, itemset matrix, and item index list in [SJ,20]. It reduces the 

number of database scans to one and avoids frequent I/O operation by compressing 

the matrix and then performing bitwise AND operation on the compressed matrix.                 

The frequent itemsets were generated using the itemset count and index list.                      

The main advantage of this method is that no candidate itemsets are generated and 

outperforms the existing method.  

2.4 Works Related to Vertical Data Format 

 A novel VDF representation called Diffset has been developed by the authors 

in [ZG,03], which keep track of the differences in the TIDs of a candidate pattern and 

from which it generates frequent patterns. The method cut down the size of memory 

required to store intermediate results and also increased performance significantly.  

 Y. M. Guo et al. [GW,10] have initiated a new algorithm for mining frequent 

itemsets with VDF. It only needs a single scan of the entire database and uses the 

AND operation for finding the frequent itemsets. Furthermore, it was demonstrated 

that the algorithm requires less storage and enhances mining efficiency. 

 In [KSK,12], the authors have presented a VDSRP method to generate a 

complete set of regular patterns over a data stream at a user given regularity threshold 

using a sliding window and VDF. It has been proved that the proposed method 

outperforms both in execution and memory consumption.  
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 The authors in [VV,13] have introduced a Parallel Regular Frequent Pattern 

(PRFP) method to find out the regular-frequent patterns from large databases using 

VDF format and proved from the experiments that the algorithm reduced the number 

of database scans, I/O cost and inter-process communication. 

 In [AR,14], a new Rehashing Based Frequent Itemset (RBFI) generation 

algorithm of the VDF for the transactional database has been proposed. Rehashing has 

been introduced to avoid hash collision and secondary clustering problems in hashing. 

It was proved that RBFI provides better performance than Apriori and Hash-based 

algorithms.  

 In [IMA,15], a method called Vertical Boolean Mining (VBM) has been 

introduced to eliminate the pitfalls of vertical mining by compressing the bit vectors 

of frequent itemsets. It intersects two compressed bit vectors without requiring a   

time-consuming decompression step. They found that the VBM is superior to both 

Apriori and classical vertical ARM in terms of time and memory usage.   

 Jen, T. Y., et al. have created a novel vertical format based parallel method for 

finding frequent patterns called Apriori_V with MapReduce platform. They proved 

that it provides a significant improvement in reducing the number of operations and 

decreasing computational complexity [JMG,16]. 

 A Vertical Format Frequent Mining (VFFM) algorithm has been proposed in 

[GSG,16] to find frequent items from the database. It first transforms the database into 

VDF, as <item, {transaction-id}> and finds the candidate itemsets after the first scan 

of the transactional database. The SC of each (k+1)-candidate itemsets is counted by 

the intersection of every pair of frequent single items instead of the database scan.               

It was proved by them that the VFFM is efficient when compared with AA, FUP and 

sampling method.   
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 In [TC,16], a tokenization based approach for optimizing enhancing the 

Apriori algorithm has been proposed.  Ravikiran, D., et. al, have proposed a new 

model called RCP to mine regular sort of crimes in crime databases using VDF which 

requires only one database scan. From the experimental results, they proved that RCP 

is more efficient than the existing RPtree [RS2,16]. In [Sin,16], the authors have 

focused on the various FPM techniques, their challenges in static and stream data 

environments.    

 Subashini et al. [SK,19] have studied ARM methods in HDF and VDF 

approaches viz., Apriori, APRIORITID, APRIORI_RARE and APRIORIRARE_TID. 

They analyzed the pros and cons of each technique.  

2.5 Works Related to Eclat 

 In [AR,14], the authors have built the enhanced versions of Apriori and Eclat 

algorithms. In these enhanced versions, the authors have used individual thresholds 

for each itemset and proved that the enhanced-AA performs best when compared with 

the Enhanced-Eclat Algorithm.  

 In [MYZL,16], the authors have presented an improved version of Eclat called 

the Eclat-growth algorithm using an increased search strategy. For reducing the 

runtime in generating an intersection of two itemsets and support degree calculation, a 

BSRI (Boolean array Setting and Retrieval by Indexes of transactions) method has 

been introduced. It has been proved by them that the Eclat-growth outperforms Eclat, 

Eclat-diffsets, Eclat-opt and hEclat in mining association rules.  

 An enhanced Apriori and Eclat have been introduced in [SV,17], in which 

different thresholds are maintained for each itemset. They compared different sizes of 

dataset and items and proved from the experiment that the enhanced-Apriori 
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algorithm is better than the Enhanced-Eclat algorithm in terms of the number of 

frequent items and rules.  

2.6 Works Related to GPUs 

 W. Fang et al. [FLXH+,09] have introduced two implementations for Apriori 

using GPUs with Single Instruction, Multiple Data (SIMD) architectures.                           

Both methods use a bitmap data structure. To prevent the data transformation between 

the GPU and CPU memory, the first one was executed using GPU. The second one 

uses both the CPU and GPU for processing with trie structure. They proved that both 

implementations speed up the processing than the classical Apriori algorithm.  

 The authors J. Zhou et al. have designed [ZYW,10] a GPU-based Apriori 

algorithm with OpenGL to accelerate ARM and proved that it is better than the 

traditional ones. 

 S. M. Fakhrahmad et al. [FD,11] have developed different parallel versions of 

a novel sequential mining algorithm for finding frequent itemsets. The approaches 

are: i) allocating a processor to each partition, ii) allocating a processor to each 

column, and iii) allocating the k
th

 processor to mine the [FD,11] k
th

-itemsets.  

 A compressed bit matrix-based parallel algorithm for exploring frequent 

itemsets has been introduced by Zong-Yu et al., which uses both bottom-up and                    

top-down approaches for efficient pruning [ZY,12]. It also uses OpenMP's parallel 

multithreaded, dynamic scheduling approach to extract frequent itemsets.                         

Finally, they demonstrated that this approach reduced memory space, I/O overhead 

with a single database scan compared to the Apriori algorithm.  

 Authors in [HYZH+,13] have suggested a novel algorithm,                                  

namely Accelerating Parallel Frequent Itemset Mining on Graphics Processors with 



 40 
 

Sorting (APFMS). This parallel frequent itemset mining employs GPUs in the process 

of mining. GPUs speed up the process using the OpenCL platform and proved that the 

APFMS outperforms the previous computation time-based methods. 

 William Albert et al. [AFB
a
,14], and it is based on the parallel processing 

nature of GPU. In the proposed method, a bitset representation was used for parallel 

processing and proved that the HSApriori is faster than traditional HorgeltAprirori. 

 M. Tiwary et al. [TSM,14] developed a parallel Apriori Map Reduce model by 

employing high-performance GPU to address the issues of Apriori. In this, every node 

in a Hadoop cluster has a GPU attached to it. They also employed NVIDIA's GPU,              

as well as JCUDA and JNI, to complete the integration. From the results,                           

they finalized that the proposed method requires less run time. The disadvantage of 

the algorithm is that an additional hardware cost is linked with the GPUs in each node 

in the Hadoop cluster. 

 In [QGYH,14], the authors have designed a Spark-based parallel Apriori 

algorithm called YAFIM (Yet Another Frequent Itemset Mining) and revealed that the 

YAFIM is faster than the Apriori's MapReduce implementation by 18 times.  

 To remove the limitations in the traditional cluster-based map-reduce,                          

J. Li et al. [LSHW,15] have designed a multi-GPU based parallel Apriori algorithm to 

accelerate the calculation process of Apriori. It has been initiated especially to mine 

association rules in medical data. The analytical results have proved that the proposed 

method significantly improves the execution speed with a lower cost for medical data.  

 A novel method called CGMM to suit both sparse and dense datasets has been 

introduced by L. Vu et al. [VA,15]. To enhance the speediness of the FPM process, 

the CPU is combined with GPU. In this method, the CPU uses the FP-tree data 

structure to perform mining, and the GPU converts the data to bit vectors.                         
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They demonstrated that the performance of CGMM is faster when compared with the 

existing sequential FPM and GPApriori by testing with AMD CPUs and NVIDIA 

GPU. 

 A new multi-core based parallel mining algorithm for finding frequent 

itemsets has been presented in [HL,15] using LINQ queries. It decomposes the 

transactional database into smaller datasets known as conditional patterns.                      

Many threads ran concurrently on a multi-core computing system, one for each 

conditional pattern. They proved that the algorithm is faster by 2x and 4x times than 

the fast Eclat and FP-growth algorithms, respectively.  

 Y. Li et al. [LXYC,17] have developed a GPU-based algorithm called                 

Multi-level Vertical Closed FIM. It uses a multi-layer vertical data structure to reduce 

memory usage.  The implementation is being accelerated with GPU to achieve               

high-speed computation, mainly for large sparse datasets.   

 A Dynamic Queue and Deep Parallel (D2P) Apriori algorithm were generated 

by Y. Wang et al. in [WXXS,18].  They parallelized the candidate generation task 

with a dynamic bitmap queue and  Graph-join. It also uses a vertical bitmap structure 

with low-latency memory on GPU. They found that the D2P-Apriori is faster by 23 

times than modern CPU methods.   

 A fast GPU-based frequent itemset mining algorithm for massive datasets 

called GMiner has been introduced in [CHK,18] to overcome the limitations of 

various parallelism methods viz., multi-core CPU, multiple machines and many-core 

GPU, particularly the workload skewness. It extracts the patterns fastly from the 

enumeration tree by using the computational power of GPU. From the 

experimentation, they showed that the GMiner is better than the existing sequential 

and parallel methods.  
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 The authors Y. Djenouri et al. [DDBC,19] have created three                               

High-Performance Computing (HPC)-based versions of Single Scan (SS) for FIM 

viz., GSS, CSS, and CGSS. The GSS, CSS, and CGSS have been implemented by SS 

with GPU, cluster architecture, and GPU with multiple cluster nodes. They also 

proposed three methods for reducing GPU thread divergence and cluster load 

balancing. Experiments have shown that the CGSS outperforms the SS, GSS, and 

CSS in terms of speed. 

 In [GLFC
+
,19], the authors have reviewed the works related to                           

Parallel Sequential Pattern Mining (PSPM), viz., partition-based, Apriori-based, 

pattern growth-based, and hybridized algorithms for PSPM. They also reviewed the                   

open-source software utilized in PSPM. Further, they summarized the issues and uses 

of PSPM on big data.  

 In [HTDV,19], the authors have proposed an FPM algorithm with a multi-core 

processor and Multiple Minimum Support called MMS-FPM. It quickly generated 

frequent patterns. It has been designed mainly to solve rare item problems. They have 

proved that the MMS-FPM is superior to MSApriori and also scalable.  

2.7 Observations and Limitations of the Existing Literature 

 From the existing literature, the following observations were identified which 

paves the way for the researcher to select the research problem. 

i. Some of the existing methods generate more candidate itemset and requires 

much disk access 

ii. Though the VDF approach restricts the database scan to one, the memory 

required for storing TIDs for each item is huge 
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iii. Some of the data structures utilized in the existing literature may generate a 

reduced set of candidate itemsets but requires more memory 

iv. Some of the pattern generation methods may need more execution time in 

generating the frequent patterns for the transactional databases 

v. There are still issues related to data size and scalability 

 From the above observations, it has been identified that there is always a need 

for speedy algorithms for frequent pattern generation with a minimum amount of time 

and memory usage. Thus, this research work focuses on developing novel FPM 

algorithms with the compact data structure called jagged array by creating novel 

pattern generation approaches using multithreading and GPU usage with the VDF 

approach.  
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CHAPTER - 3 

RISOTTO: A NOVEL HYBRID APPROACH FOR 

ENHANCING CLASSICAL APRIORI ALGORITHM 

The POSITIVE THINKER sees the INVISIBLE, feels the INTANGIBLE,                                                               

and achieves the IMPOSSIBLE 

--Winston Churchill 

3.1 Background 

 Association Rule Mining (ARM) is a successful technique for finding relations 

between data items in databases. Finding frequent itemsets is one of the 

computationally crucial steps in the task of mining association rules. The Apriori is 

one of the most important algorithms for finding frequent itemsets. The main 

challenge in classical Apriori is that the mining often needs to generate a huge number 

of candidate itemsets and require more database scans, increasing time and decreasing 

efficiency. It also increases the I/O cost and requires more memory. To eradicate these 

issues, a lot of improvements to Apriori have been proposed in the literature.  

 Research in improving the Apriori is a common issue and is an ongoing 

research topic these days. A refinement to the Apriori, which uses a                                     

Data Structure (DS) called prefixed-itemset for candidate itemset generation and 

Vertical Data Format (VDF) approaches, has been proposed in the literature.      

Prefixed-itemset storage shortens the time for generating candidate itemsets but still 

needs more database scans as in Apriori, and VDF scans the database only once.  

RISOTTO, a novel hybrid approach for generating frequent patterns has been 

contributed to this research by considering these advantages. It combines both the 

prefixed-itemset storage structure and VDF.  

http://www.azquotes.com/quote/504464
http://www.azquotes.com/quote/504464
http://www.azquotes.com/author/2886-Winston_Churchill
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 The proposed work minimizes the number of database scans to one and 

reduces the time needed for candidate itemset generation.                     

3.2 Prefixed-itemset Storage Structure 

 It is a new way of storing itemsets [YZ,16] that uses <Prefix-key, Values> pair 

for each itemset. The Prefix-key column stores the (k-1)-items in the k
th

 itemset,                

and the last item in k
th 

itemset are stored in the Values column. If there is no prefix for 

an itemset, NULL is stored in the prefix-key. Suppose if the 1-itemset contains {A, B, 

C, D, E} and 2-itemsets contains {AB, AC, AE, BC, BD, BE}, then the                      

prefixed-itemset based storage structure for the same is illustrated in Table 3.1. 

Table 3.1 Prefixed-Itemset Storage Structure 
 

Itemset Prefix-key Values 

1-itemset NULL {A,B,C,D,E} 

2-itemset A {B,C,E} 

B {C,D,E} 

 After the k-itemsets are stored in the prefixed-itemset storage, in the joining 

step, the (k+1)-itemset are generated by first joining or connecting the values of             

k-itemset, and then the key values are prefixed with each (k+1)-itemset which forms 

Ck+1. In the pruning step, the (k+1)-itemset which does not satisfy the Apriori property 

is removed from Ck+1. 

3.3 Vertical Data Format 

 In general, there are two ways in which a transactional database can be 

represented in frequent pattern mining algorithms. They are Horizontal Data Format 

(HDF) and VDF. In VDF the data can be expressed in {item - TID_set} notation 

where the item is the name of the item in the database and TID_set is the set of 

transactions that the item belongs to.  
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 This method first transforms the HDF dataset into VDF by scanning the 

dataset once, which forms candidate 1-itemset. Among them, the itemset that satisfies 

the minimum support (δ) will be considered as a frequent 1-itemset.  It is noted that 

the support count for an itemset is the length of the TID_set. Starting with k=2,                    

the frequent k-itemsets can be used to construct the candidate (k+1) itemsets based on 

the Apriori property. The TID_set for the candidate (k+1) is computed by intersecting 

the TID_sets of the corresponding item in k-itemsets. This process is repeated by 

incrementing k by one until no frequent itemsets or candidate itemsets can be found.  

 The main advantage of VDF is that there is no database scan is required for 

finding the support of (k+1)-itemsets because the TID_set of k-itemset holds the 

complete information for finding such support. The disadvantage is that if the TID_set 

is long, it will take substantial memory space and more computation time to intersect 

the long sets. 

3.4 Proposed Methodology 

 It combines both prefixed-itemset based storage structure [YZ,16] and the 

VDF approach [SNM,15] for enhancing the performance of the classical Apriori 

algorithm in terms of time and the number of database scans. It progresses as follows: 

 In the first step, the algorithm finds the candidate 1-itemset (C1) from the 

transactional database by scanning it once as in classical Apriori, and it is transformed 

into VDF, i.e. it maintains the TID_set in which the frequent 1-itemset occurs along 

with the Support Count (SC) or Total Number of Transactions (TNT). The frequent           

1-itemset (L1) is constructed from C1 by removing the items whose SC is less than δ. 

After finding L1, the information regarding this is stored in the new DS called 
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prefixed-itemset based storage, as in Table 3.1. The prefix for frequent 1-itemset is 

always NULL, and the values are the items in L1. In general, the frequent k-itemset 

where k=2,3,…,n contains (k-1)-items as prefix-key (LKk) and the last item as the 

value (LVk).  

 In the second step, the values in frequent 1-itemset in the prefixed-itemset 

based storage LV1 is joined by itself (LV1 ⋈ LV1) instead L1⋈ L1 and the items which 

do not satisfy the Apriori property is removed, and then they are combined with the                    

prefix-key which forms C2. To improve the efficiency by reducing the search space by 

considering the Apriori property, i.e. all nonempty subsets of a frequent itemset must 

also be frequent. The SC for the items in C2 is calculated just by performing the 

intersection of the TID_set in L1 instead of scanning the database as in classical 

Apriori, which minimizes the database scans. From C2, L2 is formed by removing 

those elements from C2 whose SC<δ. Similar to the previous step, the frequent                        

2-itemsets are stored in the prefixed-itemset based storage with the appropriate     

prefix-key and values. The second step is repeated with k=3,4,5,…,n until there are no 

more candidate itemsets found.  

 The proposed approach is named RISOTTO
1
, which is abbreviated by taking 

the boldface uppercase letters from the phrase "pRefixed ItemSet stOrage verTical 

daTa fOrmat". The algorithm for RISOTTO is shown below. The workflow of 

RISOTTO is illustrated in Figure 3.1. 

 

1P.Sumathi, S.Murugan, "RISOTTO - A Novel Hybrid Approach for Enhancing Classical Apriori Algorithm", 

International Journal of Scientific Research in Computer Science Applications and Management Studies,                   

ISSN: 2319 – 1953, Vol. 7, No. 5, September 2018 (UGC Approved Journal). 
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Algorithm 3.1: RISOTTO - An algorithm for finding frequent itemsets 

Input:  

 A dataset D with n transactions; 

 δ - minimum support threshold. 

Output:  

 Frequent itemsets (L) in D. 

Method: 

(1) LØ; 

(2) C1scan D and generate candidate 1-itemsets; 

(3) L1generate frequent 1-itemsets based on δ; 

(4) LL ∪ L1; 

(5) PIDScreate a prefixed-itemset storage DS; 

(6) PIDS(LK1)NULL; 

(7) PIDS(LV1)items in L1; 

(8) for (k=2; Lk-1 ≠ Ø; k++) do 

begin 

   Ck_initPIDS(LVk-1) ⋈ PIDS(LVk-1); 

  Ck_initprune Ck_init;   

  CkPIDS(LKk-1) ⋈ Ck_init;  

  Lk{Ck | SC(Ck) ≥ δ}; 

  PIDS(LKk)(k-1)-items in Lk; 

  PIDS(LVk)k
th

 item in Lk; 

  LL ∪ Lk 

     endfor 

(9) return L; 
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Figure 3.1 Workflow of RISOTTO 
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 The main advantage of this hybrid approach is that it restricts the database 

scan to one because for finding the SC for frequent k-itemsets where k=2,3,4,…,n                   

the database need not be scanned, and it is found by set intersection method from the 

TID_sets of Lk-1 which in turn minimizes the I/O cost. Using the prefixed-itemset 

storage, the number of candidate k-itemsets generated is reduced when compared with 

the classical Apriori algorithm because it uses the values of the prefix-key items 

stored for joining rather than the values in Lk. 

3.4.1 Illustration by an Example 

 A sample transactional database D shown in Table 3.2 has been taken for 

illustrating the proposed methodology. It consists of ten transactions. Each transaction 

comprises Transaction ID (TID) and items bought from the business enterprise a, b, c, 

d, e, f, g, h, i, k, p, and m. Let the δ = 6. The frequent 1-itemset is computed as in the 

classical Apriori but the L1 in the proposed method contains TID_set and TNT or SC. 

The computation of C1 and L1 are shown in Table 3.3 and 3.4, respectively. 

Table 3.2 Transactional Database D 

TID Items Purchased 

0 c, d, e, g, h, i, k, p, m   

1 b, e, f, g, h, i, p, m  

2 c, e, m   

3 a, b, c, d, e, f, g, i, p 

4 a, b, c, d, e, p   

5 a ,b ,c, d, f, h, p   

6 b, e, f, h, i, p, m   

7 a, c, d, e, k, p, m   

8 a, c , d, e, f, i, p, m   

9 a, c, d, e, f, h, i, p, m 
 

 After computing L1 with one database scan, it is stored in prefixed-itemset 

storage with the values viz., 1-itemset in Itemset column, NULL in Prefix-key column 

and the frequent 1-itemset, i.e. {a, c, d, e, f, i, m, p} in Values column as shown in 
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Table 3.5. Next {a, c, d, e, f, i, m, p} ⋈ {a, c, d, e, f, i, m, p} is performed and it is 

{ac, ad, ae, af, ai, am, ap, cd, ce, cf, ci, cm, cp, de, df, di, dm, dp, ef, ei, em, ep, fi, fm, 

fp, im, ip, mp} and all satisfies the Apriori property and forms C2. 

Table 3.3 Computation of C1 

 

Item TID_set TNT or SC 

a {3, 4, 5, 7, 8, 9} 6 

b {1, 3, 4, 5, 6} 5 

c {0, 2, 3, 4, 5, 7, 8, 9} 8 

d {0, 3, 4, 5, 7, 8, 9} 7 

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9 

f {1, 3, 5, 6, 8, 9} 6 

g {0, 1, 3} 3 

h {0, 1, 5, 6, 9} 5 

i {0, 1, 3, 6, 8, 9} 6 

k {0, 7} 2 

m {0, 1, 2, 6, 7, 8, 9} 7 

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9 

Table 3.4 Computation of L1 

Item TID_set TNT or SC 

a {3, 4, 5, 7, 8, 9} 6 

c {0, 2, 3, 4, 5, 7, 8, 9} 8 

d {0, 3, 4, 5, 7, 8, 9} 7 

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9 

f {1, 3, 5, 6, 8, 9} 6 

i {0, 1, 3, 6, 8, 9} 6 

m {0, 1, 2, 6, 7, 8, 9} 7 

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9 

Table 3.5 Prefixed-Itemset Storage with frequent 1-itemset 

Itemset Prefix-key Values 

1-itemset NULL {a, c, d, e , f , i, m, p} 

 The TID_set of an item say ac is calculated by intersecting the TID_sets of the 

items a and c respectively.  

TID_set of {ac}={3,4,5,7,8,9}∩{0,2,3,4,5,7,8,9} 

    ={3,4,5,7,8,9}  
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 The SC for each item is determined by counting the number of items in 

TID_set. 

SC of {ac} = length({3,4,5,7,8,9})=6 

 Similarly, the SC for other items in C2 is computed, and it is shown in                   

Table 3.6. Out of these items, only the items ac, ad, ap, cd, ce, cp, de, dp, ei, em, ep, 

fp, ip and mp satisfy δ hence forms L2, and it is shown in Table 3.7. 

Table 3.6 Computation of C2 

Itemset TID_set 

(by set 

intersection) 

SC Itemset TID_set 

(by set 

intersection) 

SC 

{ac} {3,4,5,7,8,9} 6 {df} {3,5,8,9} 4 

{ad} {3,4,5,7,8,9} 6 {di} {0,3,8,9} 4 

{ae} {3,4,7,8,9} 5 {dm} {0,7,8,9} 4 

{af} {3,5,8,9} 4 {dp} {0,3,4,5,7,8,9} 7 

{ai} {3,8,9} 3 {ef} {1,3,6,8,9} 5 

{am} {7,8,9} 3 {ei} {0,1,3,6,8,9} 6 

{ap} {3,4,5,7,8,9} 6 {em} {0,1,2,6,7,8,9} 7 

{cd} {0,3,4,5,7,8,9} 7 {ep} {0,1,3,4,6,7,8,9} 8 

{ce} {0,2,3,4,7,8,9} 7 {fi} {1,3,6,8,9} 5 

{cf} {3,5,8,9} 4 {fm} {1,6,8,9} 4 

{ci} {0,3,8,9} 4 {fp} {1,3,5,6,8,9} 6 

{cm} {0,2,7,8,9} 5 {im} {0,1,6,8,9} 5 

{cp} {0,3,4,5,7,8,9} 7 {ip} {0,1,3,6,8,9} 6 

{de} {0,3,4,7,8,9} 6 {mp} {0,1,6,7,8,9} 6 

 Similar to frequent 1-itemset, the frequent 2-itemsets are appended to 

prefixed-itemset storage. In L2, the items ac, ad and ap have the common prefix a and 

values are {c,d,p}. Similarly, the items cd, ce and cp have the common prefix c and 

values are {d,e,p}, the items {de,dp} has the common prefix d and values are {e,p}, 

the items {ei,em,ep} has the common prefix e and values are {i,m,p}, the items fp has 

the prefix f and value is p, the items ip has the prefix i and value is p and the item mp 

has the prefix m and value is p. The original prefixed-itemset storage after appending 

frequent 2-itemset is shown in Table 3.8.   
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Table 3.7 Computation of L2 

Itemset 
TID_set 

(by set intersection) 
SC 

{ac} {3,4,5,7,8,9} 6 

{ad} {3,4,5,7,8,9} 6 

{ap} {3,4,5,7,8,9} 6 

{cd} {0,3,4,5,7,8,9} 7 

{ce} {0,2,3,4,7,8,9} 7 

{cp} {0,3,4,5,7,8,9} 7 

{de} {0,3,4,7,8,9} 6 

{dp} {0,3,4,5,7,8,9} 7 

{ei} {0,1,3,6,8,9} 6 

{em} {0,1,2,6,7,8,9} 7 

{ep} {0,1,3,4,6,7,8,9} 8 

{fp} {1,3,5,6,8,9} 6 

{ip} {0,1,3,6,8,9} 6 

{mp} {0,1,6,7,8,9} 6 

 

Table 3.8 The Original Prefixed-Itemset Storage after Appending frequent 2-itemset 

Itemset Prefix-key Values 

1-itemset NULL {a, c, d, e , f , i, m, p} 

2-itemset 

a {c, d, p} 

c {d, e, p} 

d {e, p} 

e {i, m, p} 

f {p} 

i {p} 

m {p} 

 

 But for the prefix-keys f, i, and m the values column contains only one value. 

With one value, there is no possibility of generating a frequent 3-itemset. So, they are 

not stored in the prefixed-itemset storage of the RISOTTO algorithm which further 

helps to reduce the time and storage. The prefixed-itemset storage after appending 

frequent 2-itemset in RISOTTO is shown in Table 3.9. To find candidate 3-itemset, 

the values of frequent 2-itemset in prefixed-itemset storage is considered.  
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Table 3.9 The Prefixed-Itemset Storage after Appending frequent 2-itemset in RISOTTO 

Itemset Prefix-key Values 

1-itemset NULL {a, c, d, e, f, i, m, p} 

2-itemset 

a {c, d, p} 

c {d, e, p} 

d {e, p} 

e {i, m, p} 

 From Table 3.9, first {c,d,p} ⋈ {c,d,p} is calculated and it is {cd,cp,dp} and 

all the item satisfies the Apriori property so each item is prefixed with the prefix-key a 

which gives {acd,acp,adp}. Next {d,e, p} ⋈ {d,e,p} is calculated and it is {de,dp,ep} 

and each item is prefixed with the prefix-key c which gives {cde,cdp,cep} because the 

items {de,dp,ep} satisfies Apriori property. Similarly, for the values {e,p} and {i,m,p} 

the combinations were generated and forms {dep} and {eim, eip, emp} as candidate 

3-itemset. After determining the candidate 3-itemset, the transactions in which the 

combination occurs and SC is calculated as  

TID_set of {acd} = {3,4,5,7,8,9}∩{0,3,4,5,7,8,9} = {3,4,5,7,8,9}  

SC of {acd} = length({3,4,5,7,8,9}) = 6 

 Likewise, it is calculated for the remaining candidate 3-itemset, and it is 

shown in Table 3.10.   

