ENHANCING THE PERFORMANCE OF FREQUENT
PATTERN MINING ALGORITHMS USING
VERTICAL DATA FORMAT

PP et
T
,:},:.-.'- 1’-, .

Thesis submitted to the Bharathidasan University, Tiruchirappalli in
partial fulfillment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

Submitted By

Ms.PSUMATHI
Ref. No. 40007/Ph.D.K3/Computer Science/Part Time/January 2017

Under the Guidance of

Dr.S.MURUGAN
Associate Professor (Retd.) & Research Supervisor

Dr.VVUMADEVI
Assistant Professor & Research Co-supervisor

POST GRADUATE AND RESEARCH DEPARTMENT OF COMPUTER SCIENCE

NEHRU MEMORIAL COLLEGE (Autonomous)
(Nationally Accredited with 'A+' Grade by NAAC)
(Affiliated to Bharathidasan University)
PUTHANAMPATTI - 621 007
TIRUCHIRAPPALLI - Dt., TAMIL NADU, INDIA

MARCH 2022

1 @m Dr.S.MURUGAN
bl T Associate Professor (Retd.) & Research Supervisor

PG & Research Department of Computer Science
Nehru Memorial College (Autonomous)
Puthanampatti - 621 007

Tiruchirappalli - Dt., Tamil Nadu

CERTIFICATE

This is to certify that the thesis entitled "ENHANCING THE PERFORMANCE OF
FREQUENT PATTERN MINING ALGORITHMS USING VERTICAL DATA
FORMAT" submitted by Ms.P.Sumathi, Research Scholar, PG & Research
Department of Computer Science, Nehru Memorial College (Autonomous),
Puthanampatti - 621 007, for the award of the degree of Doctor of Philosophy in
Computer Science, is a record of original work carried out by her under my
supervision and guidance. The thesis has fulfilled all requirements as per the
regulations of the University and in my opinion, the thesis has reached the standard
needed for submission. The results embodied in this thesis have not been submitted to

any other University or Institute for the award of any degree or diploma.

(Dr.V.UMADEVI) (Dr.S.MURUGAN)
Research Co-supervisor Research Supervisor

Date :

Place : Puthanampatti

Mobile: 9486631199, 8825768771, E-Mail ID:murugan_nmc@hotmail.com

P.SUMATHI

Part-Time Research Scholar

PG & Research Department of Computer Science
Nehru Memorial College (Autonomous)
Puthanampatti - 621 007

Tiruchirappalli - Dt.

Tamil Nadu

DECLARATION

| hereby declare that the work embodied in this thesis entitled "ENHANCING THE
PERFORMANCE OF FREQUENT PATTERN MINING ALGORITHMS
USING VERTICAL DATA FORMAT" is a research work done by me under the
supervision and guidance of Dr.S.MURUGAN, Associate Professor (Retd.) and the
co-supervision of Dr.V.UMADEVI, Assistant Professor, PG & Research Department
of Computer Science, Nehru Memorial College (Autonomous), Puthanampatti
- 621 007. The thesis or any part thereof has not formed the basis for the award of any

Degree, Diploma, Fellowship or any other similar titles.

Date :

Place : Puthanampatti P.SUMATHI

PG AND RESEARCH DEPARTMENT OF COMPUTER SCIENCE
NEHRU MEMORIAL COLLEGE (AUTONOMOUS)
(Nationally Accredited with *A+" Grade by NAAC)
(Affiliated to Bharathidasan University)
PUTHANAMPATTI - 621 007
TIRUCHIRAPPALLI - Dt.,, TAMIL NADU, INDIA

CERTIFICATE OF PLAGIARISM CHECK

Name of the Research Scholar

Ms. P.SUMATHI

Course of Study

Ph.D., in Computer Science

Title of the Thesis/Dissertation

ENHANCING THE PERFORMANCE OF

FREQUENT PATTERN MINING
ALGORITHMS USING VERTICAL
DATA FORMAT

Name of the Research Supervisor

Dr.S.MURUGAN
Associate Professor (Retd.)

Name of the Research Co-supervisor

Dr.V.UMADEVI
Assistant Professor

Department/Institution/Research

PG and Research Department of Computer Science
Nehru Memorial College (Autonomous)

Centre .
Puthanampatti - 621 007

Acceptable Maximum Limit 10%

Percentage of Similarity of Content | 1%

Identified

Software Used URKUND

Date of Verification 15-03-2022

Report on plagiarism check, the item with % of similarity is attached.

Signature of the
Research Co-supervisor
(Dr.V.Umadevi)

Research Supervisor

Signature of the Signature of the
Candidate

(Dr.S.Murugan) (Ms.P.Sumathi)

Curiginal

Document Information

Analyzed document

Submitted
Submitted by
Submitter email
Similarity

Analysis address

40007-Ph.D.K3-Computer Science-Part Time-January 2017-P.SUMATHI -

Dr.S.MURUGAN.doc (D130438651)
2022-03-15T12:11:00.0000000
Srinivasa ragavan S
bdulib@gmail.com
1%

bdulib.bdu@analysis.urkund.com

Sources included in the report

URL: https://www.gauthmath.com/solution/Given-A-1-3-6-8-9-12-15-and-B-6-9-12-which-is-
W TRUE-A-B-is-the-complement-of-A-B--1703145423666181
Fetched: 2021-07-07T11:05:38.4570000

URL: https://www.doubtnut.com/pcmb-questions/the-mean-of-1-3-4-5-7-4-is-m-the-numbers-
W 3-2-2-4-3-3-p-have-mean-m-1-and-median-g-then-p-q-a-4-b-5-c-110227
Fetched: 2021-05-04T05:30:20.2730000

W URL: https://link.springer.com/chapter/10.1007/978-3-319-07821-2_2
Fetched: 2022-03-15T12:11:00.0000000

1/52

oo
oo

https://www.gauthmath.com/solution/Given-A-1-3-6-8-9-12-15-and-B-6-9-12-which-is-TRUE-A-B-is-the-complement-of-A-B--1703145423666181
https://www.doubtnut.com/pcmb-questions/the-mean-of-1-3-4-5-7-4-is-m-the-numbers-3-2-2-4-3-3-p-have-mean-m-1-and-median-q-then-p-q-a-4-b-5-c-110227
https://link.springer.com/chapter/10.1007/978-3-319-07821-2_2

ACKNOWLEDGEMENT

First and foremost, |1 would like to place on my sincere devotion to Lord
Almighty for his countless blessings in completing the thesis successfully without any

hurdles.

The profound gratitude deep from the heart is due to my guide and research
supervisor Dr.S.Murugan, Associate Professor(Retd.), PG & Research Department
of Computer Science, Nehru Memorial College, Puthanampatti for his periodical
monitoring, motivation, intellectual guidance, meticulous way of correcting the thesis,

untiring effort and interest shown in doing real scientific research.

I wish to express my gratitude to my research co-supervisor Dr.VV.Umadeuvi,
Assistant Professor, PG & Research Department of Computer Science, Nehru
Memorial College, Puthanampatti for her encouragement and support rendered for my

research work.

It is my bound duty to record my sincere thanks to the benevolent management
of Nehru Memorial College, President Mr.Pon.Balasubramanian, and Secretary
Mr.Pon.Ravichandran, for permitting me to pursue the research work in this
prestigious institution and also all the facilities rendered to carry out the research in a

meticulous way.

I wish to place on record my sincere thanks to Mr.J.Rajendra Prasad,
Correspondent of Vysya College, Salem for his constant support and encouragement

for my career and research.

I acknowledge with gratitude my sincere thanks to the doctoral committee
members Dr.K.Mani, Associate Professor, PG & Research Department of Computer
Science, Nehru Memorial College, Puthanampatti and Dr.J.G.R.SATHIASEELAN,

Associate Professor & Head, Department of Computer Science, Bishop Heber

College, Tiruchirappalli for their invaluable suggestions, guidelines and healthy

discussions made during doctoral committee meetings.

I would like to express my sincere thanks to Dr.A.R.Ponperiasamy, Principal
of Nehru Memorial College, Puthanampatti and Dr.P.Venkatesan, Principal of Vysya
College, Salem for their precious support in carrying out the research work in an

effective manner.

| am indebted to thank Dr.M.Muralidharan, Associate Professor & Head and
all eminent faculty members of PG & Research Department of Computer Science
for their silent support, suggestions and encouragement throughout the journey of my

research.

| wish to express my gratitude to all my fellow researchers and my dear

friends for their timely help, suggestion and encouragement.

I am grateful to my beloved parents Mr.C.Parasuraman and
Mrs.P.Mahalakshmi for their unconditional love, support, dedication and many

efforts made for my life.

I would like to record my joyful thanks to my siblings Mr.P.Mohan,
M.Pharm., (Ph.D.), Associate Professor, Faculty of Pharmacy, Dr.M.G.R
Educational and Research Institute, Chennai and Dr.P.Kalpana, Associate Professor,
PG & Research Department of Computer Science, Nehru Memorial College,
Puthanampatti for their guidance, constant encouragement and co-operation in all

walks of my life.

Finally, I thank all the good hearts who helped me directly as well as indirectly

during the journey of my research.

P.SUMATHI

ABSTRACT

Frequent patterns are patterns/itemsets, subsequences, or substructures that
appear frequently in a dataset with not less than a user-specified threshold.
Researchers realized that Frequent Pattern Mining (FPM) is vital in mining
associations, correlations and other relationships among data. In the modern digital
world, online shopping/e-shopping has become popular and mandatory in human
lives. E-stores like Amazon show up the "Frequently Bought Together” and
"Customers who bought this item also bought” for their customers to promote their
sales and thereby obtains profits considerably. Many transactional data were collected
every day, and finding frequent itemsets from the massive dataset is an issue for the
researchers because it requires more processing time and memory. However, there are
more efficient and scalable FPM algorithms found in the literature and also FPM has a
wide range of applications there is always a need for better algorithms to minimize the
issues. Thus, the research work focuses on developing efficient algorithms for FPM.

The research work aims to create time and memory-efficient models for
discovering frequent patterns from transactional databases. For that, a framework
named "SUMsFPM" has been proposed comprising of four research models viz.,
RISOTTO, JAB-VDF, TP-NPF-VDF and GNVDF. The RISOTTO has been proposed
to reduce the runtime and JAB-VDF to minimize memory usage in finding the
frequent patterns from large databases. The models namely TP-NPF-VDF and
GNVDF have been contributed to reducing both time and memory.

The RISOTTO algorithm improves the performance of Apriori by combining
both prefixed-itemset based storage structure and Vertical Data Format (VDF) and it

is abbreviated by taking the uppercase letters from the phrase "pRefixed ltemSet

stOrage verTical daTa fOrmat". The method first finds the candidate 1-itemsets(C;) as
in classical Apriori and transforms them into VDF, then the frequent 1-itemset (L) is
constructed from C; by removing the items whose SC < ¢ (user-specified threshold).
After that, the L; is stored in the prefixed-itemset storage as prefix-key and values. It is
noted that, in RISOTTO, the values with a single item is not stored in prefixed-itemset
storage as it does not generate successive candidates. During the successive iterations,
the items in values are used for joining and items that satisfy the Apriori property are
combined with the prefix-keys for generating the candidate (i+1)-itemsets, followed
by frequent(i+1)-itemsets and the process is repeated until no more candidate itemsets
found. As this method uses VDF, the SC for the (i+1)-candidate itemsets were
determined using the set intersection method which avoids repeated database scans.

The VDF format avoids repeated scans of transactional databases for
determining the SC and limits the database scan to one but it requires huge memory
for storing TIDs of each item. To minimize the memory, the JAB-VDF model has
been introduced. It uses a jagged array structure for storing the TIDs, which allocates
memory space exactly needed for the itemsets than the 2-D array.

The TP-NPF-VDF algorithm has been introduced as an enhancement version
to VDF by incorporating a novel pattern generation method with multithreads. It also
uses the jagged array for storing itemsets. It mainly consists of four phases. The first
and second phase converts the transactional database into VDF and determines the
frequent 1-itemset as in Apriori. The third phase rearranges the frequent 1-itemset in
ascending order based on SC. The fourth phase creates n-1 threads one for each
itemset in a frequent 1-itemset except for the last one. Each thread runs in parallel and
determines from frequent 2-itemsets to k-itemsets until it is non-empty, for each

itemset in frequent 1-itemset, where k > 2 with a novel way of generating patterns.

Though the multithreads reduces the runtime, it is well-known that the GPU
acceleration will enable the execution speed with multiple cores. By considering this,
GNVDF, a GPU-accelerated novel algorithm for finding frequent patterns using the
VDF approach with a jagged array has been introduced. Finding frequent 1-itemset
remain the same as TP-NPF-VDF but it removes the null transactions initially.
The common transactions in Ly (Crip jist) are identified, removed from L, and updated
the new min_sup as dnew = 0 - N. The frequent 1-itemsets are split into two logical
buckets LB; and LB, based on dnew. The candidate 2-itemsets patterns are generated by
combining each item I, in LB; with each item I, in LB, and each item I, with 1,41 until
the last item in LB,. The itemset combination that ends with the last item in LB, will
be placed in C, , and the rest in C; ;. From C;;and C;, L, and Ly, were
generated based on SC. For generating candidate 3-itemset, each itemset Iy in Ly 1 iS
combined with the next item I, in LB, after the last item in I, and placed in C; , and
Cs 1 as previous. The Lz ; and L3z » were formed by removing the infrequent itemsets

in C3 1 and C3 ». The process is repeated until no more candidates in L ;.

All the proposed algorithms were implemented using Python and tested with
both real-time and synthetic types obtained from the FIMI repository and an open-
source data mining library and measured the runtime and memory usage. It is proved
from the experiments that the proposed models will reduce the runtime and memory

usage significantly than the existing ones.

LIST OF PUBLICATIONS

International Journals

1. P.Sumathi, Dr.S.Murugan, Dr.V.Umadevi, "A Multithread, Novel Pattern
Based Algorithm for Finding Frequent Patterns With Jagged Array and
Vertical Data Format”, Indian Journal of Computer Science and Engineering
(NCSE), e-ISSN : 0976-5166, p-ISSN : 2231-3850, Vol. 12, No. 5,
pp.1353-1363, Sep-Oct 2021. DOI:10.21817/indjcse/2021/v12i5/211205078
(UGC Care List - 1, Scopus Indexed).

2. P. Sumathi, S.Murugan, "GNVDF: A GPU-accelerated Novel Algorithm for
Finding Frequent Patterns Using Vertical Data Format Approach and Jagged
Array", International Journal of Modern Education and Computer Science
(IIMECS), ISSN: 2075-0161 (Print), ISSN: 2075-017X (Online), Vol.13,
No.4, pp.28-41, August 2021. DOI: 10.5815/ijmecs.2021.04.03 (UGC Care
List - 11, Scopus Indexed).

3. P.Sumathi, S.Murugan, "A Memory Efficient Implementation of Frequent
Itemset Mining with Vertical Data Format Approach”, International Journal of
Computer Sciences and Engineering, E-ISSN: 2347-2693, Vol. 6, No. 11,
pp.152-157, December 2018 (UGC Approved Journal).

4. P.Sumathi, S.Murugan, "RISOTTO - A Novel Hybrid Approach for
Enhancing Classical Apriori Algorithm”, International Journal of Scientific
Research in Computer Science Applications and Management Studies,

ISSN: 2319-1953, Vol. 7, No. 5, September 2018 (UGC Approved Journal).

Vi

International Conference
1. P.Sumathi, S.Murugan, "A Memory Efficient Implementation of Frequent
Itemset Mining with Vertical Data Format Approach”, Proceedings of
International Conference on "Blooming Trends in Tech Challenges and
Opportunities”, National College (Autonomous), Tiruchirappalli from

27.09.2018 to 29.09.2018.

National Conference

1. P.Sumathi, S.Murugan, "A Survey on Mining Frequent Itemsets" in one-day
National Level Conference (Multidisciplinary) on Emerging Trends in Digital
Transformation - ETDT 2018, Government College for Women, Maddur,

Karnataka - 571 428 on 30.07.2018. ISBN: 978-81-933447-3-6.

Seminars/Webinars/FDPs Attended

1. Completed an FDP on "Data Mining" conducted by NPTEL - AICTE during
Feb - Apr 2021.

2. Attended an FDP on "Applied Research in Multidisciplinary Studies"
organized by Sona College of Technology, Salem from 18.05.2020 to
19.05.2020.

3. Participated in the webinar on "How to use Turnitin Software for your
Research™ organized by Guru Nanak Institute of Management Studies,
University of Mumbai held on 04.05.2020.

4. Participated in the webinar on "International Patent Filing Process”
organized by Sri Krishna College of Technology, Coimbatore held on

01.05.2020.

Vil

5. Participated in a webinar on "Enhancing Research Effectiveness using
Scopus, ScienceDirect and Mendeley” organized by Kurukshetra University,
Kurukshetra in Collaboration with Elsevier held on 01.05.2020.

6. Participated in a webinar on "An Effective Research Paper Writing Skills",
organized by Bhagwan Mahavir College of Commerce & Management
Studies, Gujarat from 13.04.2020 to 16.04.2020.

7. Participated in a one-day International seminar on ""Research Intelligence
and Database (RID-2018)", organized by Periyar University, Salem on

14.12.2018.

viii

CONTENTS

ACKNOWIEAGEMENL. e

Abstract........

List of Publications/Conferences/Seminars/Webinars/FDPSs

TaDle OF CONLENTS. ..t v ettt e

List of Figures
List of Tables.

List of Algorithms and Procedures.............ccoooiiiiiiiiiiiiiiii e,

LISt OF ADDreviations. . .ooonn et

List of Symbols. ..o

CHAPTER - 1 INTRODUCTION....ccccitteiiiniiiaieinrcsnetcsnscsssssnnsen
L1Background.........coouiiiiii i
1.2Data MINING.....ouoiiii e e

1.2.1 Knowledge Discovery in Databases..............ccooveveiiennn.n.

1.3 Frequent Pattern Mining...........ooovvriiinioine e,
1.3.1 TerminologieS iN FPM.........oooiiiii e,
1.3.2 Basic Definitions.coiiiiiii i

1.3.3 Architecture/Layout of Storing Transactional Data................

1.4 Association Rule Mining............oooviiiiiiiiiee e
1.4.1 Apriori Algorithm..........oooii
1.4.1.1 Disadvantages of Apriori Algorithm........................

1.4.2 FP-Growth Algorithm.............oooii
1.4.2.1 Advantages of FP-Growth Algorithm.......................

1.4.2.2 Disadvantages of FP-Growth Algorithm...................

143 Eclat Algorithm....... ...

14

.3.1 Advantages & Disadvantages of Eclat Algorithm.........

1.5 Applications of FPM..... ..o
1.6 Scope of the Research Work............c.oooviiiiiiiiiiiiiiceeee,
1.7 Aim & Objectives of the Research Work................ccooovviiiiiin,

1.8 Problem Statement.ooor i

1.9 Problem DesCription.........c.coviiriiiiii e

|—\
0 N oA WN R R
N

R e e el e e o o o
N N oo g WWwWw NN RO

>3

1.10 Description of the Datasets.cooeveeriiiiiiiiiii e,
1.11 Chapter Organization...........co.oueuiiiiniiiieii e

CHAPTER - 2 REVIEW OF LITERATURE....ccctvtiiiiiiiiiiieienenennnnen.
2.1 BacKground.........cooiiniii e
2.2 Works Related to Apriori and FP-Growth.....................ooon.
2.3 Works Related to Matrix-based Apriori..............ccooviiiiiin...
2.4 Works Related to Vertical Data Format....................coveinenn...
2.5Works Related to Eclat.............coooiiiiiii e
2.6 Works Related t0 GPUS.ooviuiiiiiee e

2.7 Observations and Limitations of the Existing Literature..................

CHAPTER - 3 RISOTTO: A NOVEL HYBRID APPROACH FOR

ENHANCING CLASSICAL APRIORI ALGORITHM....ccceuveiernrnnnn

3.1 BacKground........cooiniiii
3.2 Prefix-ltemset Storage Structure............ccooeviiiiiiiiiiiienen,

3.3 Vertical Data FOrmat...........oovviniiiiiii e

3.4 Proposed Methodology.........covvvviiiriiiiiie e

3.4.1 Hllustration by an Example............coooviiiiiiiiiiin

3.5 Experimental Results and DiSCUSSION.............ccovvviiiiiiniiinanannnn.

3.5.1 Welch's Two Sample t-test...........coooiiiiiiiii e

3.6 Chapter SUMMAIY..... ..ot e

CHAPTER - 4 JAB-VDF: A JAGGED ARRAY BASED DATA
STRUCTURE FOR VERTICAL DATA FORMAT ..ccitiiiiieieteiarennen
4.1 Background.........c.oiuiini i
42380080 AITAY ..ttt e
4.3 Proposed Methodology........c.covviiiiii e,
4.3.1 lllustration by an Example...........coooiiiiiiiiiii,

4.4 Experimental Results and DiSCUSSION............c.oovviviiiiiiinianenene.

4.5 Chapter SUMMArY. ..ot

CHAPTER - 5 TB-NPF-VDF: A MULTITHREADED, NOVEL
PATTERN FORMATION FOR VERTICAL DATA FORMAT WITH

JAGGED ARRAY ettt 83-100
5.1 Background.........c.oiiniini i 83
5.2 Multithreading........c.oviiriiii 84
5.3 Proposed Methodology..........ooviiiiiiiiiii e 86

5.3.1 Hlustration by an Example..............ooooiiiiiii 89
5.4 Experimental Results and DiSCUSSION.............c.ccoeviiiiiiiiininnn.. 95
5.4.1 Welch's Two Sample t-testcooviiiiiiiiiiiin 95
5.5 Chapter SUMMArY..... ..ot e 99

CHAPTER - 6 GNVDF: A GPU-ACCELERATED NOVEL
ALGORITHM USING VERTICAL DATA FORMAT AND JAGGED

ARRAY i tiiiiiiiiiiiiiiiiiniititetetetetatasasasasasasasimeniie e 101-122
6.1 BaCKQground.........c.oiiniiii i 101
6.2 Graphical Processing Unit.............c.ooiiiiiiiiii e, 102

6.2.1 Processing flow of CUDA. ... 103
6.3 Proposed Methodology..........ccoviiiiiniiii e, 104
6.3.1 Memory Requirement Calculation.................................. 109
6.3.2 lllustration by an Example..............coooviiiiiiiiiiiiiii, 111
6.4 Experimental Results and DiSCUSSION.............cc.ccovvviiiiiiiininns.. 117
6.5 Chapter SUMMArY..... ..ot e 121

CHAPTER -7 CONCLUSION....ciututuiururnrnrerarnsmnerasasessssssssnses. 123-128
7.1 Summary of the Contributions.................cooiiiiiiii, 123
7.2 Limitations and Future Research Directions...................cccoeven... 126
T3 ENANOE. ...t 127

REFERENCES. .. .ciutiiitiiiiiiiiiiiiiiniiiieiesesesesssssesasnsassssssssssssssses 129-142

Xi

APPENDICES
Appendix - A
Google Scholar Image Showing the Research Scholar Publications
Papers Included in International Digital Libraries
Appendix - B

Papers Published in the International Journals

Xii

LIST OF FIGURES

o, @
11 KDD Process 4
1.2 | Classification of Frequent Pattern Mining Algorithm 9
1.3 | An Example for Apriori Algorithm 12
1.4 | An Example of Eclat Algorithm 14
1.5 | Workflow of the Research 19
3.1 | Workflow of RISOTTO 50
3.2 | Runtime of Prefixed-ltemset Storage, VDF and RISOTTO for 61
chess Dataset

3.3 | Runtime of Prefixed-ltemset Storage, VDF and RISOTTO for 61
mushroom Dataset

3.4 | Runtime of Prefixed-ltemset Storage, VDF and RISOTTO for 6
t25110d10k Dataset

3.5 | Runtime of Prefixed-ltemset Storage, VDF and RISOTTO for 62
€20d10k Dataset

4.1 | Jagged Array Representations 68

4.2 | Comparison of Memory Consumption (in GB) between JAB-VDF 20
and VVDF with 6=20%

5.1 | Multithreading 85

5.2 | Workflow of TB-NPF-VDF 89

5.3 | Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF o7
for chess Dataset

54 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF o7
for mushroom Dataset.

. Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF -
for t25110d10k Dataset

56 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF -

for c20d10k Dataset

Xiii

Figure Title Page
No. No.
6.1 | Processing Flow of CUDA 104
6.2 | Workflow of GNVDF 109
6.3 | Runtime Performance of GNVDF with and without

GPU-acceleration for chess Dataset 19
6.4 | Runtime Performance of GNVDF with and without

GPU-acceleration for mushroom Dataset Ho
6.5 | Runtime Performance of GNVDF with and without

GPU-acceleration for t25i10d10k Dataset 120
66 Runtime Performance of GNVDF with and without 120

GPU-acceleration for c20d10k Dataset

Xiv

LIST OF TABLES

Table] Page
No. Title No.
1.1 | A Sample Transactional Dataset of a Grocery Store 5
1.2 | Transactional Database D in HDF 8
1.3 | VDFofD 8
1.4 | Characteristics of Datasets 20
3.1 | Prefixed-Itemset Storage Structure 46
3.2 | Transactional Database D 51
3.3 | Computation of C; 52
3.4 | Computation of L 52
3.5 | Prefixed-Itemset Storage with frequent 1-itemset 52
3.6 | Computation of C, 53
3.7 | Computation of L, 54
28 The Original Prefixed-ltemset Storage after Appending frequent -
2-itemset

29 The Prefixed-Itemset Storage after Appending frequent 2-itemset -
in RISOTTO

3.10 | Computation of C3 55

3.11 | Computation of L 56

312 The Original Prefixed-ltemset Storage after Appending frequent &6
3-itemset

313 The Prefixed-Itemset Storage after Appending frequent 3-itemset &7
in RISOTTO

3.14 | Computation of C,4 57

3.15 | Computation of L, 57

316 The Original Prefixed-ltemset Storage after Appending frequent -
4-itemset

317 The Prefixed-Itemset Storage after Appending frequent 4-itemset -
in RISOTTO

3.18 | Performance Results of RISOTTO in seconds 60

XV

Table) Page
No. Title No.
3.19 | Results of t-test 64
4.1 | Transactional Database D 70
42 |DinVDF 70
4.3 | Frequent 1-itemset in VDF 71
4.4 | VDF of frequent 2-itemsets 73
4.5 | VDF of frequent 3-itemsets 73
4.6 | VDF of frequent 4-itemsets 73
4.7 | Jagged Array Representation of frequent 1-itemset 75
4.8 | Jagged Array Representation of frequent 2-itemset 76
4.9 | Jagged Array Representation of frequent 3-itemset 77
4.10 | Jagged Array Representation of frequent 4-itemsets 78
111 Comparison of Memory Consumption (in GB) between JAB-VDF 79

and VDF with 6=20%
5.1 | Transactional Database D 90
52 | DinVDF 90
5.3 | Candidate 1-itemset 91
5.4 | Jagged Array Representation of frequent 1-itemset 91
5.5 | Sorted frequent 1-itemset 92
5.6 | Frequent 2-itemset for <a> by Thread-1 92
5.7 | Frequent 3-itemsets for <a> by Thread-1 93
5.8 | Frequent 4-itemsets for <a> by Thread-1 93
5.9 | Frequent 2-itemset for <f> by Thread-2 93
5.10 | Frequent 2-itemset for <i> by Thread-3 93
5.11 | Frequent 3-itemset for <i> by Thread-3 93
5.12 | Frequent 2-itemset for <d> by Thread-4 94
5.13 | Frequent 3-itemset for <d> by Thread-4 94
5.14 | Frequent 4-itemset for <d> by Thread-4 94
5.15 | Frequent 2-itemset for <m> by Thread-5 94
5.16 | Frequent 3-itemset for <m> by Thread-5 94
5.17 | Frequent 2-itemset for <c> by Thread-6 94

XVi

Table) Page
No. Title No.
5.18 | Frequent 3-itemset for <c> by Thread-6 94
5.19 | Frequent 2-itemset for <e> by Thread-7 94
5.20 | Details of Itemsets for D 95
5.21 | Performance Results of TB-NPF-VDF in seconds 96
5.22 | Results of t-test 99
6.1 | Vertical Data Format of D 111
6.2 | Candidate 1-itemset (C,). 112
6.3 | Frequent 1-itemset (L;) 112
6.4 | Common Transaction List (CTL) 113
6.5 | Final frequent 1-itemset (L) 113
6.6 | Logical Bucket-1(LB;) 113
6.7 | Logical Bucket-2 (LBy) 113
6.8 | Candidate 2-itemset - Part | 114
6.9 | Candidate 2-itemset - Part |1 114
6.10 | Frequent 2-itemset - Part | 115
6.11 | Frequent 2-itemset - Part |1 115
6.12 | Candidate 3-itemset - Part | 115
6.13 | Candidate 3-itemset - Part I 115
6.14 | Frequent 3-itemset - Part | 116
6.15 | Frequent 3-itemset - Part |1 116
6.16 | Candidate 4-itemset - Part | 116
6.17 | Candidate 4-itemset - Part I 116
6.18 | Frequent 4-itemset - Part |1 116

Runtime (in ms) Performance of the Proposed Algorithm without
6.19 GPU 118
Runtime (in ms) Performance of the Proposed Algorithm with

6.20 118

GPU-acceleration

Xvii

LIST OF ALGORITHMS AND PROCEDURES

Algorithm) Page
No. Title No.
3.1 RISOTTO: An algorithm for finding frequent itemsets 49
51 TB-NPF-VDF: An algorithm for finding frequent itemsets 87
6.1 GNVDF: An algorithm for finding frequent itemsets 106

Procedures in GNVDF 106-108
6.1.1 eliminate_null: A procedure to eliminate the null
transactions in a dataset 100
6.1.2 one_frequent_itemset: A procedure to find the frequent 107
1-itemset

6.1.3 find_common_TID: A procedure to find the common 107
transaction ID's

6.1.4 two_freq_itemset: A procedure to find the frequent 107
2-itemset

6.1.5 n_frequent_itemset: A procedure to find the frequent 108

i-itemset where 3<i<n

XVill

AA
AMA
APFMS

ARAA
ARM
BSRI
CGMM
CGSS
CMR - Apriori
CPU
CSS
CTL
CUDA
D2P
DHP
DM
DS
Eclat
ESPE
FBCM
FIM
FIMI
FIUT
FMA

FP-Growth

LIST OF ABBREVIATIONS

Apriori Algorithm

Advanced Matrix Algorithm

Accelerating Parallel Frequent Itemset Mining on Graphics
Processors with Sorting

Advanced Reverse Apriori Algorithm

Association Rule Mining

Boolean array Setting and Retrieval by Indexes of transactions
CPU & GPU based Multi-strategy Mining

Cluster based Single Scan on a GPU

Coding and Map/Reduce - Apriori

Central Processing Unit

Single Scan on a Cluster

Common Transaction List

Compute Unified Device Architecture

Dynamic Queue and Deep Parallel

Direct Hashing and Pruning

Data Mining

Data Structure

Equivalence CLAss Transformation

Efficient Sequential Pattern Enumeration

Fast update pruning Based on a Compression Matrix
Frequent Itemset Mining

Frequent Itemset Mining Implementations

Frequent Item Ultra metric Tree

Frequent Matrix Apriori

Frequent Pattern Growth

XiX

http://fimi.uantwerpen.be/src/

FPM
FPMBM
FUP
GNVDF
GPGPU
GPU

GSS

HDF

HPC

IMA
JAB-VDF
JCUDA
JNI

KDD
MAPRIORI
MATLAB
MBAT
MB-MFIM
MFI

MFIF
MFIWDSIM

MMS-FPM
MOA
MSApriori
MTPAPRIORI

NPF-VDF

Frequent Pattern Mining

Frequent Pattern Mining using a Boolean Matrix

Fast Update Pruning

GPU-accelerated Novel Algorithm using Vertical Data Format
General-Purpose computing on GPUs

Graphical Processing Unit

Single Scan on a GPU

Horizontal Data Format

High-Performance Computing

Incremental Matrix Apriori

Jagged Array based Vertical Data Format

Java for CUDA

Java Native Interface

Knowledge Discovery in Databases

Matrix-based Apriori algorithm

MATrix LABoratory

Matrix Based Algorithm with Tags

Matrix Based Maximal Frequent Itemset Mining

Maximal Frequent Itemset

Maximal Frequent Itemset First

Mining Frequent ltemsets with Weights over a Data Stream using
Inverted Matrix

Multiple Minimum Support - Frequent Pattern Mining
Matrix-Over-Apriori

Multiple Support Apriori

Matrix-based Apriori algorithm with pruning optimization and
transaction reduction strategy

Novel Pattern Formations with Vertical Data Format

XX

NSFI
PRFP
PSPM
RAA

RBFI
RISOTTO
SIM

SIMD

SS
SUMsFPM
TB-NPF-VDF
VBM

VDF
VDSRP
VFFM
YAFIM

N-list and Subsume-based algorithm for mining Frequent Itemset
Parallel Regular Frequent Pattern

Parallel Sequential Pattern Mining

Reverse Apriori Algorithm

Rehashing Based Frequent Itemset

pRefixed ItemSet stOrage verTical daTa fOrmat

Sorting Index Matrix

Single Instruction, Multiple Data

Single Scan

Sumathi Murugan Frequent Pattern Mining

Thread Based, Novel Pattern Formations with Vertical Data Format
Vertical Boolean Mining

Vertical Data Format

Vertical Data Stream Regular Patterns

Vertical Format Frequent Mining

Yet Another Frequent Itemset Mining

XXi

Ho» H,
{in-frequent;}
{itemset;}

DI

|1l

N

U

X

M, M

A B, XY
szand sz

arr

Cia

Ci2

CM

Crip

Crip _ist
D

I

P PYIO
i-itemset
itemis

itemset; 1

LIST OF SYMBOLS

Null and Alternate hypothesis

Set of in-frequent items in candidate i-itemset
Set of frequent i-itemset

Number of transactions in a dataset

Number of items in a dataset

Set intersection

Set union

Natural join

Means of two groups

Items in transactional database D

Variances of the two groups

Jagged array

Number of columns

Candidate i-itemset

Part | of candidate i-itemset
Part 11 of candidate i-itemset
Memory space required for Ctip
Common TID's

Common Transaction List
Transactional Database

Itemset

List of items in Itemset |

i itemset

First item in the candidate i-itemset

Number of items in the first part of frequent i-itemsets

podll

itemset; » - Number of items in the second part of frequent i-itemsets

Iy, ly - Eachitemin LB; and LB,

[) - Itemsin LB,

k-itemset - k™ itemset

L - List of frequent itemsets

LB, - Logical Bucket - 1

LB, - Logical Bucket - 2

Li - Frequent i-itemset

Li1 - Part | of frequent i-itemsets

Li 2 - Part Il of frequent i-itemsets

LKy - Prefix keys in prefixed itemset storage
LV - Values in the prefixed itemset storage
m,p,x - Lengths of each array in a jagged array
Mi - Memory required for frequent i-itemset
min_conf - Minimum confidence

min_sup - Minimum support

MS - Memory saved for the entire dataset D
n - Total number of transactions in D
n.and n, - Sizes of two groups

%) - Null set

PIDS - Prefixed-itemset storage

r - Number of items in the grocery shop
rbytes; - Number of bytes of memory removed from the candidate

i-itemset as in-frequent

rr, - Number of rows to be removed as in-frequent
SC - Support Count

SCitem - Support Count of the item item

T - Transaction

XXiil

tc;
TID/tid
TID-List,
TID-Listy,

TID-Lists, ...

TID-List,
TID-set
™
TMeinal
T™;

TNT

t

X

Xy and X,
0

5new

Possible i-item combinations

Transaction ID

List of TIDs

Set of Transaction ID's

Total memory required

Total memory required for the frequent itemsets in GNVDF
Memory required for candidate i-itemset

Total Number of Transactions

Thread x

Itemset

Means of X; and X,

Minimum support

New support threshold

XXIV

|
Chapter - 1

INTRODUCTION

CHAPTER -1
INTRODUCTION

A journey of thousand miles begins with a single step
--LAO-TZU

1.1 Background

In recent days, the quantity of data generated or collected from various sources
has been increasing enormously. Data Mining (DM) is an interdisciplinary field, has
been widely used to analyze those data. Frequent Pattern Mining (FPM) plays a core
role in DM, and it enables us to find relationships among the items in transactional
databases [AH,14]. Thus, the research incorporates various novel FPM algorithms to

mine frequent patterns efficiently with less time and memory usage.

This chapter provides background information necessary for understanding the
contributions made in this research. In particular, section 1.2 outlines the basics of
DM, section 1.3 deals with FPM, the importance of Association Rule Mining (ARM)
is discussed in section 1.4, section 1.5 mentions the various applications of FPM,
the scope, aim & objectives of the research work were presented in sections 1.6 and
1.7 respectively. Similarly, the statement of the problem and its description were
discussed in sections 1.8 and 1.9 respectively. The elaborate description of the
datasets was illustrated in section 1.10 and finally, the chapter organization of the

thesis is covered in section 1.11.

1.2 Data Mining

DM is the most commonly used process for exploring and analyzing a large
quantity of data to acquire novel, valid, potentially valuable and intelligent patterns

hidden in the database [VD,19],[FPS,96]. Databases, data warehouses, the Web,

1

other information repositories, and streaming data are examples of data sources.

The significant tasks of DM are:

Vi.

Anomaly detection — unusual items or events in the unlabeled datasets are

identified for further analysis.

. Association rule mining — identifies the relationships between variables.

Using this task, the supermarket can find out the products that are purchased
together frequently by the customers and use this information for marketing

purposes.

Clustering — determining the similar groups and structures in the data without

using the known structures.

. Classification — accurately predict the target class for the new data from the

model.
Regression — predict a range of numeric values for the given dataset.

Summarization — presenting a more compact representation of the dataset

e.g. visualization and report generation.

1.2.1 Knowledge Discovery in Databases

Knowledge Discovery in Databases (KDD) is a repetitive and interactive

process of discovering useful knowledge from a collection of data in the context of

large databases. Knowledge Discovery and DM are distinct terms. It consists of the

following steps:

Data cleaning — removing noise and inconsistent data.

Data integration — combining numerous data sources.

https://en.wikipedia.org/wiki/Anomaly_detection
https://en.wikipedia.org/wiki/Association_rule_learning
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Automatic_summarization

iii. Data selection — retrieving relevant data from the database for the analysis

task.

iv. Data transformation — transforming and consolidating the data into forms
that are appropriate for mining by performing summary or aggregation

operations.
v. Data mining — extracting data patterns by applying intelligent methods.

vi. Pattern evaluation — identifying the interesting patterns representing

knowledge based on interestingness measures.

vii. Knowledge presentation — presenting the mined knowledge to the users by

using visualization and knowledge representation techniques.

Steps 1 through 4 are the data pre-processing techniques, which makes the
data for mining ready. The DM step may interact with the user or a knowledge base.
The interesting patterns are presented to the user and they may be stored as new
knowledge in the knowledge base by the last two steps [HPK, 12]. The diagrammatic

representation of the KDD process is shown in Figure 1.1.
1.3 Frequent Pattern Mining

FPM is an essential task and plays a vital role in DM tasks such as various
kinds of ARM, sequential pattern mining, associative classification and frequent
pattern-based clustering. It is widely used in mining associations, correlations,
and many other relationships among the data. Mining frequent patterns from large
scale databases have become a significant research problem in DM and knowledge

discovery community.

Interpretation/
Selection Preprocessing Transformation Data Mining Evaluation

o
I

I
v
—>/—>

Transformed
Data

€«——o0
€«——0

Preprocessed
Data

Patterns Knowledge

SR,
|

—_————————>
f—————————>

Figure 1.1 KDD Process

1.3.1 Terminologies in FPM

k-ltemset

An itemset or set of items that contain k unique items is called k-itemset.
For example, a set of a desktop computer, a printer that occur frequently in a dataset is

called a 2-itemset [HPK,12].
Subsequence

It contains a set of items purchased in sequential order i.e. buying a personal
computer first, then a wireless keyboard, and then a wireless mouse that occurs

frequently in a shopping history database [HPK,12].
Substructure

It can refer to different structural forms, such as subgraphs, subtrees,
or sublattices, which may be combined with itemsets or subsequences. If a
substructure occurs frequently with not less than a user-specified threshold is called

structured patterns [HPK,12].

Frequent patterns

These are the patterns/itemsets/subsequences that appear frequently together in

transactional datasets or supermarket datasets.
Minimum support count threshold

Users or decision-makers are interested to identify the occurrence of k-items
with specified numbers of times, which is known as the minimum support count

threshold.
Transactional/Supermarket dataset

A transactional dataset is a dataset that contains the items are purchased in
each transaction. A transaction T in D is represented as a pair defined as
T = <TID, list of items>, where TID is the unique identification number for the list of
items purchased by each transaction. Table 1.1 showed below is an example
transactional dataset for a grocery store.

Table 1.1 A Sample Transactional Dataset of a Grocery Store
TID List of items

Milk, Butter, Bread

Milk, Dry grapes

Bread, Butter, Rusk

Rusk, Butter

[EEN

Dry grapes, Bread, Butter
Ghee, Bread, Dry grapes
Milk, Bread, Butter
Yummy apple, Grapes

© 00 N o O B~ W DN

Yummy apple, Milk, Ghee

(BN
o

Budget milk, Butter, Dry grapes

The discovery of frequent patterns plays an essential role in DM. A commonly

used application is the market basket analysis, where the frequently purchased items

| 5

are discovered from the transactional entries of a grocery store for making business
decisions. Many efficient and scalable algorithms have been developed for FPM,
from which the association and/or correlation rules can be derived, which helps in
making business decisions and predictions. These algorithms are categorized into
three major groups [HPK,12].

i. Apriori-like algorithms
ii. Frequent pattern growth-based algorithms such as FP-growth

iii. Algorithms that use the Vertical Data Format (VDF)

1.3.2 Basic Definitions

Let I={ly, lo,..., In} be an itemset, and D is a transactional database containing
a set of transactions T and is a non-empty itemset such that T < I and each transaction
T is holding a unique identifier TID. Let A be a set of items. A transaction T is said to
contain in A if A € T. The format of the association rule is A>B, where A c I,
Bcl,A+#@,B#d, and ANB = @ [HH,16]. Association rule A>B that holds in D

with support (s) and confidence (c) [HD,16].

Support(s): The support of an association rule A->B is defined as the percentage of
records that contain AUB to the total number of records in the database [ST,16].
It is noted that the support count is increased when an item is present in numerous

transactions in the database D [ST,16].
support(A=>B) = p(AUB) ... Equation (1.1)

Confidence(c): The confidence of a rule A - B is defined as s(A—>B)/s(A). It is the

ratio of the number of transactions that contain all items in the consequent (B), as well

https://www.sciencedirect.com/topics/computer-science/frequent-itemsets

as the antecedent (A) to the number of transactions that include all items in the

antecedent (A) [PP,15].

Support_count(AUB)

confidence(A=>B) =
Support_count(A)

... Equation (1.2)

The minimum support threshold is used to obtain the frequent itemsets from
the databases. In contrast, the minimum confidence constraint is applied to those

frequent itemsets found previously in determining the best rules.

1.3.3 Architecture/Layout of Storing Transactional Data

There are two formats in which a transactional database can be represented.

1) Horizontal Data Format(HDF) ii) Vertical Data Format(VVDF).
1) Horizontal Data Format

This representation consists of two columns namely TID and List of Item IDs,
where TID is a transaction ID and List of item IDs specifies the items bought by the
customer for the TID. Both the Apriori and FP-growth algorithms mine the frequent

patterns in HDF and it is shown in Table 1.2.
i) Vertical Data Format

In VDF, the data can be expressed in {itemset:TID_set} format where the
itemset is the name of the item and TID_set is the transaction set that contains the
itemset. The VDF is used in the Eclat algorithm that minimizes the database scan and
it uses a set intersection of TIDs for finding the Support Count (SC) for k-itemsets

where k=2,3,...,n. The VDF of D is shown in Table 1.3.

Table 1.2 Transactional Database D in HDF

TID List of item IDs
T1 AB,E

T2 B,D

T3 B,C

T4 A,B,D

T5 AC

T6 B,C

T7 AC

T8 AB,C

T9 AB,CE

Table 1.3 VDF of D

itemset TID_set
A T1,T4,T5T7,T8,T9
B T1,T2,T3,T4,T6,T8,T9
C T3,T5,T6,T7,T8,T9
D T2,T4
E T1,T9

1.4 Association Rule Mining

ARM is a process for finding interesting associations and relationships
between data items in datasets. It is a successful technique for extracting knowledge
from databases. It discovers the frequent if-then rules called association rules and it is
used for analyzing and predicting customer behaviour. They are essential in customer
analytics, product clustering, market basket analysis, catalogue design and store
layout. Every association rule has two parts: i) an antecedent (if) and ii) a consequent
(then). An antecedent refers to the item found within the data whereas the consequent

is an item found in combination with the antecedent. It uses the criteria namely

https://searchbusinessanalytics.techtarget.com/definition/customer-analytics
https://searchbusinessanalytics.techtarget.com/definition/customer-analytics

support and confidence to identify the most important relationships. Support indicates
how frequently the items appear in the data. Confidence indicates the number of times
in the if-then statements is found true [HPK,12].
The discovery of association rules involves two major steps. They are:
i. Finding frequent patterns/itemsets
ii. Generating reliable and strong association rules from the frequent
itemsets [HPK,12]
Step 1 of ARM is a challenging task [SD,15] and plays a vital role in mining
associations and correlations [DS,16]. This research work focuses on FPM algorithms.
In general, the FPM can be categorized into three main groups viz., Join-Based,

Tree-Based, and Pattern Growth [ABH,14] as shown in Figure 1.2.

Frequent Pattern Mining

Apriori Eclat FP-Growth
DHP AIS TFP
AprioriTID TreeProjection SSR
AprioriHybrid VIPER P-Mine
Sandwich-Apriori MAFIA LP-Growth
MR-Apriori DIFFSET Can-Mining
HP-Aprriori ™ Extract

etc. etc. etc.

Figure 1.2 Classification of Frequent Pattern Mining Algorithm

The Join-Based algorithms use a bottom-up approach to discover frequent
patterns in a dataset and find the larger itemsets as long as their itemsets appear more
than a prescribed threshold defined by the user in a database. The Tree-Based

algorithms use set-enumeration concepts by constructing a lexicographic tree that

9

https://link.springer.com/article/10.1007/s10462-018-9629-z#Fig12

enables the items to be mined with either breadth-first or depth-first order. Finally,
the Pattern Growth algorithms implement a divide-and-conquer approach to partition
and project databases depending on the presently identified frequent patterns and
expand them into longer ones in the projected databases.

Apriori Algorithm, FP-Growth and Eclat (Equivalence CLAss
Transformation) are the popular static DM techniques for finding frequent patterns

[Sin,16] using the above strategies.
1.4.1 Apriori Algorithm

It is one of the most popular algorithms and it is the first algorithm proposed
by R.Agrawal and R.Srikant in 1994 in the field of DM and it is a classical algorithm
of ARM. It generates frequent itemsets for the Boolean association rule. Since the
algorithm uses the prior knowledge of the frequent itemset properties it is named
Apriori. It uses an iterative approach called level-wise search, where k™ itemset is
used to explore (k+1)" - itemsets. There are two steps involved in each iteration and

it is repeated when no candidate itemsets can be found. They are:
i. Generation of candidate itemsets

ii. Finding the occurrence of each candidate itemset in a database and pruning all
disqualified candidate itemsets based on support count(threshold) and closure
property i.e. if a set of items is frequent, then all of its proper subsets are also

frequent [HPK,12]

After finding the frequent itemsets, the association rules are generated from

those large itemsets with the constraints of minimal confidence (min_conf)

| 10

and minimum support (min_sup) thresholds. Figure 1.3 shows an illustration of the
Apriori algorithm [CJAH",19].

In this example, the transactional database D contains four transactions and the
items sold are A, B, C, D and E. Let the min_sup be 2. Initially, the D is scanned
once to create candidate 1-itemset C;. From Figure 1.3, it is identified that the SC of
{D} is less than the min_sup and it is removed. The L; contains the items A, B, C,
and E. After finding L, Ly = L; is performed and to find the SC for C,, D is scanned
again. In this case, the itemset combinations {A,B} and {A,E} doesn't satisfy the
min_sup and they are removed. The item combinations after removing the items viz.,
{A,C}{B,C}{B,E} and {C,E} forms L,. This process is iterated until no more

candidate and/or frequent itemsets are found.
1.4.1.1 Disadvantages of Apriori Algorithm

The classical Apriori algorithm is inefficient because
i. Itis not suitable for large databases
ii. It defines the presence and absence of an item
iii. It allows uniform min_sup threshold
iv. More scanning of the transactional database is needed for generating
frequent itemsets
v. More I/O cost is required
vi. Generation of candidate itemsets and support counting is expensive and

also memory consuming [CJAH",19]

1.4.2 FP-Growth Algorithm

FP-growth depends on a prefix-tree configuration which stores the database
into a compact form known as FP-tree. It follows the divide-and-conquer approach.
It first compresses the database representing frequent items into an FP-tree, which
keeps the association information of the itemsets. It then divides the FP-tree into

sub-trees called conditional FP-trees using the dataset called conditional pattern base.

D C1 L1
TID Items Itemset sup Itemset sup
10 | AC,D {A} 2 {A} 2

15tscan
20 | B,C,E > {B} 3 > (B} 3
30 |AB,CE {C} 3 {C} 3
40 B,E {D} 1 {E} 3
{E} 3
l_z Cz L2
Itemset
Itemset sup Itemset sup
{A, B}
{A,C} 2 {A, B} 1
{A, C}
{B,C} 2 | {A,C} g
s 2" scan {A, E}
{B,E} 3 {A,E} 1 e
{B,C}
C.E 2 B,C 2
{C,.E} {B,C} B.5
B,E 3
Bt {C.E}
{C,E} 2
\ 4 c3 L3
Itemset 3" gcan | Itemset sup J Itemset sup
(B,C,E} BCE | 2 | Bcr | 2

Figure 1.3 An Example for Apriori Algorithm

[SBE,21],[CIAH",19],[HPK,12].

1.4.2.1 Advantages of FP-Growth Algorithm

I. Faster than Apriori algorithm

ii. No candidates are generated
iii. Only two passes over the dataset

1.4.2.2 Disadvantages of FP-Growth Algorithm
I. FP tree may not fit in memory

Ii. FP tree is expensive to build
1.4.3 Eclat Algorithm

It uses VDF and finds all frequent itemsets by intersecting the TID-list. It first
scans the database and determines the TIDs in which the item occurs for each item.
The (k+1)-itemsets were generated from k-itemset using Apriori property and
depth-first search computation. The TIDs of (k+1)-itemsets are generated by
intersecting the TID-sets of frequent k-ltemset. This process continues until no more
candidate itemsets are found. An example of the Eclat algorithm is shown in

Figure 1.4 [CJAH",19].
1.4.3.1 Advantages & Disadvantages of Eclat Algorithm

i. It does not require repeated scanning of the database to find the support of k+1

itemsets and it is obtained using the set intersection method from k-itemsets
ii. It is faster than the Apriori algorithm as it uses depth-first search

iii. Though it requires less memory consumption than Apriori, the usage of array
storage structure requires huge memory and computational time for

intersecting the sets when there are many transactions

Thus, to eradicate the said disadvantages, a vast amount of research has been

contributed to FPM and many remarkable algorithms have been proposed in the last

| 13

two decades. Further, the research contributions proposed in this thesis provides

modifications to the standard and/or existing algorithms to reduce the execution

time/runtime and memory space in finding the frequent patterns.

D C; L,
TID | Items Item | Tidset [o | tem | Tid_set
meet minimum
10 |ACD| o .| A 10, 30 s A 10, 30
B | SO e | —b | 209040 | B [203040
30 |ABCE id_se , 20,
f: e:c; = e C 10, 20, 30
40 B,E s D 10
E 20, 30, 40
E 20, 30, 40
Determine the candidate
2-itemsets
Cz v
LZ Item Tid_set
Item Tid_set prr:::::il:gd:u:nt AB 30
AC 10,30 | "emeRen AC 10, 30
Minimum support = 2 BC 20,30 [€ AE 30
BE 20, 30, 40 BC 20, 30
CE | 20,30 BE |20,30,40
Generate the candidate CE 20, 30
3-itemsets
2 C3
Filtering out Item sup
L3 products do not
meet mini;num ACB 1
It Tid_set i
em 1d_se ACE
BCE 20,30
BCE 2
Figure 1.4 An Example of Eclat Algorithm
1.5 Applications of FPM

FPM has been used in a variety of real-world applications to improve

decision-making and management.

In the business world, mining frequent patterns assist the business people in

designing promotion schemes, providing discounts, organizing self and store layout,

posting special advertisements, storage management and forecasting potential markets

[CGGK,00].

| 14

In the medical domain, the frequent patterns enable the doctors to make
treatment decisions and uncover the gene actions [OKSI,00],[Wet,02].

In education, mining frequent patterns enable the teachers in modifying the
teaching methods to improve their teaching quality, to facilitate students to be trained
better and select the contents of teaching based on the student's calibre [MLWY™,00].

In disaster prevention, mining frequent patterns assist in weather forecasting
by analyzing different environmental factors and help to prevent impending
[ZWH,04].

Similar to the previous it can be used in many other fields like police
department, engineering design, software bug detection and recommendation systems
[ABH,14]. Thus, mining frequent patterns plays a hot topic of research for the past

twenty decades.
1.6 Scope of the Research Work

FPM has been a purposeful research area in DM for the past two decades.
Many researchers contributed numerous competent and scalable techniques for
determining the frequent itemsets from transactional databases. Nowadays, online
shopping become a mandatory mode of purchase in human lives and amazon like
e-stores display the items which are "frequently bought together” to their customers
and provides offers based on that. In this way, the e-stores increase their sales and
profit considerably. Also, they display "Customers who bought this item also bought™
in their web portal along with the product description and reviews. For displaying this
information, FPM is an essential task and though there are scalable algorithms exists,

the prolonged processing time and more memory consumptions are the major issues

| 15

in mining frequently bought items. So, there is always a need for developing better

algorithms with reduced runtime requirements and memory usage.

Thus, this research work focuses on developing efficient FPM methods in
finding frequent patterns in such a way that the runtime and usage of memory to be

reduced than the existing algorithms.

1.7 Aim & Objectives of the Research Work

Even though an enormous amount of remarkable research works have been
contributed by many researchers for FPM to efficiently mine the frequent patterns
from transactional datasets, the requirement of prolonged processing time and a large
amount of memory space are still the two major issues that the FPM faces, especially

when the amount of data is large.

To solve the above said issues, the research work aims to devise novel FPM
algorithms to determine the frequent patterns from the static datasets to achieve the

following objectives:

i. To develop FPM algorithms that efficiently mine the frequent patterns

with a minimum runtime

ii. To formulate the FPM algorithms to consume less memory in mining

frequent patterns

Thus, the research work focuses on developing robust FPM algorithms for
reducing the runtime and consumption of memory in mining the frequent itemsets
from transactional datasets. To evaluate the proposed FPM algorithms, they were
compared with some existing algorithms to prove that the proposed algorithms will

detect the frequent patterns faster with less memory.

| 16

1.8 Problem Statement

To accomplish the said objectives, four research models have been proposed

in this research work as a research framework called SUMsFPM. They are:

i. RISOTTO - A Novel Hybrid Approach for Enhancing Classical Apriori

Algorithm

ii. JAB-VDF — A Memory Efficient Implementation of Frequent Itemset Mining

with Vertical Data Format Approach

iii. TB-NPF-VDF — A Multithread, Novel Pattern based Algorithm for Finding

Frequent Patterns with Jagged Array and Vertical Data Format

iv. GNVDF — A GPU-accelerated Novel Algorithm for Finding Frequent Patterns

Using Vertical Data Format Approach and Jagged Array
1.9 Problem Description

The RISOTTO algorithm has been developed by combining both
Prefixed-itemset based storage structure and VDF approach to reduce runtime needed
to find the frequent patterns from the transactional datasets. The Prefixed-itemset
based storage structure utilized in this research work generates a fewer number of
candidate itemset in each iteration of the algorithm. Similarly, the usage of VDF
restricts the number of database scans to one rather than (2! - 1) times where |I| is the

number of items in a dataset.

The array storage structure utilized in the VDF normally requires more storage
space as there are enormous numbers of TIDs for each item in the transactional
database. So to reduce the memory space, a Jagged Array Based - Vertical Data

Format (JAB-VDF) has been proposed in this research.

|17

Further, to minimize runtime and memory requirements, TB-NPF-VDF and
GNVDF have been developed. The TB-NPF-VDF method generates frequent patterns
by adopting a novel pattern generation method with multiple threads. Usage of
multiple threads reduces the runtime required in generating frequent patterns and also
utilizes the CPU effectively. Further, it uses the jagged array storage representation to

minimize the memory requirement in preserving the frequent patterns.

To reduce runtime and memory space further, a GPU-accelerated method for
finding frequent patterns with novel pattern generation using VDF with jagged array
has been proposed. The adaptation of the novel pattern generation method in this
research contribution generates lesser candidate itemsets than TB-NPF-VDF which
reduces the runtime requirement. To reduce memory space further when compared to
JAB-VDF, GNVDF adopts a data structure called Common Transaction List (CTL),
which preserves the common TIDs of all items in frequent 1-itemset and they were
removed from it. The removal of the items in CTL from frequent 1-itemset reduces
memory space significantly. Thus, all the methods proposed in the research work

reduces the runtime and memory space.

The workflow of the proposed research is shown in Figure 1.5. The proposed
framework is called SUMsFPM which is coined by taking the first two characters
from my name Ms.P.SUMATHI, the first character from my research supervisor
name Dr.S.MURUGAN and the first characters from the phrase "EREQUENT

PATTERN MINING".

Frequent Pattern Mining

Time Efficient Model

Memory Efficient Model Time & Memory Efficient Models

RISOTTO TB-NPF-VDF

Figure 1.5 Workflow of the Research

1.10 Description of the Datasets

All the proposed algorithms were implemented using Python programming
language (version 3.8.2), and GNVDF was implemented with CUDA Toolkit with
NVIDIA GPU. To do a uniform and fair comparison, the experiments of all
algorithms were conducted using the same software and hardware configurations.
The experiments were performed using 8.00GB RAM, Intel Core i7 with 2.40GHz
64-bit processor and Windows 8.1. To evaluate the effectiveness of the proposed
methods, an empirical study was conducted with four datasets viz., chess, mushroom,
t25i10d10k and c20d10k. Out of the four datasets, chess and mushroom are the
real-time datasets, t25i10d10k and c20d10k are the synthetic datasets. The synthetic
datasets were normally generated through computer algorithms as an alternative to
real-time datasets i.e. they are spawned digitally and not collected in the real world.
All the datasets were obtained from the FIMI repository (http://fimi.ua.ac.be) and an
open-source Data Mining Library (http://www.philippe-fournier-viger.com/spmf).

The characteristics of the datasets were illustrated in Table 1.4.

http://www.philippe-fournier-viger.com/spmf

Table 1.4 Characteristics of Datasets

Number of Number . Average .
Datasets/)) item count Maximum .
transactions of items Density %
Databases per length
#|D| #1 .
transaction
chess 3196 75 37.00 37 49.33%
mushroom 8416 119 23.00 23 19.33%
t25i110d10k 9976 929 24.77 63 2.66%
c20d10k 10000 192 20.00 27 10.42%

The reason for choosing those datasets is that many researchers used them as

bench-mark datasets for Frequent Itemset Mining and ARM-based research.
1.11 Chapter Organization

The organization of the thesis is given below.
In Chapter 2, a thorough investigation of the review of literature is made about
finding frequent itemsets with their limitations since 2003. The investigation paves

way for the proposed methodologies.

Chapter 3 presents a hybrid model called RISOTTO proposed in this thesis for
finding frequent itemsets with an illustrative example. It also describes the basics of
Prefix-itemset storage structure and VDF. Further, it analyzes the results of RISOTTO

by comparing it with Prefixed-Iltemset Storage and VDF.

Chapter 4 presents a memory-efficient data structure called jagged array for
the VDF approach in finding frequent itemsets. It describes how the jagged array
reduces the memory requirements mathematically along with an illustrative example.
Further, it discusses the memory comparison in GB between JAB-VDF and VDF with

0=20%.

An FPM algorithm using the multithreaded concept with a novel way of
pattern generation and jagged array using VDF called TB-NPF-VDF has been
presented in chapter 5 along with an appropriate illustration. It also describes the
importance of multithreading with its advantages. Further, it discusses the results of

the comparison with Matrix-Apriori, VDF and NPF-VDF.

Chapter 6 illustrates the background of the Graphical Processing Unit (GPU)
and the processing flow of CUDA. It explains the proposed methodology,
GNVDF: a GPU-accelerated novel algorithm for finding frequent patterns using the
VDF approach and jagged array with an appropriate illustration. It also describes
memory usage required using the mathematical equations and how much amount of
memory is saved in comparison with the JAB-VDF. Further, it discusses how the
GPU enables the execution speed when compared with the same method without the

usage of GPU.

The last chapter, chapter 7 is devoted to the summary of the key contributions

along with possible future extensions.

By implementing the proposed FPM algorithm, the business users can make
better decision making and increase the profit of their organizations by identifying the

significant frequent patterns with minimum runtime and memory consumption.

|22

‘Chapter - 2

REVIEW OF LITERATURE

CHAPTER -2
REVIEW OF LITERATURE

You need to understand things in order to invent beyond them
--Bill Gates

2.1 Background

In general Data Mining (DM) tasks are classified into two categories. They are
i) Descriptive Mining and ii) Predictive Mining. Descriptive mining is the process of
generating patterns from the existing data and is used for creating meaningful
subgraphs, whereas predictive mining is to forecast the explicit values based on the
patterns determined from the known results. Association Rule Mining (ARM) is a
descriptive mining technique of DM. It is the process of discovering items, which tend
to occur together in transactions i.e. which items are most frequently purchased by the
customers. Association rules will help the retailer to develop marketing strategies and
inventory management to increase the sale of their organization.

Finding association rules can be decomposed into the following two subtasks.
i. Discovering all itemsets whose support is greater than the user-specified
minimum support is called FPM.
ii. Generating the desired rules from the frequent itemsets with at least the
specified minimum confidence.

FPM is a vital part of ARM which investigates the frequent patterns from the
transactional databases. As the data are to be mined is large, a huge amount of time
and memory is needed for accessing data and to store the frequent patterns
respectively. Though there are two decades of research in FPM, research in reducing
the time and minimizing the memory requirement is a quite common issue in finding

frequent patterns in FPM because there are huge data generated every day from

| 23

http://www.azquotes.com/quote/844330
http://www.azquotes.com/author/5382-Bill_Gates

various sources. Several FPM algorithms have been proposed in the literature and this
chapter presents a brief overview of the relevant research works and which provides a

stronger lead to the proposed research models.
2.2 Works Related to Apriori and FP-Growth

In [THY,09], the authors have introduced a novel method for mining frequent
itemsets called FIUT (Frequent Item Ultrametric Tree). In that, the authors have used
a special UT for enhancing the efficiency in obtaining frequent itemsets. Based on the
comparison with the FP-growth algorithm, it was proved by them that the FIUT
outperforms FP-growth by reducing /O overhead and search space.
The FIUT generates the frequent itemsets only by checking the leaves of the FIU tree
without traversing the tree recursively and also using compressed storage.

An improved version based on Coding and Map/Reduce (CMR-Apriori) has
been proposed in [GR,13]. They compared the traditional Apriori, Apriori algorithm
with parallel processing and CMR-Apriori and proved that the CMR-Apriori
algorithm outperforms others with twice Map/Reduce processes.

A new algorithm called enhanced Apriori algorithms has been introduced in
[LVSM,14], which takes less scanning time and reduces the 1/0 spending time by
cutting down the unwanted transaction records in the database. A new algorithm
called semi-Apriori using a binary-based data structure for mining frequent itemsets
as well as association rule has been proposed in [FAB,14] and proved that this
technique outperforms Apriori in terms of execution time.

An improved Apriori has been designed in [SNM,15]. In this method,
the transaction I1Ds along with the support count is maintained in the frequent itemsets
and they generated the k+1 itemset by set intersection and proved that the number of

database scans is reduced than the classical Apriori algorithm.

| 24

In [BGD,15], the authors have proposed an improved version of Apriori for
reducing the time for searching the database and the memory space by partitioning.
A novel Apriori algorithm has been proposed in [JS,15] to overcome the limitations of
the classical Apriori algorithm based on local and global power set and observed that
the novel algorithm requires only two scans instead of many scans as in the classical
Apriori algorithm. In [PD,16], the authors surveyed the improved approaches of

Apriori from 2012 to 2015.

In [LS, 16], the authors have introduced a Modified Apriori algorithm using
the greedy and vectorization method. They compared the execution time of traditional
Apriori and Modified Apriori by varying the number of transactions and proved that
the Modified Apriori requires less time than the Apriori. They also proved that the
proposed method reduces the number of rules generated than the original Apriori.

The authors in [BDH, 16] have developed a new recursive algorithm based on
Apriori called Meta-Apriori. In that, they partitioned the whole database into smaller
ones using the divide and conquer approach. After partitioning, they applied
Meta-Apriori if the partition is huge or Apriori if it is of reasonable size. Finally,
they merged the achieved results to get the result for the whole database and proved
that Meta-Apriori requires less time than the Apriori.

In [DZZC,16], the authors have proposed a modified Apriori called
DC_Apriori. In this, the authors have restructured the storage structure of the database
and they generated k-frequent itemsets by joining the 1-frequent itemsets with
(k-1)-frequent itemsets. It prevents generating invalid candidate itemsets, reduces the

database scans and also enhances the itemset generation.

A modified Apriori has been proposed in [KSG,16] using the transposition
technique and proved that it is less complex than the classical Apriori. An improved
Apriori algorithm has been presented in [RS1,16] and made a comparison between
conventional Apriori and Improved Apriori algorithms. It was proved that the
improved Apriori provides better performance than the classical Apriori algorithm.

A prefixed-itemset based data structure for candidate itemset generation has
been proposed in [YZ,16]. It requires smaller memory space and carried out the
connection and pruning operations much faster than Apriori. It was analyzed that the
proposed structure improved the efficiency of the classical Apriori algorithm.

The authors in [VLC+,16] proposed a new algorithm for mining frequent
itemsets based on the idea of N-lists, an improved version of PrePost called NSFI
algorithm which uses a hash table. The empirical results showed that NSFI
outperforms PrePost and Eclat.

A method called Advanced Reverse Apriori Algorithm (ARAA) has been
proposed in [BPG,17], which is opposite to Apriori. In that, the authors have
generated the k™ itemset first and moved on to the lower level sets i.e. k-1,k-2,...,1.
They compared Apriori Algorithm (AA), Reverse Apriori Algorithm (RAA) and
ARAA and proved that the number of scans in ARAA is less than the AA but greater
than RAA and is equal to the number of transactions in the database. Also, proved that
the ARAA is more suitable for all types of datasets but RAA is applicable for higher
datasets because it drastically reduced the multiple scans, execution time and also

increased throughput.

2.3 Works Related to Matrix-based Apriori

In [EZ,03], the authors have introduced a new disk-based ARM algorithm
called Inverted Matrix. In this method, the transactional data is first converted into a
new database layout called Inverted Matrix to avoid multiple scanning of the
database. Using this, the frequent pattern could be found in less than a full scan with
random access. They have also built a small independent tree by summarizing the
co-occurrences for each frequent item and finally, a non-recursive mining process
could be applied to reduce the memory requirements with minimum candidate
generation. From the experimental studies, they have revealed that the Inverted Matrix
approach outperformed the FP-Tree algorithm, especially in mining very large
transactional databases.

The authors in [YH,05] have proposed a new matrix algorithm for generating a
large frequent candidate itemset efficiently. It generates a matrix and the frequent
candidate sets were obtained from that matrix. Numerical experiments and
comparisons were performed using the Apriori algorithm for small, medium, and
large size datasets. The experimental result confirms that the proposed algorithm
outperforms the Apriori algorithm.

The authors in [PVG,06], have introduced a novel method called Matrix
Apriori, which utilizes simple data structures viz., matrices, and vectors to generate
frequent patterns. They have found that the algorithm minimizes the number of
candidate itemsets generated, thereby efficient computation is achieved than Apriori
and FP-growth algorithms.

In [HYW,08], the authors have developed a novel method called

Efficient Sequential Pattern Enumeration (ESPE) based on a 2-sequence matrix to

|27

mine sequential patterns without setting minimum support in advance. This approach
finds frequent sequences from all 2-sequences by scanning the sequence database only
once. It uses simple mathematical equations and an efficient storage structure for
computing the index of all 2-sequences. Further, it supports the incremental addition
of new items and sequences. They have proved that the performance of ESPE is better
than the AprioriAll and PrefixSpan for various datasets.

In [ZLZ,08], the authors have initiated a novel algorithm based on the Boolean
matrix. It finds outs the maximum frequent itemsets in a short time and scans the
database once through the vector and matrix operations. Further, it does not produce
any candidate itemsets. The authors in [YE,10] compared the novel matrix Apriori
and FP-growth algorithms and revealed that both the algorithms are better alternatives
to the Apriori algorithm in terms of database scan and candidate generation.
The FP-growth is better than Apriori when the minimum support value is decreased.
Matrix Apriori algorithm was proposed as a faster and simpler alternative by
combining both Apriori and FP-growth.

The authors in [Jin,10] have presented a new mining algorithm for discovering
Maximal Frequent Itemset (MFI). It eliminates and plotting blocks to the matrix by
simply counting the value of rows and columns and the experimental result showed
that the proposed algorithm provides an efficient result. In [ZWX,10], the authors
have presented a method called MaxMatrix which does MFI checking by using the
pseudo-projection matrix of the MFS matrix. It uses only logical operation for MFI
checking which saves system resources significantly because it does not allocate new
memory space for the pseudo-projection matrix. Further, they proved that the method

reduces the MFI generation time and the number of subsets used for ARM.

The authors in [YWWJ,11] have developed an innovative method called
Boolean matrix. In that, they used the Boolean matrix array to replace the transaction
database and removed the non-frequent itemsets from the matrix. To generate the
k-frequent itemsets, the vector operation "AND" and the random access characteristics
of an array are used in the Hadoop Platform and proved that it exponentially increases
the efficiency of the algorithm. Y.S.He and P.Du [HD,11] have built a new algorithm
based on compressed matrices which improve the efficiency of creating k-frequent
itemsets, by scanning the database once, and thereby mining association rules is also
improved. The newly created algorithm reduces 1/O load and also improves the speed
of discovering frequent itemsets, especially in large itemsets.

To overcome the disadvantages of the Apriori algorithm, the authors in
[WS,11] have initiated a Boolean matrix, and the transaction data is converted to
Boolean values and stored in place. It generates frequent itemsets directly from the
Boolean matrix and also saves a lot of memory space. This approach requires only
one database scan and reduces the number of candidate sets and system costs.

The authors in [MDA,11] have proposed an Advanced Matrix Algorithm
(AMA) for finding out frequent itemsets from the transactional database using the
Boolean matrix by scanning the database only once. The proposed algorithm is more
efficient and effective in generating frequent itemsets and removed the most
significant issue of ARM, especially on computational complexity which handles
huge transactional databases.

The authors in [Wan,11] have proposed an improved algorithm for
ARM-based on a relation matrix. The transaction database is scanned and stored in

the matrix with entries either one or zero. The frequent itemsets are generated from

| 29

the relation matrix and then the association rules are derived from the frequent
itemsets. They have shown that the proposed algorithm is efficient both in theoretical
and experimental analysis.

The authors have developed a matrix algorithm [DD,12], which transforms the
database into a matrix database. In this, the frequent k-itemset is obtained from the
matrix which avoids the repeated database scan and proved that it greatly reduced the
number of candidate itemsets and improved the efficiency of computing.

In [OE,12], the authors have focused on the solution to an incremental update
problem by proposing the Incremental Matrix Apriori (IMA) algorithm. It scans only
new transactions, allows the change of minimum support, and handles new items in
increments. The matrix Apriori works without candidate generation and scans the
database twice. The experimental results showed that the IMA provides speed-up
between 41% and 92% while increment size is varied between 5% and 100%.

T.N.Mujawar et al. [MSB,12] have presented an approach for mining
association rules from XML data using XQuery and Apriori algorithms without any
pre and post-processing. In this research article, a Matrix-based Apriori algorithm
(MAPRIORI) and an improved matrix-based Apriori algorithm with pruning
optimization and transaction reduction strategy (MTPAPRIORI) were implemented.
The result showed that the database is scanned only once in both of these algorithms.
Further, it is observed that the number of frequent itemsets generated and the running
time by the MTPAPRIORI algorithm is less than the MAPRIORI with different
support levels. Also, it reduces the scale of the transaction database to be scanned and
provides overall efficiency.

A Matrix-based multidimensional sequential pattern mining algorithm has

been introduced in [QL,12]. It does not need the repeated scan of the database to

| 30

generate a 1_Large sequence k-ltemset. During the first scan, 1_Large itemsets are
obtained. The frequent patterns are obtained from the Boolean sequenced matrix using
set and matrix theory in the second database scan. It occupies less memory, improves
mining efficiency, and runs faster than other algorithms. H. Singh and R. Dhir
[SD,13] have presented a new Matrix Based Algorithm with Tags called MBAT.
It is based on transactional matrix and transaction reduction to find the frequent
itemsets and proved that the MBAT is more efficient than the classical Apriori
algorithm in ARM.

A.R.H.Alwa and B.A.V.Patil [AP,13] have launched a novel approach to
improve the Apriori algorithm using Matrix-File. This approach extracts particular
rows and columns and performs a function on that rather than scanning the entire
database. It outperforms the classical Apriori algorithm because the pruning process
is applied to those columns whose item count is less than the minimum support.
It also saves time and speed by reducing the redundant scanning of the database.

To solve the problem in Apriori the authors in [YXHJ*,13] have proposed an
improved frequent itemset mining algorithm based on Sorting Index Matrix (SIM).
It generates frequent 2-itemset from 1-itemset vector and the corresponding matrix
multiplication sequentially. From the frequent 3-itemset, it creates a simple SIM for
frequent k-itemsets. The entire process simply scans the database only once and does
not produce candidate itemsets. From the experimental outcomes, they have shown
that the SIM improves the efficiency of mining frequent itemsets than the existing
methods.

Using dynamic matrix Apriori and Multiple Support Apriori (MSApriori),

the authors in [Cha,14] have built a methodology to mine association rules over

| 31

dynamic databases. From the experiments, it was found that a remarkable
improvement has been achieved in terms of time, and the number of frequent items
and generated rules. A Matrix Apriori with an incremental approach for ARM has
been proposed in [BML,14] which were based on Apriori and FP-growth algorithms.
It uses simple data structures namely matrix and vector, generates frequent patterns,
and minimizes the number of itemsets. It improved the speed of the mining process
and also increased efficiency than the previous algorithms.

A new method named Dynamic Matrix Apriori has been proposed by
R.Chaudhary et al. [CSS,15] using the dynamic matrix technique, which is much
faster when compared to traditional Apriori in the generation of candidate itemsets.
They also have proposed a new framework that uses the Map Reduce programming
model. From the experiments on a large set of databases, they have achieved an
improved result in terms of runtime, the number of generated frequent itemsets and
rules. In [VP,15], the authors have proposed a method based on transaction reduction
techniques for mining frequent patterns from large databases. In this, the data is
compressed in the form of a bit array matrix and the whole database is scanned only
once. To achieve efficiency, the frequent patterns are mined from this matrix by using
the count-based transaction reduction and support count method.

The authors in [AH,15] have introduced a novel method to find frequent
itemset using probability and matrix in two steps. In the first step, a preliminary
matrix is generated for the dataset. The regular itemsets are directly generated from
the probability matrix in the second step. The improved algorithm reduces the number
of comparisons and scans.

In [TG,15], the authors have introduced a vertical format approach for finding

frequent itemsets using the Boolean matrix. The presence of an item for the TIDs is

| 32

represented as 1 and 0 otherwise. It uses logical AND operation for finding the SC
from frequent 2-itemset to frequent n-itemsets until it is not empty. It also uses the
additional information in the Boolean matrix namely “number of iterations" to control
the number of iterations for candidate generation. Finally, they have demonstrated that
the FPMBM is more efficient and scalable than the existing ones.

In [MR,16], the authors have created an algorithm called Matrix-Over-Apriori
(MOA) by using elementary matrix and AND operation. They compared MOA with
all other existing techniques for ARM and proved that MOA is scalable, precise,
simple, clear, easy to implement, and also reduces the memory and time requirements
than the existing ones. A new method for Mining Frequent Itemsets with Weights
over a Data Stream using Inverted Matrix called MFIWDSIM has been proposed by
L.N.Hung and T.N.T.Thu [HT,16]. In this, the data stream is converted into an
inverted matrix and saved in the computer disks and mines them many times with
different support thresholds and alternative minimum weights. With the analysis and
evaluation, they proved that the MFIWDSIM is better than WSWFP-stream.

In [NJGC",17], the authors have proposed a modified Apriori algorithm
named Frequent Matrix Apriori (FMA), for reducing the time complexity. In that,
the database information is stored in the frequent matrix by scanning it only once and
then the matrix is discretized using minimum support parameters and the most
frequent itemsets are found recursively by scanning the discretized dataset.
By the theoretical and experimental way, the authors have proved that FMA is more
efficient than the original AA in terms of time.

In [KK,17], the authors have presented a new top-down approach called
MB-MFIM by using a transaction Boolean matrix. In this method, the maximal

frequent itemsets are directly generated without the help of a subset based on the

| 33

compressed matrix. The proposed algorithm provides a better result than the
Maximal Frequent Itemset First (MFIF) algorithm with datasets of different sizes and
thresholds.

An improved Apriori algorithm based on relational algebra theory has been
proposed in [ZZ,17]. The relationship matrix and correlation operations are obtained
by Optimization Relation Association Rule. The database is scanned only once with a
relation matrix which reduces the running time of the algorithm to mine frequent
itemsets. The simulation results showed that the improved algorithm works more
efficiently than the existing one.

Judith Pavoén et al. [PVG,06] have introduced a method called Matrix-Apriori
to increase the speed of finding frequent itemsets. It creates a Boolean matrix MFI by
scanning the transactional database which contains the frequent 1-itemset. The vector
STE maintains the SC of the candidate itemset. To accelerate the search of frequent
patterns, the first row of MFI writes the indexes. For producing frequent patterns,
a conditional pattern generation method was used in this method and proved that it
outperforms Apriori and FP-Growth algorithms.

In [Lan,18], the author has introduced an improved matrix pruning and weight
analysis Apriori algorithm by using matrix compression and weight analysis
algorithms as reference. This algorithm constructs the Boolean transaction matrix and
removes infrequent itemset and generates a new candidate itemset. Then it calculates
the item's weight, transaction's weight, and weight support. With the experimental
results, the author has proved that the improved Apriori algorithm not only reduces
the number of repeated scans of the database but also improves the efficiency of data

correlation mining.

| 34

A new incremental ARM algorithm called FBCM has been proposed in
[ZOKL",19] by combining the Fast Update Pruning (FUP) algorithm with a
compressed Boolean matrix to suit the dynamically changing data. It requires only a
single scan of the database and provides support for incremental databases.
While scanning, it obtains two compressible Boolean matrices and applies ARM to
those matrices. When compared with existing algorithms, it improved the
computational efficiency of incremental ARM and proved that it is suitable for
knowledge discovery in the edge nodes of cloud systems.

The authors in [XJW,19], have introduced a modified Apriori algorithm based
on the Boolean matrix and weight function. In this algorithm, they have trimmed the
duplicate transactions by adding weight rows to the matrix and also compressed the
matrix to reduce storage space. Self-join and intersection operations were used to
obtain k-frequent itemsets. They have paralleled it using Hadoop and each map
activity finds the frequent itemset for the subset of the large matrix which shortens the
processing time in the big data environment.

Research has been contributed by Sun et al. by applying the prefixed-itemset
storage and the compression matrix to optimize the connection, pruning, support
counting steps, and transaction storage mode of the Apriori algorithm. It uses an
intersection strategy for determining SC. The optimized Apriori is based on the
MapReduce technique for massive data and they have proved that the optimized
Apriori outperforms others [SL,20].

The authors in [SS,20], have presented a novel algorithm for generating
frequent patterns from a large dataset. Initially, they transformed the transactional

dataset into a Boolean matrix to generate a 1-frequent itemset matrix, and then it is

| 35

divided into multiple loads based on the available nodes in the system. To discover all
frequent itemsets, they have used AND operation on individual load and proved from
the experiment that the computational time and consumption of memory reduced.

The authors have initiated an algorithm for finding frequent itemsets based on
the transaction matrix, itemset matrix, and item index list in [SJ,20]. It reduces the
number of database scans to one and avoids frequent 1/O operation by compressing
the matrix and then performing bitwise AND operation on the compressed matrix.
The frequent itemsets were generated using the itemset count and index list.
The main advantage of this method is that no candidate itemsets are generated and

outperforms the existing method.

2.4 Works Related to Vertical Data Format

A novel VDF representation called Diffset has been developed by the authors
in [ZG,03], which keep track of the differences in the TIDs of a candidate pattern and
from which it generates frequent patterns. The method cut down the size of memory
required to store intermediate results and also increased performance significantly.

Y. M. Guo et al. [GW,10] have initiated a new algorithm for mining frequent
itemsets with VDF. It only needs a single scan of the entire database and uses the
AND operation for finding the frequent itemsets. Furthermore, it was demonstrated
that the algorithm requires less storage and enhances mining efficiency.

In [KSK,12], the authors have presented a VDSRP method to generate a
complete set of regular patterns over a data stream at a user given regularity threshold
using a sliding window and VDF. It has been proved that the proposed method

outperforms both in execution and memory consumption.

| 36

The authors in [VV,13] have introduced a Parallel Regular Frequent Pattern
(PRFP) method to find out the regular-frequent patterns from large databases using
VDF format and proved from the experiments that the algorithm reduced the number
of database scans, 1/0O cost and inter-process communication.