Table 3.10 Computation of C3 

Itemset TID_set (by set intersection) SC 

{acd} {3,4,5,7,8,9} 6 

{acp} {3,4,5,7,8,9} 6 

{adp} {3,4,5,7,8,9} 6 

{cde} {0,3,4,7,8,9} 6 

{cdp} {0,3,4,5,7,8,9} 7 

{cep} {0,3,4,7,8,9} 6 

{dep} {0,3,4,7,8,9} 6 

{eim} {0,1,6,8,9} 5 

{eip} {0,1,3,6,8,9} 6 

{emp} {0,1,6,7,8,9} 6 
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 From Table 3.10, the item {eim} does not satisfy δ so it is removed from 

candidate 3-itemset and L3 shown in Table 3.11 is formed. Like frequent 1- and                   

2-itemsets, the frequent 3-itemsets are also appended into prefixed-itemset storage by 

separating them into prefix-key and values, as shown in Table 3.12. The prefix-keys 

in Table 3.12 such as ad, ce, de, ei and em contains only one item in the values 

column. So as in the 2-itemset, the entries for those prefix-keys will not be saved in 

the prefixed-itemset storage of RISOTTO.  

Table 3.11 Computation of L3 

Itemset TID_set (by set intersection) SC 

{acd} {3,4,5,7,8,9} 6 

{acp} {3,4,5,7,8,9} 6 

{adp} {3,4,5,7,8,9} 6 

{cde} {0,3,4,7,8,9} 6 

{cdp} {0,3,4,5,7,8,9} 7 

{cep} {0,3,4,7,8,9} 6 

{dep} {0,3,4,7,8,9} 6 

{eip} {0,1,3,6,8,9} 6 

{emp} {0,1,6,7,8,9} 6 
 

Table 3.12 The Original Prefixed-Itemset Storage after Appending frequent 3-itemset 

Itemset Prefix-key Values 

1-itemset NULL {a, c, d, e , f , i, m, p} 

2-itemset 

a {c, d, p} 

c {d, e, p} 

d {e, p} 

e {i, m, p} 

f {p} 

i {p} 

m {p} 

3-itemset 

ac {d, p} 

ad {p} 

cd {e, p} 

ce {p} 

de {p} 

ei {p} 

em {p} 
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 Table 3.13 shows the prefixed-itemset storage after appending frequent                   

3-itemsets in RISOTTO. 

Table 3.13 The Prefixed-Itemset Storage after Appending frequent 3-itemset in RISOTTO 

Itemset Prefix-key Values 

1-itemset NULL {a, c, d, e , f , i, m, p} 

2-itemset 

a {c, d, p} 

c {d, e, p} 

d {e, p} 

e {i, m, p} 

3-itemset 
ac {d, p} 

cd {e, p} 

 From the above table, {d,p}⋈{d,p} is performed and it gives {dp} which is 

prefixed with the prefix-key {ac} which forms {acdp} as the first candidate 4-itemset. 

Likewise, it is performed for other values for the frequent 3-itemset in                        

prefixed-itemset storage. The candidate 4-itemset C4 for the sample example is shown 

in Table 3.14. All the candidate 4-itemsets in Table 3.14 satisfies the minimum 

support and forms L4, as shown in Table 3.15. 

Table 3.14 Computation of C4 

Itemset TID_set 

(by set intersection) 

SC 

{acdp} {3,4,5,7,8,9} 6 

{cdep} {0,3,4,7,8,9} 6 

 

Table 3.15 Computation of L4 

Itemset TID_set 

(by set intersection) 

SC 

{acdp} {3,4,5,7,8,9} 6 

{cdep} {0,3,4,7,8,9} 6 

 Similarly, the frequent 4-itemset is also appended in the original                     

prefixed-itemset storage with appropriate prefix-key and values, and it is shown in 

Table 3.16.  
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Table 3.16 The Original Prefixed-Itemset Storage after Appending frequent 4-itemset 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 3.17 shows the prefixed-itemset storage after appending frequent                     

4-itemset in the RISOTTO algorithm. All the values in the frequent 4-itemset of the 

original prefixed-itemset storage contain only one value. They will not be stored in 

the RISOTTO algorithm as it is impossible to form any candidate 5-itemset. 

Therefore, the candidate 5-itemset is Ø, and the algorithm terminates.  

Table 3.17 The Prefixed-Itemset Storage after Appending frequent 4-itemset in RISOTTO 

 

 

 

 

 

 

 

Itemset Prefix-key Values 

1-itemset NULL {a, c, d, e, f, i, m, p} 

2-itemset 

a {c, d, p} 

c {d, e, p} 

d {e, p} 

e {i, m, p} 

f {p} 

i {p} 

m {p} 

3-itemset 

ac {d,p} 

ad {p} 

cd {e,p} 

ce {p} 

de {p} 

ei {p} 

em {p} 

4-itemset 
acd {p} 

cde {p} 

Itemset Prefix-key Values 

1-itemset NULL {a, c, d, e , f , i, m, p} 

2-itemset 

a {c, d, p} 

c {d, e, p} 

d {e, p} 

e {i, m, p} 

3-itemset 
ac {d, p} 

cd {e, p} 
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 It is noted that the prefixed-itemset storage after appending frequent 4-itemset 

remains the same as the prefixed-itemset storage after appending frequent 3-itemset 

and the RISOTTO algorithm terminates. 

3.5 Experimental Results and Discussion 

 To analyze the effectiveness of the proposed method, an empirical study has 

been performed using the datasets shown in Table 1.4. The algorithms were 

implemented in Python. The runtime performance of  RISOTTO is compared with 

prefixed-itemset storage and VDF for the four datasets with different δ is carried out, 

and it is tabulated in Table 3.18. The δ varied from 20% to 70%. Figures 3.2 to 3.5 

show the graphical representation of the runtime comparison between the algorithms 

viz., prefixed-itemset storage, VDF, and the proposed RISOTTO algorithm for the 

datasets, namely chess, mushroom, t25i10d10k and c20d10k, respectively. 

 From Table 3.18 and figures 3.2 through 3.5, it is observed that the RISOTTO 

outperforms the existing algorithms, namely prefixed-itemset storage and VDF,                   

i.e. the runtime required is reduced from 22.0163 to 13.5594 seconds on an average. 

The reason is that the number of candidate itemsets produced in RISOTTO is less 

when compared to VDF. Also, it uses the values in the prefixed-itemset storage for 

creating candidate itemsets whose length is greater than one at any point of time.                    

It minimizes the database scan to one compared with the prefixed-itemset storage 

method because RISOTTO uses VDF, which maintains the transaction in which 

frequent itemset occurs.  
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Table 3.18 Performance Results of RISOTTO in seconds 

min_sup (δ) in 

% 

Runtime in Sec. 

Prefixed-Itemset 

Storage 
VDF RISOTTO 

chess 

20 21.0054 16.8578 11.5625 

30 20.9810 16.0452 11.0023 

40 18.0054 14.0750   9.0531 

50 17.5612 13.3017  8.9234 

60 16.2378 12.7943  7.3456 

70 15.9301 11.9825  6.8421 

Average 18.2868 14.1761 9.1215 

mushroom 

20 24.1790 21.1215 16.6217 

30 23.6723 20.0462 15.7312 

40 22.5724 19.7083 14.4581 

50 22.0245 18.2058 13.9210 

60 20.8256 17.7898 12.8521 

70 19.9310 15.9575 10.6719 

Average 22.2008 18.8049 14.0427 

t25i10d10k 

20 26.6373 23.3254 19.2415 

30 25.6037 21.4578 17.5689 

40 24.9612 20.0025 15.9121 

50 22.5817 18.7621 13.7321 

60 21.7630 18.0056 13.0012 

70 19.0175 16.0527 11.9801 

Average 23.4274 19.6010 15.2393 

c20d10k 

20 27.9152 24.4253 19.6142 

30 25.2081 22.6752 17.5127 

40 24.3574 21.9546 16.3382 

50 23.6490 19.4316 14.9102 

60 22.7518 19.0012 14.0045 

70 21.0186 17.5242 12.6251 

Average 24.1500 20.8354 15.8342 

Overall Average 

(All Datasets) 
22.0163 18.3543 13.5594 
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Figure 3.2 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for chess Dataset 

 
 

 

 

Figure 3.3 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for mushroom Dataset 
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Figure 3.4 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for t25i10d10k Dataset 

 

 

Figure 3.5 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for c20d10k Dataset 
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3.5.1 Welch's Two Sample t-test 

 The Welch's t-test is a statistical test applied when two groups of samples have 

unequal variances and/or unequal sizes with normally distributed data. It is named 

after the inventor Bernard Lewis Welch. It is also called an unequal variances t-test.    

It is calculated by taking the differences between the sample means and then dividing 

it by the standard error of that difference as shown in Equation 3.1. 

1 2

2 2

1 2

1 2

X X
t

s s

n n






                                                                   …Equation (3.1) 

where, 1X  and 2X  are the means, 2

1s  and 2

2s  are the variances,  and 1n  and 2n are the 

sizes of the two groups respectively.  

 The following hypothesis and level of significance (α) = 5% were considered 

for the statistical test. 

Null Hypothesis ( 0H ) 

 There is no difference between the (true) means of the two groups i.e. 1 2  . 

Alternate Hypothesis ( 1H ) 

 There is a difference between the (true) means of the two groups. i.e. 1 2   

or 1 2   or 1 2  . 

 To prove statistically, a Welch's Two Sample t-test between the runtimes of 

the prefixed-itemset storage method and RISOTTO were performed in this research 

work using the R tool. The below example illustrates how to apply the t-test between 

the runtimes of the chess dataset for the prefixed-itemset storage and RISOTTO. 

https://en.wikipedia.org/wiki/Bernard_Lewis_Welch
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> prefix_chess = c(21.0054, 20.9810, 18.0054, 17.5612, 16.2378, 15.9301) 

> RISOTTO_chess = c(11.5625, 11.0023, 9.0531, 8.9234,7.3456, 6.8421) 

> t.test(prefix_chess,RISOTTO_chess) 

 Welch Two Sample t-test 

data:  prefix_chess and RISOTTO_chess 

t = 7.6647, df = 9.732, p-value = 1.999e-05 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

    6.490968 11.839666 

sample estimates: 

mean of x mean of y  

   18.28682   9.12150 

 The p-value for chess dataset is 1.999×10
-05

 ≤ 0.05 (5%). Thus, the 0H  is 

rejected and 1H  is accepted. Therefore, it is concluded that the two means are not 

equal which means that there are significant differences between the runtimes of 

prefixed-itemset storage and RISOTTO. Similarly, the test is conducted for the 

remaining datasets used in the experiments and the results are tabulated in Table 3.19.  

Table 3.19 Results of t-test 

 

 

 

 

 It is observed from Table 3.19 is that the p-values for all datasets are ≤ 0.05 

(5%).  So, it is concluded that there are significant differences between the runtimes. 

Therefore, the proposed method RISOTTO is more efficient in terms of runtime than 

prefixed-itemset storage. 

Dataset p-value 

chess 1.999×10
-05

 

mushroom 3.031×10
-05

 

t25i10d10k 0.0005294 

c20d10k 0.0001506 
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3.6 Chapter Summary 

 The research work has introduced an enhanced Apriori algorithm called 

RISOTTO, a new hybrid approach for generating frequent itemsets that combine VDF 

and prefixed-itemset based storage DS. In the proposed method, the frequent                        

1-itemset stores the transactions in which the frequent 1-itemset occurs and restricts 

the number of database scans required to find the frequent itemsets to one and thereby 

reducing the I/O cost. The joining and pruning steps are performed using the values in 

the prefixed-itemset DS rather than the values in frequent itemsets as in classical 

Apriori, which reduced the time required to generate the candidate itemsets and also 

minimizes the number of candidate itemsets. Thus, the RISOTTO method enhances 

the existing Apriori algorithm. Though this algorithm reduces the running time when 

compared with the existing algorithms, it lacks in reducing memory consumption.             

To minimize the memory requirement, a memory-efficient implementation has been 

proposed in the next chapter and it also used the VDF approach for storing the 

database. 
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CHAPTER - 4 

JAB-VDF: A JAGGED ARRAY BASED DATA 

STRUCTURE FOR VERTICAL DATA FORMAT  

The purpose of critical thinking is rethinking: that is, reviewing, evaluating, and revising thought 

--Jon Stratton 

4.1 Background 

 Nowadays, volumes of data are exploding both in scientific and commercial 

domains. Data mining techniques are used to extract unknown information from a 

massive amount of data and became popular in many applications. But, the real-world 

datasets are sparse, dirt and also contain hundreds of items. Association Rule Mining 

(ARM) is an essential core data mining technique to discover patterns/rules among the 

items in large databases of variable-length transactions. Its goal is to identify the 

groups of items that most often occur together, i.e. it focuses on finding frequent 

itemsets, each occurring at more than a minimum support frequency (min_sup) among 

all transactions. It is widely used in market basket analysis and graph mining 

applications such as pattern finding in web browsing, substructure discovery in 

chemical compounds, word occurrence analysis in text documents, and so on 

[LLCL,08].  

 Apriori is one of the premier and classical data mining algorithms for finding 

frequent patterns but it is not an optimized one. Over the last two decades, remarkable 

variations and improvements were made to overcome the inefficiencies of the Apriori 

algorithm, such as FPGrowth, TreeProjection, Charm, LCM, Eclat and Direct Hashing 

and Pruning (DHP), RARM, ASPMS etc. In these algorithms, a minor enhancement 

improves the mining process considerably. The significant risks associated with 
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finding frequent itemsets are computational time and memory requirement.                           

Even with a moderate-sized dataset, the search space and memory utilization of 

Frequent Pattern Mining (FPM) is enormous and exponential to the length of the 

transactions in the dataset. Therefore, it is essential to perform FPM analysis in a 

space-and-time efficient way.  

 Frequent itemset mining with Vertical Data Format (VDF) approach has been 

proposed in the literature to improve the classical Apriori. It reduces the number of 

database scans and uses an array storage structure. Since the VDF approach uses only 

one scan of the database, many researchers used this to reduce computational time to 

find frequent itemsets. Thus, this work reduces memory utilization using a                       

space-efficient data structure called a jagged array with VDF.  

4.2 Jagged Array  

 A jagged array or ragged grid is a data structure whose elements are arrays.                        

The elements of a jagged array can be of different dimensions and sizes and it is 

possible to create a 2-D array with a variable number of columns in each row.       

These types of arrays are sometimes called an "array of arrays" [Sch,07].                                 

It is diagrammatically represented in Figure 4.1. 

 

 

 

 

 

Figure 4.1 Jagged Array Representations 
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 In the above diagram, arr is a jagged array that consists of n array and the 

length of each array can differ, i.e. m ≠ p ≠ x. 

4.3 Proposed Methodology  

 Both Apriori and FP-growth algorithms mine frequent patterns using 

Horizontal Data Format (HDF), whereas the Eclat algorithm uses VDF. Both HDF 

and VDF approaches used array storage structures and observed that the VDF is a 

speedy method [IR,16]. To reduce the memory space further, this research work 

implements the VDF using the jagged array
2
. This concept is available in JAVA, 

Python, VB.NET and C#.NET [Sch,07]. 

 The reason for choosing this data structure is that the customers will not buy 

all the items in the grocery shops. Each transaction in the transactional database 

contains a varied number of items purchased.  

4.3.1 Illustration by an Example 

 To illustrate the memory requirement for VDF with jagged array 

representation, let us consider the transactional database (D) shown in Table 4.1. 

From Table 4.1, it is observed that the grocery shop sells n (12) items viz., a, b, c, d, e, 

f, g, h, i, k, p and m. D consists of t (10) transactions, and the TID's are ranging                       

from 0 to 9.  

 The VDF of Table 4.1 is illustrated in Table 4.2. The VDF is stored as a 2-D 

array in the memory, where the number of rows (r) = items in the grocery shop and 

the number of columns (c) = t.  Here r = 12 and c = 10.  

2P.Sumathi, S.Murugan, "A Memory Efficient Implementation of Frequent Itemset Mining with Vertical Data 

Format Approach", International Journal of Computer Sciences and Engineering, E-ISSN: 2347-2693, Vol. 6,                

No. 11, pp.152-157, December 2018. (UGC Approved Journal). 
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Table 4.1 Transactional Database D 

TID Items Purchased 

0 c, d, e, g, h, i, k, p, m   

1 b, e, f, g, h, i, p, m  

2 c, e, m   

3 a, b, c, d, e, f, g, i, p 

4 a, b, c, d, e, p   

5 a, b, c, d, f, h, p   

6 b, e, f, h, i, p, m   

7 a, c, d, e, k, p, m   

8 a, c, d, e, f, i, p, m   

9 a, c, d, e, f, h, i, p, m 

Table 4.2 D in VDF 

Item Transaction ID's (TID's) 

a {3, 4, 5, 7, 8, 9} 

b {1, 3, 4, 5, 6} 

c {0, 2, 3, 4, 5, 7, 8, 9} 

d {0, 3, 4, 5, 7, 8, 9} 

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 

f {1, 3, 5, 6, 8, 9} 

g {0, 1, 3} 

h {0, 1, 5, 6, 9} 

i {0, 1, 3, 6, 8, 9} 

k {0, 7} 

m {0, 1, 2, 6, 7, 8, 9} 

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 
 

The memory required for storing candidate 1-itemset in the 2-D array for VDF is  

( ( )) ( ( ) )1 11TM r c sizeof tid sizeof item r              … Equation (4.1) 

where, 11item is the first item in the candidate 1-itemset, tid is the transaction-id,                     

and sizeof is a built-in function that says the number of bytes required for the 
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argument. Here each tid requires 2-bytes and 11item requires 1-byte of memory, 

respectively. Therefore the VDF of candidate 1-itemset requires (12×10×2) + (1×12) 

= 252 bytes of memory i.e. 1TM = 252 bytes.  

 The Support Count (SC) for each item is the number of tid's that it contains, 

i.e. the SC of a, SCa=count(a)=6. Similarly, SCb=5, SCc=8, SCd=7, SCe=9, SCf=6, 

SCg=3, SCh=5, SCi=6, SCk=2, SCm=7 and SCp=9. Let the min_sup be 6. The frequent                      

1-itemset contains {a, c, d, e, f, i, m, p} and it is shown in Table 4.3.  

Table 4.3 Frequent 1-itemset in VDF 

Item TID's 

a {3, 4, 5, 7, 8, 9} 

c {0, 2, 3, 4, 5, 7, 8, 9} 

d {0, 3, 4, 5, 7, 8, 9} 

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 

f {1, 3, 5, 6, 8, 9} 

i {0, 1, 3, 6, 8, 9} 

m {0, 1, 2, 6, 7, 8, 9} 

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 
 

 The spaces occupied by the in-frequent items say b, g, h and k in candidate                

1-itemsets can be removed, saving memory considerably. The number of bytes of 

memory removed from candidate 1-itemset is computed as  

( ( )) ( ( ))1 1 1 11rbytes rr c sizeof tid rr sizeof item     …Equation (4.2) 

where, 1rr is the number of rows to be removed as in-frequent items. For this example 

1rr = 4. Therefore, 1rbytes = (4×10×2) + (4×1) = 84 bytes. Therefore the total bytes of  

memory for a frequent 1-itemset is  

1 1 1M TM rbytes                                              … Equation  (4.3) 

Here 1M = 252 - 84 = 168 bytes.  
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 Similarly, in iteration 2, the possible 2-itemsets combinations are generated 

from frequent 1-itemsets, and it is {ac, ad, ae, af, ai, am, ap, cd, ce, cf, ci, cm, cp, de, 

df, di, dm, dp, ef, ei, em, ep, fi, fm, fp, im, ip, mp}. Suppose if there are n items in           

1-itemset, the possible two-item combinations are n×(n-1)/2 say tc2. The numbers of 

itemset combinations say x may be in-frequent which need not be placed in VDF. 

Therefore, the memory required for a frequent 2-itemset is calculated using               

Equation 4.4. 

(( ) ( )) ( ( ) ( ))2 2 221
TM tc x c sizeof tid sizeof item tc x         … Equation  (4.4) 

where, 21item is the first item in the frequent 2-itemset. In this example, the item 

combinations viz., {ae, af, ai, am, cf, ci, cm, df, di, dm, ef, fi, fm, im} are in-frequent. 

Based on Equation 4.4, the VDF of frequent 2-itemset requires ((28 - 14) × 10 × 2)                  

+ (2 × (28 - 14)) = 280 + 28 = 308 bytes and the frequent 2-itemsets is shown in                  

Table 4.4. 

 Similarly, from Table 4.4, the 3-itemset combinations satisfy the Apriori 

property viz., {acd, acp, adp, cde, cdp, cep, dep, emp, eip} are the candidate                       

3-itemset. In this case, all candidate 3-itemsets are frequent itemsets. Therefore the 

frequent 3-itemset requires ((9 - 0) × 10 × 2) + (3 × (9 - 0)) = 180 + 27 = 207 bytes of 

memory and it is shown in Table 4.5. 

 Similarly, the 4-itemsets combinations generated from frequent 3-itemsets are 

acdp, acde, acep, adep, cdep, cemp, ceip, demp, deip and eimp. Among them,                          

the items acdp and cdep are satisfied Apriori property, which forms the candidate                    

4-itemset. All the candidate 4-itemsets satisfy the minimum support. The frequent                  

4-itemset is shown in Table 4.6.  
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Therefore, the frequent 4-itemset requires ((10 - 0) × 10 × 2) + (4 × (10 - 0))                      

=  200 + 40 = 240 bytes.  

Table 4.4 VDF of frequent 2-itemsets 

Item TID's 

ac 3, 4, 5, 7, 8, 9 

ad 3, 4, 5, 7, 8, 9 

ap 3, 4, 5, 7, 8, 9 

cd 0, 3, 4, 5, 7, 8, 9 

ce 0, 2, 3, 4, 7, 8, 9  

cp 0, 3, 4, 5, 7, 8, 9 

de 0, 3, 4, 7, 8, 9 

dp 0, 3, 4, 5, 7, 8, 9 

ei 0, 1, 3, 6, 8, 9 

em 0, 1, 2, 6, 7, 8, 9 

ep 0, 1, 3, 4, 6, 7, 8, 9 

fp 1, 3, 5, 6, 8, 9 

ip 0, 1, 3, 6, 8, 9 

mp 0, 1, 6, 7, 8, 9 

 
Table 4.5 VDF of frequent 3-itemsets 

Item TID's 

acd 3, 4, 5, 7, 8, 9 

acp 3, 4, 5, 7, 8, 9 

adp 3, 4, 5, 7, 8, 9 

cde 0, 3, 4, 7, 8, 9 

cdp 0, 3, 4, 5, 7, 8, 9 

cep 0, 3, 4, 7, 8, 9 

dep 0, 3, 4, 7, 8, 9 

emp 0, 1, 6, 7, 8, 9 

eip 0, 1, 3, 6, 8, 9 
 

Table 4.6 VDF of frequent 4-itemsets 

Item TID's 

acdp 3, 4, 5, 7, 8, 9 

cdep 0, 3, 4, 7, 8, 9 

 This process is repeated until no frequent itemsets are found. Now the 

candidate 5-itemset contains only one item, i.e. {acdep} and it is not frequent.                            
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So the frequent 5-itemset is empty (Ø), and the process is terminated. Therefore,                 

the total memory required for VDF using a 2-D array is  

1 2

itemseti
TM M TMi

i



 


                                  … Equation (4.5) 

where, 1M is calculated using Equation 4.3 and TMi  are calculated using                  

Equation 4.6. 

)(( ( )) ( ( ) ( ))
1

x xTM tc c sizeof tid sizeof item tci i ii
               … Equation (4.6) 

where, tci and x is the number of frequent and in-frequent items in the candidate                  

i-frequent itemset. For the above example TM = 168 + 308 + 207 + 240 = 923 bytes 

of memory. If the same is implemented using the jagged array, the memory 

requirement is reduced considerably. The memory required for candidate 1-itemset 

TM1 is calculated as   

( ) ( )
1

{ }1

TM SC sizeof tid sizeof itemitem
item itemset

  
 

       … Equation (4.7) 

 As in 2-D representation, there may be x in-frequent items in candidate                   

1-itemset say {in-frequent} = {item1,item2,…,itemx} then the memory for                           

{in-frequent} can be saved by removing it and the amount of memory removed is 

computed as shown in Equation 4.8.  

( ) ( )1
{ }

rbytes SC sizeof tid sizeof itemitem
item in frequent

  
  

      … Equation (4.8) 

 Therefore the total memory required for frequent 1-itemset in jagged array 

representation is computed using Equation 4.3 with the values calculated using 

Equations 4.7 and 4.8, respectively. The jagged array representation for frequent                      

1-itemset for D is shown in Table 4.7.  
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Table 4.7 Jagged Array Representation of frequent 1-itemset 

Item TID's 

a 3 4 5 7 8 9    

c 0 2 3 4 5 7 8 9  

d 0 3 4 5 7 8 9   

e 0 1 2 3 4 6 7 8 9 

f 1 3 5 6 8 9    

i 0 1 3 6 8 9    

m 0 1 2 6 7 8 9   

p 0 1 3 4 5 6 7 8 9 

The memory required for the above table is calculated as shown below. 

1TM
   = (6×2+1) + (5×2+1) + (8×2+1) + (7×2+1) + (9×2+1) + (6×2+1) + (3×2+1)  

    + (5×2+1) + (6×2+1) + (2×2+1) + (7×2+1) + (9×2+1) 

            = 13+11+17+15+19+13+7+11+13+5+15+19  

 = 158 bytes 

1rbytes  = (5×2+1) + (3×2+1) + (5×2+1) + (2×2+1)  

     = 11+7+11+5 = 34 bytes 

 Therefore, 1M = 158 - 34 = 124 bytes. Similarly, the jagged array 

representation of frequent 2-itemsets shown in Table 4.8, requires 2 2TM rbytes bytes 

of memory space where, 2TM  and 2rbytes are calculated by using Equations 4.9              

and 4.10 respectively.  

( ) ( )
2

{ }2

TM SC sizeof tid sizeof itemitem
item itemset

  
 

     … Equation (4.9) 

( ) ( )2
{ }

rbytes SC sizeof tid sizeof itemitem
item in frequent

  
  

   … Equation (4.10) 
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Table 4.8 Jagged Array Representation of frequent 2-itemset 

Item TID's 

ac 3 4 5 7 8 9    

ad 3 4 5 7 8 9    

ap 3 4 5 7 8 9    

cd 0 3 4 5 7 8 9   

ce 0 2 3 4 7 8 9   

cp 0 3 4 5 7 8 9   

de 0 3 4 7 8 9    

dp 0 3 4 5 7 8 9   

ei 0 1 3 6 8 9    

em 0 1 2 6 7 8 9   

ep 0 1 3 4 6 7 8 9  

fp 1 3 5 6 8 9    

ip 0 1 3 6 8 9    

mp 0 1 6 7 8 9    

For the above table, 

2TM = (6×2+2) + (6×2+2) + (5×2+2) + (4×2+2) + (3×2+2) + (3×2+2) +  

             (6×2+2) + (7×2+2) + (7×2+2) + (4×2+2) + (4×2+2) + (5×2+2) +  

             (7×2+2) + (6×2+2) + (4×2+2) + (4×2+2) + (4×2+2) + (7×2+2) +  

             (5×2+2) + (6×2+2) + (7×2+2) + (8×2+2) + (5×2+2) + (4×2+2) +  

             (6×2+2) + (5×2+2) + (6×2+2) + (6×2+2) 

         = 14+14+12+10+8+8+14+16+16+10+10+12+16+14+10+10+10+16+12+14+16  

           +18+12+10+14+12+14+14   

       = 356 bytes 

2rbytes  = (5×2+2) + (4×2+2) + (3×2+2) + (3×2+2) + (4×2+2) + (4×2+2) +  

         (5×2+2) + (4×2+2) + (4×2+2) + (4×2+2) + (5×2+2) + (5×2+2) + 

         (4×2+2) + (5×2+2) 
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     = 12+10+8+8+10+10+12+10+10+10+12+12+10+12 

                = 146 bytes 

and therefore, 2M requires 356 - 146 = 210 bytes of memory. Similarly, the jagged 

array representation of frequent 3-itemsets shown in Table 4.9 requires 

3 3TM rbytes memory.  