In [AR,14], a new Rehashing Based Frequent Itemset (RBFI) generation
algorithm of the VVDF for the transactional database has been proposed. Rehashing has
been introduced to avoid hash collision and secondary clustering problems in hashing.
It was proved that RBFI provides better performance than Apriori and Hash-based
algorithms.

In [IMA,15], a method called Vertical Boolean Mining (VBM) has been
introduced to eliminate the pitfalls of vertical mining by compressing the bit vectors
of frequent itemsets. It intersects two compressed bit vectors without requiring a
time-consuming decompression step. They found that the VBM is superior to both
Apriori and classical vertical ARM in terms of time and memory usage.

Jen, T. Y., et al. have created a novel vertical format based parallel method for
finding frequent patterns called Apriori_V with MapReduce platform. They proved
that it provides a significant improvement in reducing the number of operations and
decreasing computational complexity [JMG,16].

A Vertical Format Frequent Mining (VFFM) algorithm has been proposed in
[GSG,16] to find frequent items from the database. It first transforms the database into
VDF, as <item, {transaction-id}> and finds the candidate itemsets after the first scan
of the transactional database. The SC of each (k+1)-candidate itemsets is counted by
the intersection of every pair of frequent single items instead of the database scan.
It was proved by them that the VFFM is efficient when compared with AA, FUP and

sampling method.

| 37

In [TC,16], a tokenization based approach for optimizing enhancing the
Apriori algorithm has been proposed. Ravikiran, D., et. al, have proposed a new
model called RCP to mine regular sort of crimes in crime databases using VDF which
requires only one database scan. From the experimental results, they proved that RCP
is more efficient than the existing RPtree [RS,,16]. In [Sin,16], the authors have
focused on the various FPM techniques, their challenges in static and stream data
environments.

Subashini et al. [SK,19] have studied ARM methods in HDF and VDF
approaches viz., Apriori, APRIORITID, APRIORI_RARE and APRIORIRARE_TID.

They analyzed the pros and cons of each technique.

2.5 Works Related to Eclat

In [AR,14], the authors have built the enhanced versions of Apriori and Eclat
algorithms. In these enhanced versions, the authors have used individual thresholds
for each itemset and proved that the enhanced-AA performs best when compared with
the Enhanced-Eclat Algorithm.

In [MYZL,16], the authors have presented an improved version of Eclat called
the Eclat-growth algorithm using an increased search strategy. For reducing the
runtime in generating an intersection of two itemsets and support degree calculation, a
BSRI (Boolean array Setting and Retrieval by Indexes of transactions) method has
been introduced. It has been proved by them that the Eclat-growth outperforms Eclat,
Eclat-diffsets, Eclat-opt and hEclat in mining association rules.

An enhanced Apriori and Eclat have been introduced in [SV,17], in which
different thresholds are maintained for each itemset. They compared different sizes of

dataset and items and proved from the experiment that the enhanced-Apriori

| 38

algorithm is better than the Enhanced-Eclat algorithm in terms of the number of

frequent items and rules.
2.6 Works Related to GPUs

W. Fang et al. [FLXH+,09] have introduced two implementations for Apriori
using GPUs with Single Instruction, Multiple Data (SIMD) architectures.
Both methods use a bitmap data structure. To prevent the data transformation between
the GPU and CPU memory, the first one was executed using GPU. The second one
uses both the CPU and GPU for processing with trie structure. They proved that both
implementations speed up the processing than the classical Apriori algorithm.

The authors J. Zhou et al. have designed [ZYW,10] a GPU-based Apriori
algorithm with OpenGL to accelerate ARM and proved that it is better than the
traditional ones.

S. M. Fakhrahmad et al. [FD,11] have developed different parallel versions of
a novel sequential mining algorithm for finding frequent itemsets. The approaches
are: i) allocating a processor to each partition, ii) allocating a processor to each
column, and iii) allocating the k™ processor to mine the [FD,11] k™-itemsets.

A compressed bit matrix-based parallel algorithm for exploring frequent
itemsets has been introduced by Zong-Yu et al., which uses both bottom-up and
top-down approaches for efficient pruning [ZY,12]. It also uses OpenMP's parallel
multithreaded, dynamic scheduling approach to extract frequent itemsets.
Finally, they demonstrated that this approach reduced memory space, 1/0 overhead
with a single database scan compared to the Apriori algorithm.

Authors in [HYZH+,13] have suggested a novel algorithm,

namely Accelerating Parallel Frequent Itemset Mining on Graphics Processors with

| 39

Sorting (APFMS). This parallel frequent itemset mining employs GPUs in the process
of mining. GPUs speed up the process using the OpenCL platform and proved that the
APFMS outperforms the previous computation time-based methods.

William Albert et al. [AFB®14], and it is based on the parallel processing
nature of GPU. In the proposed method, a bitset representation was used for parallel
processing and proved that the HSApriori is faster than traditional HorgeltAprirori.

M. Tiwary et al. [TSM,14] developed a parallel Apriori Map Reduce model by
employing high-performance GPU to address the issues of Apriori. In this, every node
in a Hadoop cluster has a GPU attached to it. They also employed NVIDIA's GPU,
as well as JCUDA and JNI, to complete the integration. From the results,
they finalized that the proposed method requires less run time. The disadvantage of
the algorithm is that an additional hardware cost is linked with the GPUs in each node
in the Hadoop cluster.

In [QGYH,14], the authors have designed a Spark-based parallel Apriori
algorithm called YAFIM (Yet Another Frequent Itemset Mining) and revealed that the
YAFIM is faster than the Apriori's MapReduce implementation by 18 times.

To remove the limitations in the traditional cluster-based map-reduce,
J. Li et al. [LSHW,15] have designed a multi-GPU based parallel Apriori algorithm to
accelerate the calculation process of Apriori. It has been initiated especially to mine
association rules in medical data. The analytical results have proved that the proposed
method significantly improves the execution speed with a lower cost for medical data.

A novel method called CGMM to suit both sparse and dense datasets has been
introduced by L. Vu et al. [VA,15]. To enhance the speediness of the FPM process,
the CPU is combined with GPU. In this method, the CPU uses the FP-tree data

structure to perform mining, and the GPU converts the data to bit vectors.

| 40

They demonstrated that the performance of CGMM is faster when compared with the
existing sequential FPM and GPApriori by testing with AMD CPUs and NVIDIA
GPU.

A new multi-core based parallel mining algorithm for finding frequent
itemsets has been presented in [HL,15] using LINQ queries. It decomposes the
transactional database into smaller datasets known as conditional patterns.
Many threads ran concurrently on a multi-core computing system, one for each
conditional pattern. They proved that the algorithm is faster by 2x and 4x times than
the fast Eclat and FP-growth algorithms, respectively.

Y. Li et al. [LXYC,17] have developed a GPU-based algorithm called
Multi-level Vertical Closed FIM. It uses a multi-layer vertical data structure to reduce
memory usage. The implementation is being accelerated with GPU to achieve
high-speed computation, mainly for large sparse datasets.

A Dynamic Queue and Deep Parallel (D2P) Apriori algorithm were generated
by Y. Wang et al. in [WXXS,18]. They parallelized the candidate generation task
with a dynamic bitmap queue and Graph-join. It also uses a vertical bitmap structure
with low-latency memory on GPU. They found that the D2P-Apriori is faster by 23
times than modern CPU methods.

A fast GPU-based frequent itemset mining algorithm for massive datasets
called GMiner has been introduced in [CHK,18] to overcome the limitations of
various parallelism methods viz., multi-core CPU, multiple machines and many-core
GPU, particularly the workload skewness. It extracts the patterns fastly from the
enumeration tree by using the computational power of GPU. From the
experimentation, they showed that the GMiner is better than the existing sequential

and parallel methods.

| 41

The authors Y. Djenouri et al. [DDBC,19] have created three
High-Performance Computing (HPC)-based versions of Single Scan (SS) for FIM
viz., GSS, CSS, and CGSS. The GSS, CSS, and CGSS have been implemented by SS
with GPU, cluster architecture, and GPU with multiple cluster nodes. They also
proposed three methods for reducing GPU thread divergence and cluster load
balancing. Experiments have shown that the CGSS outperforms the SS, GSS, and
CSS in terms of speed.

In [GLFC",19], the authors have reviewed the works related to
Parallel Sequential Pattern Mining (PSPM), viz., partition-based, Apriori-based,
pattern growth-based, and hybridized algorithms for PSPM. They also reviewed the
open-source software utilized in PSPM. Further, they summarized the issues and uses
of PSPM on big data.

In [HTDV,19], the authors have proposed an FPM algorithm with a multi-core
processor and Multiple Minimum Support called MMS-FPM. It quickly generated
frequent patterns. It has been designed mainly to solve rare item problems. They have

proved that the MMS-FPM is superior to MSApriori and also scalable.
2.7 Observations and Limitations of the Existing Literature

From the existing literature, the following observations were identified which
paves the way for the researcher to select the research problem.
i. Some of the existing methods generate more candidate itemset and requires
much disk access
ii. Though the VDF approach restricts the database scan to one, the memory

required for storing TIDs for each item is huge

iii. Some of the data structures utilized in the existing literature may generate a
reduced set of candidate itemsets but requires more memory
iv. Some of the pattern generation methods may need more execution time in
generating the frequent patterns for the transactional databases
v. There are still issues related to data size and scalability
From the above observations, it has been identified that there is always a need
for speedy algorithms for frequent pattern generation with a minimum amount of time
and memory usage. Thus, this research work focuses on developing novel FPM
algorithms with the compact data structure called jagged array by creating novel
pattern generation approaches using multithreading and GPU usage with the VDF

approach.

| 44

‘Chapter - 3

RISOTTO: ANOVEL HYBRID APPROACH FOR

ENHANCING CLASSICAL APRIORI ALGORITHM

CHAPTER -3
RISOTTO: ANOVEL HYBRID APPROACH FOR

ENHANCING CLASSICAL APRIORI ALGORITHM

The POSITIVE THINKER sees the INVISIBLE, feels the INTANGIBLE,
and achieves the IMPOSSIBLE

--Winston Churchill

3.1 Background

Association Rule Mining (ARM) is a successful technique for finding relations
between data items in databases. Finding frequent itemsets is one of the
computationally crucial steps in the task of mining association rules. The Apriori is
one of the most important algorithms for finding frequent itemsets. The main
challenge in classical Apriori is that the mining often needs to generate a huge number
of candidate itemsets and require more database scans, increasing time and decreasing
efficiency. It also increases the 1/0 cost and requires more memory. To eradicate these

issues, a lot of improvements to Apriori have been proposed in the literature.

Research in improving the Apriori is a common issue and is an ongoing
research topic these days. A refinement to the Apriori, which uses a
Data Structure (DS) called prefixed-itemset for candidate itemset generation and
Vertical Data Format (VDF) approaches, has been proposed in the literature.
Prefixed-itemset storage shortens the time for generating candidate itemsets but still
needs more database scans as in Apriori, and VDF scans the database only once.
RISOTTO, a novel hybrid approach for generating frequent patterns has been
contributed to this research by considering these advantages. It combines both the

prefixed-itemset storage structure and VDF.

| 45

http://www.azquotes.com/quote/504464
http://www.azquotes.com/quote/504464
http://www.azquotes.com/author/2886-Winston_Churchill

The proposed work minimizes the number of database scans to one and

reduces the time needed for candidate itemset generation.
3.2 Prefixed-itemset Storage Structure

It is a new way of storing itemsets [YZ,16] that uses <Prefix-key, Values> pair
for each itemset. The Prefix-key column stores the (k-1)-items in the k™ itemset,
and the last item in k™ itemset are stored in the Values column. If there is no prefix for
an itemset, NULL is stored in the prefix-key. Suppose if the 1-itemset contains {A, B,
C, D, E} and 2-itemsets contains {AB, AC, AE, BC, BD, BE}, then the

prefixed-itemset based storage structure for the same is illustrated in Table 3.1.

Table 3.1 Prefixed-Itemset Storage Structure

Itemset Prefix-key Values
1-itemset NULL {A,B,C,D,E}
2-itemset A {B,C,E}

B {C,D,E}

After the k-itemsets are stored in the prefixed-itemset storage, in the joining
step, the (k+1)-itemset are generated by first joining or connecting the values of
k-itemset, and then the key values are prefixed with each (k+1)-itemset which forms
Ck+1. In the pruning step, the (k+1)-itemset which does not satisfy the Apriori property

is removed from Cy1.
3.3 Vertical Data Format

In general, there are two ways in which a transactional database can be
represented in frequent pattern mining algorithms. They are Horizontal Data Format
(HDF) and VDF. In VDF the datacan be expressed in {item - TID_set} notation
where the item is the name of the item in the database and TID set is the set of

transactions that the item belongs to.

| 46

This method first transforms the HDF dataset into VDF by scanning the
dataset once, which forms candidate 1-itemset. Among them, the itemset that satisfies
the minimum support (o) will be considered as a frequent 1-itemset. It is noted that
the support count for an itemset is the length of the TID set. Starting with k=2,
the frequent k-itemsets can be used to construct the candidate (k+1) itemsets based on
the Apriori property. The TID_set for the candidate (k+1) is computed by intersecting
the TID_sets of the corresponding item in k-itemsets. This process is repeated by

incrementing k by one until no frequent itemsets or candidate itemsets can be found.

The main advantage of VDF is that there is no database scan is required for
finding the support of (k+1)-itemsets because the TID set of k-itemset holds the
complete information for finding such support. The disadvantage is that if the TID_set
is long, it will take substantial memory space and more computation time to intersect

the long sets.
3.4 Proposed Methodology

It combines both prefixed-itemset based storage structure [YZ,16] and the
VDF approach [SNM,15] for enhancing the performance of the classical Apriori

algorithm in terms of time and the number of database scans. It progresses as follows:

In the first step, the algorithm finds the candidate 1-itemset (C;) from the
transactional database by scanning it once as in classical Apriori, and it is transformed
into VDF, i.e. it maintains the TID_set in which the frequent 1-itemset occurs along
with the Support Count (SC) or Total Number of Transactions (TNT). The frequent
1-itemset (L;) is constructed from C; by removing the items whose SC is less than o.

After finding Lj, the information regarding this is stored in the new DS called

|47

prefixed-itemset based storage, as in Table 3.1. The prefix for frequent 1-itemset is
always NULL, and the values are the items in L;. In general, the frequent k-itemset
where k=2,3,...,n contains (k-1)-items as prefix-key (LKy) and the last item as the

value (LVy).

In the second step, the values in frequent 1-itemset in the prefixed-itemset
based storage LV, is joined by itself (LV; > LV;) instead Li L; and the items which
do not satisfy the Apriori property is removed, and then they are combined with the
prefix-key which forms C,. To improve the efficiency by reducing the search space by
considering the Apriori property, i.e. all nonempty subsets of a frequent itemset must
also be frequent. The SC for the items in C; is calculated just by performing the
intersection of the TID_set in L; instead of scanning the database as in classical
Apriori, which minimizes the database scans. From C,, L, is formed by removing
those elements from C, whose SC<¢. Similar to the previous step, the frequent
2-itemsets are stored in the prefixed-itemset based storage with the appropriate
prefix-key and values. The second step is repeated with k=3,4,5,...,n until there are no

more candidate itemsets found.

The proposed approach is named RISOTTO!, which is abbreviated by taking
the boldface uppercase letters from the phrase "pRefixed ItemSet stOrage verTical
daTa fOrmat". The algorithm for RISOTTO is shown below. The workflow of

RISOTTO is illustrated in Figure 3.1.

'p.Sumathi, S.Murugan, "RISOTTO - A Novel Hybrid Approach for Enhancing Classical Apriori Algorithm",
International Journal of Scientific Research in Computer Science Applications and Management Studies,

ISSN: 2319 — 1953, Vol. 7, No. 5, September 2018 (UGC Approved Journal).

| 48

Algorithm 3.1: RISOTTO - An algorithm for finding frequent itemsets
Input:
= A dataset D with n transactions;
= § - minimum support threshold.
Output:
» Frequent itemsets (L) in D.
Method:
(1) L<@;
(2) Cy&scan D and generate candidate 1-itemsets;
(3) Li<generate frequent 1-itemsets based on ¢;
(4) LEL ULy
(5) PIDS<create a prefixed-itemset storage DS;
(6) PIDS(LK1)€NULL;
(7) PIDS(LV;)<items in Ly;
(8) for (k=2; Ly1# @; k++) do
begin
Ciinit € PIDS(L V1) > PIDS(LVy.1);
Ci_inir€prune Cy_init;
Ck&PIDS(LK.1) > Cy_init;
Lc&{C«| SC(Cy) = 8};
PIDS(LKy) € (k-1)-items in Ly;
PIDS(LV,)€k™ item in Ly;
L<L U Ly
endfor

(9) return L;

S
~{ — —] Transactional

|~ —] DatabaseD
—

=

Scan D and convert into VDF

l

~ B
Determine SC or TNT & append in VDF
\ J

!

Generate candidate 1-itemset (C,)

Compare candidate SC with
min_sup (8)

Generate frequent 1-itemset (L,)

i

Store the informations of L;
in prefixed-itemset storage <9

!

Generate candidate (i+1)-itemset (Ci +1)

Compare candidate SC with
min_sup (8)

Generate frequent (i+1)-itemset(Lj+1)

No Yes T
i=i+1

Terminate the process

Figure 3.1 Workflow of RISOTTO

| 50

The main advantage of this hybrid approach is that it restricts the database
scan to one because for finding the SC for frequent k-itemsets where k=2,3,4,...,n
the database need not be scanned, and it is found by set intersection method from the
TID_sets of L., which in turn minimizes the 1/0 cost. Using the prefixed-itemset
storage, the number of candidate k-itemsets generated is reduced when compared with
the classical Apriori algorithm because it uses the values of the prefix-key items

stored for joining rather than the values in L.

3.4.1 lllustration by an Example

A sample transactional database D shown in Table 3.2 has been taken for
illustrating the proposed methodology. It consists of ten transactions. Each transaction
comprises Transaction ID (TID) and items bought from the business enterprise a, b, c,
d, e, f, g h i Kk, p,and m. Let the § = 6. The frequent 1-itemset is computed as in the
classical Apriori but the L; in the proposed method contains TID_set and TNT or SC.

The computation of C; and L; are shown in Table 3.3 and 3.4, respectively.

Table 3.2 Transactional Database D

TID Items Purchased

0 w¢cdeghikpm

1 b,e, f,g,h i p m

2 c,e,m

3 a,b,cdefglip
4 a,bcdep
5
6
7
8
9

a,b,c,d fhp

b,e, f,hi,p,m
a,cdek pm
a,c,defip,m
a,c,def hipm

After computing L; with one database scan, it is stored in prefixed-itemset
storage with the values viz., 1-itemset in Itemset column, NULL in Prefix-key column

and the frequent 1-itemset, i.e. {a, c, d, e, f, i, m, p} in Values column as shown in

| 51

Table 3.5. Next {a, ¢, d, e, f, i, m, p} = {a, c, d, e, f, i, m, p} is performed and it is

{ac, ad, ae, af, ai, am, ap, cd, ce, cf, ci, cm, cp, de, df, di, dm, dp, ef, ei, em, ep, fi, fm,

fp, im, ip, mp} and all satisfies the Apriori property and forms C,.

Table 3.3 Computation of C;

ltem

TID_set

TNT or SC

T 3 X —m0TTQ -~ ® QOO0 T ®

{3,4,5,7,8,9}
{1,3,4,5,6}
{0,2,3,4,5,7,8, 9}
{0,3,4,5,7,8,9}
{0,1,2,3,4,6,7,8, 9}
{1,3,5,6,8, 9}
{0, 1, 3}

{0, 1,5, 6,9}
{0,1,3,6,8, 9}
{0, 7}
{0,1,2,6,7,8,9}
{0,1,3,4,5,6,7,8, 9}

(o]

O© NN O 01w o © N 00 ol

Table 3.4 Computation of L,

ltem

TID_set

TNT or SC

a

c
d
e
f
[
m
P

{3,4,5,7,8,9}
{0,2,3,4,5,7,8,9}
{0,3,4,5,7,8, 9}
{0,1,2,3,4,6,7,8,9}
{1,3,5,6, 8,9}
{0,1,3,6,8,9}
{0,1,2,6,7,8, 9}
{0,1,3,4,5,6,7,8,9}

6

O© N O OO © N o

Table 3.5 Prefixed-Itemset Storage with frequent 1-itemset

Itemset

Prefix-key

Values

1-itemset

NULL {a,c,d, e, f,i,m, p}

The TID_set of an item say ac is calculated by intersecting the TID_sets of the

items a and c respectively.

TID_set of {ac}={3,4,5,7,8,9}1{0,2,3,4,5,7,8,9}

={3,4,5,7,8,9}

| 52

The SC for each item is determined by counting the number of items in
TID_set.

SC of {ac} = length({3,4,5,7,8,9})=6

Similarly, the SC for other items in C, is computed, and it is shown in
Table 3.6. Out of these items, only the items ac, ad, ap, cd, ce, cp, de, dp, ei, em, ep,
fp, ip and mp satisfy ¢ hence forms L,, and it is shown in Table 3.7.

Table 3.6 Computation of C,

Itemset TID set SC | Itemset TID_set SC
(by set (by set
intersection) intersection)
{ac} {3,4,5,7,8,9} 6 {df} {3,5,8,9} 4
{ad} {3,4,5,7,8,9} 6 {di} {0,3,8,9} 4
{ae} {3,4,7,8,9} 5 {dm} {0,7,8,9} 4
{af} {3,5,8,9} 4 {dp} {0,3,4,5,7,8,9} 7
{ai} {3,8,9} 3 {ef} {1,3,6,8,9} 5
{am} {7,8,9} 3 {ei} {0,1,3,6,8,9} 6
{ap} {3,4,5,7,8,9} 6 {em} {0,1,2,6,7,8,9} 7
{cd} {0,3,4,5,7,8,9} 7 {ep} {0,1,3,4,6,7,8,9} 8
{ce} {0,2,3,4,7,8,9} 7 {fi} {1,3,6,8,9} 5
{cf} {3,5,8,9} 4 {fm} {1,6,8,9} 4
{ci} {0,3,8,9} 4 {fp} {1,3,5,6,8,9} 6
{cm} {0,2,7,8,9} 5 {im} {0,1,6,8,9} 5
{cp} {0,3,4,5,7,8,9} 7 {ip} {0,1,3,6,8,9} 6
{de} {0,3,4,7,8,9} 6 {mp} {0,1,6,7,8,9} 6

Similar to frequent 1-itemset, the frequent 2-itemsets are appended to
prefixed-itemset storage. In L, the items ac, ad and ap have the common prefix a and
values are {c,d,p}. Similarly, the items cd, ce and cp have the common prefix ¢ and
values are {d,e,p}, the items {de,dp} has the common prefix d and values are {e,p},
the items {ei,em,ep} has the common prefix e and values are {i,m,p}, the items fp has
the prefix f and value is p, the items ip has the prefix i and value is p and the item mp
has the prefix m and value is p. The original prefixed-itemset storage after appending

frequent 2-itemset is shown in Table 3.8.

| 53

Table 3.7 Computation of L,

TID set
Itemset B SC
(by set intersection)
{ac} {3,4,5,7,8,9} 6
{ad} {3,4,5,7,8,9} 6
{ap} {3,4,5,7,8,9} 6
{cd} {0,3,4,5,7,8,9} 7
{ce} {0,2,3,4,7,8,9} 7
{cp} {0,3,4,5,7,8,9} 7
{de} {0,3,4,7,8,9} 6
{dp} {0,3,4,5,7,8,9} 7
{ei} {0,1,3,6,8,9} 6
{em} {0,1,2,6,7,8,9} 7
{ep} {0,1,3,4,6,7,8,9} 8
{fp} {1,3,5,6,8,9} 6
{ip} {0,1,3,6,8,9} 6
{mp} {0,1,6,7,8,9} 6

Table 3.8 The Original Prefixed-ltemset Storage after Appending frequent 2-itemset

Itemset Prefix-key Values
1-itemset NULL {a,c,d,e,f,i,m,p}

a {c, d, p}

C {d, e, p}

d {e. p}
2-itemset e {i, m, p}

f {pr}

i {pr}

m {p}

But for the prefix-keys f, i, and m the values column contains only one value.
With one value, there is no possibility of generating a frequent 3-itemset. So, they are
not stored in the prefixed-itemset storage of the RISOTTO algorithm which further
helps to reduce the time and storage. The prefixed-itemset storage after appending
frequent 2-itemset in RISOTTO is shown in Table 3.9. To find candidate 3-itemset,

the values of frequent 2-itemset in prefixed-itemset storage is considered.

| 54

Table 3.9 The Prefixed-Itemset Storage after Appending frequent 2-itemset in RISOTTO

Itemset Prefix-key Values
1-itemset NULL {a,c,d, e f,i,m, p}
a {c.d, p}
. c {d, e p}
2-itemset
d {e, p}
e {i, m, p}

From Table 3.9, first {c,d,p} = {c,d,p} is calculated and it is {cd,cp,dp} and
all the item satisfies the Apriori property so each item is prefixed with the prefix-key a
which gives {acd,acp,adp}. Next {d,e, p} x {d,e,p} is calculated and it is {de,dp,ep}
and each item is prefixed with the prefix-key ¢ which gives {cde,cdp,cep} because the
items {de,dp,ep} satisfies Apriori property. Similarly, for the values {e,p} and {i,m,p}
the combinations were generated and forms {dep} and {eim, eip, emp} as candidate
3-itemset. After determining the candidate 3-itemset, the transactions in which the
combination occurs and SC is calculated as

TID_set of {acd} = {3.4,5,7,8,9}1{0,3,4,5,7,8,9} = {3,4,5,7,8,9}

SC of {acd} = length({3,4,5,7,8,9}) =6
Likewise, it is calculated for the remaining candidate 3-itemset, and it is

shown in Table 3.10.

Table 3.10 Computation of C3

Itemset TID_set (by set intersection) SC

{acd} {3,4,5,7,8,9} 6
{acp} {3,4,5,7,8,9} 6
{adp} {3,4,5,7,8,9} 6
{cde} {0,3,4,7,8,9} 6
{cdp} {0,3,4,5,7,8,9} 7
{cep} {0,3,4,7,8,9} 6
{dep} {0,3,4,7,8,9} 6
{eim} {0,1,6,8,9} 5
{eip} {0,1,3,6,8,9} 6
{emp} {0,1,6,7,8,9} 6

| 55

From Table 3.10, the item {eim} does not satisfy ¢ so it is removed from
candidate 3-itemset and L3 shown in Table 3.11 is formed. Like frequent 1- and
2-itemsets, the frequent 3-itemsets are also appended into prefixed-itemset storage by
separating them into prefix-key and values, as shown in Table 3.12. The prefix-keys
in Table 3.12 such as ad, ce, de, ei and em contains only one item in the values
column. So as in the 2-itemset, the entries for those prefix-keys will not be saved in
the prefixed-itemset storage of RISOTTO.

Table 3.11 Computation of L;

Itemset TID_set (by set intersection) SC

{acd} {3,4,5,7,8,9} 6
{acp} {3,4,5,7,8,9} 6
{adp} {3,4,5,7,8,9} 6
{cde} {0,3,4,7,8,9} 6
{cdp} {0,3,4,5,7,8,9} 7
{cep} {0,3,4,7,8,9} 6
{dep} {0,3,4,7,8,9} 6
{eip} {0,1,3,6,8,9} 6
{emp} {0,1,6,7,8,9} 6

Table 3.12 The Original Prefixed-Itemset Storage after Appending frequent 3-itemset

Itemset Prefix-key Values
1-itemset NULL {a,c,d,e,f,i,m, p}
a {c,d, p}
c {d, e, p}
d {e, p}
2-itemset e {i, m, p}
f {pr}
[{r}
m {r}
ac {d, p}
ad {r}
cd {e, p}
3-itemset ce {p}
de {r}
ei {r}
em {r}

| 56

Table 3.13 shows the prefixed-itemset storage after appending frequent

3-itemsets in RISOTTO.

Table 3.13 The Prefixed-ltemset Storage after Appending frequent 3-itemset in RISOTTO

Itemset Prefix-key Values
1-itemset NULL {a,c,d,e,f,i,m, p}
a {c. d, p}
. c {d, e, p}
2-itemset
d {e, p}
e {i. m, p}
. ac {d, p}
3-itemset cd fe, p}

From the above table, {d,p}>{d,p} is performed and it gives {dp} which is
prefixed with the prefix-key {ac} which forms {acdp} as the first candidate 4-itemset.
Likewise, it is performed for other values for the frequent 3-itemset in
prefixed-itemset storage. The candidate 4-itemset C, for the sample example is shown
in Table 3.14. All the candidate 4-itemsets in Table 3.14 satisfies the minimum

support and forms L4 as shown in Table 3.15.

Table 3.14 Computation of C,

Itemset TID_set SC
(by set intersection)

{acdp} {3,4,5,7,8,9} 6

{cdep} {0,3,4,7,8,9} 6

Table 3.15 Computation of L,

Itemset TID_set SC
(by set intersection)

{acdp} {3,4,5,7,8,9} 6

{cdep} {0,3,4,7,8,9} 6

Similarly, the frequent 4-itemset is also appended in the original

prefixed-itemset storage with appropriate prefix-key and values, and it is shown in

Table 3.16.

| 57

Table 3.16 The Original Prefixed-Itemset Storage after Appending frequent 4-itemset

Itemset Prefix-key Values
1-itemset NULL {a,c, d, e f i,m,p}
a {c.d, p}
c {d, e, p}
d {e. p}
2-itemset e {i, m, p}
f {pr}
i {pr}
m {p}
ac {d.p}
ad {pr}
cd {e.p}
3-itemset ce {p}
de {pr}
el {pr}
em {p}
. acd {p}
4-itemset cde o

Table 3.17 shows the prefixed-itemset storage after appending frequent
4-itemset in the RISOTTO algorithm. All the values in the frequent 4-itemset of the
original prefixed-itemset storage contain only one value. They will not be stored in
the RISOTTO algorithm as it is impossible to form any candidate 5-itemset.

Therefore, the candidate 5-itemset is @, and the algorithm terminates.

Table 3.17 The Prefixed-ltemset Storage after Appending frequent 4-itemset in RISOTTO

Itemset Prefix-key Values
1-itemset NULL {a,c,d, e, f,i,m, p}
a {c, d, p}
. C {d, e, p}
2-itemset
d {e, p}
e {i, m, p}
) ac {d, p}
3-itemset od {e. p}

| 58

It is noted that the prefixed-itemset storage after appending frequent 4-itemset
remains the same as the prefixed-itemset storage after appending frequent 3-itemset

and the RISOTTO algorithm terminates.
3.5 Experimental Results and Discussion

To analyze the effectiveness of the proposed method, an empirical study has
been performed using the datasets shown in Table 1.4. The algorithms were
implemented in Python. The runtime performance of RISOTTO is compared with
prefixed-itemset storage and VVDF for the four datasets with different ¢ is carried out,
and it is tabulated in Table 3.18. The ¢ varied from 20% to 70%. Figures 3.2 to 3.5
show the graphical representation of the runtime comparison between the algorithms
viz., prefixed-itemset storage, VDF, and the proposed RISOTTO algorithm for the

datasets, namely chess, mushroom, t25i110d10k and c20d10k, respectively.

From Table 3.18 and figures 3.2 through 3.5, it is observed that the RISOTTO
outperforms the existing algorithms, namely prefixed-itemset storage and VDF,
i.e. the runtime required is reduced from 22.0163 to 13.5594 seconds on an average.
The reason is that the number of candidate itemsets produced in RISOTTO is less
when compared to VDF. Also, it uses the values in the prefixed-itemset storage for
creating candidate itemsets whose length is greater than one at any point of time.
It minimizes the database scan to one compared with the prefixed-itemset storage
method because RISOTTO uses VDF, which maintains the transaction in which

frequent itemset occurs.

| 59

Table 3.18 Performance Results of RISOTTO in seconds

min_sup (6) in

Runtime in Sec.

Prefixed-Iltemset

% VDF RISOTTO
Storage
chess
20 21.0054 16.8578 11.5625
30 20.9810 16.0452 11.0023
40 18.0054 14.0750 9.0531
50 17.5612 13.3017 8.9234
60 16.2378 12.7943 7.3456
70 15.9301 11.9825 6.8421
Average 18.2868 14.1761 9.1215
mushroom
20 24.1790 21.1215 16.6217
30 23.6723 20.0462 15.7312
40 22.5724 19.7083 14.4581
50 22.0245 18.2058 13.9210
60 20.8256 17.7898 12.8521
70 19.9310 15.9575 10.6719
Average 22.2008 18.8049 14.0427
t25i10d10k
20 26.6373 23.3254 19.2415
30 25.6037 21.4578 17.5689
40 24.9612 20.0025 15.9121
50 22.5817 18.7621 13.7321
60 21.7630 18.0056 13.0012
70 19.0175 16.0527 11.9801
Average 23.4274 19.6010 15.2393
c20d10k
20 27.9152 24.4253 19.6142
30 25.2081 22.6752 17.5127
40 24.3574 21.9546 16.3382
50 23.6490 19.4316 14.9102
60 22.7518 19.0012 14.0045
70 21.0186 17.5242 12.6251
Average 24.1500 20.8354 15.8342
Overall Average 22.0163 18.3543 13.5594

(All Datasets)

| 60

k-
th
i

W Prefived-Itemset Storaze
mYVIOF
_ 20 - EmRISOTTO
.E].5 1
=
= 10
=
o
5 .
{I .

20 30 40 S0 60 70
min_sup{%)

Figure 3.2 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for chess Dataset

30 ¥ Prefixed-Itemset Storage
EVDF
BRISOTTO

b
Ln
1

k-
=

=
=

Runtime (in Sec.)
==
thn

LR

20 30 40 50 60 70
min_sup(%e)

Figure 3.3 Runtime of Prefixed-ltemset Storage, VDF and RISOTTO for mushroom Dataset

| 61

10

Runtime (in hec.)
tn

Lhn

B Prefixed-Itemset Storase
mVDF
mRISOTTO

20 30 40 S0 60 70
min_sup(%a)

Figure 3.4 Runtime of Prefixed-Itemset Storage, VDF and RISOTTO for t25i10d10k Dataset

10

Runtime (in Sec.)
=
th

Ln

B Prefixed-Itemset Storage
VDF
BEISOTTO

20 30 40 S0 60 70
min_sup(%o)

Figure 3.5 Runtime of Prefixed-ltemset Storage, VDF and RISOTTO for c20d10k Dataset

| 62

3.5.1 Welch's Two Sample t-test

The Welch's t-test is a statistical test applied when two groups of samples have
unequal variances and/or unequal sizes with normally distributed data. It is named
after the inventor Bernard Lewis Welch. It is also called an unequal variances t-test.
It is calculated by taking the differences between the sample means and then dividing

it by the standard error of that difference as shown in Equation 3.1.

X, -

2
1

t= ...Equation (3.1)

wn
=
+
Nj ‘I\JmN N

where, X, and X, are the means, s/ and s’ are the variances, and n, and n,are the

sizes of the two groups respectively.

The following hypothesis and level of significance («) = 5% were considered

for the statistical test.

Null Hypothesis (H,)
There is no difference between the (true) means of the two groups i.e. 4 = 1, .
Alternate Hypothesis (H,)

There is a difference between the (true) means of the two groups. i.e. u, < u,
or 4>, OF 4 # U, .

To prove statistically, a Welch's Two Sample t-test between the runtimes of
the prefixed-itemset storage method and RISOTTO were performed in this research
work using the R tool. The below example illustrates how to apply the t-test between

the runtimes of the chess dataset for the prefixed-itemset storage and RISOTTO.

| 63

https://en.wikipedia.org/wiki/Bernard_Lewis_Welch

> prefix_chess = ¢(21.0054, 20.9810, 18.0054, 17.5612, 16.2378, 15.9301)

> RISOTTO_chess = ¢(11.5625, 11.0023, 9.0531, 8.9234,7.3456, 6.8421)
> t.test(prefix_chess,RISOTTO_chess)
Welch Two Sample t-test

data: prefix_chess and RISOTTO_chess
t=7.6647, df = 9.732, p-value = 1.999e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

6.490968 11.839666
sample estimates:
mean of x mean of y

18.28682 9.12150

The p-value for chess dataset is 1.999x10% < 0.05 (5%). Thus, the H, is
rejected and H, is accepted. Therefore, it is concluded that the two means are not

equal which means that there are significant differences between the runtimes of
prefixed-itemset storage and RISOTTO. Similarly, the test is conducted for the
remaining datasets used in the experiments and the results are tabulated in Table 3.19.

Table 3.19 Results of t-test

Dataset p-value
chess 1.999x10°%
mushroom 3.031x10°%
t25i10d10k 0.0005294
c20d10k 0.0001506

It is observed from Table 3.19 is that the p-values for all datasets are < 0.05
(5%). So, it is concluded that there are significant differences between the runtimes.
Therefore, the proposed method RISOTTO is more efficient in terms of runtime than

prefixed-itemset storage.

| 64

3.6 Chapter Summary

The research work has introduced an enhanced Apriori algorithm called
RISOTTO, a new hybrid approach for generating frequent itemsets that combine VDF
and prefixed-itemset based storage DS. In the proposed method, the frequent
1-itemset stores the transactions in which the frequent 1-itemset occurs and restricts
the number of database scans required to find the frequent itemsets to one and thereby
reducing the 1/0 cost. The joining and pruning steps are performed using the values in
the prefixed-itemset DS rather than the values in frequent itemsets as in classical
Apriori, which reduced the time required to generate the candidate itemsets and also
minimizes the number of candidate itemsets. Thus, the RISOTTO method enhances
the existing Apriori algorithm. Though this algorithm reduces the running time when
compared with the existing algorithms, it lacks in reducing memory consumption.
To minimize the memory requirement, a memory-efficient implementation has been
proposed in the next chapter and it also used the VDF approach for storing the

database.

| 65

| 66

‘Chapter - 4

JAB-VDF: A JAGGED ARRAY BASED DATA

STRUCTURE FOR VERTICAL DATA FORMAT

CHAPTER -4
JAB-VDF: A JAGGED ARRAY BASED DATA

STRUCTURE FOR VERTICAL DATA FORMAT

The purpose of critical thinking is rethinking: that is, reviewing, evaluating, and revising thought

--Jon Stratton

4.1 Background

Nowadays, volumes of data are exploding both in scientific and commercial
domains. Data mining techniques are used to extract unknown information from a
massive amount of data and became popular in many applications. But, the real-world
datasets are sparse, dirt and also contain hundreds of items. Association Rule Mining
(ARM) is an essential core data mining technique to discover patterns/rules among the
items in large databases of variable-length transactions. Its goal is to identify the
groups of items that most often occur together, i.e. it focuses on finding frequent
itemsets, each occurring at more than a minimum support frequency (min_sup) among
all transactions. It is widely used in market basket analysis and graph mining
applications such as pattern finding in web browsing, substructure discovery in
chemical compounds, word occurrence analysis in text documents, and so on

[LLCL,08].

Apriori is one of the premier and classical data mining algorithms for finding
frequent patterns but it is not an optimized one. Over the last two decades, remarkable
variations and improvements were made to overcome the inefficiencies of the Apriori
algorithm, such as FPGrowth, TreeProjection, Charm, LCM, Eclat and Direct Hashing
and Pruning (DHP), RARM, ASPMS etc. In these algorithms, a minor enhancement

improves the mining process considerably. The significant risks associated with

| 67

finding frequent itemsets are computational time and memory requirement.

Even with a moderate-sized dataset, the search space and memory utilization of

Frequent Pattern Mining (FPM) is enormous and exponential to the length of the

transactions in the dataset. Therefore, it is essential to perform FPM analysis in a

space-and-time efficient way.

Frequent itemset mining with Vertical Data Format (VDF) approach has been

proposed in the literature to improve the classical Apriori. It reduces the number of

database scans and uses an array storage structure. Since the VDF approach uses only

one scan of the database, many researchers used this to reduce computational time to

find frequent itemsets. Thus, this work reduces memory utilization using a

space-efficient data structure called a jagged array with VDF.

4.2 Jagged Array

A jagged array or ragged grid is a data structure whose elements are arrays.

The elements of a jagged array can be of different dimensions and sizes and it is

possible to create a 2-D array with a variable number of columns in each row.

These types of arrays are sometimes called an "array of arrays" [Sch,07].

It is diagrammatically represented in Figure 4.1.

arr[0]

arr[1]

\ 4

arr

arr[n]

\ 4

\ 4

Figure 4.1 Jagged Array Representations

L

8

In the above diagram, arr is a jagged array that consists of n array and the

length of each array can differ, i.e. m#p #x.
4.3 Proposed Methodology

Both Apriori and FP-growth algorithms mine frequent patterns using
Horizontal Data Format (HDF), whereas the Eclat algorithm uses VDF. Both HDF
and VDF approaches used array storage structures and observed that the VDF is a
speedy method [IR,16]. To reduce the memory space further, this research work
implements the VDF using the jagged array?. This concept is available in JAVA,

Python, VB.NET and C#NET [Sch,07].

The reason for choosing this data structure is that the customers will not buy
all the items in the grocery shops. Each transaction in the transactional database

contains a varied number of items purchased.
4.3.1 lllustration by an Example

To illustrate the memory requirement for VDF with jagged array
representation, let us consider the transactional database (D) shown in Table 4.1.
From Table 4.1, it is observed that the grocery shop sells n (12) items viz., a, b, c, d, e,
f, g, h, i, k, p and m. D consists of t (10) transactions, and the TID's are ranging
from O to 9.

The VDF of Table 4.1 is illustrated in Table 4.2. The VDF is stored as a 2-D
array in the memory, where the number of rows (r) = items in the grocery shop and

the number of columns (c) =t. Herer =12 and ¢ = 10.

?p Sumathi, S.Murugan, "A Memory Efficient Implementation of Frequent Itemset Mining with Vertical Data
Format Approach”, International Journal of Computer Sciences and Engineering, E-ISSN: 2347-2693, Vol. 6,

No. 11, pp.152-157, December 2018. (UGC Approved Journal).

| 69

Table 4.1 Transactional Database D

TID

Items Purchased

(@)

© 0O N oo O B~ W N P

c,d,e g h ik pm
b,e, f,g, hi,pm
c,e,m
a,b,cdefgip
a,b,cdep

a,b,cd fhp
b,e, f,hi,p,m
a,cdek pm
a,cdefipm

a,cdefhipm

Table 4.2 D in VDF

ltem

Transaction ID's (TID's)

o O T

> Q —=h O

k
m
P

{3,4,5,7,8,9}
{1,3,4,5, 6}
{0,2,3,4,5,7,8,9}
{0,3,4,5,7,8, 9}
{0,1,2,3,4,6,7,8,9}

{1,3,5,6,8,9}
{0, 1, 3}

{0,1,5,6,9}
{0,1,3,6,8,9}

10,7}
{0,1,2,6,7,8,9}
{0,1,3,4,5,6,7,8,9}

The memory required for storing candidate 1-itemset in the 2-D array for VDF is

TM; = (r x c x sizeof (tid)) + (sizeof (itemyq) x r)

... Equation (4.1)

where, itemq 4 is the first item in the candidate 1-itemset, tid is the transaction-id,

and sizeof is a built-in function that says the number of bytes required for the

| 70

argument. Here each tid requires 2-bytes and item;; requires 1-byte of memory,

respectively. Therefore the VDF of candidate 1-itemset requires (12x10x2) + (1x12)

= 252 bytes of memory i.e. TM1 = 252 bytes.

The Support Count (SC) for each item is the number of tid's that it contains,
i.e. the SC of a, SC,=count(a)=6. Similarly, SCp=5, SC.=8, SCy=7, SC=9, SC;=6,
SCy=3, SCy=5, SCi=6, SC\=2, SCi,=7 and SC,=9. Let the min_sup be 6. The frequent
1-itemset contains {a, c, d, e, f, i, m, p} and it is shown in Table 4.3.

Table 4.3 Frequent 1-itemset in VDF

Item TID's
a {3,4,5,7,8, 9}
c {0,2,3,4,5,7,8,9}

d {0,3,4,5,7,8,9}

e {0,1,2,3,4,6,7,8,9}
f {1, 3,5, 6,8, 9}
i
m
p

{0,1,3,6,8,9}
{0,1,2,6,7,8, 9}
{0,1,3,4,5,6,7,8, 9}

The spaces occupied by the in-frequent items say b, g, h and k in candidate
1-itemsets can be removed, saving memory considerably. The number of bytes of

memory removed from candidate 1-itemset is computed as
rbytes; = (rp x ¢ x sizeof (tid)) + (rr x sizeof (item 1)) . Equation (4.2)
where, 1 is the number of rows to be removed as in-frequent items. For this example

rq = 4. Therefore, rbytes; = (4x10x2) + (4x1) = 84 bytes. Therefore the total bytes of

memory for a frequent 1-itemset is

M; =TM, - rbytes; ... Equation (4.3)

Here M, =252 - 84 = 168 bytes.

|

Similarly, in iteration 2, the possible 2-itemsets combinations are generated
from frequent 1-itemsets, and it is {ac, ad, ae, af, ai, am, ap, cd, ce, cf, ci, cm, cp, de,
df, di, dm, dp, ef, ei, em, ep, fi, fm, fp, im, ip, mp}. Suppose if there are n items in
1-itemset, the possible two-item combinations are nx(n-1)/2 say tc,. The numbers of
itemset combinations say x may be in-frequent which need not be placed in VDF.
Therefore, the memory required for a frequent 2-itemset is calculated using

Equation 4.4.
T™M, = ((tcy —X) x ¢ x sizeof (tid)) + (sizeof (item21) x(tcy = X)) ... Equation (4.4)

where, itemy4 s the first item in the frequent 2-itemset. In this example, the item

combinations viz., {ae, af, ai, am, cf, ci, cm, df, di, dm, ef, fi, fm, im} are in-frequent.
Based on Equation 4.4, the VDF of frequent 2-itemset requires ((28 - 14) x 10 x 2)
+ (2 x (28 - 14)) = 280 + 28 = 308 bytes and the frequent 2-itemsets is shown in

Table 4.4.

Similarly, from Table 4.4, the 3-itemset combinations satisfy the Apriori
property viz., {acd, acp, adp, cde, cdp, cep, dep, emp, eip} are the candidate
3-itemset. In this case, all candidate 3-itemsets are frequent itemsets. Therefore the
frequent 3-itemset requires ((9 - 0) x 10 x 2) + (3 x (9 - 0)) = 180 + 27 = 207 bytes of

memory and it is shown in Table 4.5.

Similarly, the 4-itemsets combinations generated from frequent 3-itemsets are
acdp, acde, acep, adep, cdep, cemp, ceip, demp, deip and eimp. Among them,
the items acdp and cdep are satisfied Apriori property, which forms the candidate
4-itemset. All the candidate 4-itemsets satisfy the minimum support. The frequent

4-itemset is shown in Table 4.6.

| 72

Therefore, the frequent 4-itemset requires ((10 - 0) x 10 x 2) + (4 x (10 - 0))

= 200 + 40 = 240 bytes.

Table 4.4 VDF of frequent 2-itemsets

Item TID's
ac 3,4,57,8,9
ad 3,4,5,7,8,9
ap 3,4,5,7,8,9
cd 0,3,4578,9
ce 0,234,789
cp 0,3457,89
de 0,3478,9
dp 0345789
ei 0,1,36,8,9
em 0,126,7,89
ep 0,1,346,7,8,9
fp 1,3,56,89
ip 0,1,36,8,9
mp 0,1,6,7,8,9

Table 4.5 VDF of frequent 3-itemsets

Item TID's
acd 3,4,5,7,8,9
acp 3,4,57,8,9
adp 3,4,5,7,8,9
cde 0,347289
cdp 0,34,578,9
cep 0,34,78,9
dep 0,347,289
emp 0,1,6,7,8,9
eip 0,1,3,6,8,9

Table 4.6 VDF of frequent 4-itemsets

Item TID's
acdp 3,4,5,7,8,9
cdep 0,3,4,7,8,9

This process is repeated until no frequent itemsets are found. Now the

candidate 5-itemset contains only one item, i.e. {acdep} and it is not frequent.

| 73

So the frequent 5-itemset is empty (&), and the process is terminated. Therefore,

the total memory required for VDF using a 2-D array is

itemseti #J

™ =M, + 2 TM;

1 % i ... Equation (4.5)

where, M1 is calculated using Equation 4.3 and TM; are calculated using
Equation 4.6.

TM; = ((tc; —x)x cx sizeof (tid)) + (sizeof (itemil) x (t¢; - x)) ... Equation (4.6)

where, ICj and x is the number of frequent and in-frequent items in the candidate

i-frequent itemset. For the above example TM = 168 + 308 + 207 + 240 = 923 bytes
of memory. If the same is implemented using the jagged array, the memory
requirement is reduced considerably. The memory required for candidate 1-itemset

TM; is calculated as

™, = 2 SCitem x sizeof (tid) + sizeof (item) ... Equation (4.7)
Vitemef{itemsety }

As in 2-D representation, there may be x in-frequent items in candidate

l-itemset say {in-frequent} = {item,,item,,...,item,} then the memory for

{in-frequent} can be saved by removing it and the amount of memory removed is

computed as shown in Equation 4.8.

rbytes; =) SCitem xsizeof (tid)+sizeof (item) ... Equation (4.8)
Vitem&{in— frequent}

Therefore the total memory required for frequent 1-itemset in jagged array
representation is computed using Equation 4.3 with the values calculated using
Equations 4.7 and 4.8, respectively. The jagged array representation for frequent

1-itemset for D is shown in Table 4.7.

| 74

Table 4.7 Jagged Array Representation of frequent 1-itemset

Item TID's

a 3 |4|5|7|81|9

c 0 |2|3|4|5|7 9

d 0 |3|4|5|7]|8

e 0 |1|2|3|4]|6 819
f 1 |3]5]6|8]09

i 0 |1|3|6|8]|9

m 0O |12 |6 |7/ 8

p 0 |1|3|4|5]|6 819

The memory required for the above table is calculated as shown below.

TM; = (6x2+1) + (5x2+1) + (8x2+1) + (7x2+1) + (9%x2+1) + (6%2+1) + (3x2+1)
+ (5x2+1) + (6%2+1) + (2x2+1) + (7x2+1) + (9x2+1)
= 13+11+17+15+19+13+7+11+13+5+15+19

= 158 bytes
roytes, = (5x2+1) + (3x2+1) + (5x2+1) + (2x2+1)
= 11+7+11+5 = 34 bytes
Therefore, M, = 158 - 34 = 124 bytes. Similarly, the jagged array

representation of frequent 2-itemsets shown in Table 4.8, requires T™M, — rbytes, bytes

of memory space where, TM, and rbytes, are calculated by using Equations 4.9

and 4.10 respectively.

™, =) SCitem sizeof (tid) + sizeof (item) Equation (4.9)
Viteme{itemseto }

rbytes, = > SCitemxsizeof (tid)+sizeof (item) . Equation (4.10)
Viteme{in—frequent}

| 75

Table 4.8 Jagged Array Representation of frequent 2-itemset
Item TID's
ac 8
ad
ap
cd
ce
cp
de
dp
ei

em
ep
fp
ip
mp

o| o r| o o o o o] o] o o] w| w| w
R R w R R R w w W N W NN
ol w g W N W AR W N O o] o
~N| o o & o o gl N g & o] N N~
o| 0| | o | o | o] | ~| | o] ©

©o| ©| ©| | o| ©| o| ©| w| | w| ©| | ©o

For the above table,

TMy = (6x2+2) + (6X2+2) + (5%2+2) + (4x2+2) + (3x2+2) + (3x2+2) +
(6%2+2) + (7%2+2) + (7x2+2) + (4%2+2) + (4%2+2) + (5%x2+2) +
(7%2+2) + (6%2+2) + (4x2+2) + (4%2+2) + (4%2+2) + (7x2+2) +
(5%2+2) + (6%2+2) + (7x2+2) + (8%2+2) + (5x2+2) + (4x2+2) +
(6x2+2) + (5%2+2) + (6x2+2) + (6%2+2)
=14+14+12+10+8+8+14+16+16+10+10+12+16+14+10+10+10+16+12+14+16
+18+12+10+14+12+14+14

= 356 bytes
rby'[es2 = (5x2+42) + (4%2+2) + (3x2+2) + (3%2+2) + (4x2+2) + (4%2+2) +
(5%2+2) + (4%2+2) + (4x2+2) + (4%2+2) + (5%2+2) + (5%x2+2) +

(4x2+2) + (5x2+2)

=12+10+8+8+10+10+12+10+10+10+12+12+10+12

= 146 bytes
and therefore, M, requires 356 - 146 = 210 bytes of memory. Similarly, the jagged
array representation of frequent 3-itemsets shown in Table 4.9 requires
TMg — rbytess memory.

Table 4.9 Jagged Array Representation of frequent 3-itemset

ltem TID's
8

acd

acp

adp

cde

cdp

cep

dep

emp
eip

o| ol ol ol o] o W W w

| P W wl w w s

w| o & N B N O 0 O

o Nl N N g N N NN

| | co| o | o oo| oo

©| ©| ©o| ©o| | ©o| ©| | ©
©

For Table 4.9,

TMg= (6%2+3) + (6x2+3) + (6%2+3) + (6%2+3) + (7x2+3) + (6%2+3) + (6x2+3)
+ (6x2+3) + (6%2+3)
= 15+15+15+15+17+15+15+15+15

= 137 bytes

roytes ., =0 bytes

and therefore M 3 requires 137 - 0 = 137 bytes of memory.

Similar to the previous cases, the memory for frequent 4-itemsets is calculated as

TM 4 = (6x2+4) + (6x2+4) = 16 + 16 = 32 bytes.

roytes , =0 bytes
and
M , =32 - 0 = 32 bytes of memory for Table 4.10.

Table 4.10 Jagged Array Representation of frequent 4-itemsets
Item TID's
acdp 3 4 5 7 8 9
cdep 0 3 4 7 8 9

This process continues until no more frequent itemsets are found. For this
case, the candidate 5-itemset is NULL, and the algorithm terminates. Therefore, the
total memory required for the jagged implementation is calculated using
Equation 4.11.

itemseti =

™ = i§1 TM; — rbytes; ... Equation (4.11)

where, TM; and rbytes; are calculated using Equations 4.12 and 4.13, respectively.

™; = > SCitem x sizeof (tid) + sizeof (item) ... Equation (4.12)
Viteme{itemset; }

rbytesi = > SCitemxsizeof (tid)+sizeof (item) ... Equation (4.13)
Viteme{in— frequent;}

Therefore, the jagged array representation for the sample transactional

database D requires

TM =124 + 210 + 137 + 32 = 503 bytes of memory and it is less when compared to

the original 2-D array representation.

The jagged array representation of VDF has several advantages. They are:
i. No memory space is wasted as in a 2-D array because a jagged array allocates

space only to the transactions in which the item occurs
ii. Minimizes the memory space required than the original array implementation

Thus, it is finalized that the jagged representation saves memory significantly

and also it is fast when compared with the HDF approaches.
4.4 Experimental Results and Discussion

To analyze the memory usage of VDF using the jagged array, an empirical
study has been performed for the datasets namely chess, mushroom, t25i10d10k and
€20d10k using Python implementation. All the datasets were obtained from the FIMI
repository (http://fimi.ua.ac.be) and the open-source data mining library
(http://www.philippe-fournier-viger.com/spmf). The chess dataset contains 3196
transactions, 75 items and 37 average item count per transaction. Similarly, the
mushroom, t25i10d10k and c20d10k contain 8416, 9976, and 10000 transactions,
119, 929 and 192 items and 23, 24.77 and 20 average item count per transaction
respectively. The memory usage of JAB-VDF is compared with VDF (2-D array) is
carried for the four datasets with 6=20% and it is tabulated in Table 4.11 and

Figure 4.2.

Table 4.11 Comparison of Memory Consumption (in GB) between JAB-VDF and VDF with 6=20%

Datasets VDF JAB-VDF
chess 1.2500 0.7500
mushroom 1.5000 0.6750
t25i10d10k 1.7500 0.7000
c20d10k 1.6700 0.9185
Average 1.5425 0.7609

= VDF

= L8 - = JAB-VDF

S 1.6 -

= 14 -

2 1.2 -

=3

= 1

Eﬂ.ﬂ - _

U ﬂ-ﬁ]

e 0.4 -

)

g 0.2 - -
E 'ﬂ = T T T |'-.

chess mushroom 25110410k c20d10k
Datasets

Figure 4.2 Comparison of Memory Consumption (in GB) between JAB-VDF and VDF with 6=20%

From Table 4.11 and Figure 4.2, it was observed that the memory needed for
JAB-VDF is reduced by 49.33% when compared with VDF. Further, to prove
statistically, Welch's two-sample t-test was performed between the memory usage of
JAB-VDF and VDF. The t-test was performed using the R tool and the p-value is
0.0023 which is < 0.05 (5%). It is concluded that the two means are not equal, which
means that there are significant differences between the memory usage of JAB-VDF
and VDF. Therefore, the proposed method JAB-VDF consumes less memory than

VDF considerably.

4.5 Chapter Summary

From the literature, it is also found that the VDF approaches restrict the
database scans to one and find the support counts by intersection. Though it is best,
the array storage structure used by VDF consumes huge memory space because it
assumes that each item may fall almost in all transactions. But in real-world grocery

datasets, each transaction will not contain all items, and each item may not be present

| 80

in all transactions. Thus, to reduce memory consumption and utilize memory
efficiently, this research work used the jagged array representation. From the
experimental results, it has been observed that the JAB-VDF reduces memory
consumption for storing frequent itemsets when compared with the traditional
2-D array. The next chapter focuses on developing an algorithm for finding frequent
patterns by reducing both time and memory using a multithreaded approach and

jagged array.

| 81

| 82

‘Chapter - 5

TB-NPF-VDF: A MULTITHREADED, NOVEL PATTERN
FORMATION FOR VERTICAL DATA FORMAT
WITH JAGGED ARRAY

CHAPTER -5
TB-NPF-VDF: AMULTITHREADED, NOVEL PATTERN
FORMATION FOR VERTICAL DATA FORMAT
WITH JAGGED ARRAY

Imagination encircles the entire world, stimulating progress, giving birth to evolution

--Albert Einstein

5.1 Background

Association Rule Mining (ARM) is one of the most extensively used
knowledge discovery techniques and a promising area in the mining domain
[AHGA",18]. ARM is used in several applications such as inventory control, mobile
mining, educational mining, market basket analysis, risk management,
telecommunication networks, graph mining, etc. [SK,19]. The problem of mining
frequent itemset/pattern is a sub-problem of ARM [GAF,17]. Frequent patterns are
patterns that frequently appear in a dataset with a frequency more than a
user-specified threshold. Frequent Pattern Mining (FPM) is an essential task of
discovering hidden items from a database with more than a prescribed threshold.
It generates qualitative knowledge that helps the decision makers make good business

insights [HPK,12].

Many researchers narrated novel algorithms for finding frequent itemset
mining, which is achieved using a single thread, but still, there is a need for time,
memory efficient and scalable one. Therefore, the research study proposed an
approach for finding frequent patterns, namely TB-NPF-VDF (Thread Based, Novel
Pattern Formations with Vertical Data Format), which uses a new way of generating

candidate items to minimize the time. Also, it employs multithreading which runs

| 83

several threads simultaneously, one for each frequent 1-itemset to generate the
remaining frequent itemsets (frequent 2-itemsets, frequent 3-itemsets, etc.) for that
item until the candidate or frequent itemsets are not empty. Further, to reduce the
memory requirement significantly, it also employs a jagged array structure for storing

the frequent patterns, as illustrated in chapter 4.

The research work has been implemented and tested using four standard
benchmark datasets from the frequent itemset mining repository. Further, it is
compared with VDF and NPF-VDF (without multithread), and the experimental
results revealed that TB-NPF-VDF outperforms in terms of execution time and

memory significantly.
5.2 Multithreading

It is a process of executing multiple threads simultaneously, i.e. thread-based
multitasking. A thread is a lightweight sub-process, and it is the smallest unit of a
process. Each thread has a separate path of execution and executed inside a process.
The multithreading uses a shared memory area and thus saves memory space
considerably. Similarly, the context switching between threads takes less time than the

process. The pictorial representation of multithreading is shown in Figure 5.1.

Concurrent activity speeds applications up is one of the main benefits of
multithreading. Apart from this, it has numerous advantages. They are:
I. Requires less overhead to create, maintain, and manage threads than a
traditional process
ii. Improves throughput

iii. Improves the application and server responsiveness

| 84

iv. Minimizes the usage of system resources
v. Simplifies the structure of a complex program

vi. The cost of communication between threads is low

vii. It doesn't block users or affect other threads if an exception occurs because

threads are independent

viii. Saves time to complete the task

Process 1

0 Process 2

Process 3

Operating System

Figure 5.1 Multithreading

By considering these advantages, the research work proposed in this chapter

uses the multithreading concept to increase the runtime speed.

| 85

5.3 Proposed Methodology

The main idea of the proposed work is to find the frequent patterns for the
transactional database. It consists of four phases. The first phase scans D and converts
it into VDF. The second phase determines the frequent 1-itemset from VDF. The third
phase sorts the frequent 1-itemset in ascending order based on the min_sup (J)
threshold, and it is stored in a matrix form using a jagged array. The ¢ of an itemset X
is calculated by dividing the number of transactions in which X appears by a total
number of transactions [Kal,17]. The fourth phase creates n-1 threads, one for each
frequent 1-itemset except for the last one, where n is the number of items in frequent
l-itemset. Let the frequent 1-itemset be Li={l,l...,/n}, each thread generates
frequent itemsets starting from frequent 2-itemset to frequent k-itemset until it is

non-empty, where k > 2.

For finding frequent i-itemset, i > 2, each thread (tx1<.<:-1) USes the following

procedure.

i. When i=2, the thread forms the candidate patterns by combining Ix with Iy.;
and finds the transactions in which the combination I,l4.; occur by intersecting
the transactions in I and Ix+1. The item combinations whose Support Count
(SC) > ¢ is selected as frequent i-itemset for item x.

ii. For i>2, each item in frequent (i-1)-itemset is combined with each frequent
1-itemset starting from the next item in the last item of the frequent(i-1)-item
and finds the transactions in which the combination occurs is determined by
intersecting the item infrequent(i-1)-itemset and the appropriate item in
frequent 1-itemset. This process is repeated until the frequent k-itemset is not

empty.

| 86

As the proposed method uses multithreads, novel pattern formation with VDF
to find frequent patterns is named TB-NPF-VDF®. The main advantage of this method
is that it generates less number of candidate itemsets when compared with the
classical Apriori and VDF because it avoids the items whose SC is lesser than the item
at any instance of time for generating the patterns. As threads are used, the CPU is
effectively utilized, and they are faster when compared to processes. This method
avoids checking the pattern for the Apriori property because the candidate patterns
generated satisfies the Apriori property by default. Further, the time required for
TB-NPF-VDF is less when compared to VDF. Since the algorithm also uses the
matrix notation using a jagged array, the memory requirement is also minimized
[SM,18]. The algorithm for the proposed method is shown in Algorithm 5.1 and the

workflow of TB-NPF-VDF is illustrated in Figure 5.2.

Algorithm 5.1: TB-NPF-VDF: An algorithm for finding frequent itemsets
Input:
= A dataset D with n transactions;
* ¢§ - minimum support threshold.
Output: Frequent patterns.
Method:
(1) vdf&scan D and store it in <itemset, TID list> format;
(2) C.1€0;

(3) for each item; in vdf do

3p.Sumathi, Dr.S.Murugan, Dr.V.Umadevi, "A Multithread, Novel Pattern Based Algorithm for Finding Frequent
Patterns With Jagged Array and Vertical Data Format"”, Indian Journal of Computer Science and Engineering
(IJCSE), e-1SSN:0976-5166, p-ISSN:2231-3850, Vol.12, No.5, pp.1353-1363, Sep-Oct 2021.

DOI:10.21817/indjcse/2021/v12i5/211205078 (UGC Care List - 11, Scopus Indexed).

| 87

begin
SC<&count(TID_listiemi); //determines the number of transactions in item;
C,<Cy.append ({itemset, TID list, SC}) // adds a row into C;
endfor
(4) for each item; in C; do
begin
L, < {item;| SC(item;) > J}
endfor
(5) L1 <jagged(sort(L,)); //sorts Ly and converts it into a jagged matrix format
(6) no_freql_itemset&count(L,); //determines the number of itemset in Ly
(7) for (x=1; x < (no_freql_itemset-1); x++) do
begin
ty&create(thread); // creates a thread for the item Ly[x]
for (k=2; Ly # @; k++) do
begin
if k==2 then
new_pattern&<lIyly+1>;
new_TID_list&Transactions(ly) NTransactions(ly+1);
else if k> 2 then
for each item; in Ly.; do
begin
new_item<-last item in item;;
new_pattern€<{<item;l,>| I, <next(new_item)},
new_TID_list&Transactions(item;)NTransactions(ly)

endfor

| 88

end if
SC<&count(new_TID_list);
Cy<Cy.append({new_pattern, new_TID_list});
Ly&<{C«| SC(Cyx) > o}

endfor

endfor

Gene.rate candidate Generate frequent 1-itemset (L ;) and
1-itemset (Cy) store it in VDF in increasing order
T ctional
;:zabas:x; Ly={,L,I...I} | Createn-1threads
L 2
T, for Item I, T, for Item I, T,forItem I, .. Twafor Item I
\ A 4 \ 4
k=2 k=2 =2
A 4 A 4 A2
Genarate Genarate Genarate
C,-itemset Cy-itemset Ci-itemset
Compare SC with § Compare SC with § Compare SC with §
4 Vv ¥
Genarate Genarate Genarate
L,-itemset L,-itemset T " L itemset
F F F
3
True True True
— kek+l k «k+1 ® *— k «k+

(Returns Frequent Patterns

" |

Figure 5.2 Workflow of TB-NPF-VDF

5.3.1 Hlustration by an Example

The transactional database D shown in Table 5.1 is taken to illustrate the

proposed work. It contains 12 items viz., {a, b, ¢, d, e, f, g, h, i, kK, m, p}. The vertical

| 89

representation of D is shown in Table 5.2. Each item is represented by a row
containing the name of the item and the transactions in which the item occurs.

Table 5.1 Transactional Database D
TID Items Purchased

0 c,deghikpm
1 b,e f,g,hipm
2 c,e,m

3 a,bcdefaglip
4 a,bcdep

5 a,b,c,d fhp
6 b,e, f,hi,p,m
7 a,c,d ek p,m
8 a,c,defipm
9 a,cde f hipm

Table 5.2 D in VDF

Item Transaction ID's (TID's)
{3,4,5,7,8,9}
{1, 3,4,5, 6}
{0,2,3,4,5,7,8,9}
{0,3,4,5,7,8,9}
{0,1,2,3,4,6,7,8,9}
{1,3,5,6, 8, 9}
{0, 1, 3}

{0, 1,5, 6,9}

{0, 1, 3,6, 8, 9}
{0, 7}
{0,1,2,6,7,8,9}
{0,1,3,4,5,6,7,8, 9}

T I X —0Q D A0 T D

Let 0 is 6. The candidate 1-itemset (C;) contains all the items in D, the
transactions in which the item occurs, and also the SC, i.e. the number of transactions
in which the item appears. The C; for D is shown in Table 5.3. Among them, the
items {a, c, d, e, f, i, m, p} satisfies the 6 and hence forms the frequent 1-itemset.
The jagged array representation of the same is shown in Table 5.4.

To generate fewer candidate itemsets, this research work uses a novel pattern
generation method rather than the natural join used in the Apriori algorithm. For that,
the frequent 1-itemset (L,) is sorted in ascending order based on SC, and it is replaced

with L;. The frequent 1-itemset after sorting is illustrated in Table 5.5.

| 90

Table 5.3 Candidate 1-itemset

Cy

Iltemset TID's

w
O

T I X —T0TQ -0 Q0O T®

{01 11 21
{0,1,3,4,

6
5

7
6

8
7

{3,4,5,7,8,9}
{1,3,4,5, 6}
{0,2,3,4,5,7,8,9}
{0,3,4,5,7,8,9}
{0,1,2,3,4,6,7,8, 9}
{1,3,5,6,8,9}
{0, 1, 3}
{0,1,5,6, 9}
{0,1,3,6,8,9}
10, 7}

9%
8

, 9}

O NNNOOOTWO © N0 ulTo

Table 5.4 Jagged Array Representation of frequent 1-itemset

Ly

1- Itemset

TID's

7

8

9]

o

E]

NIWOIN B W ol
oW o~

9

o|o|olr|lololo|lw
RlRRPrlwkRrlw N

S [S|=|=|D |0 |®

3

4

O1N|O|0(~ |01

OO0 O|IO| |0

7

8| 9]

Now this work creates seven threads because the frequent 1-itemset contains

eight items. Thread-1 is for the item <a>, Thread-2 is for item <f> and so on.

The Thread-1 first generates the following patterns.

<af>, <ai>, <ad>, <am>, <ac>, <ae> and <ap>

and for each pattern, set intersection is calculated by using the TID's in each item of

the pattern. For example, for the pattern <af> the set intersection is calculated as

{3,4,5,7,8,91N{1, 3, 5,6, 8,9} ={3,58,9} and SC=4. Similarly, the SC for other

patterns viz., <ai>, <ad>, <am>, <ac>, <ae> and <ap> is calculated as stated above.

The patterns namely <ad>, <ac> and <ap> satisfies the ¢ will be considered as the

frequent 2-itemset for the item <a> and are represented in Table 5.6.

| 91

Table 5.5 Sorted frequent 1-itemset

Ly

1- Itemset TID's
a 314/5/7/8]9
f 1/3/5/6/8|9
i 0/1/3/6/8]9
d 0/3/4/5(7/8|9
m 011216789
c 0/2/3/4|5/7|/8|9
e 0/1/2(3/4{6(7|8]9
p 0/1/3/4/5/6(7|8]|9

Table 5.6 Frequent 2-itemset for <a> by Thread-1

Item TID's

<ad> | 3/4|5/7/8|9
<ac> | 3|4|5/7/8|9
<ap> |3]4[5/7/8]9

Next, the method generates the candidate 3-itemsets for each frequent

2-itemset in Table 5.6 as follows:

For the frequent 2-item <ad>, the items viz., <m>, <c>, <e> and <p> are
considered from frequent-1 itemset because <m> is the next item after <d>
where <d> is the last item in frequent 2-itemset <ad>. The patterns generated
are <adm>, <adc>, <ade> and <adp> and for them, the transactions in which

the pattern occurs and SC is calculated as follows:

From Table 5.6 TID's of <ad> is {3, 4, 5, 7, 8, 9} and from Table 5.5 the TID's
of <m>is {0, 1, 2, 6, 7, 8, 9}. Therefore, {3,4,5,7,8,9}N{0,1,2,6,7,8,9}

={7,8,9} and SC=3. Similarly, for <adc>, <ade> and <adp> is also calculated.

. For the frequent 2-item <ac>, the items from <e> i.e. <e> and <p> are

considered. The patterns generated are <ace> and <acp> and SC is calculated
as above.
For the frequent 2-item <ap>, there is no candidate 3-itemset because there is

no next item after <p>.

| 92

The candidate 3-itemset generated by Thread-1 are <adm>, <adc>, <ade>,
<adp>, <ace> and <acp>. Among them the patterns viz., <adc>, <adp> and <acp>
satisfies ¢ forms frequent 3-itemset and it is shown in Table 5.7.

Table 5.7 Frequent 3-itemsets for <a> by Thread-1

Itemset TID's
<adc> 3|4 5(7(819
<adp> |3(4| 57|89
<acp> (3|4 5|7|8|9

The frequent 3-itemset for <a> is not empty, so the method generates the

candidate 4-itemset. They are <adce> and <adcp>. The SC for <adce> is calculated as
3,4,5,7,8,9:N40, 1, 2, 3, 4, 6, 7, 8, 9} = {3,4,7,8,9} and SC of <adcp> is 5.
Similarly, for <adcp> is {3, 4, 5, 7, 8,91N{0, 1, 3, 4, 5, 6, 7, 8, 9}={3,4,5,7,8,9} and
the SC=6 and is shown in Table 5.8.

Table 5.8 Frequent 4-itemsets for <a> by Thread-1

Itemset TID's
<adcp> [3]4] 5[7]8]9

Now, candidate 5-itemset for the item <a> is @. So Thread-1 stops its
execution and returns <ad>, <ac>, <ap>, <adc>, <adp>, <acp> and <adcp> as
frequent items for <a>. Similarly, the other threads generate frequent itemsets for

other frequent 1-itemset in parallel and are shown from Table 5.9 to Table 5.19.

Table 5.9 Frequent 2-itemset for <f> by Thread-2

ltemset TID's
<fp> [1]3] 5]/6]/8]9

Table 5.10 Frequent 2-itemset for <i> by Thread-3

Itemset TID's
<ie> |0]1] 3|/6(8]9
<ip> |0|1] 3|6(8]9

Table 5.11 Frequent 3-itemset for <i> by Thread-3

Itemset TID's
<iep> |0]1] 3]/6]8]9

| 93

Table 5.12 Frequent 2-itemset for <d> by Thread-4

Itemset

TID's

<dcep>

0/3|4]7]8]9

Itemset TID's

<dc> [0|3]| 4|5|/7|8]|9

<de> |0[3| 4|7|8]9

<dp> [0[3] 4]5]7[8]9

Table 5.13 Frequent 3-itemset for <d> by Thread-4

Itemset TID's |
<dce> |[0|3]| 4|78 |9

<dcp> [0]3] 4|5[7[8]9
<dep> |0|3| 4]7|8]9

Table 5.14 Frequent 4-itemset for <d> by Thread-4

Table 5.15 Frequent 2-itemset for <m> by Thread-5

ltemset TID's
<me> |0|1]| 2|6|7|8]|9
<mp> (01| 6|7|8|9

ltemset

TID's

Table 5.16 Frequent 3-itemset for <m> by Thread-5

<mep> [0]1] 6]7]8]9

Table 5.17 Frequent 2-itemset for <c> by Thread-6

Itemset TID's
<ce> (02| 3/4|71/8|9
<cp> |0]3| 4|5{7|8|9

Table 5.18 Frequent 3-itemset for <c¢> by Thread-6

TID's
0/3| 4]7]8]9

Itemset
<cep>

Table 5.19 Frequent 2-itemset for <e> by Thread-7

Itemset TID's
<ep> |0]1]3]4|6]7]89

Table 5.20 depicts the candidate items, frequent items, number of candidates

and frequent items generated by the TB-NPF-VDF for D. The total number of

candidate items generated using TB-NPF-VDF is 56, which is less when compared to

VDF.

| 94

5.4 Experimental Results and Discussion

The runtime performance of all algorithms (Matrix-Apriori [PVG,06], VDF,
NPF-VDF, TB-NPF-VDF) for the four datasets depicted in Table 1.4 with different
min_sup percentage were tabulated in Table 5.21. The min_sup is varied from 20% to
70%. Figures 5.3 to 5.6 show the graphical representation of the runtime comparison
between the algorithms viz., Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for
the datasets, namely chess, mushroom, t25i10d10k and c20d10k, respectively.

Table 5.20 Details of Itemsets for D

Itemset Candidate Items Total” Frequent Items Total®
l-itemset {a, b,c,d, e f g h ik, 13 {a,c,d e f i,m p} 8
m, p, m}
2-itemset {af, ai, ad, am, ac, ae, ap, 28 {ad, ac, ap, fp, ie, ip, 14
fi, fd, fm, fc, fe, fp, id, im, dc, de, dp, me, mp, ce,
ic, ie, ip, dm, dc, de, dp, cp, ep}
mc, me, mp, ce, cp, ep}
3-itemset {adm, adc, ade, adp, ace, 12 {adc, adp, acp, iep, 9
acp, iep, dce, dcp, dep, dce, dcp, dep, mep,
mep, cep} cep}
4-itemset {adce, adcp, dcep} 3 {adcp, dcep} 2
Total 56 33

" Number of Candidate Items ®number of Frequent Items
From Table 5.21 and Figures 5.3 to 5.6, the TB-NPF-VDF outperforms than
the other existing methods viz., Matrix-Apriori, VDF and NPF-VDF. On an average,

the runtime is reduced from 20.3092 to 9.9094.

5.4.1 Welch's Two Sample t-test

To prove statistically, a Welch's two sample t-test is being performed between
the runtimes of Matrix-Apriori and TB-NPF-VDF and it is used to determine whether
the means of the two groups are equal to each other or not. The null hypothesis is

taken as that the two means are equal i.e. 2 = g, , and the alternative is that they are

not equal i.e. z4 < g, OF g > u, OF 14 # u,. The test is performed using the R tool for

| 95

each dataset shown in Table 1.4, and the results are tabulated in Table 5.22.
From Table 5.22, it was observed that the p-values for all datasets are < 0.05 (5%) and
it is concluded that the two means are not equal, which means that there are
significant differences between the runtimes. Therefore, the proposed method
TB-NPF-VDF is more efficient in terms of runtime than the others.

Table 5.21 Performance Results of TB-NPF-VDF in seconds

min_sup (%) Runtime (in Sec.)
Matrix- VDF NPF-VDF TB-NPF-VDF
Apriori
chess
20 20.7578 16.8578 13.3578 6.5267
30 19.6365 16.0452 12.1455 5.0325
40 17.7750 14.0750 10.0720 4.5635
50 16.3028 13.3017 9.0017 3.2634
60 15.3625 12.7943 8.2934 2.4571
70 14.8546 11.9825 7.4822 2.0012
Average 17.4482 14.1761 10.0588 3.9741
mushroom
20 23.2135 21.1215 18.0016 12.1024
30 21.3426 20.0462 17.0642 11.5642
40 20.0035 19.7083 14.1038 10.7869
50 19.2002 18.2058 13.2044 10.0063
60 18.0805 17.7898 12.7240 8.5698
70 17.5652 15.9575 11.4530 7.9586
Average 19.9009 18.8049 14.4252 10.1647
t25i10d10k
20 25.2145 23.3254 20.3325 15.1267
30 23.9625 21.4578 19.4258 13.9568
40 21.5467 20.0025 17.9857 12.0127
50 20.3859 18.7621 16.2456 11.6321
60 19.5321 18.0056 15.0012 10.5212
70 18.4521 16.0527 13.7564 9.2451
Average 21.5156 19.6010 17.1245 12.0824
c20d10k
20 26.0014 24.4253 22.8342 17.7586
30 24.9532 22.6752 21.5062 15.9802
40 22.4251 21.9546 20.0412 13.7542
50 21.5621 19.4316 18.8562 11.9892
60 20.1425 19.0012 17.0124 11.0016
70 19.1478 17.5242 15.9351 10.0142
Average 22.3720 20.8354 19.3642 13.4163

Overall Average

(All Datasets) 20.3092 18.3543 15.2432 9.9094

| 9

25
=4=N[atnx -Apnon

=i=VDF
=e=NPF-VDF
===TB-NPF-VDF

]
=
1

|

Runtime (in Sec.)
L =

Pl

0 30 40 50 60 70

min_sup(%o)

Figure 5.3 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for chess Dataset

25 1 == atrix -Aprion
~8-VDF
~207 —#—NPF-VDF
ol
- =i TE-NPF-VDF
E 15 -~
=
-E 10 -
as -
0

ot

a0 30 40 50 60 70

min_sup(%o)

Figure 5.4 Runime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for mushroom Dataset

|97

307 4= Matrix -Apriori
Js @~ VDF
- et NPF.-VDF
w 20 - vim TB-NPF.VDF
£
S 15 -
5 10 -~
=
5 .
a

20 30 40 50 a0 70

min_sup(%o)

Figure 5.5 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for t25i10d10k Dataset

30
=—fp—NIatnx -Apnon
25 - == DF
E‘ = NPF-VDF
20 -
f‘; i TB-WNPF-VDF
o 15 -
ﬁ 10 -
A
5 -
0

20 30 40 30 =10 70

min_sup(%o)

Figure 5.6 Runtime of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for c20d10k Dataset

| 98

Table 5.22 Results of t-test

Dataset p-value
chess 1.207x10™%
mushroom 6.785 x10°
t25i10d10k 5.611x10°%
c20d10k 0.0002914

The reason for enhancing the performance is that the concurrent tasks using a
multithreaded approach speeds applications up, reduce the time required for execution
and utilizes CPU effectively. With novel pattern generation, it generates less number
of candidate itemsets than the existing ones. Further, it scans the database only once

during the entire process.
5.5 Chapter Summary

Numerous FPM algorithms have been introduced in the field of Data Mining.
Each algorithm has its own merits and demerits and not suits for many real-life
scenarios. In this research article, a new approach, TB-NPF-VDF has been introduced
to discover the frequent patterns that combine the power of VDF, NPF and
multithread concept in an efficient way. Experiments were carried out with real-time
datasets using Python implementation for the existing and proposed method, and it
has been proved that the TB-NPF-VDF outperforms the other sequential approaches
in terms of execution time and memory. The main advantage of this method is that it
discovers the frequent patterns with less amount of time and saves memory with
jagged array representation for the VDF matrix. Though, the TB-NPF-VDF reduces
the runtime and memory with multithreading and jagged array, the multithreading has
inherent demerits, thus the usage of GPU has been introduced in the next chapter for

reducing the runtime and memory significantly than the TB-NPF-VDF.

| 99

| 100

‘Chapter - 6

GNVDF: A GPU-ACCELERATED NOVEL ALGORITHM
USING VERTICAL DATA FORMAT AND
JAGGED ARRAY

CHAPTER -6

GNVDF: A GPU-ACCELERATED NOVEL ALGORITHM
USING VERTICAL DATA FORMAT AND
JAGGED ARRAY

Research is to see what everybody else has seen, and to think what nobody else has taught

-- Albert Szent-Gyorgyi

6.1 Background

Data Mining (DM) is a part of Knowledge Discovery in Databases (KDD)
[HD,16] and explores the hidden patterns from transactional databases for making
business decisions. It is being associated with many fields such as database systems,
data warehousing, statistics, machine learning, information retrieval, and high-level
computing [HPK,12],[LS,20]. It is also supported by other sciences like neural
networks, pattern recognition, spatial data analysis, image databases and signal
processing [HPK,12],[LS,20]. Frequent Pattern Mining (FPM) is a computationally
crucial step in DM [VA,15]. It is used to determine the frequent patterns and
associations from databases such as relational and transactional databases and other
data repositories. The Apriori is one of the most significant algorithms,
which generate the frequent itemsets for the boolean association rule. It has many
problems such as more database scan and I/O cost, a large amount of time and
memory in finding frequent itemsets. So, the researchers have done several

enhancements to Apriori in the last two decades.