Table 4.9 Jagged Array Representation of frequent 3-itemset 

Item TID's 

acd 3 4 5 7 8 9    

acp 3 4 5 7 8 9    

adp 3 4 5 7 8 9    

cde 0 3 4 7 8 9    

cdp 0 3 4 5 7 8 9   

cep 0 3 4 7 8 9    

dep 0 3 4 7 8 9    

emp 0 1 6 7 8 9    

eip 0 1 3 6 8 9    

 

For Table 4.9,  

3TM = (6×2+3) + (6×2+3) + (6×2+3) + (6×2+3) + (7×2+3) + (6×2+3) + (6×2+3)                   

 + (6×2+3) + (6×2+3) 

 = 15+15+15+15+17+15+15+15+15 

 = 137 bytes 

3rbytes  = 0 bytes  

and therefore 3M requires 137 - 0 = 137 bytes of memory.  

Similar to the previous cases, the memory for frequent 4-itemsets is calculated as  

4TM = (6×2+4) + (6×2+4) = 16 + 16 = 32 bytes. 
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4rbytes  = 0 bytes  

and 

4M = 32 - 0 = 32 bytes of memory for Table 4.10. 

Table 4.10 Jagged Array Representation of frequent 4-itemsets 

Item TID's 

acdp 3 4 5 7 8 9 

cdep 0 3 4 7 8 9 

 This process continues until no more frequent itemsets are found. For this 

case, the candidate 5-itemset is NULL, and the algorithm terminates. Therefore, the 

total memory required for the jagged implementation is calculated using                    

Equation 4.11.  

1

itemseti
TM TM rbytesi ii



 


                            … Equation (4.11) 

where, TMi and rbytesi are calculated using Equations 4.12 and 4.13, respectively. 

( ) ( )
{ }

TM SC sizeof tid sizeof itemitemi
item itemseti

  
 

     … Equation (4.12) 

( ) ( )
{ }

rbytes SC sizeof tid sizeof itemitemi
item in frequenti

  
  

   … Equation (4.13) 

 Therefore, the jagged array representation for the sample transactional 

database D requires  

1 2 3 4TM M M M M     

 TM  = 124 + 210 + 137 + 32 = 503 bytes of memory and it is less when compared to 

the original 2-D array representation. 
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The jagged array representation of VDF has several advantages. They are: 

i. No memory space is wasted as in a 2-D array because a jagged array allocates 

space only to the transactions in which the item occurs 

ii. Minimizes the memory space required than the original array implementation  

 Thus, it is finalized that the jagged representation saves memory significantly 

and also it is fast when compared with the HDF approaches. 

4.4 Experimental Results and Discussion 

 To analyze the memory usage of VDF using the jagged array, an empirical 

study has been performed for the datasets namely chess, mushroom, t25i10d10k and 

c20d10k using Python implementation. All the datasets were obtained from the FIMI 

repository (http://fimi.ua.ac.be) and the open-source data mining library 

(http://www.philippe-fournier-viger.com/spmf). The chess dataset contains 3196 

transactions, 75 items and 37 average item count per transaction. Similarly, the 

mushroom, t25i10d10k and c20d10k contain 8416, 9976, and 10000 transactions, 

119, 929 and 192 items and 23, 24.77 and 20 average item count per transaction 

respectively. The memory usage of  JAB-VDF is compared with VDF (2-D array) is 

carried for the four datasets with δ=20% and it is tabulated in Table 4.11 and                 

Figure 4.2.   

Table 4.11 Comparison of Memory Consumption (in GB) between JAB-VDF and VDF with δ=20% 

Datasets VDF JAB-VDF 

chess 1.2500 0.7500 

mushroom 1.5000 0.6750 

t25i10d10k 1.7500 0.7000 

c20d10k 1.6700 0.9185 

Average 1.5425 0.7609 
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Figure 4.2 Comparison of Memory Consumption (in GB) between JAB-VDF and VDF with δ=20% 

 From Table 4.11 and Figure 4.2, it was observed that the memory needed for                   

JAB-VDF is reduced by 49.33% when compared with VDF.  Further, to prove 

statistically, Welch's two-sample t-test was performed between the memory usage of 

JAB-VDF and VDF. The t-test was performed using the R tool and the p-value is 

0.0023 which is ≤ 0.05 (5%). It is concluded that the two means are not equal, which 

means that there are significant differences between the memory usage of JAB-VDF 

and VDF. Therefore, the proposed method JAB-VDF consumes less memory than 

VDF considerably. 

4.5 Chapter Summary 

 From the literature, it is also found that the VDF approaches restrict the 

database scans to one and find the support counts by intersection. Though it is best, 

the array storage structure used by VDF consumes huge memory space because it 

assumes that each item may fall almost in all transactions. But in real-world grocery 

datasets, each transaction will not contain all items, and each item may not be present 
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in all transactions. Thus, to reduce memory consumption and utilize memory 

efficiently, this research work used the jagged array representation. From the 

experimental results, it has been observed that the JAB-VDF reduces memory 

consumption for storing frequent itemsets when compared with the traditional                        

2-D array. The next chapter focuses on developing an algorithm for finding frequent 

patterns by reducing both time and memory using a multithreaded approach and 

jagged array.  
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CHAPTER - 5 

TB-NPF-VDF: A MULTITHREADED, NOVEL PATTERN 

FORMATION FOR VERTICAL DATA FORMAT                   

WITH JAGGED ARRAY  

Imagination encircles the entire world, stimulating progress, giving birth to evolution 

--Albert Einstein 

5.1 Background 

 Association Rule Mining (ARM) is one of the most extensively used 

knowledge discovery techniques and a promising area in the mining domain 

[AHGA
+
,18]. ARM is used in several applications such as inventory control, mobile 

mining, educational mining, market basket analysis, risk management, 

telecommunication networks, graph mining, etc. [SK,19]. The problem of mining 

frequent itemset/pattern is a sub-problem of ARM [GAF,17]. Frequent patterns are 

patterns that frequently appear in a dataset with a frequency more than a                            

user-specified threshold. Frequent Pattern Mining (FPM) is an essential task of 

discovering hidden items from a database with more than a prescribed threshold.                 

It generates qualitative knowledge that helps the decision makers make good business 

insights [HPK,12].  

 Many researchers narrated novel algorithms for finding frequent itemset 

mining, which is achieved using a single thread, but still, there is a need for time, 

memory efficient and scalable one. Therefore, the research study proposed an 

approach for finding frequent patterns, namely TB-NPF-VDF (Thread Based, Novel 

Pattern Formations with Vertical Data Format), which uses a new way of generating 

candidate items to minimize the time. Also, it employs multithreading which runs 
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several threads simultaneously, one for each frequent 1-itemset to generate the 

remaining frequent itemsets (frequent 2-itemsets, frequent 3-itemsets, etc.) for that 

item until the candidate or frequent itemsets are not empty. Further, to reduce the 

memory requirement significantly, it also employs a jagged array structure for storing 

the frequent patterns, as illustrated in chapter 4. 

 The research work has been implemented and tested using four standard 

benchmark datasets from the frequent itemset mining repository. Further, it is 

compared with VDF and NPF-VDF (without multithread), and the experimental 

results revealed that TB-NPF-VDF outperforms in terms of execution time and 

memory significantly.  

5.2 Multithreading 

 It is a process of executing multiple threads simultaneously, i.e. thread-based 

multitasking. A thread is a lightweight sub-process, and it is the smallest unit of a 

process. Each thread has a separate path of execution and executed inside a process. 

The multithreading uses a shared memory area and thus saves memory space 

considerably. Similarly, the context switching between threads takes less time than the 

process. The pictorial representation of multithreading is shown in Figure 5.1.  

 Concurrent activity speeds applications up is one of the main benefits of 

multithreading. Apart from this, it has numerous advantages. They are: 

i. Requires less overhead to create, maintain, and manage threads than a 

traditional process 

ii. Improves throughput 

iii. Improves the application and server responsiveness 
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iv. Minimizes the usage of system resources  

v. Simplifies the structure of a complex program 

vi. The cost of communication between threads is low 

vii. It doesn't block users or affect other threads if an exception occurs because 

threads are independent 

viii. Saves time to complete the task 

 
 

Figure 5.1 Multithreading  

 

 By considering these advantages, the research work proposed in this chapter 

uses the multithreading concept to increase the runtime speed. 
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5.3 Proposed Methodology 

 The main idea of the proposed work is to find the frequent patterns for the 

transactional database. It consists of four phases. The first phase scans D and converts 

it into VDF. The second phase determines the frequent 1-itemset from VDF. The third 

phase sorts the frequent 1-itemset in ascending order based on the min_sup (δ) 

threshold, and it is stored in a matrix form using a jagged array. The δ of an itemset X 

is calculated by dividing the number of transactions in which X appears by a total 

number of transactions [Kal,17]. The fourth phase creates n-1 threads, one for each 

frequent 1-itemset except for the last one, where n is the number of items in frequent 

1-itemset. Let the frequent 1-itemset be L1={I1,I2,…,In}, each thread generates 

frequent itemsets starting from frequent 2-itemset to frequent k-itemset until it is              

non-empty, where k ≥ 2.  

 For finding frequent i-itemset, i ≥ 2, each thread (tx,1≤x≤n-1) uses the following 

procedure. 

i. When i=2, the thread forms the candidate patterns by combining Ix with Ix+1 

and finds the transactions in which the combination IxIx+1 occur by intersecting 

the transactions in Ix and Ix+1. The item combinations whose Support Count 

(SC) ≥ δ is selected as frequent i-itemset for item x. 

ii. For i>2, each item in frequent (i-1)-itemset is combined with each frequent                    

1-itemset starting from the next item in the last item of the frequent(i-1)-item 

and finds the transactions in which the combination occurs is determined by 

intersecting the item infrequent(i-1)-itemset and the appropriate item in 

frequent 1-itemset. This process is repeated until the frequent k-itemset is not 

empty. 
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 As the proposed method uses multithreads, novel pattern formation with VDF 

to find frequent patterns is named TB-NPF-VDF
3
. The main advantage of this method 

is that it generates less number of candidate itemsets when compared with the 

classical Apriori and VDF because it avoids the items whose SC is lesser than the item 

at any instance of time for generating the patterns. As threads are used, the CPU is 

effectively utilized, and they are faster when compared to processes. This method 

avoids checking the pattern for the Apriori property because the candidate patterns 

generated satisfies the Apriori property by default. Further, the time required for                

TB-NPF-VDF is less when compared to VDF. Since the algorithm also uses the 

matrix notation using a jagged array, the memory requirement is also minimized 

[SM,18]. The algorithm for the proposed method is shown in Algorithm 5.1 and the 

workflow of TB-NPF-VDF is illustrated in Figure 5.2.  

Algorithm 5.1: TB-NPF-VDF: An algorithm for finding frequent itemsets 

Input:  

 A dataset D with n transactions; 

 δ - minimum support threshold. 

Output: Frequent patterns. 

Method: 

(1) vdfscan D and store it in <itemset, TID list> format;  

(2) C1Ø; 

(3) for each itemi in vdf do 

 

3P.Sumathi, Dr.S.Murugan, Dr.V.Umadevi, "A Multithread, Novel Pattern Based Algorithm for Finding Frequent 

Patterns With Jagged Array and Vertical Data Format", Indian Journal of Computer Science and Engineering 

(IJCSE), e-ISSN:0976-5166, p-ISSN:2231-3850, Vol.12, No.5, pp.1353-1363, Sep-Oct 2021. 

DOI:10.21817/indjcse/2021/v12i5/211205078 (UGC Care List - II, Scopus Indexed). 
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     begin 

 SCcount(TID_listitemi); //determines the number of transactions in itemi 

 C1C1.append ({itemset, TID list, SC})   // adds a row into C1 

      endfor 

(4) for each itemi in C1 do 

      begin 

 L1{itemi | SC(itemi) ≥ δ}  

      endfor 

(5) L1jagged(sort(L1)); //sorts L1 and converts it into a jagged matrix format 

(6) no_freq1_itemsetcount(L1); //determines the number of itemset in L1 

(7) for (x=1; x ≤ (no_freq1_itemset-1); x++) do 

      begin 

 txcreate(thread); // creates a thread for the item L1[x] 

 for (k=2; Lk ≠ Ø; k++) do 

 begin 

   if k==2 then 

  new_pattern<IxIx+1>; 

  new_TID_listTransactions(Ix) ∩Transactions(Ix+1); 

     else if k ≥ 2 then 

  for each itemj in Lk-1 do 

  begin 

      new_itemlast item in itemj;  

      new_pattern{<itemjIy>| Iynext(new_item)}; 

      new_TID_listTransactions(itemj)∩Transactions(Iy) 

  endfor 
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     end if 

     SCcount(new_TID_list); 

     CkCk.append({new_pattern, new_TID_list}); 

     Lk{Ck | SC(Ck) ≥ δ} 

      endfor 

 endfor 

 

Figure 5.2 Workflow of TB-NPF-VDF 
 

5.3.1 Illustration by an Example 

 The transactional database D shown in Table 5.1 is taken to illustrate the 

proposed work. It contains 12 items viz., {a, b, c, d, e, f, g, h, i, k, m, p}. The vertical 
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representation of D is shown in Table 5.2. Each item is represented by a row 

containing the name of the item and the transactions in which the item occurs. 

Table 5.1 Transactional Database D 

TID Items Purchased 

0 c, d, e, g, h, i, k, p, m   

1 b, e, f, g, h, i, p, m  

2 c, e, m   

3 a, b, c, d, e, f, g, i, p 

4 a, b, c, d, e, p   

5 a ,b ,c, d, f, h, p   

6 b, e, f, h, i, p, m   

7 a, c, d, e, k, p, m   

8 a, c , d, e, f, i, p, m   

9 a, c, d, e, f, h, i, p, m 
 

Table 5.2 D in VDF 

Item Transaction ID's (TID's) 

a {3, 4, 5, 7, 8, 9} 

b {1, 3, 4, 5, 6} 

c {0, 2, 3, 4, 5, 7, 8, 9} 

d {0, 3, 4, 5, 7, 8, 9} 

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 

f {1, 3, 5, 6, 8, 9} 

g {0, 1, 3} 

h {0, 1, 5, 6, 9} 

i {0, 1, 3, 6, 8, 9} 

k {0, 7} 

m {0, 1, 2, 6, 7, 8, 9} 

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 
 

 Let δ is 6. The candidate 1-itemset (C1) contains all the items in D, the 

transactions in which the item occurs, and also the SC, i.e. the number of transactions 

in which the item appears. The C1 for D is shown in Table 5.3. Among them, the 

items {a, c, d, e, f, i, m, p} satisfies the δ and hence forms the frequent 1-itemset.               

The jagged array representation of the same is shown in Table 5.4.  

 To generate fewer candidate itemsets, this research work uses a novel pattern 

generation method  rather than the natural join used in the Apriori algorithm. For that, 

the frequent 1-itemset (L1) is sorted in ascending order based on SC, and it is replaced 

with L1. The frequent 1-itemset after sorting is illustrated in Table 5.5. 
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Table 5.3 Candidate 1-itemset 

C1 

Itemset TID's SC 

a {3, 4, 5, 7, 8, 9} 6 

b {1, 3, 4, 5, 6} 5 

c {0, 2, 3, 4, 5, 7, 8, 9} 8 

d {0, 3, 4, 5, 7, 8, 9} 7 

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9 

f {1, 3, 5, 6, 8, 9} 6 

g {0, 1, 3} 3 

h {0, 1, 5, 6, 9} 5 

i {0, 1, 3, 6, 8, 9} 6 

k {0, 7} 2 

m {0, 1, 2, 6, 7, 8, 9} 7 

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9 
 

Table 5.4 Jagged Array Representation of frequent 1-itemset 

L1 

1- Itemset TID's 

a 3 4 5 7 8 9    

c 0 2 3 4 5 7 8 9  

d 0 3 4 5 7 8 9   

e 0 1 2 3 4 6 7 8 9 

f 1 3 5 6 8 9    

i 0 1 3 6 8 9    

m 0 1 2 6 7 8 9   

p 0 1 3 4 5 6 7 8 9 
 

  Now this work creates seven threads because the frequent 1-itemset contains 

eight items. Thread-1 is for the item <a>, Thread-2 is for item <f> and so on.                   

The Thread-1 first generates the following patterns. 

<af>, <ai>, <ad>, <am>, <ac>, <ae> and <ap> 

and for each pattern, set intersection is calculated by using the TID's in each item of 

the pattern. For example, for the pattern <af> the set intersection is calculated as            

{3, 4, 5, 7, 8, 9}∩{1, 3, 5, 6, 8, 9} = {3,5,8,9} and SC=4. Similarly, the SC for other 

patterns viz., <ai>, <ad>, <am>, <ac>, <ae> and <ap> is calculated as stated above. 

The patterns  namely <ad>, <ac> and <ap> satisfies the δ will be considered as the 

frequent 2-itemset for the item <a> and are represented in Table 5.6.  
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Table 5.5 Sorted frequent 1-itemset 

L1 

1- Itemset TID's 

a 3 4 5 7 8 9    

f 1 3 5 6 8 9    

i 0 1 3 6 8 9    

d 0 3 4 5 7 8 9   

m 0 1 2 6 7 8 9   

c 0 2 3 4 5 7 8 9  

e 0 1 2 3 4 6 7 8 9 

p 0 1 3 4 5 6 7 8 9 
 

Table 5.6 Frequent 2-itemset for <a> by Thread-1 

Item TID's 

<ad> 3 4 5 7 8 9 

<ac> 3 4 5 7 8 9 

<ap> 3 4 5 7 8 9 

 Next, the method generates the candidate 3-itemsets for each frequent                     

2-itemset in Table 5.6 as follows: 

i. For the frequent 2-item <ad>, the items viz., <m>, <c>, <e> and <p> are 

considered from frequent-1 itemset because <m> is the next item after <d> 

where <d> is the last item in frequent 2-itemset <ad>. The patterns generated 

are <adm>, <adc>, <ade> and <adp> and for them, the transactions in which 

the pattern occurs and SC is calculated as follows: 

 From Table 5.6 TID's of <ad> is {3, 4, 5, 7, 8, 9} and from Table 5.5 the TID's 

of <m> is {0, 1, 2, 6, 7, 8, 9}. Therefore, {3, 4, 5, 7, 8, 9}∩{0, 1, 2, 6, 7, 8, 9} 

={7,8,9} and SC=3. Similarly, for <adc>, <ade> and <adp> is also calculated. 

ii. For the frequent 2-item <ac>, the items from <e> i.e. <e> and <p> are 

considered. The patterns generated are <ace> and <acp> and SC is calculated 

as above. 

iii.  For the frequent 2-item <ap>, there is no candidate 3-itemset because there is 

no next item after <p>. 
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 The candidate 3-itemset generated by Thread-1 are <adm>, <adc>, <ade>, 

<adp>, <ace> and <acp>. Among them the patterns viz., <adc>, <adp> and <acp> 

satisfies δ forms frequent 3-itemset and it is shown in Table 5.7. 

Table 5.7 Frequent 3-itemsets for <a> by Thread-1 

Itemset TID's 

<adc> 3 4 5 7 8 9 

<adp> 3 4 5 7 8 9 

<acp> 3 4 5 7 8 9 

 The frequent 3-itemset for <a> is not empty, so the method generates the 

candidate 4-itemset. They are <adce> and <adcp>. The SC for <adce> is calculated as                       

{3, 4, 5, 7, 8, 9}∩{0, 1, 2, 3, 4, 6, 7, 8, 9} = {3,4,7,8,9} and SC of <adcp> is 5.                        

Similarly, for <adcp> is {3, 4, 5, 7, 8, 9}∩{0, 1, 3, 4, 5, 6, 7, 8, 9}={3,4,5,7,8,9} and 

the SC=6 and is shown in Table 5.8.    

Table 5.8 Frequent 4-itemsets for <a> by Thread-1 

Itemset TID's 

<adcp> 3 4 5 7 8 9 
 

 Now, candidate 5-itemset for the item <a> is Ø. So Thread-1 stops its 

execution and returns <ad>, <ac>, <ap>, <adc>, <adp>, <acp> and <adcp> as 

frequent items for <a>. Similarly, the other threads generate frequent itemsets for 

other frequent 1-itemset in parallel and are shown from Table 5.9 to Table 5.19. 

Table 5.9 Frequent 2-itemset for <f> by Thread-2 

Itemset TID's 

<fp> 1 3 5 6 8 9 
 

Table 5.10 Frequent 2-itemset for <i> by Thread-3 

Itemset TID's 

<ie> 0 1 3 6 8 9 

<ip> 0 1 3 6 8 9 
 

Table 5.11 Frequent 3-itemset for <i> by Thread-3 

Itemset TID's 

<iep> 0 1 3 6 8 9 
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Table 5.12 Frequent 2-itemset for <d> by Thread-4 

Itemset TID's 

<dc> 0 3 4 5 7 8 9 

<de> 0 3 4 7 8 9  

<dp> 0 3 4 5 7 8 9 
 

Table 5.13 Frequent 3-itemset for <d> by Thread-4 

Itemset TID's 

<dce> 0 3 4 7 8 9  

<dcp> 0 3 4 5 7 8 9 

<dep> 0 3 4 7 8 9  
 

Table 5.14 Frequent 4-itemset for <d> by Thread-4 

Itemset TID's 

<dcep> 0 3 4 7 8 9 
 

Table 5.15 Frequent 2-itemset for <m> by Thread-5 

Itemset TID's 

<me> 0 1 2 6 7 8 9 

<mp> 0 1 6 7 8 9  
 

Table 5.16 Frequent 3-itemset for <m> by Thread-5 

Itemset TID's 

<mep> 0 1 6 7 8 9 

Table 5.17 Frequent 2-itemset for <c> by Thread-6 

Itemset TID's 

<ce> 0 2 3 4 7 8 9 

<cp> 0 3 4 5 7 8 9 

Table 5.18 Frequent 3-itemset for <c> by Thread-6 

Itemset TID's 

<cep> 0 3 4 7 8 9 
 

Table 5.19 Frequent 2-itemset for <e> by Thread-7 

Itemset TID's 

<ep> 0 1 3 4 6 7 8 9 

 Table 5.20 depicts the candidate items, frequent items, number of candidates 

and frequent items generated by the TB-NPF-VDF for D. The total number of 

candidate items generated using TB-NPF-VDF is 56, which is less when compared to 

VDF. 
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5.4 Experimental Results and Discussion 

 The runtime performance of all algorithms (Matrix-Apriori [PVG,06], VDF,                   

NPF-VDF, TB-NPF-VDF) for the four datasets depicted in Table 1.4 with different 

min_sup percentage were tabulated in Table 5.21. The min_sup is varied from 20% to 

70%. Figures 5.3 to 5.6 show the graphical representation of the runtime comparison 

between the algorithms viz., Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for 

the datasets, namely chess, mushroom, t25i10d10k and c20d10k, respectively. 

Table 5.20 Details of Itemsets for D 

Itemset Candidate Items Total
# 
 Frequent Items Total

$
  

1-itemset {a, b, c, d, e, f, g, h, i, k, 

m, p, m} 

13 {a, c, d, e, f,  i, m, p}  8 

2-itemset {af, ai, ad, am, ac, ae, ap, 

fi, fd, fm, fc, fe, fp, id, im, 

ic, ie, ip, dm, dc, de, dp, 

mc, me, mp, ce, cp, ep} 

28 {ad, ac, ap, fp, ie, ip, 

dc, de, dp, me, mp, ce, 

cp, ep} 

14 

3-itemset {adm, adc, ade, adp, ace, 

acp, iep, dce, dcp, dep, 

mep, cep} 

12 {adc, adp, acp, iep, 

dce, dcp, dep, mep, 

cep} 

9 

4-itemset {adce, adcp, dcep} 3 {adcp, dcep} 2 

Total 56  33 
   # 

Number of Candidate Items   
$ 

number of Frequent Items 

 From Table 5.21 and Figures 5.3 to 5.6, the TB-NPF-VDF outperforms than 

the other existing methods viz., Matrix-Apriori, VDF and NPF-VDF. On an average, 

the runtime is reduced from 20.3092 to 9.9094.  

5.4.1 Welch's Two Sample t-test  

 To prove statistically, a Welch's two sample t-test is being performed between 

the runtimes of Matrix-Apriori and TB-NPF-VDF and it is used to determine whether 

the means of the two groups are equal to each other or not. The null hypothesis is 

taken as that the two means are equal i.e. 1 2  , and the alternative is that they are 

not equal i.e. 1 2   or 1 2   or 1 2  . The test is performed using the R tool for 
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each dataset shown in Table 1.4, and the results are tabulated in Table 5.22.                     

From Table 5.22, it was observed that the p-values for all datasets are ≤ 0.05 (5%) and 

it is concluded that the two means are not equal, which means that there are 

significant differences between the runtimes. Therefore, the proposed method                  

TB-NPF-VDF is more efficient in terms of runtime than the others. 

Table 5.21 Performance Results of TB-NPF-VDF in seconds 
 

min_sup (%) Runtime (in Sec.) 

  Matrix-

Apriori 

VDF NPF-VDF TB-NPF-VDF 

chess 

20 20.7578 16.8578 13.3578 6.5267 

30 19.6365 16.0452 12.1455 5.0325 

40 17.7750 14.0750 10.0720 4.5635 

50 16.3028 13.3017   9.0017 3.2634 

60 15.3625 12.7943   8.2934 2.4571 

70 14.8546 11.9825  7.4822 2.0012 

Average 17.4482 14.1761 10.0588 3.9741 

mushroom  

20 23.2135 21.1215 18.0016 12.1024 

30 21.3426 20.0462 17.0642 11.5642 

40 20.0035 19.7083 14.1038 10.7869 

50 19.2002 18.2058 13.2044 10.0063 

60 18.0805 17.7898 12.7240   8.5698 

70 17.5652 15.9575 11.4530   7.9586 

Average  19.9009 18.8049 14.4252 10.1647 

t25i10d10k  

20 25.2145 23.3254 20.3325 15.1267 

30 23.9625 21.4578 19.4258 13.9568 

40 21.5467 20.0025 17.9857 12.0127 

50 20.3859 18.7621 16.2456 11.6321 

60 19.5321 18.0056 15.0012 10.5212 

70 18.4521 16.0527 13.7564    9.2451 

Average  21.5156  19.6010  17.1245  12.0824  

c20d10k  

20 26.0014 24.4253 22.8342 17.7586 

30 24.9532 22.6752 21.5062 15.9802 

40 22.4251 21.9546 20.0412 13.7542 

50 21.5621 19.4316 18.8562 11.9892 

60 20.1425 19.0012 17.0124 11.0016 

70 19.1478 17.5242 15.9351 10.0142 

Average  22.3720 20.8354 19.3642 13.4163 

Overall Average 

(All Datasets) 
20.3092 18.3543 15.2432   9.9094 
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Figure 5.3 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for chess Dataset 

 

 

 

Figure 5.4 Runime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for mushroom Dataset 



 98 
 

 

 
 

Figure  5.5 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for t25i10d10k Dataset 

 

 

 

 

Figure 5.6 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for c20d10k Dataset 
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Table 5.22 Results of t-test 

 

 

 

 
  

 The reason for enhancing the performance is that the concurrent tasks using a 

multithreaded approach speeds applications up, reduce the time required for execution 

and utilizes CPU effectively. With novel pattern generation, it generates less number 

of candidate itemsets than the existing ones. Further, it scans the database only once 

during the entire process.                                               

5.5 Chapter Summary  

 Numerous FPM algorithms have been introduced in the field of Data Mining. 