However, enhancing execution speed and reducing memory requirements are
the essential parameters while determining the frequent patterns nowadays because of

the rise of big data in various domains and sources in human endeavour. Also, when

| 101

the transactional database size increases, demand for storage is increased and requires
high-speed algorithms to find frequent patterns. But with a single-threaded approach,
it's tough to minimize time. The GPU accelerated computing employs GPUs along
with CPUs. It enables superior performance by supporting a parallel programming
paradigm with multiple cores. It saves time and cost in scientific and other high

computing tasks [AFB®,14].

Thus, the research work introduced in this chapter uses GPU acceleration for
finding the frequent patterns with Novel pattern formation using Vertical Data Format
(GNVDF). In this, the candidate i-itemsets is divided into two buckets viz., Bucket-1
and Bucket-2. Bucket-1 contain all the possible items to form candidate-(i+1)
itemsets. Bucket-2 has the items that cannot include in the candidate-(i+1) itemsets.
It also employs a compact data structure called jagged array to minimize the memory
requirement and also remove common transactions among the frequent 1-itemsets.
It also utilizes a vertical representation of data for efficiently extracting the frequent
itemsets by scanning the database only once. Further, the GPU acceleration enhances
the execution speed of the algorithm. The proposed algorithm was implemented using
Python and tested with four standard benchmark datasets and compared the same
without the GPU usage. The comparison result revealed that GNVDF with GPU

acceleration is faster by 94% than the method without GPU acceleration.
6.2 Graphical Processing Unit

It is a device specifically designed for graphics processing. Two types of
GPUs exist in the market are i) integrated and ii) discrete. The integrated GPUs are
embedded alongside the CPU whereas the discrete GPUs comes as a distinct chip

built up in a separate circuit board and is typically attached to a PCI express slot.

| 102

GPUs are widely used in large-scale hashing and matrix computations because it
supports parallelism and serve as the base for mining and machine learning.
CUDA and OpenCL are two popular GPGPU programming framework tools.
NVIDIA has designed a parallel computing platform and programming called
Compute Unified Device Architecture (CUDA) [LSHW,15],]WDY,13].
The CUDA-based program can only be run on the NVIDIA-produced GPU. A typical
CPU may contain four or eight cores, an NVIDIA GPU consists of thousands of
CUDA cores and a pipeline that supports parallel processing on thousands of threads,

increasing the speed significantly.

With Numba, the Python developer can quickly enter into GPU-accelerated
computing. It makes use of both GPU and CPU to facilitate processing-intensive
operations viz., deep learning, analytics, and engineering applications. The CUDA
Python and Numba help to enhance the speed by targeting both CPUs and NVIDIA
GPUs. With this advantage of CUDA python and Numba, the implementation of this
proposed work will be GPU accelerated. Numba is compatible with Windows 7 and

later (32-bit and 64-bit), Python 3.6 or later, and Numpy versions 1.15 or later.

6.2.1 Processing Flow of CUDA

In a typical CUDA programming, the data is first sent from the main memory
to the GPU memory, then the CPU sends instructions to the GPU, then the GPU
schedules and executes the kernel on the available parallel hardware, and finally
resulting data are copied back from the GPU memory to the main memory.
The processing flow of CUDA is illustrated in Figure 6.1. When using CUDA,
the developers can program in popular languages such as C, C++, Fortran, Python and

MATLAB and express parallelism through extensions in the form of a few keywords.

| 103

CPU

1 Copy processing data]

2 Instruct the processing]

4 Copy the result J

Memory 5 Execute parallel }
for GPU / < in each core
' v -
GPU 7
(GeForce 8800) LI

-

Figure 6.1 Processing Flow of CUDA

6.3 Proposed Methodology

The main objective of the proposed work is to find the essential frequent
itemsets from the transactional database with less memory space and time by ignoring
the least probable ones. The method used a jagged array storage structure [WXXS,18]
and GPU to minimize memory usage and execution time. The proposed method
GNVDF* first removes the null/void transactions in the dataset. Null/void transactions
are those which contain only one item. Then the dataset is scanned once and

converted into VDF format.

“Sumathi, S.Murugan, "GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using
Vertical Data Format Approach and Jagged Array”, International Journal of Modern Education and Computer
Science (IJMECS), ISSN: 2075-0161 (Print), ISSN: 2075-017X (Online), Vol.13, No.4, pp. 28-41, August 2021.

DOI: 10.5815/ijmecs.2021.04.03 (UGC Care List - 11, Scopus Indexed).

| 104

The Support Count (SC) for each item is calculated by counting the number of
transactions that contain each item. Now the candidate 1-itemset C; is formed.
Next, the frequent 1-itemset is formed by removing the items whose SC<min_sup(d)
and storing it in jagged array representation [SM,18] in sorted order based on SC.
From L; the common transactions among all items are determined either by
intersecting or ANDing the transaction in each item, and it is preserved in the
Common Transaction List (Crip jist). The transactions in Crip jist's are removed from
each item in Ly, forming the final frequent 1-itemset. The SC for each item in L; is
updated by SC - n, where n is the number of transactions in Crip jist. Next, the new
min_sup (dnew) IS determined as dnew = 0 - N, and it will be the min_sup from the

2" jteration onwards.

Before finding the frequent 2-itemset, the final frequent 1-itemset is divided
into two logical buckets, LB; and LB, respectively. LB; contains all the items whose
SC = Jnew, and the rest will be placed in LB,. The itemset combinations among the
items in LB; are least probable of being a candidate 2-itemset because the SC of each
item is equal to Jnew. SO it is not considered for generating candidate 2-itemset.
The candidate 2-itemsets patterns are generated by combining each item Iy in LB; with
each item Iy in LB, and each item I, in LB, with I,+1 in LB, until the last item in LB,.
The itemset combination that ends with the last item in LB will be placed in C;, » and
the rest in C, 1. From C; ; and C; », the items whose SC below the dpew IS removed as

infrequent and formed L, ; and L, ».

For generating candidate 3-itemset, each itemset I in L 1 is combined with the
next item Iy, in LB after the last item in I,. Similar to the previous iteration,

the combinations that end with the last item in LB, are placed in C3 , and the

| 105

rest in C3 ;. It is noted that the itemset combinations in L, , are not used in the
formation of candidate 3-itemsets. The Lz ; and L3z » were formed by removing the
infrequent itemsets in C3 1 and Cs . The process is continued until Ly 1 is not null.
Further, to increase the execution speed of the proposed method, it is being
accelerated with GPU. The proposed algorithm is shown in Algorithm 6.1, and the

workflow diagram in Figure 6.2.

Algorithm 6.1 GNVDF: An algorithm for finding frequent itemsets
Input : D - a dataset with n transactions;
0 - minimum support threshold;
Output : Frequent patterns;
1: D < eliminate_null(D);
2: vdf € scan D and convert it in VDF;
3: Li< one_frequent_itemset(vdf, o);
4: Crp it € find_common_TID(L,);
5: L;€ remove the transactions in Crip jist for each item in Ly;
6: Jnew € 0 - number of transactions in Crip jist;
7: LB; € {vfrequent 1-itemset | SC=bnew };
8: LB, <« {Vfrequent 1-itemset | SC > dnew};
9: Ly, Lo o € find_two_freq_itemset(LB1,LB2,dnew);
10: i=2;
11: whileL; ;1 #@ do

12: Li+1 1,Li+1 2 € n_frequent_itemset(L; 1,LB2,0new);
13: i=i+l1;
14: end while

procedure eliminate_null(D-a dataset with n transactions)

1: foreach T;eDdo

| 106

2 cnt<&-count the number of items in Tj;
3 if cnt == 1 then

4: remove T; from D;

5 end if;

6: end for;

7: return D;

procedure one_frequent_itemset(D: Dataset after removing null transactions;
o :minimum support threshold)
1: L, <d;
for each item; in D do

TIDjist€transactions in which item; occurs;

SC<count the number of transactions in TIDjig;

if SC > o then

add {item;, TIDjist, SC} into Ly;
end if

end for

sort L; and store it in jagged array format;

10: return Ly;

procedure find_common_TID (L;: frequent 1-itemset)

1: n<find the number of items in Ly;

2: Crpist<{TIDiisu N TIDjistz N... N TIDjistn};

3: return Crip ist;

procedure two_freq_itemset (LB;: frequent 1-itemsetl, LB,: frequent
1-itemset2, 4:minimum support)

1: last_item<find last item in LB;

2 for each item; in LB; do

3 for each item; in LB, do

4: new_pattern < <itemjitem;>;
5

new_tid < TIDs(item;)NTIDs(item;);

| 107

6: new_sc<-count the transactions in new_tid;

7: if new_pattern contains last_item then

8: append{new_pattern,new_tid,new_sc} in C; »;
9: else

10: append{new_pattern,new_tid,new_sc} in C; i;
11: end if

12: end for

13: end for

14: Ly 1€{C51|SC(C; 1) >},
15: Lz_zé{Cz_z | SC(C2_2) > 5},
16: return Ly g, Lo 2;

procedure n_frequent_itemset (Lii: frequent i-itemsetl, LB,: frequent
1-itemset2, dnew: MiNimum support)

1: foreach item; in L; ; do

2 last_item<find the last item in item;;

3 for each item; in LB after last_item do

4 new_item&{<itemjitem;>};

5: new_tid<TIDs(item;)N TIDs(item;);

6 new_sc<-count the transactions in new_tid;

7 if new_item contains last element in LB, then

8 append{new_item,new_tid,new_sc}in C, »;
9 else

10: append{new_item,new_tid,new_sc}in C, 1;
11: end if

12: end for

13: end for

14: Ly 1€{Cn1]SC(Cn1)>d};
15: Ly 2€{Cn 2| SC(Cn 2) > o};

16: return Ly 1, Ly 2;

| 108

The main advantage of the proposed method is that it reduces the number of

candidate itemsets to be generated in each iteration because the itemsets in L; o,

for i > 3 will not be considered for creating candidate itemsets and removal of items in

CTL in final L;. Additionally, GPU and jagged array enhance the performance in

terms of speed and usage of memory.

Transactional
Database D

[Remove null transactions in D]

l Scan D and convert into VDF]

v

[Generate candidate 1-itemset (C,)]

min_sup(8)

~
Generate frequent 1-itemset (L1) &
Represent the stored L in Jagged

Determine count of each
candidate in VDF

Compare candidate SC with

array representation

T——»[Determine CTL |
Remove itemsin CTL from L1
N
Final frequent 1-itemset }4— Update &, <~ 6-n
Split L,
| LB, | [LB,
Generate C, candidates using
LB, and LB,
[] as)
(Compare candidate SC with & | ..
v A 4
6 Lt || L
i=
v
. | [C. |
Compare candidate SC with § -

ETE

i=i+1

\

y

Stop and print the Frequent)

[Patterns

Figure 6.2 Workflow of GNVDF

6.3.1 Memory Requirement Calculation

From [DMPW™,10],[SM,18], it was observed that the memory requirement

using a jagged array structure for the frequent itemsets could be calculated based on

the following equation:

| 109

™ = Z:Tset' “TM, —rbytes, ... Equation (6.1)

where, TM; is the total memory required for the candidate i-itemset, and rbytes; is the
memory occupied by the infrequent/rare items in the candidate i-itemset.
By subtracting rbytes; from TM;, the memory for L; i.e. frequent i-itemsets can be

found. TM; and rbytes; were calculated using Equations 6.2 and 6.3 respectively.

™, = > SG

i item
Viteme{itemset; }

x sizeof (tid) + sizeof (item) ... Equation (6.2)

rbytes, = > sC.

item

x sizeof (tid) + sizeof (item) ... Equation (6.3)
Viteme{in— frequent; }

As in [DMPW™,10], the GNVDF also used the same jagged storage structure
for storing frequent itemsets, and the amount of memory requirement was calculated
as follows. It first fetches the common transactions among items in the frequent
1-itemsets and then removes them from frequent 1-itemsets. Suppose if the frequent
1-itemset contains n items say item;, item,, items,..., item, and the corresponding TID
lists say TID-List;, TID-List,, TID-Lists,...,TID-List,, then the common TIDs(Crp)
among the n items were found by set intersection operation using Equation 6.4 shown
below.

C ={TID—List}~{TID—List,}n...~{TID—List,} ... Equation (6.4)
The memory space required for Crp was calculated using Equation 6.5.

length(Cryp) .
CM = sizeof (Cyyp) ... Equation (6.5)

i=1
Since the method removes the Crp from frequent 1-itemsets, the Ctip need not

be repeated in the subsequent frequent itemsets, saving memory space considerably.

| 110

The amount of memory saved (MS) for the entire dataset was calculated using

Equation 6.6.

itemset; #¢

MS = count(itemset,) xCM + Z {count(itemset. ,) + count(itemset. ,)}xCM

i=2

...Equation (6.6)

where, count(itemset;), count(itemset; 1), and count(itemset; ,) refer to the number of
items in frequent 1-itemset, first and the second part of frequent i-itemsets,
respectively. Thus, the total memory required for the frequent itemsets of the entire

dataset using the proposed method was calculated using Equation 6.7.

itemset; #¢

T o ={ Y. TM, —rbytes}—MS ... Bquation (6.7)

i=1
6.3.2 lllustration by an Example

The vertical representation of transactional dataset D shown in Table 6.1 is
considered for illustrating the proposed methodology.

Table 6.1 Vertical Data Format of D

Item Transaction ID's (TID's)
{3,4,5,7,8,9}
{1,3,4,5, 6}
{0,2,3,4,5,7,8,9}
{0,3,4,5,7,8, 9}
{0,1,2,3,4,6,7,8,9}
{1,3,5,6,8,9}
{0, 1, 3}

{0, 1,5, 6,9}
{0,1,3,6,8,9}
{0, 7}
{0,1,2,6,7,8, 9}
{0,1,3,4,5,6,7,8,9}

I X —T0TKQ DD QOO0 0T ®

o

The transaction database D contains 12 items viz., {a, b, ¢, d, e, f, g, h, I, Kk,

m, p}. Each item is represented by a row containing the name of the item and the

111

transactions in which the item occurs (TIDs) [SNM,15]. Let o is 6. From Table 6.1,

the candidate 1-itemset is calculated. The candidate 1-itemset contains all the items

in D, the TIDs in which the item occurs and the SC. It is shown in Table 6.2.

Table 6.2 Candidate 1-itemset(C,)

ltem

TIDs

wn
@]

a {3,4,5,7,8, 9}
{1,3, 4,5, 6}
{0,2,3,4,5,7,8, 9}

{0,3,4,5,7,8, 9}

{0,1,2,3,4,6,7,8, 9}

{1,3,5,6,8, 9}

{0, 1,3}

{0, 1,5, 6, 9}

{0, 1,3, 6,8, 9}

{0, 7}
{0,1,2,6,78,9}

{0,1,3,4,5,6,7,8, 9}

b
c
d
e
f
9
h
[
k
m
P

O© NN O O1TWwOo © N o o1 o

From the table above, the items viz., b, g, h and k are removed as infrequent

because the items do not satisfy 6. The frequent 1-itemset is shown in Table 6.3.

Since the common transactions (CTL) are stored in Table 6.4, they are removed from

each item in L,, the final L; is formed, and it is shown in Table 6.5. Now the new_min

is calculated by removing the number of items in CTL @S dpew =0 -n=6 -2 = 4,

The logical buckets from final Ly, i.e. LB; and LB, are shown in Tables 6.6 and 6.7.

Table 6.3 Frequent 1-itemset (L,)

1-itemset TIDs |
a 3/4/5/7|8|9
f 1/3/5/6/8|9
i 0/1/3/6/8|9
d 0/3/4/5/7|8/9
m 0(1/2|6|/7/8|9
c 0(2/3/4|5/7/8]9
e 0(1/2|3/4|6|/7/8]9
D 0/1/3[4[5]6]7/8]9

| 112

To reduce the storage space requirement further, this method finds the
common transaction in which the all items occurs either by AND operation or
intersection of the TIDs of all frequent 1-itemset. i.e. {3,4,5,7,8,9}N{1,3,5,6,8,9}N
{0,1,3,6,8,91N{0,3,4,5,7.8,91N{0,1,2,6,7.8,91N{0,2,3,4,5,7,8,9}N{0,1,2.3,4,5,6,7.8.9} N
{0,1,3,4,5,6,7,8,9} = {8,9} and it is stored in CTL. The CTL is shown in Table 6.4.

Table 6.4 Common Transaction List (CTL)
CTL

Table 6.5 Final Frequent 1-itemset (L,)

1-itemset TIDs |
a 314|5|7
f 113|5]6
i 0/1(3|6
d 013|4|5|7
m 011|2|6|7
c 0123|457
e 0112|3/4/6|7
p 0/1|3|4|5/6|7

Table 6.6 Logical Bucket-1 (LB,)

1-itemset TIDs
a 314|5|7
f 13|56
i 0|1,3|6

Table 6.7 Logical Bucket-2 (LB,)

1-itemset TIDs |
d 0/3{4|5|7
m 0/1|2|6|7
c 0[23|4|5|7
e 0/1/2|3|4/6|7
p 0/1/3/4|5/6|7

The 2-itemset combinations viz., ad, am, ac, ae, fd, fm, fc, fe, id, im, ic, ie, dm,

dc, de, mc, me, mp, and ce are in C, ; and the items viz., ap, fp, ip, dp, mp, cp and ep

| 113

are stored in C, . The possible combinations viz., af, ai and fi need not be generated.
It is shown in Tables 6.8 and 6.9 respectively.

Table 6.8 Candidate 2-itemset - Part |

C2_1 TIDs SC
ad 3,4,5,7 4
am 7 1
ac 3,4,5,7 4
ae 3,4,7 3
fd 3,5 2
fm 1,6 2
fc 3,5 2
fe 1,3,6 3
id 0,3 2
im 0,1,6 3
ic 0,3 2
ie 0,1,3,6 4
dm 0 1
dc 0,3,4,57 5
de 0,34,7 4
mc 0,2 2
me 0,1,2,6,7 5
ce 0,23,4,7 5

The items viz., am, ae, fd, fm, fc, fe, id, im, ic, dm and mc are infrequent in
C, 1 and no item is infrequent in C, ,. Therefore, the frequent 2-itemsets are stored in

L, 1 and L, in jagged array notation as shown in Tables 6.10 and 6.11 respectively.

Table 6.9 Candidate 2-itemset - Part |1

C2_2 TIDs SC
ap 3,4,57 4
fp 1,356 4
ip 0,1,3,6 4
dp 0,3,4,57 5
mp 0,1,6,7 4
cp 0,3,4,57 5
ep 0,1,3,4,6,7 6

The candidate 3-itemsets from L, ; and LB, viz., adm, adc, ade, ace and dce,

| 114

stored in Cs 1 and the patterns adp, acp, iep, dep, mep, dcp and cep are kept in C3 , as

shown in Tables 6.12 and 6.13 respectively.

Table 6.10 Frequent 2-itemset - Part |

L2_1 TIDs
ad 5
ac
ie
dc
de
me
ce

o|o|o|o|o|lw|lw

N R W w| k|~

W N~ AWl o

Mo|Nu|o| N~
~

Table 6.11 Frequent 2-itemset - Part 11

Lo > TIDs
ap
fp
ip
dp
mp
cp
ep

o|lo|lo|o|o|lr|lw

RN R ENIES

w| o ~|w|a| o

MoV
~

Table 6.12 Candidate 3-itemset - Part |

Cs 1 TIDs SC
adm 7 1
adc 3,4,5,7 4
ade 34,7 3
ace 3,4,7 3
dce 0,347 4

Table 6.13 Candidate 3-itemset - Part |1

Cso TIDs SC
adp 3,4,57 4
acp 3,4,5,7 4
iep 0,1,3,6 4
dep 0,34,7 4
mep 0,1,6,7 4
dep 0,3,4,57 5
cep 0,3,4,7 4

| 115

The L3 ;1 and L3 » are shown in Tables 6.14 and 6.15, respectively. Similarly, C4 ; and
C,4 » are shown in Tables 6.16 and 6.17, respectively. L4 1 and L4 » are Ls 1 = {} and

L4 2 is shown in Table 6.18.

Table 6.14 Frequent 3-itemset - Part |

|_3_1 TIDs
adc |34 |5 |7
dce |0 |34 |7

Table 6.15 Frequent 3-itemset - Part 11

L3, TIDs
adp 5
acp
iep
decp
dep
mep
cep

o|o|o|o|lo| w|lw

wWlrRrlwlwl kPSS

O~ DWW Ol

SUENIENING, | R Y IEN] N
~

Table 6.16 Candidate 4-itemset - Part |

Cs1 TIDs SC
adce 34,7 3

Table 6.17 Candidate 4-itemset - Part Il
Cso TIDs SC
adcp 3,4,57 4
dcep 0,347 4

Table 6.18 Frequent 4-itemset - Part 11

L, TIDs
adep (34 |5|7
dcep |03 (4|7

Now, L4 1 is an empty list, so the algorithm terminates. It is observed from the
experiment that the time needed for finding frequent items for sample dataset D in the

example without the use of GPU is 0.8111 sec, whereas the wall time is 0.0073 ms

| 116

with GPU. The total memory requirement for the frequent itemset for the above
dataset using the method in [SM,18] is TM=124+210+137+32=503 bytes. By using
GNVDF, the memory requirement for the common transaction is CM = 2+2 = 4 bytes
and the amount of memory saved using the proposed method is MS = (8x4) + {(7x4 +
7x4) + (2x4 + 7x4) + (0x4 + 2x4)} = 32 + 56 + 36 + 8 = 132 bytes. Therefore, the
final memory requirement is TMsing = 503 - 132 = 371 which is 26.24% of memory
saved for this example dataset compared to the memory requirement in [SM,18].
It is also noted that the number of common transactions is directly proportional to the

amount of memory saved.
6.4 Experimental Results and Discussion

The proposed algorithm was implemented using Python with CUDA Toolkit
with NVIDIA GPU. An extensive experiment was conducted using four real-time
datasets viz., chess, mushroom, t25i10d10k and c20d10k to evaluate the performance
of GNVDF. The datasets and their details were shown in Table 1.4. They were
obtained from the FIMI repository and an open-source data mining library. The reason
for choosing those datasets is that many researchers used those bench-mark datasets in
Frequent Itemset Mining (FIM) and Association Rule Mining (ARM) based research.
The runtime performance of the proposed method without GPU acceleration was
obtained for each dataset, with the minimum threshold values ranging from 20% to

70% and is shown in Table 6.19.

From Tables 6.19 and 6.20 it was observed that when the number of items and
transactions in a dataset increases, the time required for finding frequent patterns also
increases. In general, there is an inverse relationship between the min_sup threshold

and the time needed to determine the frequent patterns. i.e. when the min_sup

| 117

threshold is increased, the number of generated candidate itemsets, followed by

frequent patterns, is minimized, consuming less time for the higher threshold.

Table 6.19 Runtime (in ms) Performance of the Proposed Algorithm without GPU

DS'— _
MS*+ chess mushroom t25i10d10k ¢20d10k
20 10759.6 14501.6 16332.5 16334.2
30 9845.5 13464.2 16225.8 16006.2
40 7972.0 11103.8 13885.7 15441.2
50 7101.7 10224.4 12645.6 14956.2
60 6293.4 9834.0 11101.2 13412.4
70 5082.2 8253.0 9256.4 12035.1
Average 78424 11230.17 13241.2 14697.55

*DS-Dataset "MS-min_sup(d)

Similarly, the proposed algorithm was executed with GPU acceleration using

the same minimum support range and results were tabulated in Table 6.20.

Table 6.20 Runtime (in ms) Performance of the Proposed algorithm with GPU-acceleration
DS _,
MS” |
20 119.5511 145.0160 161.7079 161.7248
30 107.0163 138.0940 156.0173 158.4772

chess mushroom 125i10d10k c¢20d10k

40 83.9158 117.2770 129.7729 131.9761
50 73.2134 104.5091 108.3670 110.6496
60 64.2184 88.8096 102.4380 105.3511
70 53.4968 74.0512 83.6424 92.9924
Average 83.57 111.29 123.66 126.86

*DS-Dataset 'MS-min_sup(d)

The graphical representation of the runtime performance of each dataset with

and without GPU usage was illustrated in Figures 6.3 to 6.6.

| 118

12000

10000

3000

6000

Euntime in ms

4000

2000

0 i
0 20 40 60 80

min_sup(%)

Figure 6.3 Runtime Performance of GNVDF with and without GPU-acceleration for
chess Dataset

16000 -
e Without GPTT
14000 - il With CPT

12000 -
10000 -
000 -

6000 -

Euntimie in ms

4000 -
2000 -

0 —i——aG—-<=_a _ _ !
0 20 40 60 80

min_sup(%)

Figure 6.4 Runtime Performance of GNVDF with and without GPU-acceleration for
mushroom Dataset

| 119

wip Without GPU
sl With GPU

z 12000 -

Runtime in n
&o
=
=
=
1

ﬂ _—%_I
0 20 40 60 50

min_sup(%)

Figure 6.5 Runtime Performance of GNVDF with and without GPU-acceleration for
125i10d10k Dataset

13000 - et Without GPU

16000 - i With GPU
14000 -

= 12000 -
=

Runtime in
@ =
= =
= =
(=T —1

L L

ﬂ -—%_I
0 20 40 60 80

min_sup({%)

Figure 6.6 Runtime Performance of GNVDF with and without GPU-acceleration for c20d10k
Dataset

| 120

Figures 6.3 through 6.6 revealed that the GPU acceleration significantly
enables the execution speed of the proposed methodology, and GNVDF with GPU is
faster by 94% when compared with GNVDF without GPU acceleration. The reason
for the performance enhancement is that the GPUs have many computing cores that
allow the parallel execution of computation-intensive tasks. Since the GNVDF uses
the VDF approach, the number of database scans is restricted to one [SK,19] for
determining each item's support count, which in turn reduces the overtime for finding
the frequent patterns. But, VDF requires more memory for additional information
like TIDs than HDF [SK,19], so a jagged array has been used to minimize memory
space is an advantage. Further, the elements in CTL removed from frequent 1-itemset

save the memory space considerably more than the existing classical algorithms.

6.5 Chapter Summary

A GPU-accelerated novel method for finding the frequent itemset called
GNVDF has been proposed in this research article. It uses an innovative approach to
discover the candidate and frequent itemsets by removing unnecessary itemsets to
form the subsequent itemsets. It also utilizes GPU for speeding up the process. It also
empowers the use of a jagged array storage structure and removes the common
elements in 1-frequent itemsets. With GPU acceleration and an innovative way of
determining itemsets, the time required is significantly decreased. Similarly, with a
jagged storage structure, the memory requirement is also minimized than the classical
algorithms. From the extensive experiments made, it is observed that the GNVDF
with GPU is 94% faster than with GNVDF without GPU and also proved that it suits
both sparse and dense datasets. Further, the use of the VDF approach restricts the

database scan to one.

1121

| 122

‘Chapter - 7

CONCLUSION

CHAPTER -7
CONCLUSION

In the end, when it's over, all that matters is what you've done

--Alexander the Great

The discovery of frequent patterns, associations, and correlation relationships
among the huge amounts of data is useful in marketing, decision analysis,
and business management. A popular application is "market basket analysis",
which analyzes the buying behaviours of the customers by searching for itemsets that
are bought together frequently. Many efficient and scalable algorithms have been
contributed by the researchers for Frequent Pattern Mining (FPM), from which the
correlation and association rules can be derived. Though there are two decades of
research in FPM, the prolonged processing time and huge memory consumption have
become the major issues. So, it necessitates developing better algorithms with reduced
runtime and less memory usage. Thus, this research work concentrates on developing
efficient FPM algorithms for finding frequent patterns in such a way that the runtime

and usage of memory to be reduced than the existing algorithms.
7.1 Summary of the Contributions

In this thesis, a framework called SUMsFPM has been developed to minimize
the runtime and memory usage in discovering the frequent patterns from transactional
databases. The thesis mainly concentrates on two major issues associated with FPM
and it contains three categories of research models viz., time-efficient (RISOTTO),
memory-efficient (JAB-VDF) and both time and memory-efficient (TB-NPF-VDF

and GNVDF) models. All models were implemented using Python programming.

| 123

http://www.azquotes.com/quote/684379
http://www.azquotes.com/author/5835-Alexander_the_Great

The key contributions made in this research work are summarized below:

The prefixed-itemset storage structure proposed in the literature stores the
frequent i-itemsets as <prefix-key, values>. It uses the values in the frequent
i-itemset of prefixed-itemset storage for generating candidate (i+1)-itemset
combinations, thereby reducing the number of candidate itemsets to be
generated during each iteration. But for determining the Support Count (SC) of
each candidate (i+1)-itemsets, it scans the dataset again and again. So, in order
to reduce the number of database scans and candidate itemsets, the RISOTTO
method proposed in the thesis combines the prefixed-itemset storage structure
with Vertical Data Format (VDF) approach, which restricts the database scans
to one. Further, the RISOTTO algorithm avoids storing the frequent i-itemsets
with only one item in values because with one item, there is no possibility for
(i+1)-itemset combinations which saves both time and memory. It is found
from the experimental results that the RISOTTO algorithm outperforms the
existing algorithms viz., prefixed-itemset storage and VDF i.e. RISOTTO
reduces the runtime from 22.0163 to 13.5594 and from 18.3543 to 13.5594
seconds on an average when compared with prefixed-itemset storage and VDF

respectively.

It is noted that the VDF is faster and requires only one scan of the database
than HDF. With the array storage structure adopted by VDF, the memory
required for storing tid's is huge. With a varied number of tid's for each item,
the memory was underutilized than the assigned. Thus, to save memory space
considerably, JAB-VDF, a jagged array-based VDF has been proposed in this

research work. Based on the experimental results, it has been observed that the

| 124

i)

JAB-VDF reduces memory consumption from 1.5425 GB to 0.7609 GB on an

average when compared with the 2-D array used by VDF with 6=20%.

Many of the VDF-based research works in the literature is based on a
single-threaded approach. It is noted that the multithreaded approach saves
time to complete the task and also gives an improved throughput than the
single-threaded approach. By considering these advantages, a multithreaded
based FPM algorithm with a novel way of generating patterns using VDF
called TB-NPF-VDF has been proposed in this thesis. With the extensive
experiments, it has been identified that the TB-NPF-VDF reduced the runtime
from 20.3092 to 9.9094 seconds on an average than the Matrix-Apriori.
Similarly, the TB-NPF-VDF declined the runtime from 18.3543 to 9.9094,
from 15.2432 to 9.9094 on an average when compared with VDF and
NPF-VDF (proposed work with single-threaded approach) respectively.
The usage of the jagged array in TB-NPF-VDF saves memory significantly as

in JAB-VDF.

The usage of multithreading in the TB-NPF-VDF method optimizes the
processor usage and thereby increases the speed of the processes than the
single-threaded approach. But, when the database size increases, it's tough to
minimize runtime even with multithreading on a single CPU. With GPU
accelerated computing, the GPUs can be employed along with CPUs and it
supports parallel programming paradigm with multiple cores. Thus, the
research work used GPU acceleration for finding the frequent patterns with a
novel way of generating patterns using VDF called GNVDF. It is evident from

the experiment that the GNVDF is faster when compared with the GNVDF

| 125

without GPU acceleration. i.e. the usage of GPU in GNVDF and the novel
pattern formation enhances the speed by 94% with GPU acceleration.
Further, the removal of common transactions from frequent 1-itemset saves
the memory space considerably than JAB-VDF. It is also evident from the
results the GNVDF is the more efficient method than the other proposed
methods and existing methods viz., prefixed-itemset based storage, VDF,

Matrix-Apriori, NPF-VDF and GNVDF without GPU-acceleration.

7.2 Limitations and Future Research Directions

The proposed algorithms has achieved an improved efficiency in finding

frequent patterns in terms of time and memory as discussed in the section 7.1, but all

the proposed models were experimented with four real-time and synthetic datasets

downloaded from the repositories and not tested with dynamic transactional datasets

and also suitable only for the transactional databases.

The following are some of the future research directions that can be done with

the proposed models:

The research works may be extended by evaluating with dynamic datasets and
also experimenting with other types of datasets such as unstructured text,

video and audio.

. Map-Reduce based parallel processing can be applied with cloud resources

and data can be stored in a distributed storage system in order to handle the big
data.
Mine several kinds of frequent patterns such as frequent closed itemsets,

max-patterns, sequential patterns, and constraint-based frequent patterns.

| 126

7.3 Endnote

This research work has formulated a new architectural framework called
"SUMsFPM", which incorporates four methods viz., RISOTTO, JAB-VDF,
TB-NPF-VDF and GNVDF for minimizing the runtime and memory requirement in
finding frequent patterns from transactional databases than the existing algorithms.
The ideas projected in this thesis are original, innovative and unique and it is not
present elsewhere in the literature and tested its effectiveness using four datasets both
real-time and synthetic types derived from the FIMI repository (http://fimi.ua.ac.be)
and an open-source Data Mining Library (http://www.philippe-fournier-
viger.com/spmf). It has been proved from the experiments that the proposed
algorithms enhance the performance more than the state-of-art methods in terms of
reduced runtime and memory usage. This work is non-existent earlier in literature and

the same is endorsed by a few journals and conferences for its veracity.

| 127

http://www.philippe-fournier-viger.com/spmf
http://www.philippe-fournier-viger.com/spmf

| 128

REFERENCES

REFERENCES

[ABH,14]

[AFB? 14]

[AFB® 14]

[AH, 14]

[AH,15]

[AHGA",18]

[AP,13]

[AR,14]

[BDH, 16]

[BGD,15]

Aggarwal, C. C., Bhuiyan, M. A., & Hasan, M. A. (2014). Frequent
pattern mining algorithms: A survey. In Frequent pattern mining,
Springer, Cham.

Albert, D.W., Fayaz, K., & Babu, D.V. (2014). HSApriori: high speed
association rule mining using apriori based algorithm for GPU.
Int. J. of Multidisciplinary and Current research.

Albert, D. W., Fayaz, K., & Babu, D. V. (2014). Exploiting Parallel
Processing Power of GPU for High Speed Frequent Pattern Mining.
International Journal of Computer Engineering and Applications, 7(2),
71-81.

Aggarwal, C. C., & Han, J. (2014). Frequent Pattern Mining. Springer
International Publishing Switzerland, ISBN: 978-3-319-07820-5,
ISBN 978-3-319-07821-2 (eBook).

Agyapong, K. B., & Hayfron-Acquah, J. B. (2015). An Improved
Apriori Algorithm Established on Probability Matrix. International
Journal of Scientific & Technology Research, 4(11), 125-128.

Agra, ., Herawan, T., Ghani, N. A., Akhunzada, A., Ali, A., Razali,
R.B., & Choo, K. K. R. (2018). A novel association rule mining
approach using TID intermediate itemset. PloS one, 13(1), 01-32.
Alwa, A. R. H., & Patil, B. A. V. (2013). New Matrix Approach to
Improve Apriori Algorithm. International Journal of Computer
Science and Network Solutions, 1(4), 102-109.

Aguru, S., & Rao, B. M. (2014). A Hash Based Frequent Itemset
Mining using Rehashing. International Journal on Recent and
Innovation Trends in Computing and Communication, 2(12),
4198-4204.

Benhamouda, N. C., Drias, H., & Hireche, C. (2016). Meta-Apriori:
A New Algorithm for Frequent Pattern Detection. In Asian Conference
on Intelligent Information and Database Systems, Springer, Berlin,
Heidelberg, 9622, 277-285.

Bhandari, A., Gupta, A.,, & Das, D. (2015). Improvised Apriori
algorithm using frequent pattern tree for real time applications in data
mining. Procedia Computer Science, 46, 644-651.

| 129

[BML,14]

[BPG,17]

[CGGK,00]

[Cha,14]

[CHK,18]

[CIAH,19]

[CSS,15]

[DD,12]

[DDBC,19]

Bhat, M. P. S., Malviya, M. M., & Lade, M. S. (2014). Optimization of
MDSRRC with Matrix Apriori. International Journal of Operations
and Logistics Management, 3(2), 140-147.

Bhandari, B., Pant, B., & Goudar, R. H. (2017). ARAA: A Fast

Advanced Reverse Apriori Algorithm for Mining Association Rules in
Web Data. International Journal of Engineering and Technology
(1JET), 8(6), 2956-2963.

Chou, P. B., Grossman, E., Gunopulos, D., & Kamesam, P. (2000).
Identifying prospective customers. In Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 447-456.

Chaudhary, V. (2014). Multiple Minimum Support Implementations
with Dynamic Matrix Apriori Algorithm for Efficient Mining of
Association Rules. International Journal for Scientific Research and
Development, 2(7), 489-500.

Chon, K. W., Hwang, S. H., & Kim, M. S. (2018). GMiner: A fast
GPU-based frequent itemset mining method for large-scale
data. Information Sciences, 439, 19-38.

Chee, C. H., Jaafar, J., Aziz, I. A., Hasan, M. H., & Yeoh, W. (2019).
Algorithms for frequent itemset mining: a literature review. Artificial
Intelligence Review, 52(4), 2603-2621.

Chaudhary, R., Sharma, S., & Sharma, V. K. (2015). Improving the
performance of MS-Apriori algorithm using dynamic matrix technique
and map-reduce framework. Int. J. Innov. Res. Sci. Technol, 2(5),
2349-6010.

Dhange, N., & Dhande, S. (2012). Matrix based Efficient Apriori
Algorithm. International Journal of Advanced Research in Computer
Science, 3(4), 341-343.

Djenouri, Y., Djenouri, D., Belhadi, A., & Cano, A. (2019). Exploiting
GPU and cluster parallelism in single scan frequent itemset

mining. Information Sciences, 496, 363-377.

| 130

[DMPW",10] De Alwis, B., Malinga, S., Pradeeban, K., Weerasiri, D., & Perera, S.

[DS,16]

[DZZC,16]

[EZ,03]

[FAB,14]

[FD,11]

[FLXH*,09]

[FPS,96]

[GAF,17]

(2010). Horizontal format data mining with extended bitmaps.
In International Conference of Soft Computing and Pattern
Recognition, IEEE, 220-223.

Dhak, B. S., & Sawarkar, M. (2016). Apriori: a promising data
warehouse tool for finding frequent itemset and to define association
rules. International Journal of Engineering Research and General
Science, 4(1), 60-65.

Du, J., Zhang, X., Zhang, H., & Chen, L. (2016). Research and
improvement of Apriori algorithm. In Sixth International Conference
on Information Science and Technology (ICIST), IEEE, 117-121.
El-Hajj, M., & Zaiane, O. R. (2003). Inverted matrix: Efficient
discovery of frequent items in large datasets in the context of
interactive mining. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining,
109-118.

Fageeri, S. O., Ahmad, R., & Baharudin, B. B. (2014). An Enhanced
Semi-Apriori Algorithm for Mining Association Rules. Journal of
Theoretical and Applied Information Technology, 63(2), 298-304.
Fakhrahmad, S.M., & Dastghaibyfard, G. (2011). An Efficient
Frequent Pattern Mining Method and its Parallelization in
Transactional Databases. Journal of Information Science and
Engineering, 27(2), 511-525.

Fang, W., Lu, M., Xiao, X., He, B., & Luo, Q. (2009). Frequent
itemset mining on graphics processors. In Proceedings of the fifth
international workshop on data management on new hardware, 34-42,
Fayyad, U., Piatetsky-shapiro, G., & Smyth, P. (1996). From data
Science to knowledge discovery in databases. Al Magazine, 17(3),
37-54.

Gawwad, M. A., Ahmed, M. F., & Fayek, M. B. (2017). Frequent
itemset mining for big data using greatest common divisor technique.
Data Science Journal, 16(25), 1-10.

| 131

[GLFC",19]

[GR,13]

[GSG,16]

[GW, 10]

[HD,11]

[HD,16]

[HH,16]

[HL,15]

[HPK,12]

[HT,16]

Gan, W., Lin, J. C. W., Fournier-Viger, P., Chao, H. C., Yu, P. S.
(2019). A survey of parallel sequential pattern mining. ACM
Transactions on Knowledge Discovery from Data (TKDD),13(3), 1-34.
Guo, J., & Ren, Y. G. (2013). Research on improved Apriori algorithm
based on coding and mapreduce. In Web Information System and
Application Conference (WISA), IEEE, 294-299.

Ganesh, C., Sathyabhama, B., & Geetha, D. T. (2016). Fast frequent
pattern mining using vertical data format for knowledge
discovery. International Journal of Engineering Research in
Management & Technology, 5, 141-149.

Guo, Y. M., & Wang, Z. J. (2010). A vertical format algorithm for
mining frequent item sets. In 2010 2" International Conference on
Advanced Computer Control, IEEE, 4, 11-13.

He, Y. S., & Du, P. (2011). Improved Apriori algorithm based on
compressing transactional matrix multiplication. In Key Engineering
Materials, 460, 409-413.

Hamidi, H., & Daraee, A. (2016). Analysis of pre-processing and
post-processing methods and using data mining to diagnose heart
diseases. International Journal of Engineering(1JE), 29(7), 921-930.
Hashemzadeh, E., & Hamidi, H. (2016). Using a data mining tool and
fp-growth algorithm application for extraction of the rules in two
different dataset. International Journal of Engineering, 29(6), 788-796.
Huang, C. H., & Leu, Y. (2015). A LINQ-based conditional pattern
collection algorithm for parallel frequent itemset mining on a
multi-core computer. In Proceedings of the ASE BigData &
Sociallnformatics, 1-6.

Han, J., Pei, J., & Kamber, M. (2012). Data mining: concepts and
techniques. 3" Ed., Elsevier.

Hung, L. N., & Thu, T. N. T. (2016). Mining Frequent ltemsets with
Weights over Data Stream Using Inverted Matrix. International
Journal of Information Technology and Computer Science
(JITCS), 8(10), 63-71.

| 132

[HTDV,19]

[HYW,08]

[HYZH",13]

[IMA,15]

[IR,16]

[Jin,10]

[IMG, 16]

[JS,15]

[Kal,17]

[KK,17]

Huynh, B., Trinh, C., Dang, V., Vo, B. (2019). A parallel method for
mining frequent patterns with multiple minimum support thresholds.
International Journal of Innovative Computing. Information and
Control, 15(2), 479-488.

Hsieh, C. Y., Yang, D. L., & Wu, J. (2008). An efficient sequential
pattern mining algorithm based on the 2-sequence matrix. In 2008
IEEE International Conference on Data Mining Workshops, 583-591.
Huang, Y. S., Yu, K. M., Zhou, L. W., Hsu, C. H., & Liu, S. H. (2013).
Accelerating parallel frequent itemset mining on graphics processors
with sorting. In IFIP International Conference on Network and
Parallel Computing, Springer, Berlin, Heidelberg, 245-256.

Ibrahim, H. M., Marghny, M., & Abdelaziz, N. M. (2015).
Fast Vertical Mining Using Boolean Algebra. International Journal of
Advanced Computer Science and Applications, 6(1), 89-96.

Ishita, R., & Rathod, A. (2016). Frequent Itemset Mining in Data
Mining: A Survey. International Journal of Computer Applications,
139(9).

Jin, H. (2010). A counting mining algorithm of maximum frequent
itemset based on matrix. In IEEE Seventh International Conference on
Fuzzy Systems and Knowledge Discovery, 3, 1418-1422.

Jen, T. Y., Marinica, C., & Ghariani, A. (2016). Mining frequent
itemsets with vertical data layout in MapReduce. In International
Workshop on Information Search, Integration, and
Personalization, Springer, Cham, 66-82.

Jaiswal, R., & Soni, R. (2015). A Novel Apriori Algorithm for
Association Rules Mining. International Journal of Modern Trends in
Engineering and Research, 2(3), 374-378.

Kalpana, D. (2017). Data Mining Apriori Algorithm Implementation
Using R. International Research Journal of Engineering and
Technology, 4(11), 1810-1815.

Kumar, B., & Kumar, D. (2017). A Matrix based Maximal Frequent
Itemset Mining Algorithm without Subset Creation. International
Journal of Computer Applications, 159(6), 23-26.

| 133

[KSG,16]

[KSK,12]

[Lan,18]

[LLCL,08]

[LS,16]

[LS,20]

[LSHW,15]

[LVSM,14]

[LXYC,17]

Kaur, J., Singh, R., & Gurm, R.K. (2016). Performance Evaluation of
Apriori Algorithm using Association Rule Mining Technique.
International Journal of Technology and Computing, 2(5), 126-132.
Kumar, G. V., Sreedevi, M., & Kumar, N. P. (2012). Mining Regular
Patterns in Data Streams Using Vertical Format. International Journal
of Computer Science and Security (1JCSS), 6(2), 142-149.

Lang, Z. (2018). The improved Apriori algorithm based on matrix
pruning and weight analysis. In AIP Conference Proceedings, 1955(1),
040113-1-040113-6.

Liu, Y., Liao, W. K., Choudhary, A. N., & Li, J. (2008). Parallel Data
Mining Algorithms for Association Rules and Clustering. In Intl. Conf.
on Management of Data, 1-25.

Lodha, A., & Shrivastava, V. (2016). A Modified Apriori Algorithm
for Mining Frequent Pattern and Deriving Association Rules using
Greedy and Vectorization Method. International Journal of Innovative
Research in Computer and Communication Engineering, 4(6),
10722-10726.

Lisnawati, H., & Sinaga, A. (2020). Data Mining with Associated
Methods to Predict Consumer Purchasing Patterns. International
Journal of Modern Education and Computer Science(IJMECS), 12(5),
16-28.

Li, J, Sun, F., Hu, X., & Wei, W. (2015). A multi-GPU
implementation of apriori algorithm for mining association rules in
medical data. ICIC Express Letters, 9(5), 1303-1310.

Logeswari, T., Valarmathi, N., Sangeetha, A., & Masilamani, M.
(2014) Analysis of Traditional and Enhanced Apriori Algorithms in
Association Rule Mining. International Journal of Computer
Applications, 87(19), 4-8.

Li, Y., Xu, J,, Yuan, Y. H., & Chen, L. (2017). A new closed frequent
itemset mining algorithm based on GPU and improved vertical
structure. Concurrency and Computation: Practice and
Experience, 29(6), e3904.

| 134

[MDA,11]

[MLWY™,00]

[MR, 16]

[MSB,12]

[MYZL,16]

[NJGC,17]

[OE,12]

[OKSI,00]

[PD,16]

Mohamed, M. H., Darwieesh, M. M., & Ali, A. S. (2011). Advanced
Matrix Algorithm (AMA): reducing number of scans for association
rule generation. International Journal of Business Intelligence and
Data Mining, 6(2), 202-214.

Ma,Y., Liu,B., Wong,C.K,, Yu,P.S., & Lee,S.M. (2000). Targeting the
right students using data mining. In Proceedings of the 6"
Int. conference on Knowledge discovery and data mining, 457-464.
Mohan, V., & Rajpoot, D.S. (2016). Matrix-OverApriori:
An Improvement Over Apriori Using Matrix. International Journal of
Computer Science Engineering (IJCSE), 5(1), 1-6.

Mujawar, T. N., Shinde, S. K., & Bhojane, V. (2012). XML Data
Mining using XQuery and Improved Apriori Algorithm. International
Journal of Advanced Research in Computer Science, 3(3), 516-521.
Ma, Z., Yang, J., Zhang, T., & Liu, F. (2016). An improved Eclat
algorithm for mining association rules based on increased search
strategy. International Journal of Database Theory and
Application, 9(5), 251-266.

Niu, K., Jiao, H., Gao, Z., Chen, C., & Zhang, H. (2017). A developed
Apriori algorithm based on frequent matrix. In Proceedings of the 5"
international conference on bioinformatics and computational biology,
55-58.

Oguz, D., & Ergenc, B. (2012). Incremental itemset mining based on
matrix Apriori algorithm. In International Conference on Data
Warehousing and Knowledge Discovery, Springer, Berlin, Heidelberg,
192-204.

Oyama, T., Kitano, K., Satou, K., & Ito, T. (2000). Mining association
rules related to protein-protein interactions. Genome Informatics, 11,
358-359.

Patil, S. D., & Deshmukh, R. R. (2016). Review and Analysis of
Apriori Algorithm for Association Rule. International Journal of
Latest Trends in Engineering and Technology, 6(4), 104-112.

| 135

[PP,15]

[PVG,06]

[QGYH,14]

[QL,12]

[RS1,16]

[RS>,16]

[SAR, 20]

[SBE,21]

[Sch, 07]

Prithiviraj, P., & Porkodi, R. (2015). A comparative analysis of
association rule mining algorithms in data mining: a study. American
Journal of Computer Science and Engineering Survey, 3(98), 98-119.
Pavon, J., Viana, S., & Gémez, S. (2006). Matrix Apriori: Speeding Up
the Search for Frequent Patterns. In Databases and Applications,
75-82.

Qiu, H., Gu, R., Yuan, C., & Huang, Y. (2014): YAFIM: a parallel
frequent itemset mining algorithm with spark. Proceedings of IEEE.
International Parallel & Distributed Processing Symposium
Workshops, 1664-1671.

Qin, X., & Liu, Y. (2012). Matrix-based multidimensional sequential
pattern mining algorithm and application. In IEEE International
Conference on Computer Science and Information Processing (CSIP),
879-882.

Rathod, S., & Sharma, A. (2016). Implementation of Enhancement of
Apriori Algorithm. International Journal for Research in Applied
Science & Engineering Technology (IJRASET), 4(5), 402- 408.
Ravikiran, D., & Srinivasu, S. V. N. (2016). Regular Pattern Mining on
Crime Data Set using Vertical Data Format. International Journal of
Computer Applications, 143(13).

Sahoo, Anasuya, & Rajiv Senapati. (2020). A Boolean Load-Matrix
Based Frequent Pattern Mining Algorithm. In International
Conference on Artificial Intelligence and Signal Processing (AISP),
IEEE,1-5.

Shawkat, M., Badawi, M., & Eldesouky, A. I. (2021). A Novel
Approach of Frequent Itemsets Mining for Coronavirus Disease
(COVID-19). European Journal of Electrical Engineering and
Computer Science, 5(2), 5-12.

Schildt, H. (2007). Java™ : The Complete Reference, 7" Edn., Tata
McGraw Hill, , ISBN: 978-0-07-226385-5.

| 136

https://www.amazon.in/Herbert-Schildt/e/B001H6PSMG/ref=dp_byline_cont_book_1

[SD,13]

[SD,15]

[Sin,16]

[SJ,20]

[SK,19]

[SL,20]

[SM, 18]

[SNM,15]

[SS,20]

Singh, H., & Dhir, R. (2013). A new efficient matrix based frequent
itemset mining algorithm with tags. International Journal of Future
Computer and Communication, 2(4), 355-358.

Surati Sandip, B., & Desai Apurva, A. (2015). Latest Survey on
Frequent Pattern Mining: Mine the Frequent Patterns from Transaction
Database. Vnsgu Journal of Science And Technology, 4(1), 1-7.

Singla, V. (2016). A Review: Frequent Pattern Mining Techniques in
Static and Stream Data Environment. Indian Journal of Science and
Technology, 9(45), 1-7.

Shuwen, L., & Jiyi, X. (2020). An improved apriori algorithm based
on matrix. In2020 12" International Conference on Measuring
Technology and Mechatronics Automation (ICMTMA), IEEE,
488-491.

Subhashini, A., & Karthikeyan, M. (2019). Itemset Mining using
Horizontal and Vertical Data Format. International Journal for
Research in Engineering Application & Management, 5(3), 534-539.
Sun, R., & Li, Y. (2020). Applying Prefixed-Itemset and Compression
Matrix to Optimize the MapReduce-based Apriori Algorithm on
Hadoop. In Proceedings of the 9" International Conference on
Software and Computer Applications, 89-93.

Sumathi, P., & Murugan, S. (2018). A Memory Efficient
Implementation of Frequent Itemset Mining with Vertical Data Format
Approach. International Journal of Computer Sciences and
Engineering, 6(11), 152-157.

Suresh, P., Nithya, K.N., & Murugan, K. (2015). Improved Generation
of Frequent Itemsets using Apriori Algorithm. International Journal of
Advanced Research in Computer and Communication Engineering,
4(10), 25-27.

Sahoo, A., & Senapati, R. (2020). A Boolean load-matrix based
frequent pattern mining algorithm. In 2020 International Conference

on Artificial Intelligence and Signal Processing (AISP), IEEE, 1-5.

| 137

[ST,16]

[SV,17]

[TC,16]

[TG,15]

[THY,09]

[TSM,14]

[VA,15]

[VD,19]

[VLC*,16]

[VP,15]

Samoliya, M., & Tiwari, A. (2016). On the use of rough set theory for
mining periodic frequent patterns. International Journal of Information
Technology and Computer Sciences, 8(7), 53-60.

Sharmila, S., & Vijayarani, S. (2017). Frequent ltemset Mining and
Association Rule Generation using Enhanced Apriori and Enhanced
Eclat Algorithms. International Journal of Innovative Research in
Computer and Communication Engineering, 5(4), 6793-6804.

Thakur, K., & Chopra, V. (2016). To Enhance & Optimize the Apriori
Algorithm using Tokenization based Association Rule Mining,
International Journal of Advance Engineering and Research
Development, 3(6), 237-242.

Tanna, P., & Ghodasara, Y. (2015). Analytical Study and Newer
Approach towards Frequent Pattern Mining using Boolean Matrix.
IOSR Journal of Computer Engineering, 17(3), 105-109.

Tsay, Y. J.,, Hsu, T. J,, & Yu, J. R. (2009). FIUT: A new method for
mining frequent itemsets. Information Sciences, 179(11), 1724-1737.
Tiwary, M., Sahoo, A. K., & Misra, R. (2014). Efficient
implementation of apriori algorithm on HDFS using GPU.
In International Conference on High Performance Computing and
Applications (ICHPCA), IEEE.1-7.

Vu, L., & Alaghband, G. (2015). A self-adaptive method for frequent
pattern mining using a CPU-GPU hybrid model. In Proceedings of the
Symposium on High Performance Computing, 192-201.

Vijay, K., & Deshpande, B. (2019). Data Science: Concepts and
Practice, 2" Edition, 1-18, doi:0.1016/B978-0-12-814761-0.00001-0.
Vo, B,, Le, T., Coenen, F, et al. (2016). Mining frequent itemsets using
the N-list and subsume concepts, International Journal of Machine
Learning and Cybernetics, 7(2), 253-265.

Vijayalakshmi, V., & Pethalakshmi, A. (2015). An efficient count
based transaction reduction approach for mining frequent

patterns. Procedia Computer Science, 47, 52-61.

| 138

https://www.amazon.in/s/ref=dp_byline_sr_ebooks_2?ie=UTF8&field-author=Bala+Deshpande&text=Bala+Deshpande&sort=relevancerank&search-alias=digital-text
https://link.springer.com/journal/13042
https://link.springer.com/journal/13042

[VV,13]

[Wan,11]

[WDY,13]

[Wet,02]

[WS,11]

[WXXS,18]

[XJW,19]

[YE,10]

[YH,05]

[YWWJ,11]

Vijay Kumar, G., & Valli Kumari, V. (2013). Parallel
Regular-Frequent Pattern Mining in Large Databases. International
Journal of Scientific & Engineering Research, 4(6).

Wang, P. S. (2011). A New Algorithm of Association Rules Mining
Based on Relation Matrix. In Advanced Materials Research, 179,
55-59.

Wang, F., Dong, J., & Yuan, B. (2013). Graph-based substructure
pattern mining using CUDA dynamic parallelism. In Int. conference on
intelligent data engineering and automated learning, 342-349.

Wetjen, T. (2002). Discovery of frequent gene patterns in microbial
genomes. TZI-Report, Technologie Zentrum Informatik (TZ1), 27.
Wang, B. L., & Shen, Y. G. (2011). Improvement of Apriori algorithm
based on Boolean matrix. In Advanced Materials Research, 159,
144-148.

Wang, Y., Xu, T., Xue, S., & Shen, Y. (2018). D2P-Apriori: A deep
parallel frequent itemset mining algorithm with dynamic queue.
In 10" International Conference on Advanced Computational
Intelligence (ICACI), 649-654, IEEE.

Xuan, Q., Jiuyuan, H., & Weitao, W. (2019). Research on
Improvement of Parallel Apriori Algorithm Based on Boolean Matrix
and Weight. In12" International Conference on Intelligent
Computation Technology and Automation (ICICTA), IEEE, 96-99.
Yildiz, B., & Ergeng, B. (2010). Comparison of two association rule
mining algorithms without candidate generation. In the 10™ IASTED
international conference on Artificial Intelligence and Applications,
450-457.

Yuan, Y., & Huang, T. (2005). A matrix algorithm for mining
association rules. InInternational Conference on Intelligent
Computing, Springer, Berlin, Heidelberg, 3644, 370-379.

Yu, H., Wen, J.,, Wang, H., & Jun, L. (2011). An improved Apriori
algorithm based on the Boolean matrix and Hadoop. Procedia
Engineering, 15, 1827-1831.

| 139

[YXHJ*,13]

[YZ,16]

[2G,03]

[ZLZ,08]

[ZOKL",19]

[ZWH,04]

[ZWX,10]

[ZY,12]

[ZYW,10]

[2Z,17]

Yongchun, J., Xiaona, L., Hairong, C., Jiao, X., & Yingchun, W.
(2013). Improved mining frequent itemsets algorithm based on
sim. Information Technology Journal, 12(11), 2246-2250.

Yu, S., & Zhou, Y. (2016). A Prefixed-Itemset-Based Improvement for
Apriori Algorithm. arXiv preprint arXiv:1601.01746.

Zaki, M. J., & Gouda, K. (2003). Fast vertical mining using diffsets.
In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, 326-335.

Zhang, Z., Liu, J., & Zhang, J. (2008). A Fast Algorithm for Mining
Association Rules Based on Boolean Matrix. In IEEE 4™ International
Conference on Wireless Communications, Networking and Mobile
Computing, 1-3.

Zhou, D., Ouyang, M., Kuang, Z., Li, Z., Zhou, J. P., & Cheng, X.
(2019). Incremental association rule mining based on matrix
compression for edge computing. IEEE Access, 7, 173044-173053.
Zhang, Z., Wu, W., & Huang, Y. (2004). Mining dynamic
interdimension association rules for local-scale weather prediction.
In Proceedings of the 28™ Annual International Computer Software
and Applications Conference, IEEE, 2, 146-149.

Zhen-yu, L., Wei-xiang, X., & Xumin, L. (2010). Efficiently using
matrix in mining maximum frequent itemset. In IEEE 3™ International
Conference on Knowledge Discovery and Data Mining, 50-54.
Zong-Yu, Z., & Ya-Ping, Z. (2012). A parallel algorithm of frequent
itemsets mining based on bit matrix. In IEEE International Conference
on Industrial Control and Electronics Engineering, 1210-1213.

Zhou, J., Yu, K. M., & Wu, B. C. (2010). Parallel frequent patterns
mining algorithm on GPU. In IEEE International Conference on
Systems, Man and Cybernetics, IEEE, 435-440.

Zheng, J., & Zhang, J. (2017). Improvement of Apriori algorithm
based on matrix compression. In7" International Conference on
Education, Management, Information and Mechanical Engineering,
76, 131-135.

| 140

Web References

[1]
[2]
[3]
[4]
[5]
[6]

[7]

http://fimi.ua.ac.be

http://www.philippe-fournier-viger.com/spmf
https://link.springer.com/chapter/10.1007/978-3-319-07821-2_2
https://www.sciencedirect.com/science/article/pii/B978012381479100006 X
https://www.sciencedirect.com/topics/computer-science/frequent-patterns
https://www.sciencedirect.com/topics/computer-science/knowledge-discovery-
in-database

https://en.wikipedia.org/wiki/Welch%27s_t-test

| 141

http://www.philippe-fournier-viger.com/spmf

APPENDICES

Appendix -A
1) Google Scholar Image Showing the Research Scholar
Publications
i) Papers Included in International Digital Libraries
Appendix - B

1) Papers Published in the International Journals

l # sumathi parasuraman - Google © X

@ scholargoogle.com SRIGAAAS

« > c

2% @B - o8P

sumathi parasuraman #

Assistant Professor
Mo verified email

Database and Data Mining

TITLE

BNVDF A GPU-accelerated Novel Algonthm for Finding Frequent Patterns Using Vertical

Data Format Approach and Jagged Array
P Sumathi, 5 Murugan
Infemational Joumal of Modern Education & Computer Science 13 (4)

A Multithread, Novel Pattern Based Algorithm for Finding Frequent Patterns With Jagged

Array and Vertical Data Format
P Sumathi, 5 Murugan, V Umadevi
Indian Journal of Computer Science and Engineering 12 (5}, 1353~ 1363

A Memary Efficient Implementation of Frequent ltemset Mining with Vertical Data Fermat
Approach

P Sumathi, 5 Murugan
Intermational Journal of Computer Sciences and Engineering 6 (11}, 152-157

RISOTTO-A Novel Hybnd Approach for Enhancing Classical Apriori Algorithm
P Sumathi, S Murugan '

Atticles 1-4 v SHOW MORE

B FoLLow

CITED BY YEAR
1 2021

2021

2018

Cited by

Al Since 2017
Citations i 1
h-indax 1 1
i10-index] 1]
Co-authors EDIT
No co-authors

-

Dashboard Authorsearch Sources ® m SP

This author profile is generated by Scopus Learn more
Sumathi, P.

® Nehru Memorial College, Puthanampatti, Puthanampatti, India
Connect to ORCID

2 Edit profile Set alert Save to list Potential author matches

Export to SciVal

Metrics overview

2 Documents by author
1 Citations by I documents
1 h-index:

Document & citation trends

2 e 1
|%]
t 0
[-
S =
3 S
8 >
0 0
2020 ®m Documents m Citations 2022

Most contributed Topics 2016-2020 ®

This author has no topics at the moment. To learn why, or more about topics in

general. Learn more about Topics

View all Topics

2 Documents Cited by 1 Documents 0 Preprints 2 Co-Authors Topics

Beta

0 Awarded grants

Note:
Scopus Preview users can only view an author’s last 10 documents, while most other features are disabled. Do you have access

through your institution? Check your institution’s access to view all documents and features.

Export all ~ Save all to list Sort by Date (newest)

View list in search results format Article « Open access
, A multithread, novel pattern based algorithm for finding 0
View references o)
frequent patterns with jagged array and vertical data format Citations
Set document alert Sumathi, P., Murugan, S., Umadevi, V.

Indian Journal of Computer Science and Engineering, 2021, 12(5), pp. 1353-1363

Show abstract Related documents

Article « Open access

Gnvdf: A gpu-accelerated novel algorithm for finding 1
frequent patterns using vertical data format approach and Citations
jagged array

Sumathi, P., Murugan, S.

ISSN 2319 — 1953

International Journal of Scientific Research in Computer Science Applications and Management Studies

RISOTTO - A Novel Hybrid Approach for
Enhancing Classical Apriori Algorithm

P.Sumathi*, S. Murugan

“Research Scholar, *Associate Professor
"2Department of Computer Science, Nehru Memorial College (Autonomous), Puthanampatti, Tiruchirappalli -Dt,
TamilNadu, India
" sumiparasu@gmail.com, ‘smurugan_nmc@hotmail.com

Abstract - Discovering frequent itemsets is the computationally
intensive step in the task of mining association rules and Apriori
is one of the most significant algorithms for finding the frequent
itemsets. The main challenge in the classical Apriori is that, the
mining often needs to generate a huge number of candidate
itemsets and requires more number of database scans which
increases time and decreases efficiency. It also increase the 1/0
cost and requires more memory. To eradicate these issues a lot of
improvements to Apriori have been proposed in the literature. In
this series, this research work also introduces a refinement to the
Apriori which uses a data structure called prefixed-itemset and
the horizontal data format approach. Based on the comparative
analysis with the classical Apriori, the proposed approach
truncates the number of database scans and reduces the time
required for finding candidate generation.

Keywords - Apriori, Association Rule Mining, Candidate
itemsets, Frequent itemsets, Horizontal data format, Prefixed-
itemset.

|. INTRODUCTION

Association Rule Mining (ARM) is a process for finding
relations between data items in datasets. ARM has been a
successful technique for extracting knowledge from databases
[15]. Frequent patterns are the patterns (a set of items,
subsequences, subgraphs, etc.) that occur frequently in a data
set. Frequent pattern mining is an essential data mining task in
the field of data mining and mining frequent patterns from
large scale databases has emerged as an important research
problem in data mining and knowledge discovery community.
Association rules are the main technique used to determine the
frequent item set in data mining. Apriori algorithm is the first
algorithm proposed by R.Agrawal and R.Srikant in 1994 in
the field of data mining and it is a classical algorithm of
ARM. It generates frequent item sets for boolean association
rule. As the Apriori algorithm uses the prior knowledge of
frequent item set properties it is named as Apriori. Apriori
employs an iterative approach known as level-wise search,
where kth item set is used to explore (k+1)th-item sets. There
are two steps involved in each iteration and is repeated when
no candidate set can be generated.

They are
1. Generation of candidate item sets
2. Finding the occurrence of each candidate item set in
database and pruning all disqualified candidate set based
on support count (threshold) first and on closure

property. le., if a set of items is frequent, then all of its
proper subsets are also frequent
After finding the frequent item sets, the association rules
are generated from those large item sets with the constraints of
minimal confidence (min_conf) and minimum support
(min_sup) thresholds. But this classical algorithm is
inefficient because
1. Itis not suitable for large databases
2. It defines the presence and absence of an item
3. Itallows uniform minimum support threshold
4. More scanning of transaction database is needed for
generating frequent item sets
5. More I/O cost is required
6. Generation of candidate item-sets and support counting
are expensive
Thus, to eradicate the said disadvantages, there are many
efficient pattern mining algorithms have been discovered in
the last two decades and some of the recent articles in the
literature are shown in section 2, but still research is going on
in creating efficient frequent pattern mining algorithm and
ARM. In this succession, a novel hybrid approach for
enhancing classical Apriori has been introduced in this paper.
The remaining paper is organized as follows. Section 2
describes the review of literature. The proposed approach of
this paper is presented in section 3. An illustrative example for
the proposed methodology is presented in section 4. Section 5
discusses the results. Finally section 6 ends with conclusion.

Il. REVIEW OF LITERATURE

Association Rule Mining (ARM) is a successful technique
for finding relations between data items in databases. The
most widely used Apriori algorithm for generating association
rule discovers frequent patterns by generating candidate item
sets which is a costly and memory consuming one. Research
in improving the Apriori is a common issue and is an ongoing
research topic these days. This section presents a brief
overview of the recent literature related to enhancing classical
Apriori algorithm and it provides a stronger lead to the
proposed work.

In [1], the authors have introduced a Modified Apriori
algorithm wusing greedy and vectorization method. They
compared the execution time of traditional Apriori and
Modified Apriori by varying the number of transactions and
proved that the Modified Apriori requires less time than the

IJSRCSAMS

Volume 7, Issue 5 (September 2018)

Wwww.ijsrcsams.com

ISSN 2319 — 1953

International Journal of Scientific Research in Computer Science Applications and Management Studies

Apriori. They also proved that the proposed method reduces
the number of rules generated than the original Apriori. The
authors in [2] have developed a new recursive algorithm based
on Apriori called Meta-Apriori. In that, they partitioned the
whole database into smaller ones using divide and conquer
approach. After partitioned them, they applied Meta-Apriori if
the partition is huge or Apriori if it is of reasonable size.
Finally, they merged the achieved results to get the result for
whole database and proved that Meta-Apriori requires less
time than the Apriori.

In [3], the authors have proposed a modified Apriori called
DC_Apriori. In this, the authors have restructured the storage
structure of the database and they generated k-frequent item
sets by joining the 1-frequent item sets with k-1-frequent item
sets. They avoided the unnecessary invalid candidate sets and
also reduced the number of database scanning and also
improved the efficiency of frequent item sets generation. A
modified Apriori have been proposed in [4] using
Transposition technique and proved that it is less complex
than the classical Apriori.

A method called Advanced Reverse Apriori Algorithm
(ARAA) has been proposed in [5], which is opposite to
Apriori. In that the authors have generated the k™ itemset first
and move on to the lower level sets i.e., k-1,k-2,...,1. They
compared Apriori Algorithm (AA), Reverse Apriori
Algorithm (RAA) and ARAA and proved that the number of
scans in ARAA is less than the AA but greater than RAA and
is equal to number of transactions in the database. Also,
proved that the ARAA is more suitable for all type of datasets
but RAA is applicable for higher datasets. An enhanced
Apriori algorithm and enhanced Eclat algorithm with different
threshold value for each item have been proposed in [6]. The
authors compared them with different size of dataset and with
different size of items and proved that the enhanced Apriori is
best than the enhanced Eclat in terms of the number of
frequent items and rules.

A modified Apriori algorithm called FMA (Frequent
Matrix Apriori) has been proposed by Kun Nin et al [7]. In
that, they scanned the dataset only once to store frequent item
set information in the frequent matrix, then discretizing the
matrix by minimum support parameter in the frequent matrix
and finally, the most frequent item sets are found recursively
by scanning the discretized dataset. It was proved by them that
the FMA is more effective than the AA in terms of time. An
improved Apriori has been designed in [8]. In this method, the
transaction ID’s along with the support count is maintained in
the frequent item sets and they generated the k+1 itemset by
set intersection and proved that the number of database scans
is reduced than the classical Apriori algorithm.

A prefixed-itemset based data structure for candidate
itemset generation has been proposed in [9]. In that, the
candidate itemsets are stored with smaller storage space and
performed the connecting and the pruning step of the Apriori
algorithm much faster. It was analyzed that the proposed
structure improved the efficiency of the classical Apriori
algorithm. A new algorithm called enhanced Apriori

algorithms has been introduced in [10], which takes less
scanning time and reduces the 1/0 spending time by cutting
down the unwanted transaction records in the database.

A new algorithm called semi-Apriori using a binary based
data structure for mining frequent itemsets as well as
association rule has been proposed in [11] and proved that this
technique outperforms Apriori in terms of execution time. In
[12], an improved Apriori algorithm has been presented and
made a comparison between conventional Apriori and
Improved Apriori algorithm. It was proved that the improved
Apriori provides better performance than classical Apriori
algorithm. A novel Apriori algorithm has been proposed in
[13] to overcome the limitations of the classical Apriori
algorithm based on local and global power set and observed
that the novel algorithm requires only two scans instead of
many scans in classical Apriori algorithm. in [14], The authors
surveyed the good improved approaches of Apriori from 2012
to 2015.

From the literature it has been found that the Apriori
algorithm has been alleviated to several levels, which pawed
way for enhancing the classical Apriori. In succession, the
RISOTTO algorithm has been proposed in this paper for
enhancing the conventional Apriori.

I1l. PROPOSED METHODOLOGY

The proposed methodology combines both prefixed-itemset
based storage concept [9] and horizontal data format approach
[8] for enhancing the conventional Apriori algorithm in terms
of time and database scans. The algorithm progresses as
follows:

In the first step, the proposed algorithm finds the frequent
1-itemset from the transaction database by scanning it once as
in classical Apriori. But, it also maintains the transaction ID's
in which the frequent 1-items occurs along with the support
count (SC) or TNR (Total Number of Transactions) as in
horizontal data format approach which forms the candidate
itemset C;. L, is constructed from C; by removing the items
whose SC is less than the minimum support count (min_sup).
The transaction ID's are only maintained in C; and L;. Also,
the frequent 1-itemset is stored in a new data structure (DS)
called prefixed-itemset based storage which contains a prefix-
key and values. The prefix for frequent 1-itemset is always
NULL and the values are the items in L;. In general, the
frequent k-itemset where k =1,2,3, ...,n contains (k-1)-items as
prefix-key (LKy) and the last item content as the value (LV,).

In the second step, the values in frequent 1- itemset in the
prefixed-itemset based storage LV; is joined by itself (LV,
LV;) instead Ly L; and the items which do not satisfy the
Apriori property is removed and then they are combined with
the prefix key which forms C,. The Apriori property i.e., all
nonempty subsets of a frequent itemset must also be frequent
is considered to improve the efficiency by reducing the search
space. The support count for the items in C, is calculated just
by performing intersection of the transaction ID's in L, instead
of scanning the database as in classical Apriori, which
minimizes the database scans. From C,, L, is formed by

IJSRCSAMS

Volume 7, Issue 5 (September 2018)

Wwww.ijsrcsams.com

ISSN 2319 — 1953

International Journal of Scientific Research in Computer Science Applications and Management Studies

removing those elements from C, whose support count is less
than the min_sup. Similar to the previous step, the frequent 2-
itemsets are appended to the prefixed-itemset based storage
with the appropriate prefix and the values. The second step is
repeated with k = 3,4,5, ... until there is no more candidate
itemsets found. The proposed approach is named as
RISOTTO abbreviated from the phrase "pRefixed ItemSet
hOrizonTal daTa fOrmat". The steps involved in RISOTTO
are shown in the algorithm 1.1.

Algorithm 1.1: RISOTTO. Finding frequent itemsets

Input:
= D, adatabase of transactions.
= min_sup, the minimum support count threshold.

Output:
= L, the frequent itemsets in D.

Method:
(1) L<O
(2) Cy&scan D and generate candidate 1-itemsets
(3) L; € generate frequent 1-itemsets using min_sup
(4) L&€L UL,
(5) PIDS<create a prefixed-itemset DS
(6) PIDS(LK{)<NULL
(7) PIDS(LV,)<itemsin L,
(8) for (k=2; Ly.1#9D; k++) do
(9) Ck_mnéPlDS(LVkl)M PlDS(LVk.l)
(10) Prune candidate k-items in Cy_jnit
(11) Ckéjoin P|DS(LKk_1) X Ck_init
(12) L€ generate frequent k-itemsets using min_sup
(13) PIDS(LK) € (k-1)-items in Ly
(14) PIDS(LV,) €k™ item in Ly
(15)L€<L U Ly
(16) endfor
(17) return L

The main advantage of this hybrid approach is that, it
reduces the number of database scans because it finds the SC
for frequent k-itemsets where k=2,3,4,... by set intersection
method from the transaction ID's in L1 which in turn
minimizes the 1/O cost. Using the prefixed- itemset storage,
the number of candidate itemsets produced is reduced than the
classical Apriori algorithm

A. Proposed methodology: An Example

To illustrate the proposed methodology, a sample
transaction database D shown in Table 1 has been considered
which consists of 9 transactions. Each transaction comprises
of TID (Transaction ID) and items bought from the items
available in the business enterprise namely A, B, C, D and E
respectively. Let the min_sup=2. The frequent 1-itemset is
computed as in the classical Apriori but the L1 in the

TABLE |
TRANSACTION DATABASE D

Transaction ID Items bought
(TID)
T1 ABE
T2 B,D
T3 B,C
T4 ABD
T5 AC
T6 B,C
T7 AC
T8 AB,C
T9 AB,CE
TABLE Il
COMPUTATION OF C; AND Ly
G
Item Transaction ID’s TNT or SC
{A} T1,T4,T5,T7, T8, T9 6
{B} T1,T2,T3,T4,7T6, T8, T9 7
{C} T3, T5,T6, T7, T8, T9 6
{D} | T2, T4 2
{E} T1,T9 2
L
! y
Item Transaction ID’s TNT or SC
{A} T1,T4,T5,T7, T8, T9 6
{B} T1,T2, T3,T4,T6, T8, T9 7
{C} T3, T5,T6,T7, T8, T9 6
{D} T2, T4 2
{E} T1,T9 2

In this case, for computing C1 and L1 one database scan is
performed. Also prefixed-itemset storage is used for keeping
the frequent k-itemset which contains 3 columns. Columns 1,
2 and 3 indicate the type of frequent itemset, prefix-key and
values in frequent k-itemsets. For frequent 1-itemset, the
itemsets contain 1-itemset, the prefix-key is NULL and
values are {A,B,C,D,E} which is shown in Table 3.

TABLE Il
PREFIXED-ITEMSET STORAGE WITH FREQUENT 1-ITEMSET

Itemsets Prefix — Key Values
1 - itemset NULL {A,B,C,D,E}
Now {A,B,C,D,E} ~ {A,B,C,D,E} is performed which is
{AB,AC,AD,AE,BC,BD,BE,CD, CE,DE}. All items in
{AB,AC,AD,AE,BC,BD,BE,CD,CE,DE} supports Apriori
property and the set of items are the items in C2. The SC of
{AB}=count({T1,T4,T5,T7,T8,T9}N{T1,T2,T3,T4,T6,T8,T9
H=count({T1,T4,T8,T9})=4.SC of {AC}=count({T1, T4, T5,
T7,T8,T9}N{T3,T5,T6,T7,T8,T9})=count({ T5, T7, T8, T9})
= 4. Similarly, the SC for other items in C2 is computed and it

proposed method contains TID's and TNR or SC. The . h - ’
computation of C1 and L1 is shown in Table 2. is shown in Table 4. Out of these_ items in C_2, only the items
AB, AC, AE, BC, BD and BE satisfies the min_sup and which
forms L2. The frequent 2-itemsets are appended to prefixed
itemset storage. In L2, the items AB, AC and AE has the
IJISRCSAMS

Volume 7, Issue 5 (September 2018)

Wwww.ijsrcsams.com

ISSN 2319 — 1953

International Journal of Scientific Research in Computer Science Applications and Management Studies

common prefix A and values are {B,C,E}. Similarly, the items
BC, BD and BE has the common prefix B and {C,D,E} are
the values and it is shown in Table 5.

From Table 5, {B, C, E} x {B, C, E}={BC,BE,CE}and the
item CE not satisfies the Apriori property, therefore {B, C, E}
x {B, C, E}={BC,BE} and each item is prefixed with the
prefix-key A gives {ABC,ABE}. Similarly {C, D, E} ~ {C,
D, E} = {CD,CE,DE} and the items in {CD,CE,DE} does not
satisfies the Apriori property. There {C, D, E} x {C, D,
E}=@. Now the frequent 3-itemset contains only two items
{ABC,ABE}. The SC for ABC = count({T1, T4, T5, T7, T8,
T9}N{T1, T2, T3, T4, T6, T8, T9}N{T3, T5, T6, T7, T§,
T9}) = count ({T8,T9})=2.

TABLE IV
COMPUTATION OF FREQUENT 2-ITEMSET

C,
Itemset SC (By set
intersection)
{AB} 4
{AC} 4 L,
{AD} 1 Itemset sC
AE 2
{AE} | {AB} 4
{BC} 4 ”1 {AC} 4
{BD} 2 {AE} 2
{BC} 4
{BE} 2 {BD} >
{cD} 0 {BE} 2
{CE} 1
{DE} 0
TABLE V
PREFIXED-ITEMSET STORAGE WITH 1-ITEMSET AND 2-ITEMSET
Itemsets | Prefix — Key Values
1-itemset NULL {A,B,C,D,E}
2-itemset A {B, C, E}
B {C, D, E}
TABLE VI
COMPUTATION OF 3-FREQUENT ITEMSET
Ly Cs
Ftemset . SC(By §Et Itemset SC (By set
intersection) intersection)
{ABC} 2 —> {ABC} 2
{ABE} 2 {ABE} 2

Similarly, SC for ABE = count ({T1,T4,T5,T7,T8,T9
YN{T1,T2,T3,T4,T6,T8, T9 }N{ T1,T9})=count({T1,T9})=2.
Both counts satisfies the min_sup, therefore L3, frequent 3-
itemsets contain {ABC},{ABE} which is shown in Table 6.
The same is appended in the prefixed itemset storage with
{AB} as prefix and {C,E} as values and it is shown shown in
Table 7.

TABLE VII
PREFIXED-ITEMSET STORAGE WITH 1-ITEMSET,2-ITEMSET AND 3-ITEMSET
Itemsets Prefix — Key Values
1-itemset NULL {A,B,C,D,E}
2-itemset A {B, C, E}
B {C,D, E}
3-itemset AB {C,E}

Now {C,E}={C,E}={CE} and the item CE does not
satisfies the Apriori property. Therefore frequent 4-candidate
item set C4 is NULL and the algorithm terminates.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

An extensive experiment for RISOTTO and Classical
Apriori is made using the transaction database D shown in
Table 1. The candidate itemsets and frequent itemsets
generated using the classical Apriori and RISOTTO

algorithms are shown in Table 8 and 9.
TABLE VIII
CANDIDATE ITEMSETS AND FREQUENT ITEMSETS OF TABLE 1 USING
CLASSICAL APRIORI

Candidate itemsets Candidate itemsets
using using Frequent itemsets
Classical Apriori Classical Apriori using Classical
(After Join) (After Prune) Apriori
C:. | {AB,CD,E} C: | {AB,CD,E} Ly {AB,C,D,E}
C, | {ABACAD, | C, | {ABACAEB | L, | {AB,ACAE.
AE,BC,BD, C,BD,BE} BC,BD,BE}
BE,CD,DE}
Cs | {ABC,ABE, | C; | {ABC,ABE} Ls | {ABC,ABE}
ACE,
BCD,
BCE,BDE}
C. | {ABCE} C. | @ L, | @
TABLE IX
CANDIDATE ITEMSETS AND FREQUENT ITEMSETS OF TABLE 1 USING
RisoTTO
Candidate Candidate
itemsets using itemsets using
RISOTTO RISOTTO RISOTTO
After Join) (After Prune)

C. | {ABCDE} |[C, [{ABCDE} |L [{ABCDE}
C, | {ABACAD, | C, | {ABACAE. | L, | {ABAC,AE.B
AE,BC,BD,B BC,BD,BE} C,BD,BE}

E,CD,DE}
C: | {ABC,ABE} | C; | {ABCABE} | L: | {ABC,ABE}
Ci | @

The RISOTTO outperforms well than the classical Apriori
and the comparison results were shown in Table 10. From
table 10, it is observed that the RISOTTO algorithm
minimizes the database scan to 1 and requires less time for
generating the candidate itemset and frequent itemsets. This is
because the proposed algorithm maintains the transaction in
which frequent 1-itemset occurs and also the prefixed-itemset

IJSRCSAMS

Volume 7, Issue 5 (September 2018)

Wwww.ijsrcsams.com

ISSN 2319 — 1953

International Journal of Scientific Research in Computer Science Applications and Management Studies

storage DS enhances the time to generate the candidate
itemsets.