Each algorithm has its own merits and demerits and not suits for many real-life 

scenarios. In this research article, a new approach, TB-NPF-VDF has been introduced 

to discover the frequent patterns that combine the power of VDF, NPF and 

multithread concept in an efficient way. Experiments were carried out with real-time 

datasets using Python implementation for the existing and proposed method, and it 

has been proved that the TB-NPF-VDF outperforms the other sequential approaches 

in terms of execution time and memory. The main advantage of this method is that it 

discovers the frequent patterns with less amount of time and saves memory with 

jagged array representation for the VDF matrix. Though, the TB-NPF-VDF reduces 

the runtime and memory with multithreading and jagged array, the multithreading has 

inherent demerits, thus the usage of GPU has been introduced in the next chapter for 

reducing the runtime and memory significantly than the TB-NPF-VDF.  

 

Dataset p-value 

chess 1.207×10
-06

 

mushroom 6.785 ×10
-06

 

t25i10d10k 5.611×10
-05

 

c20d10k 0.0002914 
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CHAPTER - 6  

GNVDF: A GPU-ACCELERATED NOVEL ALGORITHM 

USING VERTICAL DATA FORMAT AND                          

JAGGED ARRAY 

Research is to see what everybody else has seen, and to think what nobody else has taught 

-- Albert Szent-Gyorgyi 

6.1 Background 

 Data Mining (DM) is a part of Knowledge Discovery in Databases (KDD) 

[HD,16]  and explores the hidden patterns from transactional databases for making 

business decisions. It is being associated with many fields such as database systems, 

data warehousing, statistics, machine learning, information retrieval, and high-level 

computing [HPK,12],[LS,20]. It is also supported by other sciences like neural 

networks, pattern recognition, spatial data analysis, image databases and signal 

processing [HPK,12],[LS,20].  Frequent Pattern Mining (FPM) is a computationally 

crucial step in DM [VA,15]. It is used to determine the frequent patterns and 

associations from databases such as relational and transactional databases and other 

data repositories. The Apriori is one of the most significant algorithms,                               

which generate the frequent itemsets for the boolean association rule. It has many 

problems such as more database scan and I/O cost, a large amount of time and 

memory in finding frequent itemsets. So, the researchers have done several 

enhancements to Apriori in the last two decades. 

 However, enhancing execution speed and reducing memory requirements are 

the essential parameters while determining the frequent patterns nowadays because of 

the rise of big data in various domains and sources in human endeavour. Also, when 
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the transactional database size increases, demand for storage is increased and requires 

high-speed algorithms to find frequent patterns. But with a single-threaded approach, 

it's tough to minimize time. The GPU accelerated computing employs GPUs along 

with CPUs. It enables superior performance by supporting a parallel programming 

paradigm with multiple cores. It saves time and cost in scientific and other high 

computing tasks [AFB
b
,14].  

 Thus, the research work introduced in this chapter uses GPU acceleration for 

finding the frequent patterns with Novel pattern formation using Vertical Data Format 

(GNVDF). In this, the candidate i-itemsets is divided into two buckets viz., Bucket-1 

and Bucket-2. Bucket-1 contain all the possible items to form candidate-(i+1) 

itemsets. Bucket-2 has the items that cannot include in the candidate-(i+1) itemsets.                

It also employs a compact data structure called jagged array to minimize the memory 

requirement and also remove common transactions among the frequent 1-itemsets.               

It also utilizes a vertical representation of data for efficiently extracting the frequent 

itemsets by scanning the database only once. Further, the GPU acceleration enhances 

the execution speed of the algorithm. The proposed algorithm was implemented using 

Python and tested with four standard benchmark datasets and compared the same 

without the GPU usage. The comparison result revealed that GNVDF with GPU 

acceleration is faster by 94% than the method without GPU acceleration. 

6.2 Graphical Processing Unit 

 It is a device specifically designed for graphics processing. Two types of 

GPUs exist in the market are i) integrated and ii) discrete. The integrated GPUs are 

embedded alongside the CPU whereas the discrete GPUs comes as a distinct chip 

built up in a separate circuit board and is typically attached to a PCI express slot. 
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GPUs are widely used in large-scale hashing and matrix computations because it 

supports parallelism and serve as the base for mining and machine learning.                         

CUDA and OpenCL are two popular GPGPU programming framework tools. 

NVIDIA has designed a parallel computing platform and programming called 

Compute Unified Device Architecture (CUDA) [LSHW,15],[WDY,13].                             

The CUDA-based program can only be run on the NVIDIA-produced GPU. A typical 

CPU may contain four or eight cores, an NVIDIA GPU consists of thousands of 

CUDA cores and a pipeline that supports parallel processing on thousands of threads, 

increasing the speed significantly.  

 With Numba, the Python developer can quickly enter into GPU-accelerated 

computing. It makes use of both GPU and CPU to facilitate processing-intensive 

operations viz., deep learning, analytics, and engineering applications. The CUDA 

Python and Numba help to enhance the speed by targeting both CPUs and NVIDIA 

GPUs. With this advantage of CUDA python and Numba, the implementation of this 

proposed work will be GPU accelerated. Numba is compatible with Windows 7 and 

later (32-bit and 64-bit), Python 3.6 or later, and Numpy versions 1.15 or later.  

6.2.1 Processing Flow of CUDA 

 In a typical CUDA programming, the data is first sent from the main memory 

to the GPU memory, then the CPU sends instructions to the GPU, then the GPU 

schedules and executes the kernel on the available parallel hardware, and finally 

resulting data are copied back from the GPU memory to the main memory.                      

The processing flow of CUDA is illustrated in Figure 6.1. When using CUDA,                   

the developers can program in popular languages such as C, C++, Fortran, Python and 

MATLAB and express parallelism through extensions in the form of a few keywords. 
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Figure 6.1 Processing Flow of CUDA 

6.3 Proposed Methodology 

 The main objective of the proposed work is to find the essential frequent 

itemsets from the transactional database with less memory space and time by ignoring 

the least probable ones. The method used a jagged array storage structure [WXXS,18] 

and GPU to minimize memory usage and execution time. The proposed method 

GNVDF
4  

first removes the null/void transactions in the dataset. Null/void transactions 

are those which contain only one item. Then the dataset is scanned once and 

converted into VDF format. 

4Sumathi, S.Murugan, "GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using 

Vertical Data Format Approach and Jagged Array", International Journal of Modern Education and Computer 

Science (IJMECS), ISSN: 2075-0161 (Print), ISSN: 2075-017X (Online), Vol.13, No.4, pp. 28-41, August 2021. 

DOI: 10.5815/ijmecs.2021.04.03 (UGC Care List - II, Scopus Indexed). 
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 The Support Count (SC) for each item is calculated by counting the number of 

transactions that contain each item. Now the candidate 1-itemset C1 is formed.                

Next, the frequent 1-itemset is formed by removing the items whose SC˂min_sup(δ) 

and storing it in jagged array representation [SM,18] in sorted order based on SC. 

From L1 the common transactions among all items are determined either by 

intersecting or ANDing the transaction in each item, and it is preserved in the 

Common Transaction List (CTID_list). The transactions in CTID_list's are removed from 

each item in L1, forming the final frequent 1-itemset. The SC for each item in L1 is 

updated by SC - n, where n is the number of transactions in CTID_list. Next, the new 

min_sup (δnew) is determined as δnew = δ - n, and it will be the min_sup from the                   

2
nd

 iteration onwards.  

 Before finding the frequent 2-itemset, the final frequent 1-itemset is divided 

into two logical buckets, LB1 and LB2  respectively. LB1 contains all the items whose 

SC = δnew, and the rest will be placed in LB2. The itemset combinations among the 

items in LB1 are least probable of being a candidate 2-itemset because the SC of each 

item is equal to δnew. So it is not considered for generating candidate 2-itemset.                             

The candidate 2-itemsets patterns are generated by combining each item Ix in LB1 with 

each item Iy in LB2 and each item Iz in LB2 with Iz+1 in LB2 until the last item in LB2. 

The itemset combination that ends with the last item in LB2 will be placed in C2_2 and 

the rest in C2_1. From C2_1 and C2_2, the items whose SC below the δnew is removed as 

infrequent and formed L2_1 and L2_2.  

 For generating candidate 3-itemset, each itemset Ix in L2_1 is combined with the 

next item Iy in LB2 after the last item in Ix. Similar to the previous iteration,                        

the combinations that end with the last item in LB2 are placed in C3_2 and the                            
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rest in C3_1.  It is noted that the itemset combinations in L2_2 are not used in the 

formation of candidate 3-itemsets.  The L3_1 and L3_2 were formed by removing the 

infrequent itemsets in C3_1 and C3_2. The process is continued until Ln_1 is not null. 

Further, to increase the execution speed of the proposed method, it is being 

accelerated with GPU. The proposed algorithm is shown in Algorithm 6.1, and the 

workflow diagram in Figure 6.2. 

Algorithm 6.1 GNVDF: An algorithm for finding frequent itemsets 

 Input   : D - a dataset with n transactions; 

 δ - minimum support threshold; 

 Output : Frequent patterns; 

1: D  eliminate_null(D); 

2: vdf  scan D and convert it in VDF;  

3: L1 one_frequent_itemset(vdf, δ); 

4: CTID_list  find_common_TID(L1); 

5: L1 remove the transactions in CTID_list  for each item in L1; 

6: δnew  δ - number of transactions in CTID_list;  

7: LB1  {∀ frequent 1-itemset | SC=δnew };  

8: LB2  {∀ frequent 1-itemset | SC > δnew};  

9: L2_1, L2_2  find_two_freq_itemset(LB1,LB2,δnew); 

10: i=2; 

11: while Li_1 ≠ Ø do 

12:  Li+1_1,Li+1_2  n_frequent_itemset(Li_1,LB2,δnew); 

13:  i=i+1; 

14: end while 

procedure eliminate_null(D-a dataset with n transactions) 

1: for each Ti ∈ D do 
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2:  cntcount the number of items in Ti; 

3:  if cnt == 1 then  

4:   remove Ti from D; 

5:  end if; 

6: end for; 

7: return D; 

procedure one_frequent_itemset(D: Dataset after removing null transactions;                   

δ :minimum support threshold) 

1: L1Ø; 

2: for each itemi in D do 

3:  TIDlisttransactions in which itemi occurs;  

4:  SCcount the number of transactions in TIDlist; 

5:  if SC ≥ δ then  

6:   add {itemi, TIDlist, SC} into L1; 

7:  end if 

8: end for 

9: sort L1 and store it in jagged array format; 

10: return L1; 

procedure find_common_TID (L1: frequent 1-itemset) 

1: nfind the number of items in L1; 

2: CTID_list{TIDlist1 ∩ TIDlist2 ∩… ∩ TIDlistn}; 

3: return CTID_list; 

procedure two_freq_itemset (LB1: frequent 1-itemset1, LB2: frequent                 

1-itemset2, δ:minimum support ) 

1: last_itemfind last item in LB2; 

2: for each itemi in LB1 do 

3:  for each itemj in LB2 do 

4:  new_pattern  <itemiitemj>; 

5:  new_tidTIDs(itemi)∩TIDs(itemj); 
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6:  new_sccount the transactions in new_tid; 

7:  if new_pattern contains last_item then 

8:   append{new_pattern,new_tid,new_sc} in C2_2; 

9:  else 

10:   append{new_pattern,new_tid,new_sc} in C2_1; 

11:  end if 

12:  end for 

13: end for  

14: L2_1{C2_1 | SC(C2_1) ≥ δ}; 

15: L2_2{C2_2 | SC(C2_2) ≥ δ}; 

16: return L2_1, L2_2; 

procedure n_frequent_itemset (Li_1: frequent i-itemset1, LB2: frequent                                    

1-itemset2, δnew: minimum support) 

1: for each itemi in Li_1 do 

2:  last_itemfind the last item in itemi; 

3:  for each itemj in LB2 after last_item do 

4:  new_item{<itemiitemj>}; 

5:  new_tidTIDs(itemi)∩ TIDs(itemj); 

6:  new_sccount the transactions in new_tid; 

7:  if new_item contains last element in LB2 then 

8:   append{new_item,new_tid,new_sc}in Cn_2; 

9:  else 

10:   append{new_item,new_tid,new_sc}in Cn_1; 

11:  end if 

12:  end for 

13: end for 

14: Ln_1{Cn_1 | SC(Cn_1) ≥ δ}; 

15: Ln_2{Cn_2 | SC(Cn_2) ≥ δ}; 

16: return Ln_1, Ln_2; 
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 The main advantage of the proposed method is that it reduces the number of 

candidate itemsets to be generated in each iteration because the itemsets in Li_2,                     

for i ≥ 3 will not be considered for creating candidate itemsets and removal of items in 

CTL in final L1. Additionally, GPU and jagged array enhance the performance in 

terms of speed and usage of memory. 

 

Figure 6.2 Workflow of GNVDF 

6.3.1 Memory Requirement Calculation 

 From [DMPW
+
,10],[SM,18], it was observed that the memory requirement 

using a jagged array structure for the frequent itemsets could be calculated based on 

the following equation: 
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1

iitemset

i ii
TM TM rbytes




                            … Equation (6.1) 

where, TMi is the total memory required for the candidate i-itemset, and rbytesi is the 

memory occupied by the infrequent/rare items in the candidate i-itemset.                                

By subtracting rbytesi from TMi, the memory for Li  i.e. frequent i-itemsets can be 

found. TMi and rbytesi were calculated using Equations 6.2 and 6.3 respectively. 

{ }

( ) ( )
i

i item

item itemset

TM SC sizeof tid sizeof item
 

              … Equation (6.2)  

{ }

( ) ( )
i

i item

item in frequent

rbytes SC sizeof tid sizeof item
  

         … Equation (6.3) 

 As in [DMPW
+
,10], the GNVDF also used the same jagged storage structure 

for storing frequent itemsets, and the amount of memory requirement was calculated 

as follows. It first fetches the common transactions among items in the frequent                  

1-itemsets and then removes them from frequent 1-itemsets. Suppose if the frequent 

1-itemset contains n items say item1, item2, item3,…, itemn and the corresponding TID 

lists say TID-List1, TID-List2, TID-List3,…,TID-Listn, then the common TIDs(CTID) 

among the n items were found by set intersection operation using Equation 6.4 shown 

below.   

1 2{ } { } ... { }
TID nC TID List TID List TID List          … Equation  (6.4) 

The memory space required for CTID was calculated using Equation 6.5. 

( )

1

( )
TID

i

length C

TID

i

CM sizeof C


                            … Equation (6.5) 

 Since the method removes the CTID from frequent 1-itemsets, the CTID need not 

be repeated in the subsequent frequent itemsets, saving memory space considerably.              
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The amount of memory saved (MS) for the entire dataset was calculated using 

Equation 6.6.  

1 2

2

( ) { ( ) ( )}
iitemset

i i i

i

MS count itemset CM count itemset count itemset CM


 



      

…Equation (6.6) 

where, count(itemset1), count(itemseti_1), and count(itemseti_2) refer to the number of 

items in frequent 1-itemset, first and the second part of frequent i-itemsets, 

respectively. Thus, the total memory required for the frequent itemsets of the entire 

dataset using the proposed method was calculated using Equation 6.7. 

1

{ }
iitemset

final i i

i

TM TM rbytes MS




                    … Equation (6.7) 

6.3.2 Illustration by an Example 

 The vertical representation of transactional dataset D shown in Table 6.1 is 

considered for illustrating the proposed methodology.  

Table 6.1 Vertical Data Format of D 

Item Transaction ID's (TID's) 

a {3, 4, 5, 7, 8, 9} 

b {1, 3, 4, 5, 6} 

c {0, 2, 3, 4, 5, 7, 8, 9} 

d {0, 3, 4, 5, 7, 8, 9} 

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 

f {1, 3, 5, 6, 8, 9} 

g {0, 1, 3} 

h {0, 1, 5, 6, 9} 

i {0, 1, 3, 6, 8, 9} 

k {0, 7} 

m {0, 1, 2, 6, 7, 8, 9} 

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 
 

 The transaction database D contains 12 items viz., {a, b, c, d, e, f, g, h, i, k,                

m, p}. Each item is represented by a row containing the name of the item and the 
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transactions in which the item occurs (TIDs) [SNM,15]. Let δ is 6. From Table 6.1, 

the candidate 1-itemset is calculated. The candidate 1-itemset contains all the items                

in D, the TIDs in which the item occurs and the SC. It is shown in Table 6.2. 

Table 6.2 Candidate 1-itemset(C1) 

Item TIDs SC 

a {3, 4, 5, 7, 8, 9} 6 

b {1, 3, 4, 5, 6} 5 

c {0, 2, 3, 4, 5, 7, 8, 9} 8 

d {0, 3, 4, 5, 7, 8, 9} 7 

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9 

f {1, 3, 5, 6, 8, 9} 6 

g {0, 1, 3} 3 

h {0, 1, 5, 6, 9} 5 

i {0, 1, 3, 6, 8, 9} 6 

k {0, 7} 2 

m {0, 1, 2, 6, 7, 8, 9} 7 

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9 
 

 

 From the table above, the items viz., b, g, h and k are removed as infrequent 

because the items do not satisfy δ. The frequent 1-itemset is shown in Table 6.3.   

Since the common transactions (CTL) are stored in Table 6.4, they are removed from 

each item in L1, the final L1 is formed, and it is shown in Table 6.5. Now the new_min 

is calculated by removing the number of items in CTL as δnew = δ - n = 6 - 2 = 4.               

The logical buckets from final L1, i.e. LB1 and LB2, are shown in Tables 6.6 and 6.7.  

Table 6.3 Frequent 1-itemset (L1) 

1-itemset TIDs 

a 3 4 5 7 8 9    

f 1 3 5 6 8 9    

i 0 1 3 6 8 9    

d 0 3 4 5 7 8 9   

m 0 1 2 6 7 8 9   

c 0 2 3 4 5 7 8 9  

e 0 1 2 3 4 6 7 8 9 

p 0 1 3 4 5 6 7 8 9 
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 To reduce the storage space requirement further, this method finds the 

common transaction in which the all items occurs either by AND operation or 

intersection of the TIDs of all frequent 1-itemset. i.e. {3,4,5,7,8,9}∩{1,3,5,6,8,9}∩ 

{0,1,3,6,8,9}∩{0,3,4,5,7,8,9}∩{0,1,2,6,7,8,9}∩{0,2,3,4,5,7,8,9}∩{0,1,2,3,4,5,6,7,8,9}∩

{0,1,3,4,5,6,7,8,9} = {8,9} and it is stored in CTL. The CTL is shown in Table 6.4. 

Table 6.4 Common Transaction List (CTL) 

CTL 

8 9 

Table 6.5 Final Frequent 1-itemset (L1) 

1-itemset TIDs 

a 3 4 5 7    

f 1 3 5 6    

i 0 1 3 6    

d 0 3 4 5 7   

m 0 1 2 6 7   

c 0 2 3 4 5 7  

e 0 1 2 3 4 6 7 

p 0 1 3 4 5 6 7 

Table 6.6 Logical Bucket-1 (LB1) 
 

 

 

 

 

 

Table 6.7 Logical Bucket-2 (LB2) 

 

 

  

 

 

 The 2-itemset combinations viz., ad, am, ac, ae, fd, fm, fc, fe, id, im, ic, ie, dm, 

dc, de, mc, me, mp, and ce are in C2_1 and the items viz., ap, fp, ip, dp, mp, cp and ep 

1-itemset TIDs 

a 3 4 5 7 

f 1 3 5 6 

i 0 1 3 6 

1-itemset TIDs 

d 0 3 4 5 7   

m 0 1 2 6 7   

c 0 2 3 4 5 7  

e 0 1 2 3 4 6 7 

p 0 1 3 4 5 6 7 
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are stored in C2_2. The possible combinations viz., af, ai and fi need not be generated.              

It is shown in Tables 6.8 and 6.9 respectively.  

Table 6.8 Candidate 2-itemset - Part I 

C2_1 TIDs SC 

ad 3, 4, 5, 7 4 

am 7 1 

ac 3, 4, 5, 7 4 

ae 3,4,7 3 

fd 3,5 2 

fm 1,6 2 

fc 3,5 2 

fe 1,3,6 3 

id 0,3 2 

im 0,1,6 3 

ic 0,3 2 

ie 0, 1, 3, 6 4 

dm 0 1 

dc 0, 3, 4, 5, 7 5 

de 0, 3, 4, 7 4 

mc 0,2 2 

me 0, 1, 2, 6, 7 5 

ce 0, 2, 3, 4, 7 5 
 

 The items viz., am, ae, fd, fm, fc, fe, id, im, ic, dm and mc are infrequent in 

C2_1 and no item is infrequent in C2_2. Therefore, the frequent 2-itemsets are stored in 

L2_1 and L2_2 in jagged array notation as shown in Tables 6.10 and 6.11 respectively.  

Table 6.9 Candidate 2-itemset - Part II 

C2_2 TIDs SC 

ap 3, 4, 5, 7 4 

fp 1, 3, 5, 6 4 

ip 0,1,3,6 4 

dp 0, 3, 4, 5, 7 5 

mp 0, 1, 6, 7 4 

cp 0, 3, 4, 5, 7 5 

ep 0, 1, 3, 4, 6, 7 6 
 

 The candidate 3-itemsets from L2_1 and LB2 viz., adm, adc, ade, ace and dce, 
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stored in C3_1 and the patterns adp, acp, iep, dep, mep, dcp and cep are kept in C3_2 as 

shown in Tables 6.12 and 6.13 respectively.  

Table 6.10 Frequent 2-itemset - Part I 

L2_1 TIDs 

ad 3 4 5 7  

ac 3 4 5 7  

ie 0 1 3 6  

dc 0 3 4 5 7 

de 0 3 4 7  

me 0 1 2 6 7 

ce 0 2 3 4 7 
 

Table 6.11 Frequent 2-itemset - Part II 

L2_2 TIDs 

ap 3 4 5 7   

fp 1 3 5 6   

ip 0 1 3 6   

dp 0 3 4 5 7  

mp 0 1 6 7   

cp 0  3 4 5 7  

ep 0 1 3 4 6 7 
 

Table 6.12 Candidate 3-itemset - Part I 

C3_1 TIDs SC 

adm 7 1 

adc 3, 4, 5, 7 4 

ade 3,4,7 3 

ace 3,4,7 3 

dce 0, 3, 4, 7 4 
 

Table 6.13 Candidate 3-itemset - Part II 

C3_2 TIDs SC 

adp 3, 4, 5, 7 4 

acp 3,4,5,7 4 

iep 0, 1, 3, 6 4 

dep 0, 3, 4, 7 4 

mep 0, 1, 6, 7 4 

dcp 0, 3, 4, 5, 7 5 

cep 0, 3, 4, 7 4 
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The L3_1 and L3_2 are shown in Tables 6.14 and 6.15, respectively. Similarly, C4_1 and 

C4_2 are shown in Tables 6.16 and 6.17, respectively. L4_1 and L4_2 are L4_1 = {} and 

L4_2 is shown in Table 6.18. 

Table 6.14 Frequent 3-itemset - Part I 

L3_1 TIDs 

adc 3 4 5 7 

dce 0 3 4 7 
 

Table 6.15 Frequent 3-itemset - Part II 

2_3L  TIDs 

adp 3 4 5 7  

acp 3 4 5 7  

iep 0 1 3 6  

dcp 0 3 4 5 7 

dep 0 3 4 7  

mep 0 1 6 7  

cep 0 3 4 7  
 

Table 6.16 Candidate 4-itemset - Part I 

 

 

 

Table 6.17 Candidate 4-itemset - Part II 

 

 

 

Table 6.18 Frequent 4-itemset - Part II 

 

 

 Now, L4_1 is an empty list, so the algorithm terminates. It is observed from the 

experiment that the time needed for finding frequent items for sample dataset D in the 

example without the use of GPU is 0.8111 sec, whereas the wall time is 0.0073 ms 

C4_1 TIDs SC 

adce 3,4,7 3 

C4_2 TIDs SC 

adcp 3, 4, 5, 7 4 

dcep 0, 3, 4, 7 4 

L4_2 TIDs 

adcp 3 4 5 7 

dcep 0 3 4 7 
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with GPU. The total memory requirement for the frequent itemset for the above 

dataset using the method in [SM,18] is TM=124+210+137+32=503 bytes. By using 

GNVDF, the memory requirement for the common transaction is CM = 2+2 = 4 bytes 

and the amount of memory saved using the proposed method is MS = (8×4) + {(7×4 + 

7×4) + (2×4 + 7×4) + (0×4 + 2×4)} = 32 + 56 + 36 + 8 = 132 bytes. Therefore, the 

final memory requirement is TMfinal = 503 - 132 = 371 which is 26.24% of memory 

saved for this example dataset compared to the memory requirement in [SM,18].                         

It is also noted that the number of common transactions is directly proportional to the 

amount of memory saved. 

6.4  Experimental Results and Discussion 

 The proposed algorithm was implemented using Python with CUDA Toolkit 

with NVIDIA GPU. An extensive experiment was conducted using four real-time 

datasets viz., chess, mushroom, t25i10d10k and c20d10k to evaluate the performance 

of GNVDF. The datasets and their details were shown in Table 1.4. They were 

obtained from the FIMI repository and an open-source data mining library. The reason 

for choosing those datasets is that many researchers used those bench-mark datasets in 

Frequent Itemset Mining (FIM) and Association Rule Mining (ARM) based research. 

The runtime performance of the proposed method without GPU acceleration was 

obtained for each dataset, with the minimum threshold values ranging from 20% to       

70% and is shown in Table 6.19.  

 From Tables 6.19 and 6.20 it was observed that when the number of items and 

transactions in a dataset increases, the time required for finding frequent patterns also 

increases. In general, there is an inverse relationship between the min_sup threshold 

and the time needed to determine the frequent patterns. i.e. when the min_sup 
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threshold is increased, the number of generated candidate itemsets, followed by 

frequent patterns, is minimized, consuming less time for the higher threshold.  

Table 6.19 Runtime (in ms) Performance of the Proposed Algorithm without GPU 

DS
#
 

MS
*
 

chess mushroom t25i10d10k c20d10k 

20 10759.6 14501.6 16332.5 16334.2 

30   9845.5 13464.2 16225.8 16006.2 

40   7972.0 11103.8 13885.7 15441.2 

50   7101.7 10224.4 12645.6 14956.2 

60   6293.4   9834.0 11101.2 13412.4 

70   5082.2   8253.0   9256.4 12035.1 

Average 7842.4 11230.17 13241.2 14697.55 
 

                      
 

                       #
DS-Dataset 

*
MS-min_sup(δ) 

 

 Similarly, the proposed algorithm was executed with GPU acceleration using 

the same minimum support range and results were tabulated in Table 6.20.  

 

 

Table 6.20 Runtime (in ms) Performance of the Proposed algorithm with GPU-acceleration 

DS
#
 

MS
*
 

chess mushroom t25i10d10k c20d10k 

20 119.5511 145.0160 161.7079 161.7248 

30 107.0163 138.0940 156.0173 158.4772 

40   83.9158 117.2770 129.7729 131.9761 

50   73.2134 104.5091 108.3670 110.6496 

60   64.2184   88.8096 102.4380 105.3511 

70   53.4968   74.0512    83.6424   92.9924 

Average 83.57 111.29 123.66 126.86 

                       #
DS-Dataset 

*
MS-min_sup(δ) 

 The graphical representation of the runtime performance of each dataset with 

and without GPU usage was illustrated in Figures 6.3 to 6.6.  