[9]. Yu, S., & Zhou, Y. (2016). A Prefixed-ltemset-Based Improvement

For Apriori Algorithm. arXiv preprint arXiv:1601.01746.

TABLE X [10]. Logeswari, T., Valarmathi, N., Sangeetha, A., and Masilamani, M.
COMPARISON OF CLASSICAL APRIORI Vs, RISOTTO (2014)_ Analy5|s of Tra}d!tlonal and Er]hanced Apriori Algorithms in
Association Rule Mining, International Journal of Computer
- Applications,vol. 87, issue 19,pp.4-8.
Parameters C|a5§|06}| RISOTTO [11]. Fageeri,S.O., Ahmad, R., Baharudin,B.B. (2014). An Enhanced Semi-
Apriori Apriori Algorithm For Mining Association Rules, Journal of
Number of database | 3 1 Theoretical and Applied Information Technology, vol. 63, issue 2, pp.
scans 298-304.
Number of More than Less than [12]. Rathod, S., and Sharma, A. (2016, May). Implementation of
candidate itemsets RISOTTO Apriori Enhancement of Apriori Algorithm, International Journal for Research
Time Required for More than Less than in Applied Science & Engineering Technology (IJRASET), vol. 4, issue
finding candidate RISSOTTO Apriori 5, pp.402- 408.) o)
generation [13]. Jaiswal, R., and Soni, R. (2015, March). A Novel Apriori Algorithm
for Association Rules Mining, International Journal of Modern Trends
in Engineering and Research, vol. 02, issue 03, pp.374-378.
V. CONCLUSION [14]. Patil, S.D., and Deshmukh, R.R. (2016, March). Review and Analysis
The research work has introduced an enhanced Apriori of Apriori Algorithm for Association Rule, International Journal of
algorithm called RISOTTO, a new hybrid approach for Latest Trends in Engineering and Technology, voal.6, issue 4, pp. 104-
. . . g . 112.
generating frequent itemsets w_hlch_comblnes both horizontal [15]. Yuan, Y. and Huang, T. (2005, August). "A Matrix Algorithm for
data format approach and prefixed-itemset based storage DS. Mining Association Rules”, Lecture Notes in Computer Science,
In the proposed method, frequent 1-itemset stores the Springer-Verlag Berlin Heidelberg, vol. 3644, pp. 370-379.
transactions in which the frequent 1-itemset occurs which
reduces the number of database scans required to find the
frequent itemsets and also reduces the I/O cost. The joining
and pruning steps are performed using the values in the
prefixed-itemset DS rather than the values in frequent itemsets
as in classical Apriori which reduced the time required to
generate the candidate itemsets. Thus the RISOTTO, method
enhances the existing Apriori algorithm.
REFERENCES
[1]. Lodha, A., & Shrivastava, V. (2016, June). A Modified Apriori
Algorithm for Mining Frequent Pattern and Deriving Association
Rules using Greedy and Vectorization Method", International Journal
of Innovative Research in Computer and Communication Engineering,
vol. 4, issue 6, pp. 10722-10726.
[2]. Benhamouda, N. C., Drias, H., & Hireche, C. (2016, March). Meta-
Apriori: A New Algorithm for Frequent Pattern Detection. In Asian
Conference on Intelligent Information and Database Systems, Springer,
Berlin, Heidelberg, vol.9622, pp. 277-285.
[3]. Du, J., Zhang, X., Zhang, H., & Chen, L. (2016, May). Research and
improvement of Apriori algorithm. In Sixth International Conference
on Information Science and Technology (ICIST), IEEE, pp. 117-121.
[4]. Kaur, J., Singh, R., and Gurm, R.K. (2016, May). Performance
Evaluation Of Apriori Algorithm Using Association Rule Mining
Technique, International Journal of Technology and Computing, vol.
2, issue 5, pp.126-132.
[5]. Bhandari, B., Pant, B., and Goudar, R. H. (Dec 2016-Jan 2017).
ARAA: A Fast Advanced Reverse Apriori Algorithm for Mining
Association Rules in Web Data, International Journal of Engineering
and Technology (I1JET),vol. 8, issue 6, pp.2956-2963.
[6]. Sharmila, S., and Vijayarani, S. (2017). Frequent Itemset Mining and
Association Rule Generation using Enhanced Apriori and Enhanced
Eclat Algorithms, International Journal of Innovative Research in
Computer and Communication Engineering, vol. 5, issue 4, pp. 6793-
6804.
[7]. Niu, K., Jiao, H., Gao, Z., Chen, C., and Zhang, H. (2017, January). A
developed apriori algorithm based on frequent matrix. In Proceedings
of the b5th international conference on bioinformatics and
computational biology, ACM, pp. 55-58.
[8]. Suresh,P., Nithya, K.N., & Murugan, K. (2015, October). Improved
Generation of Frequent Item Sets using Apriori Algorithm,
International Journal of Advanced Research in Computer and
Communication Engineering, vol. 4, issue 10, pp. 25-27.
IJSRCSAMS

Volume 7, Issue 5 (September 2018)

Wwww.ijsrcsams.com

[4
AXJCSE International Journal of Computer Sciences and Engineering [Open Access
Vol.6, Special Issue.11, Dec 2018 E-ISSN: 2347-2693

Research Paper

A Memory Efficient Implementation of Frequent Itemset Mining with
Vertical Data Format Approach

P. Sumathi'’, Dr. S. Murugan®

'Department of Computer Science, Nehru Memorial College (Autonomous), Tiruchirappalli, India
*Department of Computer Science, Nehru Memorial College (Autonomous), Tiruchirappalli, India

“Corresponding Author: sumiparasu@ gmail.com

Available online at: www.ijcseonline.org

Abstract— Data mining is the process of extracting the concealed information and rules from large databases. But the real world datasets
are sparse, dirt and also contain hundreds of items. Frequent Pattern Mining (FPM) is one of the most intensive problems in discovering
frequent itemsets from such datasets. Apriori is one of the premier and classical data mining algorithms for finding frequent patterns but it is
not an optimized one. So over last two decades a remarkable variations and improvements were made to overcome the inefficiencies of
Apriori algorithm such as FPGrowth, TreeProjection, Charm, LCM, Eclat and Direct Hashing and Pruning (DHP), RARM, ASPMS etc., In
any case, a little enhancement in the algorithm improves the mining process considerably. Frequent itemset mining with vertical data format
approach has been proposed as an improvement over the basic Apriori, which reduces the number of database scans and also uses array
storage structure. This research paper has proposed a space efficient implementation of finding frequent itemsets with vertical data format
using jagged array. It reduces the usage of memory by allocating exact memory. An experiment is done between the array implementation of
vertical data format approach and jagged array implementation. From the experiment it is proved that the proposed jagged array

implementation method utilizes the memory efficiently when compared with the traditional multidimensional array.

Index Terms — Apriori, Array, Eclat, Frequent Pattern Mining, FPGrowth, Jagged Array, and Vertical Data Format.

L INTRODUCTION

Now-a-days, volumes of data are exploding both in
scientific and commercial domains. Data mining techniques
are used to extract unknown information from the huge
amount of data and became popular in many applications.
Association Rule Mining (ARM) is one of an important core
data mining techniques to discover patterns/rules among
items in a large database of variable-length transactions. Its
goal is to identify the groups of items that most often occurs
together i.e., it focuses on finding frequent itemsets each
occurring at more than a minimum support frequency
(min_sup) among all transactions. It is widely used in market
basket transaction data analysis, graph mining applications
like substructure discovery in chemical compounds, pattern
finding in web browsing, word occurrence analysis in text
documents, and so on [1].

The major risks associated with finding frequent
itemsets are i) computational time and ii) memory needed for
the task because even with a moderate sized dataset, the
search space and memory utilization of FPM is enormous,
which is exponential to the length of the transactions in the
dataset. Therefore, it is essential to perform FPM analysis in
a space-and-time efficient way. Many researchers in this area
focused on reducing computational time to find frequent
patterns and this work focuses on reducing the memory

© 2018, IJCSE All Rights Reserved

utilization using jagged array storage structure in the vertical
data mining algorithms.

Rest of the paper is organized as follows. Section 2
describes the review of literature. The proposed
implementation method of Vertical Data Format (VDF) is
illustrated in section 3. The comparison of existing and the
proposed implementation methods are discussed in section 4
and finally section 5 ends with conclusion.

II. REVIEW OF LITERATURE

Improving the computational time and memory is
always an issue in ARM and this section briefs the research
contributions made by different researchers in this line which
pawed way for the proposed implementation.

In [2], the authors have presented a VDSRP method
to generate complete set of regular patterns over a data
stream at a user given regularity threshold using sliding-
window and VDF. It has been proved that the proposed
method outperforms both in execution and memory
consumption.

Ravikiran, D., et. al, have proposed a new model
called RCP to mine regular sort of crimes in crime database
using VDF which requires only one database scan. From the
experimental results they proved that RCP is more efficient
than the existing RPtree[3]. In [4], the authors have focused

152

International Journal of Computer Sciences and Engineering

on the various FPM techniques, their challenges in static and
stream data environment.

The authors in [6] have presented a new algorithm,
which mine frequent itemsets with vertical format. They
proved that the new algorithm needs a single database scan
and finds new frequent item sets through 'and operation'
between item sets. The new algorithm requires less storage
space, and improves the efficiency of data mining.

An enhanced Apriori and Eclat has been introduced
in [8], in which individual thresholds for each itemset has
been used and proved that that the enhanced-Apriori
algorithm outperforms Enhanced-Eclat Algorithm.

In [9], the authors have presented an improved
version of Eclat called Eclat-growth algorithm based on
increased search strategy. For reducing the runtime in
generating an intersection of two itemsets and support degree
calculation, a BSRI (Boolean array Setting and Retrieval by
Indexes of transactions) method has been introduced. It has
been proved by them that the Eclat-growth outperforms
Eclat, Eclat-diffsets, Eclat-opt and hEclat in mining
association rules.

In [10], a VFEM algorithm has been developed
which represents the transaction database in vertical format
in the form of binary, where the attribute presence and
absence is represented by 1 and O respectively. After one
scan of transaction database for transformation it generates
candidate sets and subsets similar to Apriori algorithm. The
support value of each candidate itemsets is counted by
intersection of every pair of frequent single items instead of
database scan and proved that the VFFM outperforms
Apriori.

Compressed bit vectors of frequent itemsets based
on Boolean algebra named Vertical Boolean Mining (VBM)
has been presented in [11] and it performs the intersection of
two compressed bit vectors without making any costly
decompression operation. They proved from the experiments
that the VBM is better than Apriori and the classical vertical
association rule mining algorithms in terms of mining time
and memory usage.

A novel VDF representation called Diffset has been
developed by the authors in [12], which keep track of the
differences in the tid's of a candidate pattern and from which
it generates frequent patterns. The method cut down the size
of memory required to store intermediate results and also
increased performance significantly.

From the existing literatures, it is noted that no
authors have proposed a jagged array implementation of
VDF approach for enhancing the memory requirement of
VDF. Thus, this work implements VDF using the jagged
array for efficient utilization of memory.

© 2018, IJCSE All Rights Reserved

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

III. JAGGED ARRAY IMPLEMENTATION OF
VERTICAL DATA FORMAT APPROACH

Frequent patterns are itemsets [set of items, such as
milk and bread, that appear frequently together in a
transaction data set], subsequences [buying first a PC, then a
digital camera, and then a memory card, if it occurs
frequently in a shopping history database], or substructures
[subgraphs, subtrees or sublattices] that appear in a dataset
with frequency no less than a user-specified threshold
(min_sup)[7]. Finding frequent patterns plays an essential
role in mining associations, correlations and many other
interesting relationships among data. ARM is one of the data
mining techniques to discover the hidden patterns/rules
among items in a large database of variable-length
transactions that help in making decision and predictions [4].

Apriori Algorithm, FP-Growth and Eclat [4] are the
popularly available static data mining techniques for finding
frequent patterns. Apriori is the basic algorithm for mining
frequent patterns which suffers from space complexity due to
large number of candidate generation and also requires
multiple scans of database. FP-growth uses a tree structure
for mining frequent itemsets. Due to limited number of
database scans and zero candidates, it is efficient as
compared to Apriori. Both the Apriori and FP-growth
algorithms mine frequent patterns in Horizontal Data Format
(HDF) (i.e., {TID: itemset}), where TID is a transaction-id
and itemset is the set of items in TID and it is shown in
Table I.

TABLE I. TRANSACTION DATABASE D INHDF

TID List of item IDS

T1 ABE
T2 B.D

T3 B,C

T4 ABD
TS AC

T6 B,C

T7 AC

T8 AB,.C
T9 AB,C.E

But the data can also be presented in {item: TID-
set} format where item is an item name and TID-set is the set
of transactions containing the item called VDF. The VDF is
used in Eclat algorithm that minimizes the database scan and
uses set intersection of Tid’s for finding the support count for
k-itemsets where k=2,3,...,n. The VDF of the transaction
database D is shown in Table II. The comparisons between

153

International Journal of Computer Sciences and Engineering

the Apriori, FP-Growth and Eclat with different parameters
are shown in Table III. From Table III and in [4] it is
observed that the FP mining algorithms which use VDF are
very fast and requires less memory space when compared
with HDF approaches. But, the VDF approaches use array
storage structure for storing the database in memory.

TABLE II. VDF oF D

itemset TID_set

A T1,T4,T5,T7,T8,T9

B T1,T2, T3, T4, T6, T8,T9
C T3, T5, T6, T7, T8,T9
D T2,T4

E T1.T9

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

To reduce memory space further, this research work
implements the VDF using jagged array. It is a special case
of 2-D array and it is an array of array in which the length of
each array can differ. This concept is available in JAVA,
VB.NET and C#NET. This implementation helps to reduce
the memory needed considerably because in the real life
grocery datasets the customers will not purchase all the items
in the shop. Thus, this implementation utilizes the memory
effectively.

A. An Example

The first part of this section shows the memory
requirement for the array implementation of VDM. Let the
grocery shop sells n (5) items viz., A, B, C, D and E and
consider the transaction database D shown in Table I. It
contains ¢ (9) transactions and it is scanned first to generate
VDF. The VDF of Table I is shown in Table II.

TABLE III. COMPARISON BETWEEN STATIC DATA MINING TECHNIQUES FOR FINDING FREQUENT PATTERNS [5]

Comparison Apriori EP-Growih ECLAT
Parameters
Technique Breadth first search and Apriori Divide and conquer Depth first search &

property (for pruning)

scanned for each time a candidate

Database Scan . .
item set is generated

1. Requires large memory space.

Drawback(s
rawback(s) 2. Too many candidate item set.
1. Easy to impl t.
Advantage(s) asy o lmp emen
2. Use large item set property
Data format Horizontal
Storage structure Array

Time More execution time

intersection of T-id’s

Two times Few times

. . . It requires the virtual
FP-tree is expensive to build d

memory to perform the
and consumes more memory

transaction.
1. No need to scan the

Database is scanned two .
database each time

times 2. fast

Horizontal Vertical

Tree (FP-tree) Array

Execution time is less than Execution time is less than
Apriori Apriori

The support count (SC) for each item is the number of
transaction-id's that it contains i.e. the SC of A,
SCa=count(A)=6. Similarly, SCg=7, SCc=6, SCp=2 and
SCg=2. Let the min sup be 2. The frequent 1-itemset
contains {A, B, C, D, E}. The VDF is actually stored in the
memory as 2-D array, where number of rows (r) = items in
the grocery shop and number of columns(c) = ¢. Here r=5
and ¢=9. The memory required for storing 1-itemset in VDF
format is

TM, = (rxcXsizeof (tid)) + (sizeof (item,) Xr) (1)
Where item;; is the first item in the frequent
1-itemset, tid is the transaction-id and sizeof is a built-in

function which says the number of bytes required for the
argument.

© 2018, IJCSE All Rights Reserved

Here each tid requires 2 bytes and item;; requires 1 byte of
memory respectively. All items say A, B, C, D and E sold in
the grocery shop are frequent 1-itemsets. Therefore the VDF
requires (5x9x2)+(5x1) = 95 bytes of memory i.e., TM; = 95
bytes. Suppose if there are some in-frequent items in
I-itemsets, they can be removed which saves memory
considerably. The number of bytes of memory removed from
1-itemset is computed as

rbytes1 = (rr1 XX sizeof (tid)) + (rr1 X sizeo_/"(item1 1)) 2)
Where, rr; is the number of rows to be removed as in-

frequent. Therefore the total bytes of memory for frequent
1-itemset is

M, =TM, —rbytes, (3)

154

International Journal of Computer Sciences and Engineering

Here M;= 95 - 0 = 95 bytes. Similarly, in iteration
2, the possible 2-itemsets combinations are generated from
frequent 1-itemsets and it is {AB, AC, AD, AE, BC, BD, BE,
CD, CE, DE}. Suppose if there are n items in 1-itemset, the
possible two item combinations are (nxn-1)/2 say tc,. Among
them, the numbers of itemset combinations say x may be in-
frequent which need not be placed in VDF. Therefore, the
memory required for frequent 2-itemset shown in Table IV is

7M2 = ((t62 —x)Xc X sizeof (tid)) + (sizeof (item2 1) X (t62 —X)))

Where, item,; is the first item in the frequent
2-itemset. In this example, the combinations viz., AD,CD,CE
and DE are in-frequent and based on equation (4), the VDF
requires ((10 - 4) x 9 x2) + 2 x (10-4)) =108 + 12 = 120
bytes. Similarly from Table IV, the 3-itemset combinations
are {ABC, ABD, ABE, ACE, BCD, BCE, BDE} and the
combinations ABD, ACE, BCD, BCE and BDE are in-
frequent, therefore the frequent 3-itemset requires
((7-5)x9%2)+(7-5)x3)=42 bytes of memory and the VDF of
3-frequent itemsets is shown in Table V. The process is
repeated until no frequent itemsets are found.

TABLE IV. VDF OF 2-ITEMSETS

Itemset TID_set

AB T1,T4,T8,T9
AC T5,17,T8,T9
AE T1,T9

BC T3,T6,T8,T9
BD T2,T4

BE T1.T9

Therefore, the total memory required for VDF using 2-D
array is

itemset; +J

™ =M+ L TM; &)
i=2

Where M; is calculated using (3) and TM; are
calculated using the equation (6) shown below.

TM; = ((tc; = x)X ¢ X sizeof (tid)) + (sizeof (itemy)X (tc; —x)) (6)

Where, tc; and x are the number of items and in-
frequent items in the candidate i-frequent itemset. For the
above example TM = 95+120+42 =257 bytes of memory. If
the same is implemented using jagged array, the memory
requirement is reduced considerably. The format of jagged
array representation for candidate 1-itemset is shown in

© 2018, IJCSE All Rights Reserved

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

Table VI and all items in it are frequent which forms
frequent 1-itemset.

TABLE V. VDF OF 3-ITEMSETS

itemset TID_set
ABC T8,T9
ABE T1,T9

TABLE VI. JAGGED ARRAY REPRESENTATION OF 1-ITEMSET

itemset TID_set

A T1 | T4 | TS | T7 T8 | T9

B T1 | T2 | T3 | T4 | T6| T8 | T9
C T3 | TS | T6 | T7 T8 | T9

D T2 | T4

E T1 | T9

The memory required for candidate 1-itemset TM;
is calculated as

™, = > SCitom X sizeof (tid) + sizeof (item) (7

Viteme{itemsety }

As in two-D representation, there may be x in-
frequent items in candidate 1-itemset say {in-frequent} =
{item;, item,, ...,item,} then the memory for {in-frequent}
be saved by removing it and the amount of memory removed
is computed as shown in equation (8).

SCiem>*sizeof (tid)+sizeof (item) — (8)

rbytes| = z
Viteme{in— frequent}

Therefore the total memory required for frequent
1-itemset in jagged representation is computed using (3) with
the values computed using (7) and (8) respectively.
Similarly, the jagged array representation of frequent
2-itemset shown in Table VII requires TM, - rbytes, memory
space where TM, and rbytes, are calculated by using (9) and
(10) respectively.

™., = > SCjtom X sizeof (tid) + sizeof (item))

Viteme{itemset) }

> SC;tomXsizeof (tid)+sizeof (item) (10)
Viteme{in— frequent}

rbytes, =

The jagged representation of frequent 3-itemset is
shown in Table VIII which requires TMj; - rbytes; memory.
This process continues until no more frequent itemsets are

155

International Journal of Computer Sciences and Engineering

found. For this case the candidate 4-itemset is null and the
algorithm terminates. Therefore, the total memory required
for the jagged implementation is calculated using equation

an.

itemset; E2%)

™ =)y
i=1

(1)

™ ; - rbytes[

Where, TM; and rbytes; are calculated using (12) and
(13) respectively.

™. =) (12)

Viteme{itemset; }

SCjtem X sizeof (tid) + sizeof (item)

rbytes; = z SCjtem*sizeof (tid)+sizeof (item) (13)

Viteme{in— frequent;}

TABLE VII. JAGGED ARRAY REPRESENTATION OF 2-ITEMSET

itemset TID_set

AB T1 T4 T8 T9

AC T5 T7 T8 T9

AE T1 T9

BC T3 T6 T8| T9 |

BD T2 T4

BE T1 T9

TABLE VIII. JAGGED ARRAY REPRESENTATION OF 3-ITEMSET

itemset TID_set

ABC T8 T9

ABE T1 T9

For this example, the jagged representation requires
™, = (6%2 +1)+(7x2+1)+(6x2+1)+(2x2+1)+(6x2+1)
= 13+15+13+5+5=51 bytes
rbytes; =0
Therefore M;=51- 0 = bytes
™, = (4x242) +(4x242)+(1X2+42)+ (2Xx2+2) +(4x2+2)
+(2x2+42) +(2x2+2) +(0x2+2) +(1x2+2)+ (0x2+2)
=10+10+4+6+10+6+6+2+4+2=60 bytes
rbytes; = (1x2+2)+(0x2+2)+(1x2+2)+(0x2+2)=12 bytes
Therefore M, requires = 60 - 12 = 48 bytes of memory.
Similarly, M; requires 14 bytes and therefore, the jagged
representation for this example requires

TM=M+M,+M; =51+48+14=113 bytes of memory which is
less than 50% in the original array representation.

© 2018, IJCSE All Rights Reserved

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

IV. RESULTS AND DISCUSSION

From the example discussed in section 3.1, the jagged
implementation has several advantages. They are

1. No memory space is wasted as in 2-D array because
jagged array allocates space only to the transactions in
which the items occurs.

2. Minimizes the memory space required than the
original array implementation because for the above
example the array implementation requires 257 bytes
of memory, where as it is 113 bytes when using
jagged implementation i.e., it requires less than 50%
of memory when compared with the array
representation.

Thus, it is finalized that the jagged implementation
saves memory significantly and also fast when compared
with the horizontal data format approaches.

V. CONCLUSION

From the literatures, it is observed that there is always a
trade-off between the computational time and memory in
generating frequent itemsets. It is also found that the vertical
data format approaches reduces the database scans and finds
the support counts by intersection. Though it is best, the array
storage structure implementation used by VDF requires more
memory because it takes the assumption that each item may
fall almost in all transactions. But in real world grocery
datasets, each transaction will not contain all items and each
item may not present in all transactions. So to reduce the
memory consumption, this research work used the jagged
array representation for efficient usage of memory and from
the experiments it is proved that the proposed implementation
approach reduces more than 50% of memory when compared
with original 2-D array implementation. In future, this work
can be extended to the test real world grocery datasets of
more dimensions.

REFERENCES

[1]. Liu, Y., Liao, W. K., Choudhary, A. N., & Li, J. (2008). Parallel
Data Mining Algorithms for Association Rules and Clustering, In
Intl. Conf. on Management of Data, pp.1-25.

[2]. Kumar, G. V., Sreedevi, M., & Kumar, N. P. (2012). Mining
Regular Patterns in Data Streams Using Vertical Format.
International Journal of Computer Science and Security (IJCSS),
6(2), pp.142-149.

[3]. Ravikiran, D., & Srinivasu, S. V. N. (2016). Regular Pattern
Mining on Crime Data Set using Vertical Data Format.
International Journal of Computer Applications, 143(13).

[4]. Singla, V. (2016). A Review: Frequent Pattern Mining
Techniques in Static and Stream Data Environment. Indian
Journal of Science and Technology, 9(45), pp.1-7.

[5]. Ishita, R., & Rathod, A. (2016). Frequent Itemset Mining in Data
Mining: A Survey. International Journal of Computer
Applications, 139(9).

156

International Journal of Computer Sciences and Engineering

[6].

[71.
[8].

[9].

[10].

[11].

[12].

Guo, Y. M., & Wang, Z. J. (2010, March). A vertical format
algorithm for mining frequent item sets. In Advanced Computer
Control (ICACC), 2010 2" International Conference on (Vol. 4,
pp. 11-13). IEEE.

Han, J., Kamber, M. Data Mining Concepts and Techniques,
Morgan Kaufmann Publishers, 2006.

S.Sharmila, Dr. S.Vijayarani. (2017). Frequent Itemset Mining
and Association Rule Generation using Enhanced Apriori and
Enhanced Eclat Algorithms, International Journal of Innovative
Research in Computer and Communication Engineering, 5(4),
pp. 679- 6804.

Zhiyong Ma, Juncheng Yang, Taixia Zhang and Fan Liu. (2016).
An Improved Eclat Algorithm for Mining Association Rules
Based on Increased Search Strategy, International Journal of
Database Theory and Application, 9(5), pp.251-266.

C.Ganesh, B.Sathiyabhama and T.Geetha. (2016). Fast Frequent
Pattern Mining Using Vertical Data Format for Knowledge
Discovery, International Journal of Emerging Research in
Management &Technology, 5(5), pp.141-149.

Hosny M. Ibrahim, M.H. Marghny and Noha M.A. Abdelaziz.
(2015). Fast Vertical Mining Using Boolean Algebra,
International Journal of Advanced Computer Science and
Applications, 6(1), pp.89-96.

Mohammed J. Zaki amd Karam Gouda. (2003), Fast Vertical
Mining Using Diffsets SIGKDD 03, ACM.

Authors Profile

P.Sumathi received her B.Sc and M.Sc degrees in
Computer Science from Seethalakshmi Ramaswami
College, affiliated to Bharathidasan University,
Tiruchirappalli, India in 2001 and 2003 respectively. She
received her M.Phil degree in Computer Science in 2008
from Bharathidasan University. She is presently working as
an Assistant Professor in the Department of Computer

Science, Vysya College, Salem, India. She is currently pursuing Ph.D.,

degree in

Computer Science in Bharathidasan University. Her research

interests include Data structures, Database and Data Mining techniques.

S.Murugan received his M.Sc degree in Applied
Mathematics from Anna University in 1984 and M.Phil
degree in Computer Science from Regional Engineering
College, Trichirappalli in 1994. He is an Associate
Professor in the department of Computer Science, Nehru
Memorial ~ College (Autonomous), affiliated to
Bharathidasan University since 1986. He has 32 years of
teaching experience in the field of Computer Science. He

has completed his Ph.D., degree in Computer Science with the specialization
in Data Mining from Bharathiyar University in 2015. His research interest
includes Data and Web Mining. He has published many research articles in
the National and International journals.

© 2018, IJCSE All Rights Reserved

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

157

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

A MULTITHREAD, NOVEL PATTERN
BASED ALGORITHM FOR FINDING
FREQUENT PATTERNS WITH JAGGED
ARRAY AND VERTICAL DATA
FORMAT

P.Sumathi
Research Scholar, PG & Research Department of Computer Science, Nehru Memorial College (Autonomous)
(Affiliated to Bharathidasan University), Puthanampatti-621 007, Tiruchirappalli-Dt, Tamil Nadu, India
sumiparasu@gmail.com

Dr.S.Murugan
Associate Professor, PG & Research Department of Computer Science, Nehru Memorial College (Autonomous)
(Affiliated to Bharathidasan University), Puthanampatti-621 007, Tiruchirappalli-Dt, Tamil Nadu, India
murugan_nmc@hotmail.com

Dr.V.Umadevi
Assistant Professor, PG & Research Department of Computer Science, Nehru Memorial College (Autonomous)
(Affiliated to Bharathidasan University), Puthanampatti-621 007, Tiruchirappalli-Dt, Tamil Nadu, India
yazh1999@gmail.com

Abstract

Frequent pattern mining is essential for discovering hidden items from a database with more than a
prescribed threshold. Knowing frequent patterns helps us to determine the relationship between the
items. Many researchers narrated novel algorithms for sequential frequent itemset mining using a single
thread, but still, there is a need for time, memory efficient and scalable one. Therefore, the research study
proposed an approach for finding frequent patterns, namely TB-NPF-VDF (Thread Based, Novel Pattern
Formations with Vertical Data Format), which uses a new way of generating candidate items to minimize
the time. Also, it employs a multithread concept and runs several threads simultaneously, one for each
frequent 1-itemset to generate the remaining frequent itemsets for that item. Further, it also employs a
jagged array to store the frequent patterns to reduce the memory requirement. The research work has
been implemented and tested using four real-time datasets. Further, it has been compared with Matrix-
Apriori, VDF and NPF-VDF (without multithread), and the experimental results reveal that TB-NPF-
VDF outperforms significantly in terms of runtime and storage.

Keywords: Frequent Patterns; Jagged Array; Multithread; Novel Pattern Formation; Vertical Data
Format.

1. Introduction

Data Mining (DM) is the fastest growing field [1], whose primary goal is to discover or extract information or
patterns from large datasets. It is a multidisciplinary field comprising Computer Science and Statistics. It is an
analysis step of Knowledge Discovery from Databases (KDD) [2]. Several DM techniques are available, such as
Association Rule Mining (ARM), sequential pattern analysis, classification, and clustering. ARM is one of the
most widely used techniques for knowledge discovery in the mining domain [3]. ARM is used in several
applications such as inventory control, mobile mining, educational mining, market basket analysis, risk
management, telecommunication networks and graph mining, etc. [4]. Frequent patterns are the patterns that
occur frequently in a dataset whose frequency is more than that of a threshold value specified by the user. For
instance, a set of items viz., pen and paper appears frequently together in a transactional dataset is a frequent
itemset [1]. Mining frequent patterns is an essential sub-task of ARM [5]. It generates qualitative knowledge,
which helps the decision-makers for making valuable business insights [2].

Apriori is a classical algorithm for finding frequent patterns which uses a horizontal format approach
proposed by Agrawal and Srikant in 1993 [6] for Boolean association rules. The algorithm begins with
generating a 1-itemset, recursively produces a frequent 2-itemset, frequent 3-itemset, and so on until all frequent
itemsets are produced [4]. The main drawback of the algorithm is that it generates numerous candidate itemset,

DOI : 10.21817/indjcse/2021/v1215/211205078 Vol. 12 No. 5 Sep-Oct 2021 1353

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

especially for huge frequent 1-itemset and needs to scan the database many times. Many algorithms have
evolved over the years to overcome these drawbacks viz., FP-growth, Direct Hashing and Pruning (DHP),
Matrix-Apriori and maximal association rule mining, so on. In this line, this research work also introduces a
paradigm for finding frequent patterns with a multithreaded approach.

The remaining article is organized as follows. The relevant work related to the proposed work is illustrated
in Section 2. Section 3 elaborates the proposed methodology with an analogy. Section 4 discusses the results and
section 5 summarizes the conclusion.

2. Related Work

The problem of mining frequent patterns is an essential task in ARM. Several studies have been carried out in
this domain to improve the time to generate frequent itemsets and reduce the memory space over the years. This
section presents a brief overview of them, providing a strong impetus to the proposed method.

Y. M. Guo et al. [1] have initiated a VDF algorithm for mining frequent itemsets. The new algorithm only
needs a single scan of the entire database and uses AND operation for finding the frequent itemsets.
Additionally, it proved that the algorithm requires less storage and also improves the mining efficiency.
Subashini et al. [4] have studied ARM methods in horizontal and vertical data format approaches viz., Apriori,
APRIORITID, APRIORI RARE and APRIORIRARE TID. They analyzed the pros and cons of each
technique.

Judith Pavon et al. [7] have introduced a method called Matrix-Apriori to increase the speed of finding
frequent itemsets. It first generates a Boolean matrix MFI which holds the frequent 1-itemset by traversing the
transaction database. The vector STE stores the support count of the candidate itemset for each row in MFI. To
accelerate the search of frequent patterns, the first row of MFI writes the indexes. It used a conditional pattern
generation method for generating frequent patterns and proved that it performs better than Apriori and FP-
Growth algorithms. Sumathi, P and Murugan, S [8] have designed a memory-efficient VDF approach using a
jagged array and developed a memory usage model. They demonstrated that memory usage was reduced
significantly when compared with multidimensional arrays.

A fast GPU-based frequent itemset mining algorithm for massive datasets called GMiner has been
introduced in [9]. It has been developed to overcome the limitations of various parallelism methods viz., multi-
core CPU, multiple machines and many-core GPU, particularly the workload skewness. It extracts the patterns
from the enumeration tree and uses the computational power of GPU. From the experimentation, they showed
that the GMiner is better than the existing ones. Authors in [10] have suggested a novel algorithm, namely
Accelerating Parallel Frequent Itemset Mining on Graphics Processors with Sorting (APFMS). This parallel
frequent itemset mining utilizes GPU's to accelerate the mining process. GPUs speed-up process using the
OpenCL platform and proved that the APFMS outperforms the previous computation time-based methods.

A new multi-core based parallel mining algorithm for finding frequent itemsets has been presented in [11]
using LINQ queries. It divides the transactional database into sub-datasets known as conditional patterns. Many
threads ran concurrently on a multi-core computing system, one for each conditional pattern. They proved that
the algorithm is faster by 2x and 4x times than the fast Eclat and FP-growth algorithms, respectively. A
compressed bit matrix-based parallel algorithm for exploring frequent itemsets has been introduced by Zong-Yu
et al., which uses both bottom-up and top-down approaches for efficient pruning [12]. It also uses OpenMP's
parallel multithreaded, dynamic scheduling approach to extract frequent itemsets. Finally, they demonstrated
that this approach reduces memory space, I/O overhead with a single database scan compared to the Apriori
algorithm.

In [13], the authors have proposed a VDF approach for finding frequent itemsets using a Boolean matrix
(FPMBM), where the presence of an item for the TID's is 1 and 0 for absence. It uses logical AND operation for
finding support count from frequent 2-itemset to frequent n-itemsets until it is not empty. To control the number
of iterations for candidate generation, it also uses additional information in the Boolean matrix, namely "number
of iterations". Further, they demonstrated from the experiment that the FPMBM is efficient and more scalable
than the existing ones.

Jen, T. Y., et al. have created a novel vertical format based parallel method for finding frequent patterns
called Apriori_V with MapReduce platform. They proved that it provides a significant improvement in reducing
the number of operations and decreasing computational complexity [14]. The authors in [15] have introduced a
Parallel Regular Frequent Pattern (PRF) method to find out the regular-frequent patterns from large databases
using VDF format and proved from the experiments that the algorithm reduced the number of database scans,
I/O cost and inter-process communication.

DOI : 10.21817/indjcse/2021/v1215/211205078 Vol. 12 No. 5 Sep-Oct 2021 1354

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

In [16], the authors have reviewed the works related to Parallel Sequential Pattern Mining (PSPM), viz.,
partition-based, Apriori-based, pattern growth-based, and hybridized algorithms for PSPM. They also reviewed
the open-source software's utilized in PSPM. Further, they summarized the issues and uses of PSPM in big data.
In [17], the authors have proposed an FPM algorithm with a multi-core processor and Multiple Minimum
Support called MMS-FPM. It quickly generated frequent patterns. It has been designed mainly to solve rare item
problems. They have proved that the MMS-FPM is more superior to MSApriori and also scalable one. In [18],
the authors have designed a Spark-based parallel Apriori algorithm called YAFIM (Yet Another Frequent
Itemset Mining). The experimental result revealed that the proposed method is faster than the Apriori's
MapReduce implementation by 18 times.

The existing literature found that no authors proposed parallel algorithms using a multithreaded approach
with uni-processor systems. Thus, the research work focuses on a multithreaded approach with jagged array
representation for VDF and novel pattern formation in finding frequent patterns, namely TB-NPF-VDF. It also
compares the proposed work with the methods viz., Matrix-Apriori, VDF and NPF-VDF.

3. Proposed Methodology

The proposed work's main idea is to find frequent patterns for the transaction database TD. It contains four
phases. Phase one scans TD first and converts it into VDF, in which a set of TIDs represents each item as in
Eclat [19]. The second phase determines the frequent 1-itemset from VDF. The third phase sorts the frequent 1-
itemset in ascending order based on the min_sup(d) threshold, and it is stored in a matrix using the jagged array
format. The ¢ of an itemset X is calculated by dividing the total transactions in which X occurs by the total
number of transactions [20]. The fourth phase creates n-1 threads, one for each frequent 1-itemset except for the
last one; where n represents the total items in frequent 1-itemset (Li). Let Li={li, b,..., 1.}, each thread
generates frequent itemsets starting from frequent 2-itemset to frequent k-itemset until it is non-empty, where k
>2.

For finding frequent i-itemset, i > 2, each thread (#; 1<v<s-1) uses the following procedure.

(1) When i=2, the thread forms the candidate patterns by combining /, with I+ and finds the transactions
in which the combination I./¢+1 occur by intersecting the transactions in I, and I.+;. The item
combinations whose support count > ¢ is selected as frequent i-itemset for item x.

(2) For i>2, each item in frequent (i-1)-itemset is combined with each frequent 1-itemset starting from the
next item in the last item of frequent(i-1)-itemset and the transactions in which the combination exists
is determined by intersecting the item in frequent (i-1)-itemset and the appropriate item in frequent 1-
itemset. This procedure will be repeatedly performed as far as the frequent k-itemset is not null.

The proposed method uses multithreads and novel pattern formation with VDF to find frequent patterns is
named TB-NPF-VDF. The main benefit of this method is that it generates fewer candidate itemsets than the
classical Apriori and VDF because it avoids the items whose support count is lesser than the item at any instance
of time for generating the patterns. As threads are used, the CPU is effectively utilized, and it is faster compared
to processes. This method avoids checking the pattern for the Apriori property because the candidate patterns
generated satisfies the Apriori property by default. Further, the time required for TB-NPF-VDF is less when
compared to VDF. The memory requirement is minimized since the algorithm uses the matrix notation using a
jagged array [8].

The algorithm for the proposed method is shown below, and the workflow of TB-NPF-VDF is illustrated in
Fig.1.

TB-NPF-VDEF: Algorithm to discover the frequent patterns
Input: TD - Transactional database;
0 - min_sup threshold;
Output: Frequent itemsets;
: vdf$scan TD and store it in <itemset, TID;;»> format;
C é@;
for cach item; in vdf do
SC<&count(TIDy(item;)); //determines the number of transactions in item;
C1€Cy.append ({itemset, TIDys, SC})// adds a row into C;
endfor
for each item; in C, do
L& {item;| SC(item;) > 0}

A S T

DOI : 10.21817/indjcse/2021/v1215/211205078 Vol. 12 No. 5 Sep-Oct 2021 1355

e-ISSN : 0976-5166

p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)
9: endfor
10: Li<jagged(sort(L)) //sorts L; and converts it into a jagged matrix format
11: no_freql itemset$<count(L) //determines the number of itemset in L;
12: for (x=1; x < (no_freql _itemset-1); x++)
13: t.<create(thread) //create ¢, for the Li[x]
14: endfor
15: for each thread ¢, do
16: for (i=2; Ly # Q; k++)
17: if /==2 then
18: new_pattern€<<Ld 1>}
19: new_TID_list< Transactions(/;)NTransactions(Zy+1);
20: else if £ > 2 then
21: for each item; in Li.; do
22: new_item<last item in item;
23: new_pattern< {<item;[,>|[, < next(new_item)}
24: new_TID_list< Transactions(item;)NTransactions(/,);
25: endfor
26: endif
27: SC<&count(new TID_list),
28: Cv& Cr.append({new_pattern,new TID _list});
29: L& {Ci| SC(Cy) = 6}
30: endfor
31: endfor

Generate Generate frequent
candidate 1-itemset (L;) and store it

1-itemset (Cy) in VDF in increasing order

L1 ={I,I2,15,...,Ia} Create n-1 threads

T for Item I iT} for Item Is...