 119 
 

 

 

Figure 6.3 Runtime Performance of GNVDF with and without GPU-acceleration for 

chess Dataset 

 

 

Figure 6.4 Runtime Performance of GNVDF with and without GPU-acceleration for 

mushroom Dataset 
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Figure 6.5 Runtime Performance of GNVDF with and without GPU-acceleration for 

t25i10d10k Dataset 
 

 

Figure 6.6 Runtime Performance of GNVDF with and without GPU-acceleration for c20d10k 

Dataset 
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 Figures 6.3 through 6.6 revealed that the GPU acceleration significantly 

enables the execution speed of the proposed methodology, and GNVDF with GPU is 

faster by 94% when compared with GNVDF without GPU acceleration. The reason 

for the performance enhancement is that the GPUs have many computing cores that 

allow the parallel execution of computation-intensive tasks. Since the GNVDF uses 

the VDF approach, the number of database scans is restricted to one [SK,19] for 

determining each item's support count, which in turn reduces the overtime for finding 

the frequent patterns.  But, VDF requires more memory for additional information 

like TIDs than HDF [SK,19], so a jagged array has been used to minimize memory 

space is an advantage. Further, the elements in CTL removed from frequent 1-itemset 

save the memory space considerably more than the existing classical algorithms.  

6.5 Chapter Summary 

 A GPU-accelerated novel method for finding the frequent itemset called 

GNVDF has been proposed in this research article. It uses an innovative approach to 

discover the candidate and frequent itemsets by removing unnecessary itemsets to 

form the subsequent itemsets. It also utilizes GPU for speeding up the process. It also 

empowers the use of a jagged array storage structure and removes the common 

elements in 1-frequent itemsets. With GPU acceleration and an innovative way of 

determining itemsets, the time required is significantly decreased. Similarly, with a 

jagged storage structure, the memory requirement is also minimized than the classical 

algorithms. From the extensive experiments made, it is observed that the GNVDF 

with GPU is 94% faster than with GNVDF without GPU and also proved that it suits 

both sparse and dense datasets. Further, the use of the VDF approach restricts the 

database scan to one. 
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CHAPTER - 7 

CONCLUSION 

In the end, when it's over, all that matters is what you've done 

--Alexander the Great 

 The discovery of frequent patterns, associations, and correlation relationships 

among the huge amounts of data is useful in marketing, decision analysis,                          

and business management. A popular application is "market basket analysis",                       

which analyzes the buying behaviours of the customers by searching for itemsets that 

are bought together frequently. Many efficient and scalable algorithms have been 

contributed by the researchers for Frequent Pattern Mining (FPM), from which the 

correlation and association rules can be derived. Though there are two decades of 

research in FPM, the prolonged processing time and huge memory consumption have 

become the major issues. So, it necessitates developing better algorithms with reduced 

runtime and less memory usage. Thus, this research work concentrates on developing 

efficient FPM algorithms for finding frequent patterns in such a way that the runtime 

and usage of memory to be reduced than the existing algorithms.  

7.1 Summary of the Contributions 

 In this thesis, a framework called SUMsFPM has been developed to minimize 

the runtime and memory usage in discovering the frequent patterns from transactional 

databases. The thesis mainly concentrates on two major issues associated with FPM 

and it contains three categories of research models viz., time-efficient (RISOTTO), 

memory-efficient (JAB-VDF) and both time and memory-efficient (TB-NPF-VDF 

and GNVDF) models. All models were implemented using Python programming.  

http://www.azquotes.com/quote/684379
http://www.azquotes.com/author/5835-Alexander_the_Great
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The key contributions made in this research work are summarized below: 

i) The prefixed-itemset storage structure proposed in the literature stores the 

frequent i-itemsets as <prefix-key, values>. It uses the values in the frequent                 

i-itemset of prefixed-itemset storage for generating candidate (i+1)-itemset 

combinations, thereby reducing the number of candidate itemsets to be 

generated during each iteration. But for determining the Support Count (SC) of 

each candidate (i+1)-itemsets, it scans the dataset again and again. So, in order 

to reduce the number of database scans and candidate itemsets, the RISOTTO 

method proposed in the thesis combines the prefixed-itemset storage structure 

with Vertical Data Format (VDF) approach, which restricts the database scans 

to one. Further, the RISOTTO algorithm avoids storing the frequent i-itemsets 

with only one item in values because with one item, there is no possibility for 

(i+1)-itemset combinations which saves both time and memory. It is found 

from the experimental results that the RISOTTO algorithm outperforms the 

existing algorithms viz., prefixed-itemset storage and VDF i.e. RISOTTO 

reduces the runtime from 22.0163 to 13.5594 and from 18.3543 to 13.5594 

seconds on an average when compared with prefixed-itemset storage and VDF 

respectively.   

ii) It is noted that the VDF is faster and requires only one scan of the database 

than HDF. With the array storage structure adopted by VDF, the memory 

required for storing tid's is huge. With a varied number of tid's for each item, 

the memory was underutilized than the assigned. Thus, to save memory space 

considerably, JAB-VDF, a jagged array-based VDF has been proposed in this 

research work. Based on the experimental results, it has been observed that the 
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JAB-VDF reduces memory consumption from 1.5425 GB to 0.7609 GB on an 

average when compared with the 2-D array used by VDF with δ=20%. 

iii) Many of the VDF-based research works in the literature is based on a                    

single-threaded approach. It is noted that the multithreaded approach saves 

time to complete the task and also gives an improved throughput than the 

single-threaded approach. By considering these advantages, a multithreaded 

based FPM algorithm with a novel way of generating patterns using VDF 

called TB-NPF-VDF has been proposed in this thesis. With the extensive 

experiments, it has been identified that the TB-NPF-VDF reduced the runtime 

from 20.3092 to 9.9094 seconds on an average than the Matrix-Apriori. 

Similarly, the TB-NPF-VDF declined the runtime from 18.3543 to 9.9094, 

from 15.2432 to 9.9094 on an average when compared with VDF and                   

NPF-VDF (proposed work with single-threaded approach) respectively.                   

The usage of the jagged array in TB-NPF-VDF saves memory significantly as 

in JAB-VDF.  

iv) The usage of multithreading in the TB-NPF-VDF method optimizes the 

processor usage and thereby increases the speed of the processes than the 

single-threaded approach. But, when the database size increases, it's tough to 

minimize runtime even with multithreading on a single CPU. With GPU 

accelerated computing, the GPUs can be employed along with CPUs and it 

supports parallel programming paradigm with multiple cores. Thus, the 

research work used GPU acceleration for finding the frequent patterns with a 

novel way of generating patterns using VDF called GNVDF. It is evident from 

the experiment that the GNVDF is faster when compared with the GNVDF 
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without GPU acceleration. i.e. the usage of GPU in GNVDF and the novel 

pattern formation enhances the speed by 94% with GPU acceleration.                

Further, the removal of common transactions from frequent 1-itemset saves 

the memory space considerably than JAB-VDF. It is also evident from the 

results the GNVDF is the more efficient method than the other proposed 

methods and existing methods viz., prefixed-itemset based storage, VDF, 

Matrix-Apriori, NPF-VDF and GNVDF without GPU-acceleration. 

7.2 Limitations and Future Research Directions  

 The proposed algorithms has achieved an improved efficiency in finding 

frequent patterns in terms of time and memory as discussed in the section 7.1, but all 

the proposed models were experimented with four real-time and synthetic datasets 

downloaded from the repositories and not tested with dynamic transactional datasets 

and also suitable only for the transactional databases.  

 The following are some of the future research directions that can be done with 

the proposed models:  

i. The research works may be extended by evaluating with dynamic datasets and 

also experimenting with other types of datasets such as unstructured text, 

video and audio.  

ii. Map-Reduce based parallel processing can be applied with cloud resources 

and data can be stored in a distributed storage system in order to handle the big 

data.  

iii. Mine several kinds of frequent patterns such as frequent closed itemsets,                 

max-patterns, sequential patterns, and constraint-based frequent patterns. 
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7.3 Endnote 

 This research work has formulated a new architectural framework called 

"SUMsFPM", which incorporates four methods viz., RISOTTO, JAB-VDF,                       

TB-NPF-VDF and GNVDF for minimizing the runtime and memory requirement in 

finding frequent patterns from transactional databases than the existing algorithms. 

The ideas projected in this thesis are original, innovative and unique and it is not 

present elsewhere in the literature and tested its effectiveness using four datasets both 

real-time and synthetic types derived from the FIMI repository (http://fimi.ua.ac.be) 

and an open-source Data Mining Library (http://www.philippe-fournier-

viger.com/spmf). It has been proved from the experiments that the proposed 

algorithms enhance the performance more than the state-of-art methods in terms of 

reduced runtime and memory usage. This work is non-existent earlier in literature and 

the same is endorsed by a few journals and conferences for its veracity. 

http://www.philippe-fournier-viger.com/spmf
http://www.philippe-fournier-viger.com/spmf
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Abstract - Discovering frequent itemsets is the computationally 

intensive step in the task of mining association rules and Apriori 

is one of the most significant algorithms for finding the frequent 

itemsets. The main challenge in the classical Apriori is that, the 

mining often needs to generate a huge number of candidate 

itemsets and requires more number of database scans which 

increases time and decreases efficiency. It also increase the I/O 

cost and requires more memory. To eradicate these issues a lot of 

improvements to Apriori have been proposed in the literature. In 

this series, this research work also introduces a refinement to the 

Apriori which uses a data structure called prefixed-itemset and 

the horizontal data format approach. Based on the comparative 

analysis with the classical Apriori, the proposed approach 

truncates the number of database scans and reduces the time 

required for finding candidate generation. 

 

Keywords - Apriori, Association Rule Mining, Candidate 

itemsets, Frequent itemsets, Horizontal data format, Prefixed-

itemset. 

 I. INTRODUCTION 

Association Rule Mining (ARM) is a process for finding 

relations between data items in datasets. ARM has been a 

successful technique for extracting knowledge from databases 

[15]. Frequent patterns are the patterns (a set of items, 

subsequences, subgraphs, etc.) that occur frequently in a data 

set. Frequent pattern mining is an essential data mining task in 

the field of data mining and mining frequent patterns from 

large scale databases has emerged as an important research 

problem in data mining and knowledge discovery community. 

Association rules are the main technique used to determine the 

frequent item set in data mining. Apriori algorithm is the first 

algorithm proposed by R.Agrawal and R.Srikant in 1994 in 

the field of data mining and it is a classical algorithm of 

ARM. It generates frequent item sets for boolean association 

rule. As the Apriori algorithm uses the prior knowledge of 

frequent item set properties it is named as Apriori. Apriori 

employs an iterative approach known as level-wise search, 

where kth item set is used to explore (k+1)th-item sets. There 

are two steps involved in each iteration and is repeated when 

no candidate set can be generated. 

They are 

1. Generation of candidate item sets 

2. Finding the occurrence of each candidate item set in 

database and pruning all disqualified candidate set based 

on support count (threshold) first and on closure 

property. Ie., if a set of items is frequent, then all of its 

proper subsets are also frequent 

After finding the frequent item sets, the association rules 

are generated from those large item sets with the constraints of 

minimal confidence (min_conf) and minimum support 

(min_sup) thresholds.  But this classical algorithm is 

inefficient because 

1. It is not suitable for large databases 

2. It defines the presence and absence of an item 

3. It allows uniform minimum support threshold 

4. More scanning of transaction database is needed for 

generating frequent item sets 

5. More I/O cost is required 

6. Generation of candidate item-sets and support counting 

are expensive 

Thus, to eradicate the said disadvantages, there are many 

efficient pattern mining algorithms have been discovered in 

the last two decades and some of the recent articles in the 

literature are shown in section 2, but still research is going on 

in creating efficient frequent pattern mining algorithm and 

ARM. In this succession, a novel hybrid approach for 

enhancing classical Apriori has been introduced in this paper. 

The remaining paper is organized as follows. Section 2 

describes the review of literature. The proposed approach of 

this paper is presented in section 3. An illustrative example for 

the proposed methodology is presented in section 4. Section 5 

discusses the results. Finally section 6 ends with conclusion. 

 II. REVIEW OF LITERATURE 

Association Rule Mining (ARM) is a successful technique 

for finding relations between data items in databases. The 

most widely used Apriori algorithm for generating association 

rule discovers frequent patterns by generating candidate item 

sets which is a costly and memory consuming one. Research 

in improving the Apriori is a common issue and is an ongoing 

research topic these days. This section presents a brief 

overview of the recent literature related to enhancing classical 

Apriori algorithm and it provides a stronger lead to the 

proposed work. 

In [1], the authors have introduced a Modified Apriori 

algorithm using greedy and vectorization method. They 

compared the execution time of traditional Apriori and 

Modified Apriori by varying the number of transactions and 

proved that the Modified Apriori requires less time than the 
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Apriori. They also proved that the proposed method reduces 

the number of rules generated than the original Apriori. The 

authors in [2] have developed a new recursive algorithm based 

on Apriori called Meta-Apriori. In that, they partitioned the 

whole database into smaller ones using divide and conquer 

approach. After partitioned them, they applied Meta-Apriori if 

the partition is huge or Apriori if it is of reasonable size. 

Finally, they merged the achieved results to get the result for 

whole database and proved that Meta-Apriori requires less 

time than the Apriori. 

In [3], the authors have proposed a modified Apriori called 

DC_Apriori. In this, the authors have restructured the storage 

structure of the database and they generated k-frequent item 

sets by joining the 1-frequent item sets with k-1-frequent item 

sets. They avoided the unnecessary invalid candidate sets and 

also reduced the number of database scanning and also 

improved the efficiency of frequent item sets generation. A 

modified Apriori have been proposed in [4] using 

Transposition technique and proved that it is less complex 

than the classical Apriori. 

A method called Advanced Reverse Apriori Algorithm 

(ARAA) has been proposed in [5], which is opposite to 

Apriori. In that the authors have generated the k
th

 itemset first 

and move on to the lower level sets i.e., k-1,k-2,…,1. They 

compared Apriori Algorithm (AA), Reverse Apriori 

Algorithm (RAA) and ARAA and proved that the number of 

scans in ARAA is less than the AA but greater than RAA and 

is equal to number of transactions in the database. Also, 

proved that the ARAA is more suitable for all type of datasets 

but RAA is applicable for higher datasets. An enhanced 

Apriori algorithm and enhanced Eclat algorithm with different 

threshold value for each item have been proposed in [6]. The 

authors compared them with different size of dataset and with 

different size of items and proved that the enhanced Apriori is 

best than the enhanced Eclat in terms of the number of 

frequent items and rules. 

A modified Apriori algorithm called FMA (Frequent 

Matrix Apriori) has been proposed by Kun Nin et al [7]. In 

that, they scanned the dataset only once to store frequent item 

set information in the frequent matrix, then discretizing the 

matrix by minimum support parameter in the frequent matrix 

and finally, the most frequent item sets are found recursively 

by scanning the discretized dataset. It was proved by them that 

the FMA is more effective than the AA in terms of time. An 

improved Apriori has been designed in [8]. In this method, the 

transaction ID’s along with the support count is maintained in 

the frequent item sets and they generated the k+1 itemset by 

set intersection and proved that the number of database scans 

is reduced than the classical Apriori algorithm. 

A prefixed-itemset based data structure for candidate 

itemset generation has been proposed in [9]. In that, the 

candidate itemsets are stored with smaller storage space and 

performed the connecting and the pruning step of the Apriori 

algorithm much faster. It was analyzed that the proposed 

structure improved the efficiency of the classical Apriori 

algorithm. A new algorithm called enhanced Apriori 

algorithms has been introduced in [10], which takes less 

scanning time and reduces the I/O spending time by cutting 

down the unwanted transaction records in the database. 

A new algorithm called semi-Apriori using a binary based 

data structure for mining frequent itemsets as well as 

association rule has been proposed in [11] and proved that this 

technique outperforms Apriori in terms of execution time. In 

[12], an improved Apriori algorithm has been presented and 

made a comparison between conventional Apriori and 

Improved Apriori algorithm. It was proved that the improved 

Apriori provides better performance than classical Apriori 

algorithm. A novel Apriori algorithm has been proposed in 

[13] to overcome the limitations of the classical Apriori 

algorithm based on local and global power set and observed 

that the novel algorithm requires only two scans instead of 

many scans in classical Apriori algorithm. in [14], The authors 

surveyed the good improved approaches of Apriori from 2012 

to 2015. 

From the literature it has been found that the Apriori 

algorithm has been alleviated to several levels, which pawed 

way for enhancing the classical Apriori. In succession, the 

RISOTTO algorithm has been proposed in this paper for 

enhancing the conventional Apriori. 

 III. PROPOSED METHODOLOGY 

The proposed methodology combines both prefixed-itemset 

based storage concept [9] and horizontal data format approach 

[8] for enhancing the conventional Apriori algorithm in terms 

of time and database scans. The algorithm progresses as 

follows: 

In the first step, the proposed algorithm finds the frequent 

1-itemset from the transaction database by scanning it once as 

in classical Apriori. But, it also maintains the transaction ID's 

in which the frequent 1-items occurs along with the support 

count (SC) or TNR (Total Number of Transactions) as in 

horizontal data format approach which forms the candidate 

itemset C1. L1 is constructed from C1 by removing the items 

whose SC is less than the minimum support count (min_sup). 

The transaction ID's are only maintained in C1 and L1. Also, 

the frequent 1-itemset is stored in a new data structure (DS) 

called prefixed-itemset based storage which contains a prefix-

key and values. The prefix for frequent 1-itemset is always 

NULL and the values are the items in L1. In general, the 

frequent k-itemset where k =1,2,3, …,n contains (k-1)-items as 

prefix-key (LKk) and the last item content as the value (LVk). 

In the second step, the values in frequent 1- itemset in the 

prefixed-itemset based storage LV1 is joined by itself (LV1 ⋈ 

LV1) instead L1⋈ L1 and the items which do not satisfy the 

Apriori property is removed and then they are combined with 

the prefix key which forms C2. The Apriori property i.e., all 

nonempty subsets of a frequent itemset must also be frequent 

is considered to improve the efficiency by reducing the search 

space. The support count for the items in C2 is calculated just 

by performing intersection of the transaction ID's in L1 instead 

of scanning the database as in classical Apriori, which 

minimizes the database scans. From C2, L2 is formed by 
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removing those elements from C2 whose support count is less 

than the min_sup. Similar to the previous step, the frequent 2-

itemsets are appended to the prefixed-itemset based storage 

with the appropriate prefix and the values. The second step is 

repeated with k = 3,4,5, … until there is no more candidate 

itemsets found. The proposed approach is named as 

RISOTTO abbreviated from the phrase "pRefixed ItemSet 

hOrizonTal daTa fOrmat". The steps involved in RISOTTO 

are shown in the algorithm 1.1. 

Algorithm 1.1: RISOTTO. Finding frequent itemsets 

Input: 

 D, a database of transactions. 

 min_sup, the minimum support count threshold.  

Output:  

 L, the frequent itemsets in D. 

Method: 

(1) LØ 

(2) C1scan D and generate candidate 1-itemsets  

(3) L1  generate frequent 1-itemsets using min_sup 

(4) LL ∪ L1 

(5) PIDScreate a prefixed-itemset DS 

(6) PIDS(LK1)NULL 

(7) PIDS(LV1)items in L1 

(8) for (k=2; Lk-1≠Ø; k++) do 

(9)        Ck_initPIDS(LVk-1)⋈ PIDS(LVk-1) 

(10) Prune candidate k-items in Ck_init 

(11) Ckjoin PIDS(LKk-1) ⋈  Ck_init  

(12) Lk generate frequent k-itemsets using min_sup 

(13) PIDS(LKk)(k-1)-items in Lk 

(14) PIDS(LVk)k
th

 item in Lk 

(15) LL ∪ Lk 

 (16) endfor 

(17) return L 

The main advantage of this hybrid approach is that, it 

reduces the number of database scans because it finds the SC 

for frequent k-itemsets where k=2,3,4,… by set intersection 

method from the transaction ID's in L1 which in turn 

minimizes the I/O cost. Using the prefixed- itemset storage, 

the number of candidate itemsets produced is reduced than the 

classical Apriori algorithm 

 A. Proposed methodology: An Example 

To illustrate the proposed methodology, a sample 

transaction database D shown in Table 1 has been considered 

which consists of 9 transactions. Each transaction comprises 

of TID (Transaction ID) and items bought from the items 

available in the business enterprise namely A, B, C, D and E 

respectively.  Let the min_sup=2. The frequent 1-itemset is 

computed as in the classical Apriori but the L1 in the 

proposed method contains TID's and TNR or SC.  The 

computation of C1 and L1 is shown in Table 2. 

 

 

 

TABLE I 

 TRANSACTION DATABASE D 

Transaction ID 

(TID) 

Items bought 

T1 A,B,E  

T2 B,D  

T3 B,C  

T4 A,B,D  

T5 A,C  

T6 B,C  

T7 A,C  

T8 A,B,C  

T9 A,B,C,E  

 

TABLE II 

COMPUTATION OF C1 AND L1 

 C1 

 

 

 

 

 

 

 L1 

 

 

 

 

 

In this case, for computing C1 and L1 one database scan is 

performed. Also prefixed-itemset storage is used for keeping 

the frequent k-itemset which contains 3 columns. Columns 1, 

2 and 3 indicate the type of frequent itemset, prefix-key and 

values in frequent k-itemsets. For frequent 1-itemset, the 

itemsets contain  1-itemset, the prefix-key is NULL and 

values are {A,B,C,D,E} which is shown in Table 3.  
TABLE III 

PREFIXED-ITEMSET STORAGE WITH FREQUENT 1-ITEMSET 

 

Now {A,B,C,D,E} ⋈ {A,B,C,D,E} is performed which is 

{AB,AC,AD,AE,BC,BD,BE,CD, CE,DE}. All items in 

{AB,AC,AD,AE,BC,BD,BE,CD,CE,DE} supports Apriori 

property and the set of items are the items in C2. The SC of 

{AB}=count({T1,T4,T5,T7,T8,T9}∩{T1,T2,T3,T4,T6,T8,T9

})=count({T1,T4,T8,T9})=4.SC of {AC}=count({T1 , T4, T5, 

T7,T8,T9}∩{T3,T5,T6,T7,T8,T9})=count({ T5, T7, T8, T9}) 

= 4. Similarly, the SC for other items in C2 is computed and it 

is shown in Table 4. Out of these items in C2, only the items 

AB, AC, AE, BC, BD and BE satisfies the min_sup and which 

forms L2. The frequent 2-itemsets are appended to prefixed 

itemset storage. In L2, the items AB, AC and AE has the 

Item Transaction ID’s TNT or SC 

{A} T1, T4, T5, T7, T8, T9  6 

{B} T1,T2, T3,T4, T6, T8, T9  7 

{C} T3, T5, T6, T7, T8, T9  6 

{D} T2, T4  2 

{E} T1,T9  2 

Item Transaction ID’s TNT or SC 
{A} T1, T4, T5, T7, T8, T9 6 

{B} T1,T2, T3,T4, T6, T8, T9 7 

{C} T3, T5, T6, T7, T8, T9 6 

{D} T2, T4 2 

{E} T1,T9 2 

Itemsets Prefix – Key Values 

1 - itemset NULL {A,B,C,D,E} 
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common prefix A and values are {B,C,E}. Similarly, the items 

BC, BD and BE has the common prefix B and {C,D,E} are 

the values and it is shown in Table 5. 

From Table 5, {B, C, E} ⋈ {B, C, E}={BC,BE,CE}and the 

item CE not satisfies the Apriori property, therefore {B, C, E} 

⋈ {B, C, E}={BC,BE} and each item is prefixed with the 

prefix-key A gives {ABC,ABE}. Similarly {C, D, E} ⋈ {C, 

D, E} = {CD,CE,DE} and the items in {CD,CE,DE} does not 

satisfies the Apriori property. There {C, D, E} ⋈ {C, D, 

E}=Ø. Now the frequent 3-itemset contains only two items 

{ABC,ABE}. The SC for ABC = count({T1, T4, T5, T7, T8, 

T9}∩{T1, T2, T3, T4, T6, T8, T9}∩{T3, T5, T6, T7, T8, 

T9}) = count ({T8,T9})=2. 
TABLE IV 

COMPUTATION OF FREQUENT 2-ITEMSET 

C2 

 

Itemset SC (By set 

intersection) 

{AB}  4 

{AC} 4 

{AD}  1 

{AE}  2 

{BC}  4 

{BD}  2 

{BE}  2 

{CD}  0 

{CE}  1 

{DE}  0 

 

TABLE V 
PREFIXED-ITEMSET STORAGE WITH 1-ITEMSET AND 2-ITEMSET 

 

 

 

 

   TABLE VI 
 COMPUTATION OF 3-FREQUENT ITEMSET  

L3                                                                                            C3 

Itemset SC(By set 

intersection) 
{ABC} 2 

{ABE}  2 

 

Similarly, SC for ABE = count ({T1,T4,T5,T7,T8,T9 

}∩{T1,T2,T3,T4,T6,T8, T9 }∩{ T1,T9})=count({T1,T9})=2. 

Both counts satisfies the min_sup, therefore L3, frequent 3-

itemsets contain {ABC},{ABE} which is shown in Table 6. 

The same is appended in the prefixed itemset storage with 

{AB} as prefix and {C,E} as values and it is shown shown in 

Table 7. 

 

 
 

TABLE VII 

PREFIXED-ITEMSET STORAGE WITH 1-ITEMSET,2-ITEMSET AND 3-ITEMSET 

Itemsets Prefix – Key Values 

1-itemset  NULL  {A,B,C,D,E}  

2-itemset  A  {B, C, E}  

B  {C, D, E}  

3-itemset  AB  {C,E}  

Now {C,E}⋈{C,E}={CE} and the item CE does not 

satisfies the Apriori property. Therefore frequent 4-candidate 

item set C4 is NULL and the algorithm terminates. 

 IV. EXPERIMENTAL RESULTS AND DISCUSSION 

An extensive experiment for RISOTTO and Classical 

Apriori is made using the transaction database D shown in 

Table 1. The candidate itemsets and frequent itemsets 

generated using the classical Apriori and RISOTTO 

algorithms are shown in Table 8 and 9. 
TABLE VIII 

CANDIDATE ITEMSETS AND FREQUENT ITEMSETS OF TABLE 1 USING 

CLASSICAL APRIORI 

 

Candidate itemsets 

using 

Classical Apriori 

(After Join) 

Candidate itemsets 

using 

Classical Apriori 

(After Prune) 

 

Frequent itemsets 

using Classical 

Apriori 

C1 {A,B,C,D,E} C1 {A,B,C,D,E} L1 {A,B,C,D,E} 

C2 {AB,AC,AD,
AE,BC,BD, 

BE,CD,DE} 

C2 {AB,AC,AE.B
C,BD,BE} 

L2 {AB,AC,AE.
BC,BD,BE} 

C3 {ABC,ABE,

ACE, 

BCD, 
BCE,BDE} 

C3 {ABC,ABE} L3 {ABC,ABE} 

C4 {ABCE} C4 Ø L4 Ø 

 

TABLE IX 
CANDIDATE ITEMSETS AND FREQUENT ITEMSETS OF TABLE 1 USING 

RISOTTO 

 

Candidate 

itemsets using 

RISOTTO  

(After Join) 

Candidate 

itemsets using 

RISOTTO   

(After Prune)  

 

 

RISOTTO 

C1 {A,B,C,D,E} C1 {A,B,C,D,E} L1 {A,B,C,D,E} 

C2 {AB,AC,AD,
AE,BC,BD,B

E,CD,DE} 

C2 {AB,AC,AE.
BC,BD,BE} 

L2 {AB,AC,AE.B
C,BD,BE} 

C3 {ABC,ABE} C3 {ABC,ABE} L3 {ABC,ABE} 

C4 Ø 

     

The RISOTTO outperforms well than the classical Apriori 

and the comparison results were shown in Table 10.  From 

table 10, it is observed that the RISOTTO algorithm 

minimizes the database scan to 1 and requires less time for 

generating the candidate itemset and frequent itemsets. This is 

because the proposed algorithm maintains the transaction in 

which frequent 1-itemset occurs and also the prefixed-itemset 

Itemset SC 

{AB}  4 

{AC} 4 

{AE}  2 

{BC}  4 

{BD}  2 

{BE}  2 

Itemsets Prefix – Key Values 

1-itemset  NULL {A,B,C,D,E}  

2-itemset  A {B, C, E}  

B {C, D, E}  

Itemset SC (By set 

intersection) 

{ABC}  2 

{ABE}  2 

L2 
Itemset SC 

{AB}  4  

{AC}  4  

{AE}  2  

{BC}  4  

{BD}  2  

{BE}  2  

Itemset SC 

{AB}  4  

{AC}  4  

{AE}  2  

{BC}  4  

{BD}  2  

{BE}  2  
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storage DS enhances the time to generate the candidate 

itemsets. 
TABLE X 

COMPARISON OF CLASSICAL APRIORI VS. RISOTTO 
 

Parameters Classical 

Apriori 

RISOTTO 

Number of database 

scans  

3 1 

Number of 
candidate itemsets  

More than 
RISOTTO 

Less than 
Apriori 

Time Required for 
finding candidate 

generation  

More than 
RISSOTTO 

Less than 
Apriori  

 V. CONCLUSION 

The research work has introduced an enhanced Apriori 

algorithm called RISOTTO, a new hybrid approach for 

generating frequent itemsets which combines both horizontal 

data format approach and prefixed-itemset based storage DS. 

In the proposed method, frequent 1-itemset stores the 

transactions in which the frequent 1-itemset occurs which 

reduces the number of database scans required to find the 

frequent itemsets and also reduces the I/O cost. The joining 

and pruning steps are performed using the values in the 

prefixed-itemset DS rather than the values in frequent itemsets 

as in classical Apriori which reduced the time required to 

generate the candidate itemsets. Thus the RISOTTO, method 

enhances the existing Apriori algorithm. 
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Abstract— Data mining is the process of extracting the concealed information and rules from large databases. But the real world datasets 

are sparse, dirt and also contain hundreds of items. Frequent Pattern Mining (FPM) is one of the most intensive problems in discovering 

frequent itemsets from such datasets. Apriori is one of the premier and classical data mining algorithms for finding frequent patterns but it is 

not an optimized one. So over last two decades a remarkable variations and improvements were made to overcome the inefficiencies of 

Apriori algorithm such as FPGrowth, TreeProjection, Charm, LCM, Eclat and Direct Hashing and Pruning (DHP), RARM, ASPMS etc., In 

any case, a little enhancement in the algorithm improves the mining process considerably. Frequent itemset mining with vertical data format 

approach has been proposed as an improvement over the basic Apriori, which reduces the number of database scans and also uses array 

storage structure. This research paper has proposed a space efficient implementation of finding frequent itemsets with vertical data format 

using jagged array. It reduces the usage of memory by allocating exact memory. An experiment is done between the array implementation of 

vertical data format approach and jagged array implementation. From the experiment it is proved that the proposed jagged array 

implementation method utilizes the memory efficiently when compared with the traditional multidimensional array. 

 

Index Terms — Apriori, Array, Eclat, Frequent Pattern Mining, FPGrowth, Jagged Array, and Vertical Data Format. 

I.  INTRODUCTION  

 Now-a-days, volumes of data are exploding both in 

scientific and commercial domains. Data mining techniques 

are used to extract unknown information from the huge 

amount of data and became popular in many applications. 

Association Rule Mining (ARM) is one of an important core 

data mining techniques to discover patterns/rules among 

items in a large database of variable-length transactions. Its 

goal is to identify the groups of items that most often occurs 

together i.e., it focuses on finding frequent itemsets each 

occurring at more than a minimum support frequency 

(min_sup) among all transactions. It is widely used in market 

basket transaction data analysis, graph mining applications 

like  substructure  discovery  in chemical compounds, pattern 

finding in web browsing, word occurrence analysis in text 

documents, and so on [1].  

 The major risks associated with finding frequent 

itemsets are i) computational time and ii) memory needed for 

the task because even with a moderate sized dataset, the 

search space and memory utilization of FPM is enormous, 

which is exponential to the length of the transactions in the 

dataset. Therefore, it is essential to perform FPM analysis in 

a space-and-time efficient way. Many researchers in this area 

focused on reducing computational time to find frequent 

patterns and this work focuses on reducing the memory 

utilization using jagged array storage structure in the vertical 

data mining algorithms.  

 Rest of the paper is organized as follows. Section 2 

describes the review of literature. The proposed 

implementation method of Vertical Data Format (VDF) is 

illustrated in section 3. The comparison of existing and the 

proposed implementation methods are discussed in section 4 

and finally section 5 ends with conclusion.  

 

II. REVIEW OF LITERATURE  

 Improving the computational time and memory is 

always an issue in ARM and this section briefs the research 

contributions made by different researchers in this line which 

pawed way for the proposed implementation. 

 In [2], the authors have presented a VDSRP method 

to generate complete set of regular patterns over a data 

stream at a user given regularity threshold using sliding-

window and VDF. It has been proved that the proposed 

method outperforms both in execution and memory 

consumption. 

 Ravikiran, D., et. al, have proposed a new model 

called RCP to mine regular sort of crimes in crime database 

using VDF which requires only one database scan. From the 

experimental results they proved that RCP is more efficient 

than the existing RPtree[3]. In [4], the authors have focused 
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on the various FPM techniques, their challenges in static and 

stream data environment.  
 

 The authors in [6] have presented a new algorithm, 

which mine frequent itemsets with vertical format. They 

proved that the new algorithm needs a single database scan 

and finds new frequent item sets through 'and operation' 

between item sets. The new algorithm requires less storage 

space, and improves the efficiency of data mining. 
 

 An enhanced Apriori and Eclat has been introduced 

in [8], in which individual thresholds for each itemset has 

been used and proved that that the enhanced-Apriori 

algorithm outperforms Enhanced-Eclat Algorithm.  
 

  In [9], the authors have presented an improved 

version of Eclat called Eclat-growth algorithm based on 

increased search strategy. For reducing the runtime in 

generating an intersection of two itemsets and support degree 

calculation, a BSRI (Boolean array Setting and Retrieval by 

Indexes of transactions) method has been introduced. It has 

been proved by them that the Eclat-growth outperforms 

Eclat, Eclat-diffsets, Eclat-opt and hEclat in mining 

association rules.  
 

 In [10], a VFFM algorithm has been developed 

which represents the transaction database in vertical format 

in the form of binary, where the attribute presence and 

absence is represented by 1 and 0 respectively. After one 

scan of transaction database for transformation it generates 

candidate sets and subsets similar to Apriori algorithm. The 

support value of each candidate itemsets is counted by 

intersection of every pair of frequent single items instead of 

database scan and proved that the VFFM outperforms 

Apriori. 
 

 Compressed bit vectors of frequent itemsets based 

on Boolean algebra named Vertical Boolean Mining (VBM) 

has been presented in [11] and it performs the intersection of 

two compressed bit vectors without making any costly 

decompression operation. They proved from the experiments 

that the VBM is better than Apriori and the classical vertical 

association rule mining algorithms in terms of mining time 

and memory usage. 
 

 A novel VDF representation called Diffset has been 

developed by the authors in [12], which keep track of the 

differences in the tid's of a candidate pattern and from which 

it generates frequent patterns. The method cut down the size 

of memory required to store intermediate results and also 

increased performance significantly.  
 

      From the existing literatures, it is noted that no 

authors have proposed a jagged array implementation of 

VDF approach for enhancing the memory requirement of 

VDF. Thus, this work implements VDF using the jagged 

array for efficient utilization of memory. 

III. JAGGED ARRAY IMPLEMENTATION OF 

VERTICAL DATA FORMAT APPROACH 
 

 Frequent patterns are itemsets [set of items, such as 

milk and bread, that appear frequently together in a 

transaction data set], subsequences [buying first a PC, then a 

digital camera, and then a memory card, if it occurs 

frequently in a shopping history database], or substructures 

[subgraphs, subtrees or sublattices] that appear in a dataset 

with frequency no less than a user-specified threshold 

(min_sup)[7]. Finding frequent patterns plays an essential 

role in mining associations, correlations and many other 

interesting relationships among data. ARM is one of the data 

mining techniques to discover the hidden patterns/rules 

among items in a large database of variable-length 

transactions that help in making decision and predictions [4].  

 Apriori Algorithm, FP-Growth and Eclat [4] are the 

popularly available static data mining techniques for finding 

frequent patterns. Apriori is the basic algorithm for mining 

frequent patterns which suffers from space complexity due to 

large number of candidate generation and also requires 

multiple scans of database. FP-growth uses a tree structure 

for mining frequent itemsets. Due to limited number of 

database scans and zero candidates, it is efficient as 

compared to Apriori. Both the Apriori and FP-growth 

algorithms mine frequent patterns in Horizontal Data Format 

(HDF) (i.e., {TID: itemset}), where TID is a transaction-id 

and itemset is the set of items in TID and it is shown in    

Table I. 

TABLE I. TRANSACTION DATABASE D IN HDF 

TID List of item IDS 

T1 A,B,E 

T2 B,D 

T3 B,C 

T4 A,B,D 

T5 A,C 

T6 B,C 

T7 A,C 

T8 A,B,C 

T9 A,B,C,E 

 

But the data can also be presented in {item: TID-

set} format where item is an item name and TID-set is the set 

of transactions containing the item called VDF. The VDF is 

used in Eclat algorithm that minimizes the database scan and 

uses set intersection of Tid’s for finding the support count for 

k-itemsets where k=2,3,...,n. The VDF of the transaction 

database D is shown in Table II. The comparisons between 
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the Apriori, FP-Growth and Eclat with different parameters 

are shown in Table III. From Table III and in [4] it is 

observed that the FP mining algorithms which use VDF are 

very fast and requires less memory space when compared 

with HDF approaches. But, the VDF approaches use array 

storage structure for storing the database in memory. 
 

 

TABLE II. VDF OF D 

itemset TID_set 

A T1,T4,T5,T7,T8,T9 

B T1, T2, T3, T4, T6, T8,T9 

C T3, T5, T6, T7, T8,T9 

D T2,T4 

E T1,T9 

 

 To reduce memory space further, this research work 

implements the VDF using jagged array. It is a special case 

of 2-D array and it is an array of array in which the length of 

each array can differ. This concept is available in JAVA, 

VB.NET and C#.NET. This implementation helps to reduce 

the memory needed considerably because in the real life 

grocery datasets the customers will not purchase all the items 

in the shop. Thus, this implementation utilizes the memory 

effectively. 

A. An Example 

 The first part of this section shows the memory 

requirement for the array implementation of VDM. Let the 

grocery shop sells n (5) items viz., A, B, C, D and E and 

consider the transaction database D shown in Table I. It 

contains t (9) transactions and it is scanned first to generate 

VDF. The VDF of Table I is shown in Table II. 
 

TABLE III. COMPARISON BETWEEN STATIC DATA MINING TECHNIQUES FOR FINDING FREQUENT PATTERNS [5] 

 

Comparison 

Parameters 
Apriori FP-Growth ECLAT 

Technique 
Breadth first search and Apriori 

property (for pruning) 
Divide and conquer 

Depth first search & 

intersection of T-id’s 

Database Scan 
scanned for each time a candidate 

item set is generated 
Two times Few times 

Drawback(s) 
1. Requires large memory space. 

2. Too many candidate item set. 

FP-tree is expensive to build 

and consumes more memory 

It requires the virtual 

memory to perform the 

transaction. 

Advantage(s) 
1. Easy to implement. 

2. Use large item set property 

Database is scanned two 

times 

1. No need to scan the 

database each time 

2. fast 

Data format Horizontal Horizontal Vertical 

Storage structure Array Tree (FP-tree) Array 

Time More execution time 
Execution time is less than 

Apriori 

Execution time is less than 

Apriori 

 

        The support count (SC) for each item is the number of 

transaction-id's that it contains i.e. the SC of A, 

SCA=count(A)=6. Similarly, SCB=7, SCC=6, SCD=2 and 

SCE=2. Let the min_sup be 2. The frequent 1-itemset 

contains {A, B, C, D, E}. The VDF is actually stored in the 

memory as 2-D array, where number of rows (r) = items in 

the grocery shop and number of columns(c) = t. Here r=5 

and c=9. The memory required for storing 1-itemset in VDF 

format is  

 

1 11
( ( )) ( ( ) )TM r c sizeof tid sizeof item r= × × + ×                (1) 

  

 Where item11 is the first item in the frequent                          

1-itemset, tid is the transaction-id and sizeof is a built-in 

function which says the number of bytes required for the 

argument.  

 

Here each tid requires 2 bytes and item11 requires 1 byte of 

memory respectively. All items say A, B, C, D and E sold in 

the grocery shop are frequent 1-itemsets. Therefore the VDF 

requires (5×9×2)+(5×1) = 95 bytes of memory i.e., TM1 = 95 

bytes. Suppose if there are some in-frequent items in                      

1-itemsets, they can be removed which saves memory 

considerably. The number of bytes of memory removed from 

1-itemset is computed as  
 

( ( )) ( ( ))
1 1 1 11

rbytes rr c sizeof tid rr sizeof item= × × + ×               (2) 

 

        Where, rr1 is the number of rows to be removed as in-

frequent. Therefore the total bytes of memory for frequent                

1-itemset is  
 

1 1 1M TM rbytes= −                                                                (3) 
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 Here M1 = 95 - 0 = 95 bytes. Similarly, in iteration 

2, the possible 2-itemsets combinations are generated from 

frequent 1-itemsets and it is {AB, AC, AD, AE, BC, BD, BE, 

CD, CE, DE}. Suppose if there are n items in 1-itemset, the 

possible two item combinations are (n×n-1)/2 say tc2. Among 

them, the numbers of itemset combinations say x may be in-

frequent which need not be placed in VDF. Therefore, the 

memory required for frequent 2-itemset shown in Table IV is  
 

21
(( ) ( )) ( ( ) ( ))2 2 2TM tc x c sizeof tid sizeof item tc x= − × × + × −       (4) 

 

 Where, item21 is the first item in the frequent                     

2-itemset. In this example, the combinations viz., AD,CD,CE 

and DE are in-frequent and based on equation (4), the VDF 

requires ((10 - 4) × 9 × 2) + (2 × (10 - 4)) = 108 + 12 = 120 

bytes. Similarly from Table IV, the 3-itemset combinations 

are {ABC, ABD, ABE, ACE, BCD, BCE, BDE} and the 

combinations ABD, ACE, BCD, BCE and BDE are in-

frequent, therefore the frequent 3-itemset requires                        

((7-5)×9×2)+(7-5)×3)=42 bytes of memory and the VDF of 

3-frequent itemsets is shown in Table V. The process is 

repeated until no frequent itemsets are found.  

 
TABLE IV. VDF OF 2-ITEMSETS 

Itemset TID_set 

AB T1,T4,T8,T9 

AC T5,T7,T8,T9 

AE T1,T9 

BC T3,T6,T8,T9 

BD T2,T4 

BE T1,T9 

 

Therefore, the total memory required for VDF using 2-D 

array is  
 

1 2

itemseti
TM M TMi

i

≠∅

∑= +
=

                                                     (5) 

 

 Where M1 is calculated using (3) and TMi are 

calculated using the equation (6) shown below. 

 

)(( ( )) ( ( ) ( ))
1

x xTM tc c sizeof tid sizeof item tci i ii
− −= × × + ×       (6) 

   

 Where, tci and x are the number of items and in-

frequent items in the candidate i-frequent itemset. For the 

above example TM = 95+120+42 =257 bytes of memory. If 

the same is implemented using jagged array, the memory 

requirement is reduced considerably. The format of jagged 

array representation for candidate 1-itemset is shown in 

Table VI and all items in it are frequent which forms 

frequent 1-itemset.  

 
TABLE V. VDF OF 3-ITEMSETS 

itemset TID_set 

ABC T8,T9 

ABE T1,T9 

 

        TABLE VI. JAGGED ARRAY REPRESENTATION OF 1-ITEMSET 

itemset TID_set 

A T1 T4 T5 T7 T8 T9 

B T1 T2 T3 T4 T6 T8 T9 

C T3 T5 T6 T7 T8 T9 

D T2 T4 

E T1 T9 

 

         The memory required for candidate 1-itemset TM1 

is calculated as   

 

( ) ( )
1

{ }1

TM SC sizeof tid sizeof itemitem
item itemset

∑= × +

∀ ∈

            (7) 

 

 As in two-D representation, there may be x in-

frequent items in candidate 1-itemset say {in-frequent} = 

{item1, item2, …,itemx} then the memory for {in-frequent} 

be saved by removing it and the amount of memory removed 

is computed as shown in equation (8).  

 

( )1
{ }

( )rbytes SC sizeof itemitem
item in frequent

sizeof tid∑= +

∀ ∈ −

×      (8) 

  

 Therefore the total memory required for frequent                

1-itemset in jagged representation is computed using (3) with 

the values computed using (7) and (8) respectively. 

Similarly, the jagged array representation of frequent                      

2-itemset shown in Table VII requires TM2 - rbytes2 memory 

space where TM2 and rbytes2 are calculated by using (9) and 

(10) respectively.  

 

( ) ( )
2

{ }2

TM SC sizeof tid sizeof itemitem
item itemset

∑= × +

∀ ∈

          (9) 

 

2 ( )

{ }

( )rbytes SC sizeof itemitem
item in frequent

sizeof tid∑= +

∀ ∈ −

× (10) 

 

 The jagged representation of frequent 3-itemset is 

shown in Table VIII which requires TM3 - rbytes3 memory. 

This process continues until no more frequent itemsets are 
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found. For this case the candidate 4-itemset is null and the 

algorithm terminates. Therefore, the total memory required 

for the jagged implementation is calculated using equation 

(11).  

 

1

itemseti
TM TM rbytesi ii

≠∅

∑= −
=

                                      (11) 

 

 Where, TMi and rbytesi are calculated using (12) and 

(13) respectively. 

 

 ( ) ( )
{ }

TM SC sizeof tid sizeof itemitemi
item itemseti

∑= × +

∀ ∈

           (12) 

 

( )

{ }

( )
i

rbytes SC sizeof itemitem
item in frequent

sizeof tid

i

∑= +

∀ ∈ −

×   (13) 

 
TABLE VII. JAGGED ARRAY REPRESENTATION OF 2-ITEMSET 

itemset TID_set 

AB T1 T4 T8 T9 

AC T5 T7 T8 T9 

AE T1 T9 

BC T3 T6 T8 T9 

BD T2 T4 

BE T1 T9 

 
TABLE VIII. JAGGED ARRAY REPRESENTATION OF 3-ITEMSET 

itemset TID_set 

ABC T8 T9 

ABE T1 T9 

 

For this example, the jagged representation requires 

TM1            = (6×2 +1)+(7×2+1)+(6×2+1)+(2×2+1)+(6×2+1) 

               = 13+15+13+5+5=51 bytes 

 rbytes1   = 0 

 Therefore M1=51- 0 = bytes 

 TM2         = (4×2+2) +(4×2+2)+(1×2+2)+ (2×2+2) +(4×2+2) 

+(2×2+2) +(2×2+2) +(0×2+2) +(1×2+2)+ (0×2+2)  

                =10+10+4+6+10+6+6+2+4+2=60 bytes 

rbytes2     = (1×2+2)+(0×2+2)+(1×2+2)+(0×2+2)=12 bytes 

Therefore M2 requires = 60 - 12 = 48 bytes of memory. 

Similarly, M3 requires 14 bytes and therefore, the jagged 

representation for this example requires 

TM=M1+M2+M3 =51+48+14=113 bytes of memory which is 

less than 50% in the original array representation. 

IV. RESULTS AND DISCUSSION 

From the example discussed in section 3.1, the jagged 

implementation has several advantages. They are  

1. No memory space is wasted as in 2-D array because 

jagged array allocates space only to the transactions in 

which the items occurs. 

2. Minimizes the memory space required than the 

original array implementation because for the above 

example the array implementation requires 257 bytes 

of memory, where as it is 113 bytes when using 

jagged implementation i.e., it requires less than 50% 

of memory when compared with the array 

representation. 

 Thus, it is finalized that the jagged implementation 

saves memory significantly and also fast when compared 

with the horizontal data format approaches. 

V. CONCLUSION 

        From the literatures, it is observed that there is always a 

trade-off between the computational time and memory in 

generating frequent itemsets. It is also found that the vertical 

data format approaches reduces the database scans and finds 

the support counts by intersection. Though it is best, the array 

storage structure implementation used by VDF requires more 

memory because it takes the assumption that each item may 

fall almost in all transactions. But in real world grocery 

datasets, each transaction will not contain all items and each 

item may not present in all transactions. So to reduce the 

memory consumption, this research work used the jagged 

array representation for efficient usage of memory and from 

the experiments it is proved that the proposed implementation 

approach reduces more than 50% of memory when compared 

with original 2-D array implementation. In future, this work 

can be extended to the test real world grocery datasets of 

more dimensions. 
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Abstract  
Frequent pattern mining is essential for discovering hidden items from a database with more than a 
prescribed threshold. Knowing frequent patterns helps us to determine the relationship between the 
items. Many researchers narrated novel algorithms for sequential frequent itemset mining using a single 
thread, but still, there is a need for time, memory efficient and scalable one. Therefore, the research study 
proposed an approach for finding frequent patterns, namely TB-NPF-VDF (Thread Based, Novel Pattern 
Formations with Vertical Data Format), which uses a new way of generating candidate items to minimize 
the time. Also, it employs a multithread concept and runs several threads simultaneously, one for each 
frequent 1-itemset to generate the remaining frequent itemsets for that item. Further, it also employs a 
jagged array to store the frequent patterns to reduce the memory requirement. The research work has 
been implemented and tested using four real-time datasets. Further, it has been compared with Matrix-
Apriori, VDF and NPF-VDF (without multithread), and the experimental results reveal that TB-NPF-
VDF outperforms significantly in terms of runtime and storage.  

Keywords: Frequent Patterns; Jagged Array; Multithread; Novel Pattern Formation; Vertical Data 
Format. 

1.  Introduction  

Data Mining (DM) is the fastest growing field [1], whose primary goal is to discover or extract information or 
patterns from large datasets. It is a multidisciplinary field comprising Computer Science and Statistics. It is an 
analysis step of Knowledge Discovery from Databases (KDD) [2]. Several DM techniques are available, such as 
Association Rule Mining (ARM), sequential pattern analysis, classification, and clustering. ARM is one of the 
most widely used techniques for knowledge discovery in the mining domain [3]. ARM is used in several 
applications such as inventory control, mobile mining, educational mining, market basket analysis, risk 
management, telecommunication networks and graph mining, etc. [4]. Frequent patterns are the patterns that 
occur frequently in a dataset whose frequency is more than that of a threshold value specified by the user. For 
instance, a set of items viz., pen and paper appears frequently together in a transactional dataset is a frequent 
itemset [1]. Mining frequent patterns is an essential sub-task of ARM [5]. It generates qualitative knowledge, 
which helps the decision-makers for making valuable business insights [2]. 

Apriori is a classical algorithm for finding frequent patterns which uses a horizontal format approach 
proposed by Agrawal and Srikant in 1993 [6] for Boolean association rules. The algorithm begins with 
generating a 1-itemset, recursively produces a frequent 2-itemset, frequent 3-itemset, and so on until all frequent 
itemsets are produced [4]. The main drawback of the algorithm is that it generates numerous candidate itemset, 
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especially for huge frequent 1-itemset and needs to scan the database many times. Many algorithms have 
evolved over the years to overcome these drawbacks viz., FP-growth, Direct Hashing and Pruning (DHP), 
Matrix-Apriori and maximal association rule mining, so on. In this line, this research work also introduces a 
paradigm for finding frequent patterns with a multithreaded approach.  

The remaining article is organized as follows. The relevant work related to the proposed work is illustrated 
in Section 2. Section 3 elaborates the proposed methodology with an analogy. Section 4 discusses the results and 
section 5 summarizes the conclusion. 

2.  Related Work 

The problem of mining frequent patterns is an essential task in ARM. Several studies have been carried out in 
this domain to improve the time to generate frequent itemsets and reduce the memory space over the years. This 
section presents a brief overview of them, providing a strong impetus to the proposed method.  

Y. M. Guo et al. [1] have initiated a VDF algorithm for mining frequent itemsets. The new algorithm only 
needs a single scan of the entire database and uses AND operation for finding the frequent itemsets. 
Additionally, it proved that the algorithm requires less storage and also improves the mining efficiency. 
Subashini et al. [4] have studied ARM methods in horizontal and vertical data format approaches viz., Apriori, 
APRIORITID, APRIORI_RARE and APRIORIRARE_TID. They analyzed the pros and cons of each 
technique. 

Judith Pavón et al. [7] have introduced a method called Matrix-Apriori to increase the speed of finding 
frequent itemsets. It first generates a Boolean matrix MFI which holds the frequent 1-itemset by traversing the 
transaction database. The vector STE stores the support count of the candidate itemset for each row in MFI. To 
accelerate the search of frequent patterns, the first row of MFI writes the indexes. It used a conditional pattern 
generation method for generating frequent patterns and proved that it performs better than Apriori and FP-
Growth algorithms. Sumathi, P and Murugan, S [8] have designed a memory-efficient VDF approach using a 
jagged array and developed a memory usage model. They demonstrated that memory usage was reduced 
significantly when compared with multidimensional arrays.  

A fast GPU-based frequent itemset mining algorithm for massive datasets called GMiner has been 
introduced in [9]. It has been developed to overcome the limitations of various parallelism methods viz., multi-
core CPU, multiple machines and many-core GPU, particularly the workload skewness.  It extracts the patterns 
from the enumeration tree and uses the computational power of GPU. From the experimentation, they showed 
that the GMiner is better than the existing ones. Authors in [10] have suggested a novel algorithm, namely 
Accelerating Parallel Frequent Itemset Mining on Graphics Processors with Sorting (APFMS). This parallel 
frequent itemset mining utilizes GPU's to accelerate the mining process. GPUs speed-up process using the 
OpenCL platform and proved that the APFMS outperforms the previous computation time-based methods.  

A new multi-core based parallel mining algorithm for finding frequent itemsets has been presented in [11] 
using LINQ queries. It divides the transactional database into sub-datasets known as conditional patterns. Many 
threads ran concurrently on a multi-core computing system, one for each conditional pattern. They proved that 
the algorithm is faster by 2x and 4x times than the fast Eclat and FP-growth algorithms, respectively. A 
compressed bit matrix-based parallel algorithm for exploring frequent itemsets has been introduced by Zong-Yu 
et al., which uses both bottom-up and top-down approaches for efficient pruning [12]. It also uses OpenMP's 
parallel multithreaded, dynamic scheduling approach to extract frequent itemsets. Finally, they demonstrated 
that this approach reduces memory space, I/O overhead with a single database scan compared to the Apriori 
algorithm. 

In [13], the authors have proposed a VDF approach for finding frequent itemsets using a Boolean matrix 
(FPMBM), where the presence of an item for the TID's is 1 and 0 for absence. It uses logical AND operation for 
finding support count from frequent 2-itemset to frequent n-itemsets until it is not empty. To control the number 
of iterations for candidate generation, it also uses additional information in the Boolean matrix, namely "number 
of iterations". Further, they demonstrated from the experiment that the FPMBM is efficient and more scalable 
than the existing ones.  

Jen, T. Y., et al. have created a novel vertical format based parallel method for finding frequent patterns 
called Apriori_V with MapReduce platform. They proved that it provides a significant improvement in reducing 
the number of operations and decreasing computational complexity [14]. The authors in [15] have introduced a 
Parallel Regular Frequent Pattern (PRF) method to find out the regular-frequent patterns from large databases 
using VDF format and proved from the experiments that the algorithm reduced the number of database scans, 
I/O cost and inter-process communication. 
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In [16], the authors have reviewed the works related to Parallel Sequential Pattern Mining (PSPM), viz., 
partition-based, Apriori-based, pattern growth-based, and hybridized algorithms for PSPM. They also reviewed 
the open-source software's utilized in PSPM. Further, they summarized the issues and uses of PSPM in big data. 
In [17], the authors have proposed an FPM algorithm with a multi-core processor and Multiple Minimum 
Support called MMS-FPM. It quickly generated frequent patterns. It has been designed mainly to solve rare item 
problems. They have proved that the MMS-FPM is more superior to MSApriori and also scalable one. In [18], 
the authors have designed a Spark-based parallel Apriori algorithm called YAFIM (Yet Another Frequent 
Itemset Mining). The experimental result revealed that the proposed method is faster than the Apriori's 
MapReduce implementation by 18 times. 

The existing literature found that no authors proposed parallel algorithms using a multithreaded approach 
with uni-processor systems. Thus, the research work focuses on a multithreaded approach with jagged array 
representation for VDF and novel pattern formation in finding frequent patterns, namely TB-NPF-VDF. It also 
compares the proposed work with the methods viz., Matrix-Apriori, VDF and NPF-VDF. 

3. Proposed Methodology  

The proposed work's main idea is to find frequent patterns for the transaction database TD. It contains four 
phases. Phase one scans TD first and converts it into VDF, in which a set of TIDs represents each item as in 
Eclat [19]. The second phase determines the frequent 1-itemset from VDF. The third phase sorts the frequent 1-
itemset in ascending order based on the min_sup(δ) threshold, and it is stored in a matrix using the jagged array 
format. The δ of an itemset X is calculated by dividing the total transactions in which X occurs by the total 
number of transactions [20]. The fourth phase creates n-1 threads, one for each frequent 1-itemset except for the 
last one; where n represents the total items in frequent 1-itemset (L1). Let L1={I1, I2,…, In}, each thread 
generates frequent itemsets starting from frequent 2-itemset to frequent k-itemset until it is non-empty, where k 
≥ 2.  

For finding frequent i-itemset, i ≥ 2, each thread (tx,1≤x≤n-1) uses the following procedure. 
(1) When i=2, the thread forms the candidate patterns by combining Ix with Ix+1 and finds the transactions 

in which the combination IxIx+1 occur by intersecting the transactions in Ix and Ix+1. The item 
combinations whose support count ≥ δ is selected as frequent i-itemset for item x. 

(2) For i>2, each item in frequent (i-1)-itemset is combined with each frequent 1-itemset starting from the 
next item in the last item of frequent(i-1)-itemset and the transactions in which the combination exists 
is determined by intersecting the item in frequent (i-1)-itemset and the appropriate item in frequent 1-
itemset. This procedure will be repeatedly performed as far as the frequent k-itemset is not null. 

The proposed method uses multithreads and novel pattern formation with VDF to find frequent patterns is 
named TB-NPF-VDF. The main benefit of this method is that it generates fewer candidate itemsets than the 
classical Apriori and VDF because it avoids the items whose support count is lesser than the item at any instance 
of time for generating the patterns. As threads are used, the CPU is effectively utilized, and it is faster compared 
to processes. This method avoids checking the pattern for the Apriori property because the candidate patterns 
generated satisfies the Apriori property by default. Further, the time required for TB-NPF-VDF is less when 
compared to VDF. The memory requirement is minimized since the algorithm uses the matrix notation using a 
jagged array [8].  

The algorithm for the proposed method is shown below, and the workflow of TB-NPF-VDF is illustrated in 
Fig.1. 
 

TB-NPF-VDF: Algorithm to discover the frequent patterns 
Input: TD - Transactional database; 

δ  - min_sup threshold; 
Output: Frequent itemsets; 
1: vdfscan TD and store it in <itemset, TIDlist> format; 
2: C1Ø; 
3: for each itemi in vdf do 
4:  SCcount(TIDlist(itemi)); //determines the number of transactions in itemi 
5:  C1C1.append ({itemset, TIDlist, SC})// adds a row into C1 
6: endfor 
7: for each itemi in C1 do 
8:  L1{itemi | SC(itemi) ≥ δ} 
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9: endfor 
10: L1jagged(sort(L1)) //sorts L1 and converts it into a jagged matrix format 
11: no_freq1_itemsetcount(L1) //determines the number of itemset in L1 
12: for (x=1; x ≤ (no_freq1_itemset-1); x++) 
13:  txcreate(thread) //create tx for the L1[x] 
14: endfor 
15: for each thread tx do 
16:  for (k=2; Lk ≠ Ø; k++) 
17:   if k==2 then 
18:    new_pattern<IxIx+1>; 
19:    new_TID_listTransactions(Ix)∩Transactions(Ix+1); 

20:   else if k ≥ 2 then 
21:    for each itemj in Lk-1 do 

22:     new_itemlast item in itemj  

23:     new_pattern{<itemjIy>|Iynext(new_item)} 

24:     new_TID_listTransactions(itemj)∩Transactions(Iy); 

25:    endfor 
26:   endif 

27:   SCcount(new_TID_list); 
28:   CkCk.append({new_pattern,new_TID_list}); 

29:   Lk{Ck | SC(Ck) ≥ δ} 

30:  endfor 
31: endfor 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Workflow of TP-NPF-VDF 

3.1. Example 

To understand the relevance of the proposed work, the Transactional Database (TD) shown in Table 1 has 
been considered. It consists of 12 items, namely A,B,C,D,E,F,G,H,I,K,M and P. The vertical representation of 
TD is shown in Table 2. Each row represents an item consisting of the item name and the TID's in which the 
item belongs. Assume the min_sup (δ) as 6. The candidate 1-itemset (C1) consists of all the items in TD, the 
transaction IDs in which the items occurred, and the support count (SC), i.e. the total transactions in which the 
item appears. The C1 for TD is shown in Table 3. Among them, the items viz., A,C,D,E,F,I,M and P satisfy the δ 
and form the frequent 1-itemset(L1). The jagged array representation of the same is shown in Table 4 [21].  

… 
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Generate 
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Generate 
Lk-itemset

Compare SC with δ 
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in VDF in increasing order 
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L1 ={I1,I2,I3,…,In} Create n-1 threads 

Prune 
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TID Items Purchased 
0 D,C,G,E,I,H,P,K,M 
1 E,B,G,F,I,H,M,P 
2 E,C,M 
3 B,A,D,C,F,E,I,G,P 
4 B,A,D,C,P,E 
5 B,A,D,C,H,F,P 
6 E,B,H,F,P,I,M 
7 C,A,E,D,P,K,M 
8 C,A,E,D,I,F,M,P 
9 C,A,E,D,H,F,P,I,M 

Table 1. Transactional Database (TD) 

 
Item Transaction ID's (TID's) 

A {3, 4, 5, 7, 8, 9} 
B {1, 3, 4, 5, 6} 
C {0, 2, 3, 4, 5, 7, 8, 9} 
D {0, 3, 4, 5, 7, 8, 9} 
E {0, 1, 2, 3, 4, 6, 7, 8, 9} 
F {1, 3, 5, 6, 8, 9} 
G {0, 1, 3} 
H {0, 1, 5, 6, 9} 
I {0, 1, 3, 6, 8, 9} 
K {0, 7} 
M {0, 1, 2, 6, 7, 8, 9} 
P {0, 1, 3, 4, 5, 6, 7, 8, 9} 

Table 2. Transactional Database in VDF 

 
C1 
Itemset TID's SC 

A {3, 4, 5, 7, 8, 9} 6 
B {1, 3, 4, 5, 6} 5 
C {0, 2, 3, 4, 5, 7, 8, 9} 8 
D {0, 3, 4, 5, 7, 8, 9} 7 
E {0, 1, 2, 3, 4, 6, 7, 8, 9} 9 
F {1, 3, 5, 6, 8, 9} 6 
G {0, 1, 3} 3 
H {0, 1, 5, 6, 9} 5 
I {0, 1, 3, 6, 8, 9} 6 
K {0, 7} 2 
M {0, 1, 2, 6, 7, 8, 9} 7 
P {0, 1, 3, 4, 5, 6, 7, 8, 9} 9 

Table 3. Candidate 1-Itemset 

 
L1 
1-Itemset TID's 

A 3 4 5 7 8 9    
C 0 2 3 4 5 7 8 9  
D 0 3 4 5 7 8 9   
E 0 1 2 3 4 6 7 8 9 
F 1 3 5 6 8 9    
I 0 1 3 6 8 9    

M 0 1 2 6 7 8 9   
P 0 1 3 4 5 6 7 8 9 

Table 4. Jagged Array Representation of L1 
 

To generate fewer candidate itemsets, this research work uses a novel pattern generation method rather than 
the natural join used in the Apriori algorithm. For that, the L1 is sorted in ascending order based on SC and 
replaced with L1 as illustrated in Table 5.  

The sorted L1 contains 8 items, and this work creates 7 threads because the frequent 1-itemset contains 8 
items. Thread-1 is for the item <A>, Thread-2 is for item <B>, etc. The Thread-1 first generates the following 
patterns. 

<AF>, <AI>, <AD>, <AM>, <AC>, <AE> and <AP> and for each pattern, set intersection is calculated by 
using the TID's in each item of the pattern. For example, for the pattern <AF> the set intersection is calculated 
as {3, 4, 5, 7, 8, 9} ∩ {1, 3, 5, 6, 8, 9} = {3, 5, 8, 9} and SC=4.  
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L1 

1- Itemset TID's 

A 3 4 5 7 8 9    
F 1 3 5 6 8 9    
I 0 1 3 6 8 9    
D 0 3 4 5 7 8 9   
M 0 1 2 6 7 8 9   
C 0 2 3 4 5 7 8 9  
E 0 1 2 3 4 6 7 8 9 
P 0 1 3 4 5 6 7 8 9 

Table 5. Sorted L1 

Similarly, the SC for other patterns viz., <AI>, <AD>, <AM>, <AC>, <AE> and <AP> is calculated as 
stated above. The patterns whose SC ≥ δ will be considered as the frequent 2-itemset for the item <A> and are 
represented in Table 6. For this case, the patterns <AD>, <AC> and <AP> satisfies the δ.  
  

Item TID's 

<AD> 3 4 5 7 8 9 
<AC> 3 4 5 7 8 9 
<AP> 3 4 5 7 8 9 

Table 6. Frequent 2-Itemset for <A> by Thread-1 
 

Next, the method generates the candidate 3-itemsets for each frequent 2-itemset in Table 6 as follows. 
(1) For the frequent 2-item <AD>, the items viz., <M>, <C>, <E> and <P> are considered from frequent 1- 

itemset because <M> is the next item after <D> where, <D> is the last item in frequent 2-itemset 
<AD>. The patterns generated are <ADM>, <ADC>, <ADE> and <ADP> and for them, the 
transactions in which the pattern occurs and SC is calculated as follows. 
From Table 6, the TID's of <AD> is {3, 4, 5, 7, 8, 9} and from Table 5 the TID's of <M> is {0, 1, 2, 6, 
7, 8, 9}. Therefore, {3, 4, 5, 7, 8, 9} ∩ {0, 1, 2, 6, 7, 8, 9} = {7, 8,T} and SC=3. Similarly, for <ADC>, 
<ADE> and <ADP> is also calculated. 

(2) For the frequent 2-item <AC>, the items from <E> i.e. <E> and <P> are considered. The patterns 
generated are <ACE> and <ACP> and SC is calculated as above. 

(3) For the frequent 2-item <AP>, there is no candidate 3-itemset because there is no next item after <P>. 

The candidate 3-itemset generated by Thread-1 are <ADM>, <ADC>, <ADE>, <ADP>, <ACE> and 
<ACP>. Among them the patterns viz., <ADC>, <ADP> and <ACP> satisfies δ forms frequent 3-itemset and 
represented by Table 7. 

Itemset TID's 

<ADC> 3 4 5 7 8 9 
<ADP> 3 4 5 7 8 9 
<ACP> 3 4 5 7 8 9 

Table 7. Frequent 3-Itemsets for <A> By Thread-1 

The frequent 3-itemset for <A> is not empty, so the method generates the candidate 4-itemset. They are 
<ADCE> and <ADCP>. The TID's for <ADCE> is calculated as {3, 4, 5, 7, 8, 9} ∩ {0, 1, 2, 3, 4, 6, 7, 8, 9}={3, 
4, 7, 8, 9} and SC of <ADCP> is 5. Similarly, for <ADCP>, the TID's are {3, 4, 5, 7, 8, 9}∩{0, 1, 3, 4, 5, 6, 7, 
8, 9} = {3, 4, 5, 7, 8, 9}. The SC of <ADCP> is 6 and it is illustrated in Table 8.  

 
Itemset TID's 

<ADCP> 3 4 5 7 8 9 

Table 8. Frequent 4-Itemsets for <A> by Thread-1 

Now, candidate 5-itemset for the item <A> is Ø. So Thread-1 stops its execution and returns <AD>, <AC>, 
<AP>, <ADC>, <ADP>, <ACP> and <ADCP> as frequent items for <A>. Similarly, the other threads generate 
frequent itemsets for other frequent 1-itemset in parallel as shown from Table 9 to Table 19. 

Itemset TID's 

<FP> 1 3 5 6 8 9 

Table 9. Frequent 2-Itemset for <F> by Thread-2 
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Itemset TID's 
<IE> 0 1 3 6 8 9 
<IP> 0 1 3 6 8 9 

Table 10. Frequent 2-Itemset for <I> by Thread-3 

Itemset TID's 

<IEP> 0 1 3 6 8 9 

Table 11.frequent 3-Itemset for <I> by Thread-3 

Itemset TID's 

<DC> 0 3 4 5 7 8 9 
<DE> 0 3 4 7 8 9  
<DP> 0 3 4 5 7 8 9 

Table 12. Frequent 2-Itemset for <D> by Thread-4 

Itemset TID's 

<DCE> 0 3 4 7 8 9  
<DCP> 0 3 4 5 7 8 9 
<DEP> 0 3 4 7 8 9  

Table 13. Frequent 3-Itemset for <D> by Thread-4 

Itemset TID's 

<DCEP> 0 3 4 7 8 9 

Table 14. Frequent 4-Itemset for <D> by Thread-4 

Itemset TID's 

<ME> 0 1 2 6 7 8 9 
<MP> 0 1 6 7 8 9  

Table 15. Frequent 2-Iemset for <M> By Thread-5 

Itemset TID's 

<MEP> 0 1 6 7 8 9 

Table 16. Frequent 3-Itemset for <M> by Thread-5 

Itemset TID's 

<CE> 0 2 3 4 7 8 9 
<CP> 0 3 4 5 7 8 9 

Table 17. Frequent 2-Itemset for <C> by Thread-6 

Itemset TID's 

<CEP> 0 3 4 7 8 9 

Table 18. Frequent 3-Itemset for <C> by Thread-6 

Itemset TID's 
<EP> 0 1 3 4 6 7 8 9 

Table 19. Frequent 2-Itemset for <E> by Thread-7 

Table 20 depicts the candidate and frequent items, the total number of candidates and frequent items 
generated by the TB-NPF-VDF for the given TD. The total number of candidate items generated using TB-NPF-
VDF is 56, and it is less when compared to VDF. 
 

Itemset Candidate Items Total#  Frequent Items Total$  
1-itemset {A,B,C, D, E, F,G, H, I, K, M,P,M} 13 {A,C,D,E,F, I,M, P} 8 

2-itemset {AF,AI,AD,AM,AC,AE,AP,FI,FD,FM,FC,FE,FP,ID,I
M, IC,IE,IP,DM,DC,DE,DP,MC,ME,MP,CE,CP,EP} 

28 {AD,AC,AP,FP,IE,IP,DC,DE,DP,
ME,MP,CE,CP,EP} 

14 

3-itemset {ADM,ADC,ADE,ADP,ACE,ACP,IEP,DCE,DCP,DEP
, MEP, CEP} 

12 {ADC, ADP, ACP, IEP,DCE, DCP, 
DEP,MEP, CEP} 

9 

4-itemset {ADCE, ADCP,DCEP} 3 {ADCP, DCEP} 2 

Total 56  33 
        #Number of candidate items  $Number of frequent items 

Table 20. Details of Itemsets for TD 

e-ISSN : 0976-5166 
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021 1359



4. Experimental Results and Discussion 

The algorithms viz., Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF were implemented using the Python 
programming language (version 3.8.2). To estimate the performance of TB-NPF-VDF, the research work used 
four real-time datasets downloaded from the FIMI repository and an open-source Data Mining Library. Table 21 
describes the characteristics of datasets. The purpose of using these datasets is that they have been used as a 
reference by researchers primarily for FPM and ARM-based research. To do a uniform and fair comparison, the 
experiments for all the datasets of all algorithms were conducted using the same software and hardware 
configurations. The experiments were performed using 8.00GB RAM, Intel Core i7 with 2.40GHz 64-bit 
processor and Windows 8.1. All algorithms' runtime performance (Matrix-Apriori [7], VDF, NPF-VDF,                   
TB-NPF-VDF) for the four datasets with different min_sup percentages ranging from 20% to 70% were 
tabulated in Table 22.  

 

Datasets Transaction count Item count Average item count/transaction 
chess  3196   75 37.00 

mushrooms   8416 119 23.00 
T25i10d10k   9976 929 24.77 

c20d10k 10000 192 20.00 

Table 21. Characteristics of Datasets 

min_sup (%) 
Runtime (in Sec.) 

Matrix -Apriori VDF NPF-VDF TB-NPF-VDF 
chess 

20 20.7578 16.8578 13.3578 6.5267 
30 19.6365 16.0452 12.1455 5.0325 
40 17.7750 14.0750 10.0720 4.5635 
50 16.3028 13.3017 9.0017 3.2634 
60 15.3625 12.7943 8.2934 2.4571 
70 14.8546 11.9825 7.4822 2.0012 

mushroom 

20 23.2135 21.1215 18.0016 12.1024 
30 21.3426 20.0462 17.0642 11.5642 
40 20.0035 19.7083 14.1038 10.7869 
50 19.2002 18.2058 13.2044 10.0063 
60 18.0805 17.7898 12.7240 8.5698 
70 17.5652 15.9575 11.4530 7.9586 

t25i10d10k 

20 25.2145 23.3254 20.3325 15.1267 
30 23.9625 21.4578 19.4258 13.9568 
40 21.5467 20.0025 17.9857 12.0127 
50 20.3859 18.7621 16.2456 11.6321 
60 19.5321 18.0056 15.0012 10.5212 
70 18.4521 16.0527 13.7564    9.2451 

c20d10k 

20 26.0014 24.4253 22.8342 17.7586 
30 24.9532 22.6752 21.5062 15.9802 
40 22.4251 21.9546 20.0412 13.7542 
50 21.5621 19.4316 18.8562 11.9892 
60 20.1425 19.0012 17.0124 11.0016 
70 19.1478 17.5242 15.9351 10.0142 

Table 22. Performance Results 
 

Figures 2 to 5 show the graphical representation of the runtime comparison between the algorithms viz., 
Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for the datasets, namely chess, mushroom, t25i10d10k and 
c20d10k, respectively. From Table 22 and from figures 2 to 5, it was observed that the runtime performance of 
TB-NPF-VDF outperforms than Matrix-Apriori, VDF and NPF-VDF. On an average, the runtime performance 
is improved from 20.3092 to 9.9094.  

Further, to prove statistically, a Welch two-sample t-test is being performed between the runtimes of Matrix-
Apriori and TB-NPF-VDF. The test was done to determine whether the mean runtimes of Matrix-Apriori and 
TB-NPF-VDF are equal to each other or not. The null hypothesis is taken as that the two mean runtimes are 
equal, and the alternative is that they are not equal. The test is performed using the R tool for each dataset, and 
the results are tabulated in Table 23.  
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Fig. 2. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for chess dataset 

 

 
Fig. 3. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for mushroom dataset 

 

 

 
 

Fig. 4. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for t25i10d10k dataset 
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Fig. 5. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for c20d10k dataset 

 

Dataset p-value 
chess 1.207×10-06 
mushroom 6.785 ×10-06 
t25i10d10k 5.611×10-05 
c20d10k 0.0002914 

Table 23. Results of t-Test 

 
From the observation of t-test results, it is noted that for all datasets, the p-value is ≤ 0.05 (5%) which 

concluded that the two means are not equal, which means that there are significant differences between the 
runtimes. Therefore, the proposed method TB-NPF-VDF is more efficient in terms of runtime than the others. 

The reason for enhancing the performance is that the concurrent execution of the tasks using a multithreaded 
approach speeds applications up and reduced the time required for execution by utilizing the CPU effectively. 
With novel pattern generation, the set of candidate elements generated is less than the existing ones. Further, it 
scans the database only once during the entire process.     

5. Conclusion 

Many FPM algorithms were introduced in the field of data mining. Each algorithm has its own merits and 
demerits and is unsuited for all real-life situations. A new approach called TB-NPF-VDF has been introduced in 
this research article to discover the frequent patterns that efficiently combine the power of VDF, NPF, and 
multithread concepts. Experiments were carried out on real-time datasets using python implementation for the 
existing and proposed methods. TB-NPF-VDF has been proven to be superior to other sequential approaches 
through memory usage and run time. The main advantage is that it discovers frequent patterns with less time and 
saves memory with jagged array representation for the VDF matrix. In future, the work can be improved by 
applying new and efficient optimization techniques.  
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Abstract: In the modern digital world, online shopping becomes essential in human lives. Online shopping stores like 

Amazon show up the "Frequently Bought Together" for their customers in their portal to increase sales. Discovering 

frequent patterns is a fundamental task in Data Mining that find the frequently bought items together. Many 

transactional data were collected every day, and finding frequent itemsets from the massive datasets using the classical 

algorithms requires more processing time and I/O cost. A GPU accelerated Novel algorithm for finding the frequent 

patterns using Vertical Data Format (GNVDF) has been introduced in this research article. It uses a novel pattern 

formation. In this, the candidate i-itemsets is divided into two buckets viz., Bucket-1 and Bucket-2. Bucket-1 contain all 

the possible items to form candidate-(i+1) itemsets. Bucket-2 has the items that cannot include in the candidate-(i+1) 

itemsets. It compactly employs a jagged array to minimize the memory requirement and remove common transactions 

among the frequent 1-itemsets. It also utilizes a vertical representation of data for efficiently extracting the frequent 

itemsets by scanning the database only once. Further, it is GPU-accelerated for speeding up the execution of the 

algorithm. The proposed algorithm was implemented with and without GPU usage and compared. The comparison 

result revealed that GNVDF with GPU acceleration is faster by 90 to 135 times than the method without GPU. 

 

Index Terms:  Frequent Patterns, GNVDF, Graphical Processing Unit, Novel Pattern Formation, Vertical Data Format, 

and Jagged Array. 

 

 

1. Introduction 

Data Mining (DM) is a part of Knowledge Discovery in Databases (KDD) [1] and explores the hidden patterns for 

business people. It is associated with many fields such as database systems, data warehousing, statistics, machine 

learning, information retrieval, and high-level computing [2,3]. It is also supported by other sciences like neural 

networks, pattern recognition, spatial data analysis, image databases and signal processing [2,3]. There are several 

techniques in data mining like classification, clustering, association rule mining and regression [4]. Frequent Pattern 

Mining (FPM) is a computationally crucial step in data mining [5]. It is used to determine the frequent patterns and 

associations from databases such as relational and transactional databases and other data repositories. The Apriori is one 

of the most important algorithms for finding frequent itemsets. It has many problems such as more database scan and 

I/O cost, a large amount of time etc., for finding frequent itemsets. So the researchers have made several refinements to 

Apriori in the last two decades. 

However, enhancing speed and reducing memory requirements are the essential parameters while determining the 

frequent patterns nowadays because of the rise of big data in various domains and sources in human endeavour. Also, 

when the transactional database size increases, demand for storage is increased and requires high-speed algorithms to 

find frequent patterns. But with a single-threaded approach, it's tough to minimize time. The GPU accelerated 

computing employs GPUs along with CPUs. It enables superior performance by supporting a parallel programming 

paradigm with multiple cores. It saves time and cost in scientific and other high computing tasks [6]. So, researchers 
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were utilized GPUs in FPM based research. Some research works based on GPUs that motivate this article's proposed 

work were discussed here. 
W. Fang et al. [7] have introduced two implementations for Apriori using GPUs with Single Instruction, Multiple 

Data (SIMD) architectures. Both methods use a bitmap data structure. They executed the first one on the GPU, avoiding 

the intermediate data transfer between the GPU and CPU memory. The second one uses both the CPU and GPU for 

processing with trie structure. They proved that both implementations speed up the processing than the classical Apriori 

algorithm. S. M. Fakhrahmad et al. [8] have developed different parallel versions of a novel sequential mining 

algorithm for finding frequent itemsets. The methods are i) assigning each partition to a processor, ii) assigning each 

column to a processor, and iii) devoting the kth processor to mine the kth-itemsets. These methods were compared 

experimentally using time complexity, communication rate, and load balancing and proved that the proposed methods 

outperformed the existing sequential algorithms. 

The authors J. Zhou et al. have designed [9] a GPU-based Apriori algorithm with OpenGL to accelerate association 

rules mining. The experiment proved that the proposed algorithm provides better performance than the classical 

algorithms. A new pattern-based algorithm called HSApriori has been suggested by D. William Albert et al. [10], and it 

is based on the parallel processing nature of GPU. In this, the proposed method was tested using both the tidset and 

bitset representation of the dataset and found that the bitset is more appropriate for parallel processing. Further, they 

proved from the experiment that the speed of HSApriori is substantially more when compared with traditional 

HorgeltAprirori. 

To solve the limitations of Apriori, a parallel Apriori Map Reduce model has been presented by M. Tiwary et al. 

[11] using high-performance GPU. They have attached a GPU with every node in a Hadoop cluster. Also, they have 

used NVIDIA's GPU and JCUDA and JNI for the integration process. From the experiments, it has been proved that it 

provides better performance in terms of execution time. The downside of the algorithm is that the extra hardware charge 

is associated with the GPUs in each node in the Hadoop cluster. To overcome the drawbacks in the traditional cluster-

based map-reduce, J. Li et al. [12] have designed a multi-GPU based parallel Apriori algorithm to accelerate the 

calculation process of Apriori. It has been initiated especially to mine association rules in medical data. The analytical 

results have proved that the proposed method significantly improves the execution speed with a lower cost for medical 

data. 

A novel method called CGMM to suit both sparse and dense datasets has been proposed to mine frequent patterns 

has been introduced by L. Vu et al. [13]. To increase the speed of the FPM process, it combines both the CPU and GPU. 

In this method, the CPU uses the FP-tree data structure to perform mining, and the GPU converts the data to bit vectors. 

The experiments with AMD CPUs and NVIDIA GPU have proved that the performance evaluation of CGMM is faster 

than the existing sequential FPM and GPApriori. Y. Li et al. [14] have developed a GPU-based algorithm called Multi-

level Vertical Closed FIM. In this, a multi-layer vertical data structure has been used to minimize the usage of storage. 

The implementation is being accelerated with GPU to achieve high-speed computation, mainly on large and sparse 

datasets. 

K.W. Chon et al. [15] have proposed a novel algorithm called GMiner. It is a GPU-based method for finding 

frequent itemsets on large-scale datasets. It determines the patterns from the first level of the enumeration tree rather 

than storing and utilizing the patterns at the intermediate levels of the tree. With the computational power of GPUs, the 

method achieved fast performance and outperformed significantly than the existing sequential and parallel methods. 

The method also eliminates the skewness problem that the parallel algorithms suffer. A  Dynamic Queue and Deep 

Parallel (D2P) Apriori algorithm was generated by Y. Wang et al. in [16].  In this, the candidate generation process has 

been parallelized by using the Graph-join and dynamic bitmap queue. It also uses a vertical bitmap structure with low-

latency memory on GPU. The experiments have explored that the D2P-Apriori obtained high-speed up, i.e. a 23×speed 

up ratio compared to the modern CPU methods. 

The authors Y. Djenouri et al. [17] have created three High-Performance Computing (HPC)-based versions of 

Single Scan (SS) for frequent itemset mining viz., GSS, CSS, and CGSS. The GSS, CSS, and CGSS implement SS with 

GPU, cluster architecture, and GPU with multiple cluster nodes. They have also presented three approaches to reduce 

cluster load balancing and GPU thread divergence. The experiments have proved that the CGSS performs best in speed 

than SS, GSS and CSS. 

The authors P.Sumathi et al. [18] have developed a memory-efficient implementation for a vertical data format 

approach in finding frequent patterns using jagged array matrix representation. They have formulated mathematical 

equations for memory requirements and proved that it reduces the memory requirement than the traditional 

multidimensional array.  

The numerous GPU based FPM algorithms found in the literature have their own merits. But they have some 

performance, data size and scalability issues [19], which provides a more vital lead to the proposed work. The research 

article has introduced GNVDF, a novel GPU-accelerated FPM algorithm. It uses a novel pattern generation method to 

avoid generating many candidate itemsets as classical algorithms and uses a compact jagged array structure to minimize 

storage space [18]. Further, it uses the VDF format of transactional data to reduce the number of disk accesses. 

The remaining paper is organized as follows. Section 2 presents the basic terminologies and definitions, vertical 

data format, jagged array, and GPU. The description of the proposed methodology with an illustration is presented in 
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section 3. Section 4 illustrates the experimental results and discussion. Finally, the research article ends with a 

conclusion in section 5. 

2. Basic Concepts 

Finding frequent itemsets is essential in mining associations, correlations, and many other relationships among the 

data. It is used in data classification, clustering, and other data mining tasks. Thus, FPM is focused on data mining 

research, and this section briefs the fundamental concepts associated with FPM and the study. 

A. Basic Terminology 

An itemset (set of items) that contains k items is said to be a k-itemset. The set of laptop, printer is a 2-itemset. 

Frequent patterns are the patterns (itemsets, subsequences, or substructures) that frequently appear in a dataset [2,20]. 

The support count of the itemset is identified by the number of transactions that contain the itemset. A sequence is an 

ordered list of itemsets, i.e. set of items purchased together. A subsequence is a sequence of items bought together and 

frequently occurs in a transactional database known as a sequential pattern. A substructure can be represented in 

different structural forms, such as subgraphs, subtrees, or sublattices, which may be combined with itemsets or 

subsequences [2]. 

B. Basic Definitions 

Let I={I1, I2,…, Im} be an itemset, and D is a transaction database contains a set of transactions T is a non-empty 

itemset such that T ⊆ I and each transaction T is associated with a unique identifier TID. Let A be a set of items.                       

A transaction T is said to contain in A if A ⊆ T. The format of the association rule is AB, where A⊂I, B⊂I, A ≠ Ø, 

B≠Ø, and A∩B=Ø [21]. Associations rule AB that holds in the transaction database D with support (s) and 

confidence(c) [1].    

Support(s): The support of an association rule AB is defined as the percentage of records that contain A ∪ B to 

the total number of records in the database [22]. It is noted that the support count is increased when an item present in 

numerous transactions in the database D [22]. 

Confidence: The confidence of a rule A  B is defined as s(AB)/s(A). It is the ratio of the number of 

transactions that contain all items in the consequent (B), as well as the antecedent (A) to the number of transactions that 

include all items in the antecedent (A) [23]. 

The minimum support threshold is used to discover the frequent itemsets from the databases. In contrast, the 

minimum confidence constraint is applied to those frequent itemsets found previously in determining the best rules. 

C. Vertical Data Format 

The databases can be represented in FPM algorithms in two data formats. They are i) Horizontal Data Format 

(HDF) and ii) Vertical Data Format (VDF). HDF represents the items categorized into particular transactions as stored 

in the database. i.e. it is denoted as <TID, Itemset>, where TID is the transaction ID, and Itemset refers to the items 

purchased by the customer corresponding to TID. The VDF represents data as transactions categorized into particular 

items that mean the TIDs are grouped for each item, i.e. VDF is described by <Item, Tid_set>, where item denotes an 

item in the shop and Tid_set contains the TID's where the item occurs. Fig.1. and Fig.2. show the HDF and VDF of D. 

 

 

 

 

 

 

 

 

Fig.1. HDF of Transaction Database D 

D. Jagged Array 

A jagged array data structure is an array whose elements are arrays known as "array of arrays" with varying 

columns in each array/row, and it is shown in Fig.3. 

TID             Itemset 

  0: {c,d,e,g,h,i,k,p,m} 

  1: {b,e,f,g,h,i,p,m} 

  2: {c,e,m} 

  3: {a,b,c,d,e,f,g,i,p} 

  4: {a,b,c,d,e,p} 

  5: {a,b,c,d,f,h,p} 

  6: {b,e,f,h,i,p,m} 

  7: {a,c,d,e,k,p,m} 

  8: {a,c,d,e,f,i,p,m} 

  9: {a,c,d,e,f,h,i,p,m} 
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E. Graphical Processing Unit 

It is a device specifically designed for graphics processing. It is widely used in large scale hashing and matrix 

computations because it supports parallelism and serves as the base for mining and machine learning. CUDA and 

OpenCL are two popular GPGPU programming framework tools. NVIDIA has designed a parallel computing platform 

and programming called Compute Unified Device Architecture (CUDA) [12,24]. The CUDA-based program can only 

be run on the NVIDIA-produced GPU. A typical CPU may contain four or eight cores; an NVIDIA GPU consists of 

thousands of CUDA cores and a pipeline that supports parallel processing on thousands of threads, increasing the speed 

significantly.  

With Numba, the python developer can quickly enter into GPU-accelerated computing. It makes use of both GPU 

and CPU to facilitate processing-intensive operations viz., deep learning, analytics, and engineering applications.                  

The CUDA Python and Numba help to enhance the speed by targeting both CPUs and NVIDIA GPUs. With this 

advantage of CUDA python and Numba, the implementation of this proposed work will be GPU accelerated. 

 

Fig.2. VDF of Transaction Database D 

 

Fig.3. Jagged array representation 

3. Proposed Methodology 

The main objective of the proposed work is to find the essential frequent itemsets from the transaction database 

with less memory space and time by ignoring the least probable ones. The method used Jagged array storage structure 

[16] and GPU to minimize memory usage and execution time. The proposed method first removes the null/void 

transactions in the dataset. Null/void transactions are those which contain only one item. Then the dataset is scanned 

once and converted into VDF format. The support count (SC) for each item is calculated by counting the number of 

transactions that contain each item. Now the candidate 1-itemset C1 is formed. Next, the frequent 1-itemset is formed by 

removing the items whose SC˂min_sup(δ) and stored it in Jagged array representation [18] in sorted order based on SC. 

From L1 the common transactions among all items are determined either by intersecting or ANDing the transaction in 

each item, and it is preserved in the Common Transaction List (CTID_list). The transactions in CTID_list's are removed from 

each item in L1, forming the final frequent 1-itemset. The SC for each item in L1 is updated by SC - n, where n is the 

number of transactions in CTID_list. Next, the new min_sup (δnew) is determined as δnew = δ - n, and it will be the min_sup 

from the 2nd iteration onwards.  
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arr[n] 

arr[1] 

arr[0] Element-1 Element-2 Element-n … 

Element-1 Element-2 Element-n … 

Element-1 Element-2 Element-n … 

Item  Tid_set 

a:  {3,4,5,7,8,9} 

b:  {1,3,4,5,6} 

c:  {0,2,3,4,5,7,8,9} 

d:  {0,3,4,5,7,8,9} 

f:  {1,3,5,6,8,9} 

g:  {0,1,3} 

h:  {0,1,5,6,9} 

i:  {0,1,3,6,8,9} 

k:  {0,7} 

m:  {0,1,2,6,7,8,9} 

p:  {0,1,3,4,5,6,7,8,9} 
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Before finding the frequent 2-itemset, the final frequent 1-itemset is divided into two logical buckets, LB1 and LB2, 

respectively. LB1 contains all the items whose SC = δnew, and the rest will be placed LB2. The itemset combinations 

among the items in LB1 are least probable of being a candidate 2-itemset because the SC of each item is equal to δnew. So 

it is not considered for generating candidate 2-itemset.  The candidate 2-itemsets patterns are generated by combining 

each item Ix in LB1 with each item Iy in LB2 and each item Iz in LB2 with Iz+1 in LB2 until the last item in LB2. The itemset 

combination that ends with the last item in LB2 will be placed in C2_2 and the rest in C2_1. From C2_1 and C2_2, the 

items whose SC below the δnew is removed as infrequent and formed L2_1 and L2_2.  

For generating candidate 3-itemset, each itemset Ix in L2_1 is combined with the next item Iy in LB2 after the last 

item in Ix. Similar to the previous iteration, the combinations that end with the last item in LB2 are placed in C3_2 and 

rest in C3_1.  It is noted that the itemset combinations in L2_2 are not used in the formation of candidate 3-itemsets.  The 

L3_1 and L3_2 were formed by removing the infrequent itemsets in C3_1 and C3_2. The process is continued until Ln_1 is not 

null. Further, to increase the execution speed of the proposed method, it is being accelerated with GPU. The proposed 

algorithm (Algorithm 1) is shown below, and the workflow diagram is shown in Fig.4. 

 
Algorithm 1 Algorithm for finding frequent itemsets 

 Input   : D - a dataset with n transactions; 

 δ - minimum support threshold; 

 Output : Frequent patterns; 

1: D  eliminate_null(D); 

2: vdf  scan D and convert it in vertical data format;  

3: L1 one_frequent_itemset(vdf, δ); 

4: CTID_list  find_common_TID(L1); 

5: L1 remove the transactions in CTID_list  for each item in L1; 

6: δnew  δ - number of transactions in CTID_list;  

7: LB1  {∀ frequent 1-itemset | SC=δnew };  

8: LB2  {∀ frequent 1-itemset | SC > δnew};  

9: L2_1, L2_2  find_two_freq_itemset(LB1,LB2,δnew); 

10: i=2; 

11: while Li_1 ≠ Ø do 

12:  Li+1_1,Li+1_2  n_frequent_itemset(Li_1,LB2,δnew); 

13:  i=i+1; 

14: end while 

 
procedure eliminate_null(D - a dataset with n transactions) 

1: for each Ti ∈ D do 

2:  cntcount the number of items in Ti; 

3:  if cnt == 1 then  

4:   remove Ti from D; 

5:  end if; 

6: end for; 

7: return D; 

 

procedure one_frequent_itemset(D: Dataset after removing null 

transactions; δ :minimum support threshold) 

1: L1Ø; 

2: for each itemi in D do 

3:  TIDlisttransactions in which itemi occurs;  

4:  SCcount the number of transactions in TIDlist 

5:  if SC ≥ δ then  

6:   add {itemi, TIDlist, SC}into L1; 

7:  end if 

8: end for 

9: sort L1 and store it in jagged array format; 

10: return L1; 

 
procedure find_common_TID (L1: frequent 1-itemset) 

1: nfind the number of items in L1; 

2: CTID_list{TIDlist1 ∩ TIDlist2 ∩… ∩ TIDlistn}; 

3: return CTID_list; 
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procedure two_freq_itemset (LB1: frequent 1-itemset1, LB2: frequent 1-

itemset2, δ:minimum support ) 

1: last_itemfind last item in LB2; 

2: for each itemi in LB1 do 

3:  for each itemj in LB2 do 

4:  new_pattern  <itemiitemj>; 

5:  new_tidTIDs(itemi)∩TIDs(itemj); 

6:  new_sccount the transactions in new_tid; 

7:  if new_pattern contains last_item then 

8:   append{new_pattern,new_tid,new_sc} in C2_2; 

9:  else 

10:   append{new_pattern,new_tid,new_sc} in C2_1; 

11:  end if 

12:  end for 

13: end for  

14: L2_1{C2_1 | SC(C2_1) ≥ δ}; 

15: L2_2{C2_2 | SC(C2_2) ≥ δ}; 

16: return L2_1, L2_2 

 
procedure n_frequent_itemset(Li_1: frequent i-itemset1, LB2: frequent 1-

itemset2, δnew: minimum support) 

1: for each itemi in Li_1 do 

2:  last_itemfind the last item in itemi; 

3:  for each itemj in LB2 after last_item do 

4:  new_item{<itemiitemj>}; 

5:  new_tidTIDs(itemi)∩ TIDs(itemj); 

6:  new_sccount the transactions in new_tid; 

7:  if new_item contains last element in LB2 then 

8:   append{new_item,new_tid,new_sc}in Cn_2; 

9:  else 

10:   append{new_item,new_tid,new_sc}in Cn_1; 

11:  end if 

12:  end for 

13: end for 

14: Ln_1{Cn_1 | SC(Cn_1) ≥ δ}; 

15: Ln_2{Cn_2 | SC(Cn_2) ≥ δ}; 

16: return Ln_1,Ln_2 

 

The main advantage of the proposed method is that it reduces the number of candidate itemsets to be generated in 

each iteration because the itemsets in Li_2, for i ≥ 3 will not be considered for creating candidate itemsets and removal of 

items in CTL in final L1. Additionally, GPU and Jagged array enhance the performance in terms of speed and usage of 

memory. 

A. Memory Requirement Calculation 

From [25,18], it was observed that the memory requirement using a jagged array structure for the frequent itemsets 

could be calculated based on the following equation. 

 

1

iitemset

i ii
TM TM rbytes




                                                              (1) 

 

where, TMi is the total memory required for the candidate i-itemset, and rbytesi is the memory occupied by the 

infrequent/rare items in the candidate i-itemset. By subtracting rbytesi from TMi, the memory for Li i.e., frequent i-

itemsets can be found.  

TMi and rbytesi were calculated using equations 2 and 3, respectively. 
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Fig.4. Workflow of GNVDF 

As in [25], the GNVDF also used the same jagged storage structure for storing frequent itemsets, and the amount 

of memory requirement was calculated as follows. It first fetches the common transactions among items in the frequent 

1-itemsets and then removes them from frequent 1-itemsets. Suppose if the frequent 1-itemset contains n items say 

item1, item2, item3,…, itemn and the corresponding TID lists say TID-List1, TID-List2, TID-List3,…,TID-Listn, then the 

common TIDs(CTID) among the n items were found by set intersection operation using equation (4) shown below.   

 

1 2{ } { } ... { }
TID nC TID List TID List TID List                                                   (4) 

 

The memory space required for CTID was calculated using equation (5). 

 
( )

1

( )
TID

i

length C

TID

i

CM sizeof C


                                                                            (5) 

 

Since the method removes the CTID from frequent 1-itemsets, the CTID need not be repeated in the subsequent 

frequent itemsets, saving memory space considerably. The amount of memory saved (MS) for the entire dataset was 

calculated using equation (6).  

 

 
1 2

2

( ) { ( ) ( )}
iitemset

i i i

i

MS count itemset CM count itemset count itemset CM


 



                   (6) 

 

where, count(itemset1), count(itemseti_1), and count(itemseti_2) refer to the number of items in frequent 1-itemset, first 

and the second part of frequent i-itemsets, respectively. Thus, the total memory required for the frequent itemsets of the 

entire dataset using the proposed method was calculated using equation (7). 
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1

{ }
iitemset
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TM TM rbytes MS
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                                                          (7) 

B. Proposed Methodology: An Example 

The vertical representation of transaction dataset D as shown in Fig. 2 is considered to understand the proposed 

methodology. It contains 12 items viz., {a, b, c, d, e, f, g, h, i, k, m, p}. Each item is represented by a row containing the 

name of the item and the transactions in which the item occurs (TIDs) [26]. Let δ is 6. From Fig. 2, the candidate                    

1-itemset is calculated. The candidate 1-itemset contains all the items in D, the TIDs in which the item occurs and the 

SC. It is shown in Table 1. 

Table 1. Candidate 1-itemset(C1) 

Item TIDs SC 

a {3, 4, 5, 7, 8, 9} 6 

b {1, 3, 4, 5, 6} 5 

c {0, 2, 3, 4, 5, 7, 8, 9} 8 

d {0, 3, 4, 5, 7, 8, 9} 7 

e {0, 1, 2, 3, 4, 6, 7, 8, 9} 9 

f {1, 3, 5, 6, 8, 9} 6 

g {0, 1, 3} 3 

h {0, 1, 5, 6, 9} 5 

i {0, 1, 3, 6, 8, 9} 6 

k {0, 7} 2 

m {0, 1, 2, 6, 7, 8, 9} 7 

p {0, 1, 3, 4, 5, 6, 7, 8, 9} 9 

 

From the table above, the items viz., b, g, h and k are removed as infrequent because the items do not satisfied δ. 

The frequent 1-itemset is shown in Table 2. Since the common transactions (CTL) are stored in Table 3, they are 

removed from each item in L1, the final L1 is formed, and it is shown in Table 4.  

Table 2. Frequent 1-itemset(L1) 

1- Itemset TIDs 

a 3 4 5 7 8 9    

f 1 3 5 6 8 9    

i 0 1 3 6 8 9    

d 0 3 4 5 7 8 9   

m 0 1 2 6 7 8 9   

c 0 2 3 4 5 7 8 9  

e 0 1 2 3 4 6 7 8 9 

p 0 1 3 4 5 6 7 8 9 

 

Now the new_min is calculated by removing the number of items in CTL as δnew = δ - n = 6-2 = 4. The logical 

buckets from final L1, i.e. LB1 and LB2, are shown in Tables 5 and 6.  

To reduce the storage space requirement further, this method finds the common transaction in which the all items 

occurs either by AND operation or intersection of the TIDs of all frequent 1-itemset. i.e.{3,4,5,7,8,9} ∩ {1,3,5,6,8,9} ∩ 

{0,1,3,6,8,9}∩{0,3,4,5,7,8,9}∩{0,1,2,6,7,8,9}∩{0,2,3,4,5,7, 8,9}∩{0,1,2,3,4,5,6,7,8,9}∩{0,1,3,4,5,6,7,8,9} = {8,9} 

and it is stored in CTL. The CTL is shown in Table 5. 

Table 3. Common Transaction List(CTL) 

CTL 

8 9 

Table 4. Final Frequent 1-itemset(L1) 

1- Itemset TIDs 

a 3 4 5 7    

f 1 3 5 6    

i 0 1 3 6    

d 0 3 4 5 7   

m 0 1 2 6 7   

c 0 2 3 4 5 7  

e 0 1 2 3 4 6 7 

p 0 1 3 4 5 6 7 
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Table 5. Logical Bucket-1(LB1) 
 

 

 

Table 6. Logical Bucket-2(LB2) 

 
The 2-itemset combinations viz., ad, am, ac, ae, fd, fm, fc, fe, id, im, ic, ie, dm, dc, de, mc, me, mp, and ce are in 

C2_1 and the items viz., ap, fp, ip, dp, mp, cp and ep are stored in C2_2. The possible combinations viz., af, ai and fi need 

not be generated. It is shown in Tables 7 and 8 respectively.  

Table 7. Candidate 2-itemset - Part I 

C2_1 TIDs SC 

ad 3, 4, 5, 7 4 

am 7 1 

ac 3, 4, 5, 7 4 

ae 3,4,7 3 

fd 3,5 2 

fm 1,6 2 

fc 3,5 2 

fe 1,3,6 3 

id 0,3 2 

im 0,1,6 3 

ic 0,3 2 

ie 0, 1, 3, 6 4 

dm 0 1 

dc 0, 3, 4, 5, 7 5 

de 0, 3, 4, 7 4 

mc 0,2 2 

me 0, 1, 2, 6, 7 5 

ce 0, 2, 3, 4, 7 5 

Table 8. Candidate 2-itemset - Part II 

C2_2 TIDs SC 

ap 3, 4, 5, 7 4 

fp 1, 3, 5, 6 4 

ip 0,1,3,6 4 

dp 0, 3, 4, 5, 7 5 

mp 0, 1, 6, 7 4 

cp 0, 3, 4, 5, 7 5 

ep 0, 1, 3, 4, 6, 7 6 

 

The items viz., am, ae, fd, fm, fc, fe, id, im, ic, dm and mc are infrequent in C2_1 and no item is infrequent in C2_2. 

Therefore, the frequent 2-itemsets are stored in L2_1 and L2_2 in jagged array notation as shown in Tables 9 and 10 

respectively. The candidate 3-itemsets from L2_1 and LB2 viz., adm, adc, ade, ace and dce, stored in C3_1 and the 

patterns adp, acp, iep, dep, mep, dcp and cep are kept in C3_2 as shown in Tables 11 and 12 respectively. The L3_1 and 

L3_2 are shown in Tables 13 and 14, respectively. Similarly, C4_1 and C4_2 are shown in Tables 15 and 16, respectively. 
L4_1 and L4_2 are L4_1 = {} and L4_2 is shown in Table 17. 

1- Itemset TIDs 

a 3 4 5 7 

f 1 3 5 6 

i 0 1 3 6 

1- Itemset TIDs 

d 0 3 4 5 7   

m 0 1 2 6 7   

c 0 2 3 4 5 7  

e 0 1 2 3 4 6 7 

p 0 1 3 4 5 6 7 
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Table 9. Frequent  2-itemset - Part I 

L2_1 TIDs 

ad 3 4 5 7  

ac 3 4 5 7  

ie 0 1 3 6  

dc 0 3 4 5 7 

de 0 3 4 7  

me 0 1 2 6 7 

ce 0 2 3 4 7 

Table 10. Frequent  2-itemset - Part II 

L2_2 TIDs 

ap 3 4 5 7   

fp 1 3 5 6   

ip 0 1 3 6   

dp 0 3 4 5 7  

mp 0 1 6 7   

cp 0  3 4 5 7  

ep 0 1 3 4 6 7 

Table 11. Candidate 3-itemset - Part I 

C3_1 TIDs SC 

adm 7 1 

adc 3, 4, 5, 7 4 

ade 3,4,7 3 

ace 3,4,7 3 

dce 0, 3, 4, 7 4 

Table 12. Candidate 3-itemset - Part II 

C3_2 TIDs SC 

adp 3, 4, 5, 7 4 

acp 3,4,5,7 4 

iep 0, 1, 3, 6 4 

dep 0, 3, 4, 7 4 

mep 0, 1, 6, 7 4 

dcp 0, 3, 4, 5, 7 5 

cep 0, 3, 4, 7 4 

Table 13. Frequent 3-itemset - Part I 

L3_1 TIDs 

adc 3 4 5 7 

dce 0 3 4 7 

Table 14. Frequent 3-itemset - Part II 

2_3L  TIDs 

adp 3 4 5 7  

acp 3 4 5 7  

iep 0 1 3 6  

dcp 0 3 4 5 7 

dep 0 3 4 7  

mep 0 1 6 7  

cep 0 3 4 7  

Table 15. Candidate 4-itemset - Part I 

 

 

 

 

 

 

C4_1 TIDs SC 

adce 3,4,7 3 
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Table 16. Candidate 4-itemset - Part II 

 

Table 17. Frequent 4-itemset - Part II 

 

Now, L4_1 is an empty list, so the algorithm terminates. It is observed from the experiment that the time needed for 

finding frequent items for sample dataset D in the example without the use of GPU is 0.8111 sec, whereas the wall time 

is 0.0073ms with GPU. The total memory requirement for the frequent itemset for the above dataset using the method in 

[18] is TM = 124+210+137+32=503 bytes. By using GNVDF, the memory requirement for the common transaction is 

CM = 2+2 = 4 bytes and the amount of memory saved using the proposed method is MS = (8×4) + {(7×4 + 7×4) + (2×4 

+ 7×4) + (0×4 + 2×4)} = 32 + 56 + 36 + 8 = 132 bytes. Therefore, the final memory requirement is                             

TMfinal = 503 - 132 = 371 which is 26.24% of memory saved for this example dataset compared to the memory 

requirement in [18]. It is also noted that the number of common transactions is directly proportional to the amount of 

memory saved. 

4. Experimental Results and Discussion 

The proposed algorithm was implemented using Python with CUDA Toolkit with NVIDIA GPU. An extensive 

experiment was conducted using four real-time datasets viz., chess, mushroom, t25i10d10k and c20d10k to evaluate the 

performance of GNVDF. The datasets and their details were shown in Table 18. They were obtained from the FIMI 

repository and an open-source Data Mining Library. The reason for choosing those datasets is that many researchers 

used those bench-mark datasets in Frequent Itemset Mining (FIM) and Association Rule Mining(ARM) based research. 

The runtime performance of the proposed method without GPU acceleration was obtained for each dataset, with the 

minimum threshold values ranging from 20% to 70% and is shown in Table 19. Similarly, the proposed algorithm was 

executed with GPU acceleration using the same minimum support range and results were tabulated in Table 20.  

Table 18. Datasets used in experiments with their properties 

Datasets 
No. of 

transactions 

No. of 

items 

Average item count per 

transaction 

chess 3196 75 37.00 

mushrooms 8416 119 23.00 

t25i10d10k 9976 929 24.77 

c20d10k 10000 192 20.00 

Table 19. Runtime (in ms) performance of the proposed algorithm without GPU 

DS# 

MS* 
chess mushroom t25i10d10k c20d10k 

20 10759.6 14501.6 16332.5 16334.2 

30 9845.5 13464.2 16225.8 16006.2 

40 7972 11103.8 13885.7 15441.2 

50 7101.7 10224.4 12645.6 14956.2 

60 6293.4 9834 11101.2 13412.4 

70 5082.2 8253 9256.4 12035.1 

Table 20. Runtime (in ms) performance of the proposed algorithm with GPU-acceleration 

 

DS# 

MS* 
chess mushroom t25i10d10k c20d10k 

20 119.5511 145.0160 161.7079 161.7248 

30 107.0163 138.0940 156.0173 158.4772 

40 83.9158 117.2770 129.7729 131.9761 

50 73.2134 104.5091 108.3670 110.6496 

60 64.2184 88.8096 102.4380 105.3511 

70 53.4968 74.0512 83.6424 92.9924 
        #DS-Dataset *MS-min_sup(δ)

L4_2 TIDs 

adcp 3 4 5 7 

dcep 0 3 4 7 

 

C4_2 TIDs SC 

adcp 3, 4, 5, 7 4 

dcep 0, 3, 4, 7 4 
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The graphical representation of the runtime performance of each dataset with and without GPU usage was 

illustrated in Fig.5. From tables 19 and 20, it was observed that when the number of items and transactions in a dataset 

increases, the time required for finding frequent patterns also increases. In general, there is an inverse relationship 

between the min_sup threshold and the time needed to determine the frequent patterns. i.e., when the min_sup threshold 

is increased, the number of generated candidate itemsets, followed by frequent patterns, is minimized, consuming less 

time for the higher threshold.  

Fig.5. showed that the GPU acceleration significantly enables the execution speed of the proposed methodology, 

and GNVDF with GPU is faster by 90 to 135 times when compared with GNVDF without GPU acceleration. The 

reason for the performance enhancement is that the GPUs have many computing cores that allow the parallel execution 

of computation-intensive tasks. Since the GNVDF uses the VDF approach, the number of database scans is restricted to 

one [27] for determining each item's support count, which in turn reduces the overtime for finding the frequent patterns.  

But, VDF requires more memory for additional information like TID's than HDF [27], so a Jagged array has been used 

to minimise memory space is an advantage. Further, the elements in CTL removed from frequent 1-itemset save the 

memory space considerably more than the existing classical algorithms.  

 

 

Fig.5. Runtime performance of the proposed method with and without GPU acceleration of each dataset 

5. Conclusion 

A GPU-accelerated novel method for finding the frequent itemset called GNVDF has been proposed in this 

research article. It uses an innovative approach to discover the candidate and frequent itemsets by removing 

unnecessary itemsets to form the subsequent itemsets. It also utilizes GPU for speeding up the process. It also 

empowers the use of a jagged array storage structure and removes the common elements in 1-frequent itemsets. With 

GPU-acceleration and innovative way of determining itemsets, the time required is significantly decreased. Similarly, 

with a jagged storage structure, the memory requirement is also minimized than the classical algorithms. From the 

extensive experiments made, it is observed that the GNVDF with GPU is 90-135 times faster than with GNVDF 

without GPU and also proved that it suits both sparse and dense datasets. Further, the use of the VDF approach restricts 

the database scan to one. 
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