T, for Item Iy Th-1 for Item Iy
v v A
k=2 k=2 k=2
Generate Generate e Generate
P Cpeitemset Cr-itemset | €— P Ci-itemset
¢ Compare SC with ¢ Compare SC with & ¢ Compare SC with
Generate Generate Generate
Li-itemset Ly-itemset Li-itemset

<[e] e]

Fig. 1. Workflow of TP-NPF-VDF

3.1. Example

To understand the relevance of the proposed work, the Transactional Database (TD) shown in Table 1 has
been considered. It consists of 12 items, namely A,B,C,D,E.,F,G,H, LK.M and P. The vertical representation of
TD is shown in Table 2. Each row represents an item consisting of the item name and the TID's in which the
item belongs. Assume the min_sup (J) as 6. The candidate 1-itemset (C;) consists of all the items in TD, the
transaction IDs in which the items occurred, and the support count (SC), i.e. the total transactions in which the
item appears. The C; for TD is shown in Table 3. Among them, the items viz., A,C,D,E,F,I,M and P satisfy the ¢
and form the frequent 1-itemset(L;). The jagged array representation of the same is shown in Table 4 [21].

DOI : 10.21817/indjcse/2021/v1215/211205078 Vol. 12 No. 5 Sep-Oct 2021 1356

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

TID Items Purchased
0 D,C,G,E,LH,P.K.M
1 E.B,G,F,LHM,P
2 E,CM
3 B,A,D,CF.EIG,P
4 B,A,D,C,P.E
5 B,A,D,C,H,F,P
6 E,B,H,F,P,IM
7 C,AE.D,P.K.M
8 C,AE.D,LF,M,P
9 C,A,E.D,H,F,P.ILM

Table 1. Transactional Database (TD)

Item | Transaction ID's (TID's)

A {3,4,5,7,8,9}
{1,3,4,5,6}

C {0,2,3,4,5,7,8,9}

D {0,3,4,5,7,8,9}

E {0,1,2,3,4,6,7,8,9}

F {1,3,5,6,8,9}

G {0,1, 3}

H {0, 1,5,6,9}

1 {0,1,3,6,8,9}

K {0, 7}

M {0,1,2,6,7,8,9}

P {0,1,3,4,5,6,7,8,9}

Table 2. Transactional Database in VDF

Ci

Itemset TID's SC
A {3,4,5,7,8,9} 6

{1,3,4,5,6} 5
C {0,2,3,4,5,7,8,9} 8
D {0,3,4,5,7,8,9} 7
E {0,1,2,3,4,6,7,8,9} 9
F {1,3,5,6,8,9} 6
G {0, 1,3} 3
H {0,1,5,6,9} 5
I {0,1,3,6,8,9} 6
K {0, 7} 2
M {0,1,2,6,7,8,9} 7
P {0,1,3,4,5,6,7,8,9} 9
Table 3. Candidate 1-Itemset
L
1-Itemset TID's

A 3145|7819

C 01234571819

D 0|3[4]|5]7]181]9

E Of(1]2[3]|4|6]|]7|8]|9

F 13]|5|]6[8]9

1 0[1]3[]6]|8]9

M O(1]2][6]7|8]9

P 0|1]|3[4|5|6]|7|8]|9

Table 4. Jagged Array Representation of L,

To generate fewer candidate itemsets, this research work uses a novel pattern generation method rather than
the natural join used in the Apriori algorithm. For that, the L, is sorted in ascending order based on SC and
replaced with L, as illustrated in Table 5.

The sorted L, contains 8 items, and this work creates 7 threads because the frequent 1-itemset contains 8
items. Thread-1 is for the item <A>, Thread-2 is for item , etc. The Thread-1 first generates the following
patterns.

<AF>, <AI>, <AD>, <AM>, <AC>, <AE> and <AP> and for each pattern, set intersection is calculated by
using the TID's in each item of the pattern. For example, for the pattern <AF> the set intersection is calculated
as {3,4,5,7,8,9} N {1,3,5,6,8,9} = {3, 5, 8,9} and SC=4.

DOI : 10.21817/indjcse/2021/v1215/211205078 Vol. 12 No. 5 Sep-Oct 2021 1357

e-ISSN : 0976-5166

p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)
L,
1- Itemset TID's
A 314|5[7]181]9
F 113|5]6|8]9
1 0136|809
D 0[3]4[5]7[8]9
M 011]2[6]7[8]9
C 02314 |5]7]181]9
E 01|23 |4|6|7|8]9
P 0]1[3]|4][5]6]7]8]9

Table 5. Sorted L,

Similarly, the SC for other patterns viz., <AI>, <AD>, <AM>, <AC>, <AE> and <AP> is calculated as
stated above. The patterns whose SC > ¢ will be considered as the frequent 2-itemset for the item <A> and are
represented in Table 6. For this case, the patterns <AD>, <AC> and <AP> satisfies the .

Item TID's

<AD> |3 |4 |5|7|8]9
<AC> |3 14 |5]|7]|8]9
<AP> [3 |4 |5]7|8]9

Table 6. Frequent 2-Itemset for <A> by Thread-1

Next, the method generates the candidate 3-itemsets for each frequent 2-itemset in Table 6 as follows.

(1) For the frequent 2-item <AD>, the items viz., <M>, <C>, <E> and <P> are considered from frequent 1-
itemset because <M> is the next item after <D> where, <D> is the last item in frequent 2-itemset
<AD>. The patterns generated are <ADM>, <ADC>, <ADE> and <ADP> and for them, the
transactions in which the pattern occurs and SC is calculated as follows.

From Table 6, the TID's of <AD>is {3, 4, 5, 7, 8, 9} and from Table 5 the TID's of <M>is {0, 1, 2, 6,
7,8, 9}. Therefore, {3,4,5,7,8,9} N {0,1,2,6,7,8,9} ={7, 8T} and SC=3. Similarly, for <ADC>,
<ADE> and <ADP> is also calculated.

(2) For the frequent 2-item <AC>, the items from <E> i.e. <E> and <P> are considered. The patterns
generated are <ACE> and <ACP> and SC is calculated as above.

(3) For the frequent 2-item <AP>, there is no candidate 3-itemset because there is no next item after <P>.

The candidate 3-itemset generated by Thread-1 are <ADM>, <ADC>, <ADE>, <ADP>, <ACE> and
<ACP>. Among them the patterns viz., <ADC>, <ADP> and <ACP> satisfies J forms frequent 3-itemset and
represented by Table 7.

Itemset TID's

<ADC> | 3 | 4 5171819
<ADP> | 3 | 4 5171819
<ACP> | 3 | 4 5171819

Table 7. Frequent 3-Itemsets for <A> By Thread-1

The frequent 3-itemset for <A> is not empty, so the method generates the candidate 4-itemset. They are
<ADCE> and <ADCP>. The TID's for <ADCE> is calculated as {3,4,5,7,8,9} N {0, 1,2,3,4,6,7,8,9}={3,
4,7,8,9} and SC of <ADCP> is 5. Similarly, for <ADCP>, the TID's are {3, 4, 5, 7, 8,9}N{0, 1, 3,4, 5, 6, 7,
8,9} =1{3,4,5,7,8,9}. The SC of <ADCP> is 6 and it is illustrated in Table 8.

Itemset TID's
<ADCP> |3 [4] 5[7[8]9

Table 8. Frequent 4-Itemsets for <A> by Thread-1

Now, candidate 5-itemset for the item <A> is @. So Thread-1 stops its execution and returns <AD>, <AC>,
<AP>, <ADC>, <ADP>, <ACP> and <ADCP> as frequent items for <A>. Similarly, the other threads generate
frequent itemsets for other frequent 1-itemset in parallel as shown from Table 9 to Table 19.

Itemset TID's
<FP> [1[3] 5[6[8]9

Table 9. Frequent 2-Itemset for <F> by Thread-2

DOI : 10.21817/indjcse/2021/v1215/211205078 Vol. 12 No. 5 Sep-Oct 2021 1358

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

Itemset TID's
<IE> 0|1 316189
<IP> 0|1 3161819

Table 10. Frequent 2-Itemset for <I> by Thread-3

Itemset | TID's
<IEP> o1] 3]6]8]9

Table 11.frequent 3-Itemset for <I> by Thread-3

Itemset TID's

<DC> [0[3] 4[5]7[8]9
<DE> |0 3| 4]7[8]9
<pP> |o|3] 4]5]7[8]9]

Table 12. Frequent 2-Itemset for <D> by Thread-4

Ttemset TID's |

<DCE> [0 [3] 4[7][8]9
<DCP> [0 |3] 4[5]7]8]9]
<DEP> [0 [3] 4789

Table 13. Frequent 3-Itemset for <D> by Thread-4

Itemset TID's
<DCEP> [0]3] 4]7]8]9

Table 14. Frequent 4-Itemset for <D> by Thread-4

Itemset TID's

<ME> [0 |1 2]6|7]|8]9
<MP> [0 |1] 6]7]8]09

Table 15. Frequent 2-Iemset for <M> By Thread-5

Itemset TID's
<MEP> o|1| 6|7|8|9

Table 16. Frequent 3-Itemset for <M> by Thread-5

Itemset TID's

<CE> [0[|2] 3147|819
<CP> |0 |3] 4]5]7]8]9

Table 17. Frequent 2-Itemset for <C> by Thread-6

Itemset TID's
<CEP> [0 [3] 4[7]8]9

Table 18. Frequent 3-Itemset for <C> by Thread-6

Itemset TID's
<EP> |01] 3[4]6]7[8]9

Table 19. Frequent 2-Itemset for <E> by Thread-7

Table 20 depicts the candidate and frequent items, the total number of candidates and frequent items
generated by the TB-NPF-VDF for the given TD. The total number of candidate items generated using TB-NPF-
VDF is 56, and it is less when compared to VDF.

Itemset Candidate Items Total Frequent Items Total®
l-itemset | {A,B,C,D, E, F,G, H, I, K, M,P,M} 13 (ACD.EF, LM, P} 8
2-itemset {AF,ALLAD,AM,AC,AE,AP,FILFD,FM,FC,FE,FP,ID,I 28 {AD,AC,AP,FP,IE,IP,.DC,DE,DP, 14

M, IC,IE,IP,.DM,DC,DE,DP,MC,ME,MP,CE,CP,EP} ME,MP,CE,CP,EP}
3-itemset | {ADM,ADC,ADE,ADP,ACE,ACP,IEP,DCE,DCP,DEP 12 {ADC, ADP, ACP, IEP,DCE, DCP, 9
. MEP, CEP} DEP MEP, CEP}
4-itemset | {ADCE, ADCP,DCEP} 3 {ADCP, DCEP} 2
Total 56 33

“Number of candidate items *Number of frequent items
Table 20. Details of Itemsets for TD

DOI : 10.21817/indjcse/2021/v1215/211205078 Vol. 12 No. 5 Sep-Oct 2021 1359

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

4. Experimental Results and Discussion

The algorithms viz., Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF were implemented using the Python
programming language (version 3.8.2). To estimate the performance of TB-NPF-VDF, the research work used
four real-time datasets downloaded from the FIMI repository and an open-source Data Mining Library. Table 21
describes the characteristics of datasets. The purpose of using these datasets is that they have been used as a
reference by researchers primarily for FPM and ARM-based research. To do a uniform and fair comparison, the
experiments for all the datasets of all algorithms were conducted using the same software and hardware
configurations. The experiments were performed using 8.00GB RAM, Intel Core i7 with 2.40GHz 64-bit
processor and Windows 8.1. All algorithms' runtime performance (Matrix-Apriori [7], VDF, NPF-VDF,
TB-NPF-VDF) for the four datasets with different min _sup percentages ranging from 20% to 70% were
tabulated in Table 22.

Datasets Transaction count | Item count | Average item count/transaction
chess 3196 75 37.00
mushrooms 8416 119 23.00
T25i10d10k 9976 929 24.77
c20d10k 10000 192 20.00

Table 21. Characteristics of Datasets

min_sup (%) Runtime (in Sec.)
—SUP 7°) ™ Matrix -Apriori_] VDF | NPF-VDF | TB-NPF-VDF
chess
20 20.7578 16.8578 13.3578 6.5267
30 19.6365 16.0452 12.1455 5.0325
40 17.7750 14.0750 10.0720 45635
50 16.3028 13.3017 9.0017 3.2634
60 15.3625 12.7943 8.2934 24571
70 14.8546 11.9825 7.4822 2.0012
mushroom
20 23.2135 21.1215 18.0016 12.1024
30 213426 20.0462 17.0642 11.5642
40 20.0035 19.7083 14.1038 10.7869
50 19.2002 18.2058 13.2044 10.0063
60 18.0805 17.7898 12.7240 8.5698
70 17.5652 15.9575 11.4530 7.9586
25i10d10k
20 25.2145 23.3254 20.3325 15.1267
30 23.9625 21.4578 19.4258 13.9568
40 21.5467 20.0025 17.9857 12.0127
50 20.3859 18.7621 16.2456 11.6321
60 19.5321 18.0056 15.0012 10.5212
70 18.4521 16.0527 13.7564 9.2451
€20d10k
20 26.0014 24.4253 22.8342 17.7586
30 24.9532 22.6752 21.5062 15.9802
40 224251 21.9546 20.0412 13.7542
50 21.5621 19.4316 18.8562 11.9892
60 20.1425 19.0012 17.0124 11.0016
70 19.1478 17.5242 15.9351 10.0142

Table 22. Performance Results

Figures 2 to 5 show the graphical representation of the runtime comparison between the algorithms viz.,
Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for the datasets, namely chess, mushroom, t25110d10k and
¢20d10k, respectively. From Table 22 and from figures 2 to 5, it was observed that the runtime performance of
TB-NPF-VDF outperforms than Matrix-Apriori, VDF and NPF-VDF. On an average, the runtime performance
is improved from 20.3092 to 9.9094.

Further, to prove statistically, a Welch two-sample #-test is being performed between the runtimes of Matrix-
Apriori and TB-NPF-VDF. The test was done to determine whether the mean runtimes of Matrix-Apriori and
TB-NPF-VDF are equal to each other or not. The null hypothesis is taken as that the two mean runtimes are
equal, and the alternative is that they are not equal. The test is performed using the R tool for each dataset, and
the results are tabulated in Table 23.

DOI : 10.21817/indjcse/2021/v1215/211205078 Vol. 12 No. 5 Sep-Oct 2021 1360

e-ISSN : 0976-5166
p-ISSN : 2231-3850

P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

25
==p=N[atrx -Aprion
=i=VDF

20 -
==NPF-VDF
=w=TB-NPF-VDF

|

Runtime (in Sec.)
=

(%]
Il

30 40 50 a0 70

P2
[

min_sup(%)

Fig. 2. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for chess dataset

25 - —4—Matrix -Apriori
~8-VDF

= NPF.VDF
i TB-NPE-VDF

[
(2]
Il

/

Runtime (in Sec.)
=

L
1

|
(=]

a 30 40 50 &0
min_sup(%s)

[

Fig. 3. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for mushroom dataset

30 7 4= Matrix -Apriori

’5 | - VDF
- et NPF-VDF
o 20 - == TB-NPFF-VDF
g
= 15 -
g 10 -
o

5 -
0

20 30 40 50 60 70
min_sup(%o)

Fig. 4. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for t25i110d10k dataset

DOI : 10.21817/indjcse/2021/v12i5/211205078 Vol. 12 No. 5 Sep-Oct 2021

1361

e-ISSN : 0976-5166

p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)
SD] . . .
—p—Dlatnx -Aprion
25 4 ==V DF
NPF-VDF

Pt
=]
1

==ei==TE-NPF-VDF

Runtime (in Sec.)

20 30 40 50 60 70
min_sup(%)

Fig. 5. The execution time of Matrix-Apriori, VDF, NPF-VDF and TB-NPF-VDF for c20d10k dataset

Dataset p-value
chess 1.207x1070°
mushroom 6.785 x10°
t25110d10k 5.611x10°%
c20d10k 0.0002914

Table 23. Results of -Test

From the observation of -test results, it is noted that for all datasets, the p-value is < 0.05 (5%) which
concluded that the two means are not equal, which means that there are significant differences between the
runtimes. Therefore, the proposed method TB-NPF-VDF is more efficient in terms of runtime than the others.

The reason for enhancing the performance is that the concurrent execution of the tasks using a multithreaded
approach speeds applications up and reduced the time required for execution by utilizing the CPU effectively.
With novel pattern generation, the set of candidate elements generated is less than the existing ones. Further, it
scans the database only once during the entire process.

5. Conclusion

Many FPM algorithms were introduced in the field of data mining. Each algorithm has its own merits and
demerits and is unsuited for all real-life situations. A new approach called TB-NPF-VDF has been introduced in
this research article to discover the frequent patterns that efficiently combine the power of VDF, NPF, and
multithread concepts. Experiments were carried out on real-time datasets using python implementation for the
existing and proposed methods. TB-NPF-VDF has been proven to be superior to other sequential approaches
through memory usage and run time. The main advantage is that it discovers frequent patterns with less time and
saves memory with jagged array representation for the VDF matrix. In future, the work can be improved by
applying new and efficient optimization techniques.

References

[11 Guo, Y. M.; Wang, Z. J. (2010): A vertical format algorithm for mining frequent item sets. Proceedings of 2™ International
Conference on Advanced Computer Control (IEEE Xplore), 4, pp. 11-13.

[2] Han, J.; Kamber, M.; Pei, J. (2011): Data mining concepts and techniques, 3rd edn. Morgan Kaufmann.

[3] Agqra, I.; Herawan, T.; Ghani, N. A.; Akhunzada, A.; Ali, A.; Razali, R. B.; Choo, K. K. R. (2018): A novel association rule mining
approach using TID intermediate itemset. PloS one, 13(1), pp. 01-32.

[4] Subhashini, A.; Karthikeyan, M. (2019): Itemset Mining using Horizontal and Vertical Data Format, International Journal for
Research in Engineering Application & Management. 5(3) pp. 534-539.

[5] Gawwad, M. A.; Ahmed, M. F.; Fayek, M. B. (2017): Frequent itemset mining for big data using greatest common divisor technique.
Data Science Journal, 16(25), pp. 1-10.

[6] Usha, D.; Rameshkumar, K. (2014): A Complete Survey on application of Frequent Pattern Mining and Association Rule Mining on
Crime Pattern Mining. International Journal of Advances in Computer Science and Technology, 3(4), pp. 264-275.

[71 Pavén, J.; Viana, S.; Gomez, S. (2006): Matrix Apriori: Speeding up the Search for Frequent Patterns. Databases and Applications,
pp. 75-82.

[8] Sumathi, P.; Murugan, S. (2018): A Memory Efficient Implementation of Frequent Itemset Mining with Vertical Data Format
Approach. International Journal of Computer Sciences and Engineering, 6(11), pp. 152-157.

[91 Chon, K.W.; Hwang, S. H.; Kim, M. S. (2018): GMiner: A fast GPU-based frequent itemset mining method for large-scale
data. Information Sciences, 439, pp. 19-38.

DOI : 10.21817/indjcse/2021/v1215/211205078 Vol. 12 No. 5 Sep-Oct 2021 1362

e-ISSN : 0976-5166
p-ISSN : 2231-3850 P.Sumathi et al. / Indian Journal of Computer Science and Engineering (IJCSE)

[10]
[11]
[12]
[13]
(14]
[15]
[16]
[17]
(18]
[19]
[20]

(21]

Huang, Y. S.; Yu, K. M.; Zhou, L. W.; Hsu, C. H.; Liu, S. H. (2013): Accelerating parallel frequent itemset mining on graphics
processors with sorting. Proceedings of IFIP International Conference on Network and Parallel Computing, pp. 245-256.

Huang, C. H.; Leu, Y. (2015): A LINQ-based conditional pattern collection algorithm for parallel frequent itemset mining on a multi-
core computer. Proceedings of ASE BigData & Social Informatics, pp. 1-6.

Zong-Yu, Z.; Ya-Ping, Z. (2012): A parallel algorithm of frequent itemsets mining based on bit matrix. Proceedings of IEEE
International Conference on Industrial Control and Electronics Engineering, pp. 1210-1213.

Tanna, P.; Ghodasara, Y. (2015): Analytical Study and Newer Approach towards Frequent Pattern Mining using Boolean Matrix.
IOSR Journal of Computer Engineering, 17(3), pp. 105-109.

Jen, T. Y.; Marinica, C.; Ghariani, A. (2016): Mining frequent itemsets with vertical data layout in MapReduce. Proceedings of
International Workshop on Information Search, pp. 66-82.

Vijay Kumar, G.; Valli Kumari, V. (2013): Parallel Regular-Frequent Pattern Mining in Large Databases. International Journal of
Scientific & Engineering Research, 4(6).

Gan, W.; Lin, J. C. W.; Fournier-Viger, P.; Chao, H. C.; Yu, P. S. (2019): A survey of parallel sequential pattern mining. ACM
Transactions on Knowledge Discovery from Data (TKDD), 13(3), pp. 1-34.

Huynh, B.; Trinh, C.; Dang, V.; Vo, B. (2019): A parallel method for mining frequent patterns with multiple minimum support
thresholds, International Journal of Innovative Computing. Information and Control, 15(2), pp. 479-488.

Qiu, H.; Gu, R.; Yuan, C.; Huang, Y. (2014): YAFIM: a parallel frequent itemset mining algorithm with spark. Proceedings of IEEE
International Parallel & Distributed Processing Symposium Workshops, pp. 1664-1671.

Shruti, I.; Abhay, K. (2018): Parallel Eclat with Large Data Base Parallel Algorithm and Improve its Effectiveness. International
Journal of Engineering Trends and Technology, 60(3), pp. 180-183.

D. Kalpana, Data Mining Apriori Algorithm Implementation Using R, International Research journal of Engineering and Technology.
4(11), pp. 1810- 1815.

Sumathi, P.; Murugan, S. (2021): GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array. International Journal of Modern Education and Computer Science (IIMECS), 13(4), pp. 28-41.

Authors Profile

P.Sumathi received her B.Sc and M.Sc degrees in Computer Science from Seethalakshmi
Ramaswami College (affiliated to Bharathidasan University), Tiruchirappalli, India in 2001 and
2003 respectively. She received her M.Phil degree in Computer Science in 2008 from Bharathidasan
University. She is presently working as an Assistant Professor in the Department of Computer
Science, Vysya College, Salem. She is currently pursuing Ph.D, a degree in Computer Science in
Bharathidasan University. Her research interests include Data Mining, Data structures and Database
concepts.

S.Murugan received his M.Sc degree in Applied Mathematics from Anna University in 1984 and
M.Phil degree in Computer Science from Regional Engineering College, Tiruchirappalli in 1994.
He is an Associate Professor in the Department of Computer Science, Nehru Memorial College
(Autonomous), affiliated to Bharathidasan University since 1986. He has 32 years of teaching
experience in the field of Computer Science. He has completed his Ph.D degree in Computer
Science with a specialization in Data Mining from Bharathiyar University in 2015. His research
interest includes Data and Web Mining. He has published more than 25 research articles in reputed
National and International journals.

V.Umadevi obtained her M.Sc degree in Computer Science & Information Technology and M.Phil
degree in Computer Science from Madurai Kamaraj University. She has completed her Ph.D degree
in Computer Science from CMJ University. Besides, she has received M.Tech and MBA degrees.
She has 15 years of teaching experience in Computer Science. Her area of teaching and research
interests include Management Information Systems, Project Management and Wireless Sensor
Networks. She has published 28 research papers in National and International journals and authored
three books. Also produced one Ph.D candidate. She has received National Award for "South
Indian Achiever" in March 2020 and a "Lifetime Achiever" award from International Lions Club in
March 2021. She has published a patent entitled "Al abetted material synthesising for hybrid metal
rubber composite and 3D Printing" in August 2021.

DOI : 10.21817/indjcse/2021/v1215/211205078 Vol. 12 No. 5 Sep-Oct 2021 1363

=

|
| Modern Education
| and Computer Science

| PRESS

1.J. Modern Education and Computer Science, 2021, 4, 28-41
Published Online August 2021 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijmecs.2021.04.03

GNVDF:. A GPU-accelerated Novel Algorithm
for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

P. Sumathi

Research Scholar, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchirappalli-Dt,
Tamil Nadu, India - 621 007

Email:sumiparasu@gmail.com

S.Murugan

Associate Professor, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, Tiruchirappalli-
Dt, Tamil Nadu, India - 621 007

Email:murugan_nmc@hotmail.com

Received: 01 June 2021; Accepted: 24 July 2021; Published: 08 August 2021

Abstract: In the modern digital world, online shopping becomes essential in human lives. Online shopping stores like
Amazon show up the "Frequently Bought Together” for their customers in their portal to increase sales. Discovering
frequent patterns is a fundamental task in Data Mining that find the frequently bought items together. Many
transactional data were collected every day, and finding frequent itemsets from the massive datasets using the classical
algorithms requires more processing time and 1/0 cost. A GPU accelerated Novel algorithm for finding the frequent
patterns using Vertical Data Format (GNVDF) has been introduced in this research article. It uses a novel pattern
formation. In this, the candidate i-itemsets is divided into two buckets viz., Bucket-1 and Bucket-2. Bucket-1 contain all
the possible items to form candidate-(i+1) itemsets. Bucket-2 has the items that cannot include in the candidate-(i+1)
itemsets. It compactly employs a jagged array to minimize the memory requirement and remove common transactions
among the frequent 1-itemsets. It also utilizes a vertical representation of data for efficiently extracting the frequent
itemsets by scanning the database only once. Further, it is GPU-accelerated for speeding up the execution of the
algorithm. The proposed algorithm was implemented with and without GPU usage and compared. The comparison
result revealed that GNVDF with GPU acceleration is faster by 90 to 135 times than the method without GPU.

Index Terms: Frequent Patterns, GNVDF, Graphical Processing Unit, Novel Pattern Formation, Vertical Data Format,
and Jagged Array.

1. Introduction

Data Mining (DM) is a part of Knowledge Discovery in Databases (KDD) [1] and explores the hidden patterns for
business people. It is associated with many fields such as database systems, data warehousing, statistics, machine
learning, information retrieval, and high-level computing [2,3]. It is also supported by other sciences like neural
networks, pattern recognition, spatial data analysis, image databases and signal processing [2,3]. There are several
techniques in data mining like classification, clustering, association rule mining and regression [4]. Frequent Pattern
Mining (FPM) is a computationally crucial step in data mining [5]. It is used to determine the frequent patterns and
associations from databases such as relational and transactional databases and other data repositories. The Apriori is one
of the most important algorithms for finding frequent itemsets. It has many problems such as more database scan and
I/0 cost, a large amount of time etc., for finding frequent itemsets. So the researchers have made several refinements to
Apriori in the last two decades.

However, enhancing speed and reducing memory requirements are the essential parameters while determining the
frequent patterns nowadays because of the rise of big data in various domains and sources in human endeavour. Also,
when the transactional database size increases, demand for storage is increased and requires high-speed algorithms to
find frequent patterns. But with a single-threaded approach, it's tough to minimize time. The GPU accelerated
computing employs GPUs along with CPUs. It enables superior performance by supporting a parallel programming
paradigm with multiple cores. It saves time and cost in scientific and other high computing tasks [6]. So, researchers

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 29
Format Approach and Jagged Array

were utilized GPUs in FPM based research. Some research works based on GPUs that motivate this article's proposed
work were discussed here.

W. Fang et al. [7] have introduced two implementations for Apriori using GPUs with Single Instruction, Multiple
Data (SIMD) architectures. Both methods use a bitmap data structure. They executed the first one on the GPU, avoiding
the intermediate data transfer between the GPU and CPU memory. The second one uses both the CPU and GPU for
processing with trie structure. They proved that both implementations speed up the processing than the classical Apriori
algorithm. S. M. Fakhrahmad et al. [8] have developed different parallel versions of a novel sequential mining
algorithm for finding frequent itemsets. The methods are i) assigning each partition to a processor, ii) assigning each
column to a processor, and iii) devoting the k™ processor to mine the k™-itemsets. These methods were compared
experimentally using time complexity, communication rate, and load balancing and proved that the proposed methods
outperformed the existing sequential algorithms.

The authors J. Zhou et al. have designed [9] a GPU-based Apriori algorithm with OpenGL to accelerate association
rules mining. The experiment proved that the proposed algorithm provides better performance than the classical
algorithms. A new pattern-based algorithm called HSApriori has been suggested by D. William Albert et al. [10], and it
is based on the parallel processing nature of GPU. In this, the proposed method was tested using both the tidset and
bitset representation of the dataset and found that the bitset is more appropriate for parallel processing. Further, they
proved from the experiment that the speed of HSApriori is substantially more when compared with traditional
HorgeltAprirori.

To solve the limitations of Apriori, a parallel Apriori Map Reduce model has been presented by M. Tiwary et al.
[11] using high-performance GPU. They have attached a GPU with every node in a Hadoop cluster. Also, they have
used NVIDIA's GPU and JCUDA and JNI for the integration process. From the experiments, it has been proved that it
provides better performance in terms of execution time. The downside of the algorithm is that the extra hardware charge
is associated with the GPUs in each node in the Hadoop cluster. To overcome the drawbacks in the traditional cluster-
based map-reduce, J. Li et al. [12] have designed a multi-GPU based parallel Apriori algorithm to accelerate the
calculation process of Apriori. It has been initiated especially to mine association rules in medical data. The analytical
results have proved that the proposed method significantly improves the execution speed with a lower cost for medical
data.

A novel method called CGMM to suit both sparse and dense datasets has been proposed to mine frequent patterns
has been introduced by L. Vu et al. [13]. To increase the speed of the FPM process, it combines both the CPU and GPU.
In this method, the CPU uses the FP-tree data structure to perform mining, and the GPU converts the data to bit vectors.
The experiments with AMD CPUs and NVIDIA GPU have proved that the performance evaluation of CGMM is faster
than the existing sequential FPM and GPApriori. Y. Li et al. [14] have developed a GPU-based algorithm called Multi-
level Vertical Closed FIM. In this, a multi-layer vertical data structure has been used to minimize the usage of storage.
The implementation is being accelerated with GPU to achieve high-speed computation, mainly on large and sparse
datasets.

K.W. Chon et al. [15] have proposed a novel algorithm called GMiner. It is a GPU-based method for finding
frequent itemsets on large-scale datasets. It determines the patterns from the first level of the enumeration tree rather
than storing and utilizing the patterns at the intermediate levels of the tree. With the computational power of GPUs, the
method achieved fast performance and outperformed significantly than the existing sequential and parallel methods.
The method also eliminates the skewness problem that the parallel algorithms suffer. A Dynamic Queue and Deep
Parallel (D2P) Apriori algorithm was generated by Y. Wang et al. in [16]. In this, the candidate generation process has
been parallelized by using the Graph-join and dynamic bitmap queue. It also uses a vertical bitmap structure with low-
latency memory on GPU. The experiments have explored that the D2P-Apriori obtained high-speed up, i.e. a 23>speed
up ratio compared to the modern CPU methods.

The authors Y. Djenouri et al. [17] have created three High-Performance Computing (HPC)-based versions of
Single Scan (SS) for frequent itemset mining viz., GSS, CSS, and CGSS. The GSS, CSS, and CGSS implement SS with
GPU, cluster architecture, and GPU with multiple cluster nodes. They have also presented three approaches to reduce
cluster load balancing and GPU thread divergence. The experiments have proved that the CGSS performs best in speed
than SS, GSS and CSS.

The authors P.Sumathi et al. [18] have developed a memory-efficient implementation for a vertical data format
approach in finding frequent patterns using jagged array matrix representation. They have formulated mathematical
equations for memory requirements and proved that it reduces the memory requirement than the traditional
multidimensional array.

The numerous GPU based FPM algorithms found in the literature have their own merits. But they have some
performance, data size and scalability issues [19], which provides a more vital lead to the proposed work. The research
article has introduced GNVDF, a novel GPU-accelerated FPM algorithm. It uses a novel pattern generation method to
avoid generating many candidate itemsets as classical algorithms and uses a compact jagged array structure to minimize
storage space [18]. Further, it uses the VDF format of transactional data to reduce the number of disk accesses.

The remaining paper is organized as follows. Section 2 presents the basic terminologies and definitions, vertical
data format, jagged array, and GPU. The description of the proposed methodology with an illustration is presented in

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

30 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

section 3. Section 4 illustrates the experimental results and discussion. Finally, the research article ends with a
conclusion in section 5.

2. Basic Concepts

Finding frequent itemsets is essential in mining associations, correlations, and many other relationships among the
data. It is used in data classification, clustering, and other data mining tasks. Thus, FPM is focused on data mining
research, and this section briefs the fundamental concepts associated with FPM and the study.

A. Basic Terminology

An itemset (set of items) that contains k items is said to be a k-itemset. The set of laptop, printer is a 2-itemset.
Frequent patterns are the patterns (itemsets, subsequences, or substructures) that frequently appear in a dataset [2,20].
The support count of the itemset is identified by the number of transactions that contain the itemset. A sequence is an
ordered list of itemsets, i.e. set of items purchased together. A subsequence is a sequence of items bought together and
frequently occurs in a transactional database known as a sequential pattern. A substructure can be represented in
different structural forms, such as subgraphs, subtrees, or sublattices, which may be combined with itemsets or
subsequences [2].

B. Basic Definitions

Let 1={l;, I,,..., In} be an itemset, and D is a transaction database contains a set of transactions T is a non-empty
itemset such that T < | and each transaction T is associated with a unique identifier TID. Let A be a set of items.
A transaction T is said to contain in A if A € T. The format of the association rule is A>B, where Acl, Bcl, A # @,
B+, and ANB=@ [21]. Associations rule A->B that holds in the transaction database D with support (s) and
confidence(c) [1].

Support(s): The support of an association rule A->B is defined as the percentage of records that contain A U B to
the total number of records in the database [22]. It is noted that the support count is increased when an item present in
numerous transactions in the database D [22].

Confidence: The confidence of a rule A > B is defined as s(A>B)/s(A). It is the ratio of the number of
transactions that contain all items in the consequent (B), as well as the antecedent (A) to the number of transactions that
include all items in the antecedent (A) [23].

The minimum support threshold is used to discover the frequent itemsets from the databases. In contrast, the
minimum confidence constraint is applied to those frequent itemsets found previously in determining the best rules.

C. Vertical Data Format

The databases can be represented in FPM algorithms in two data formats. They are i) Horizontal Data Format
(HDF) and ii) Vertical Data Format (VDF). HDF represents the items categorized into particular transactions as stored
in the database. i.e. it is denoted as <TID, Itemset>, where TID is the transaction ID, and Itemset refers to the items
purchased by the customer corresponding to TID. The VDF represents data as transactions categorized into particular
items that mean the TIDs are grouped for each item, i.e. VDF is described by <Item, Tid_set>, where item denotes an
item in the shop and Tid_set contains the TID's where the item occurs. Fig.1. and Fig.2. show the HDF and VVDF of D.

Itemset
{c,d,e,g,h,i,k,p,m}
{b,e,f,g,h,i,p,m}
{c,e,m}

{a,b,c,d,e f,g,i,p}
{a,b,c,d,e,p}
{a,b,c,d,f,h,p}
{b,e,f,h,i,p,m}
{a,c,d,e,k,p,m}
{a,c,d.e,f,i,p,m}
{a,c,d,ef,h,i,p,m}

LO@\IO')U'I#OONI—‘OZ'

Fig.1. HDF of Transaction Database D

D. Jagged Array

A jagged array data structure is an array whose elements are arrays known as “array of arrays" with varying
columns in each array/row, and it is shown in Fig.3.

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 31
Format Approach and Jagged Array

E. Graphical Processing Unit

It is a device specifically designed for graphics processing. It is widely used in large scale hashing and matrix
computations because it supports parallelism and serves as the base for mining and machine learning. CUDA and
OpenCL are two popular GPGPU programming framework tools. NVIDIA has designed a parallel computing platform
and programming called Compute Unified Device Architecture (CUDA) [12,24]. The CUDA-based program can only
be run on the NVIDIA-produced GPU. A typical CPU may contain four or eight cores; an NVIDIA GPU consists of
thousands of CUDA cores and a pipeline that supports parallel processing on thousands of threads, increasing the speed
significantly.

With Numba, the python developer can quickly enter into GPU-accelerated computing. It makes use of both GPU
and CPU to facilitate processing-intensive operations viz., deep learning, analytics, and engineering applications.
The CUDA Python and Numba help to enhance the speed by targeting both CPUs and NVIDIA GPUs. With this
advantage of CUDA python and Numba, the implementation of this proposed work will be GPU accelerated.

g
3

Tid_set
{3,4,5,7,8,9}
{1,3,4,5,6}
{0,2,3,4,5,7,8,9}
{0,3,4,5,7,8,9}
{1,3,5,6,8,9}
{0,1,3}
{0,1,5,6,9}
{0,1,3,6,8,9}
{0.7}
{0,1,2,6,7,8,9}
{0,1,3,4,5,6,7,8,9}

T3IxFTIEeTrTeoR

Fig.2. VDF of Transaction Database D

ror |- e | ez | | e

o) |- el | WEemeneed | | e |
arr —» B

o~ e | e | o |

Fig.3. Jagged array representation
3. Proposed Methodology

The main objective of the proposed work is to find the essential frequent itemsets from the transaction database
with less memory space and time by ignoring the least probable ones. The method used Jagged array storage structure
[16] and GPU to minimize memory usage and execution time. The proposed method first removes the null/void
transactions in the dataset. Null/void transactions are those which contain only one item. Then the dataset is scanned
once and converted into VDF format. The support count (SC) for each item is calculated by counting the number of
transactions that contain each item. Now the candidate 1-itemset C; is formed. Next, the frequent 1-itemset is formed by
removing the items whose SC<min_sup(d) and stored it in Jagged array representation [18] in sorted order based on SC.
From L, the common transactions among all items are determined either by intersecting or ANDing the transaction in
each item, and it is preserved in the Common Transaction List (Crip jist). The transactions in Crp jis's are removed from
each item in L;, forming the final frequent 1-itemset. The SC for each item in L, is updated by SC - n, where n is the
number of transactions in Crip _jis. Next, the new min_sup (dnew) is determined as dnew = 0 - 1, and it will be the min_sup
from the 2" iteration onwards.

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

32 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

Before finding the frequent 2-itemset, the final frequent 1-itemset is divided into two logical buckets, LB; and LB,,
respectively. LB; contains all the items whose SC = dye,, and the rest will be placed LB,. The itemset combinations
among the items in LB, are least probable of being a candidate 2-itemset because the SC of each item is equal t0 Jpew. SO
it is not considered for generating candidate 2-itemset. The candidate 2-itemsets patterns are generated by combining
each item I, in LB, with each item I, in LB, and each item I, in LB, with I,.; in LB, until the last item in LB,. The itemset
combination that ends with the last item in LB2 will be placed in C2_2 and the rest in C, ;. From C, ; and C, ,, the
items whose SC below the Jyey is removed as infrequent and formed L, , and L, ».

For generating candidate 3-itemset, each itemset I, in L, ; is combined with the next item ly in LB, after the last
item in I,. Similar to the previous iteration, the combinations that end with the last item in LB2 are placed in C; , and
rest in C; 1 Itis noted that the itemset combinations in L, , are not used in the formation of candidate 3-itemsets. The
Ls 1 and Ls » were formed by removing the infrequent itemsets in C3 3 and Cs ,. The process is continued until L, 3 is not
null. Further, to increase the execution speed of the proposed method, it is being accelerated with GPU. The proposed
algorithm (Algorithm 1) is shown below, and the workflow diagram is shown in Fig.4.

Algorithm 1 Algorithm for finding frequent itemsets
Input : D - adataset with n transactions;
& - minimum support threshold;
Output : Frequent patterns;
D <« eliminate_null(D);
vdf € scan D and convert it in vertical data format;
L1< one frequent itemset(vdf, 3);
Crip 1ist € find_common_TID(L,);
L, € remove the transactions in Cyp jist for each itemin Ly;
Snew € & - number of transactions in Cyip jist;
LB; € {Vvfrequent 1-itemset | SC=8 ¢y };
LB, < {V frequent 1-itemset | SC > &en};
9: Ly, Ly, € find_two_freq_itemset(LB1,LB;,dnew);
10: i=2;
11: whileL; 1 #@ do
12: Lis1 1,Li+1 2 € n_frequent_itemset(L; 1,LB,8new);
13: i=i+1;
14: end while

procedure eliminate_null(D - a dataset with n transactions)
for each T; € D do
cnt<count the number of items in T;;

1

2

3 if cnt == 1 then

4: remove T; from D;
5

6

7

end if;
end for;
return D;

procedure one_frequent_itemset(D: Dataset after removing null
transactions; 6 :minimum support threshold)

1. L, €9,

2: foreach item; in D do

3 TIDjie€transactions in which item; occurs;

4 SC<count the number of transactions in TIDy;g
5: if SC > 5 then

6: add {item;, TID);q, SC}into Ly;

7-

8

9

1

end if
end for
sort L, and store it in jagged array format;
0: return L

procedure find_common_TID (L;: frequent 1-itemset)
1: n<find the number of items in Ly;

2: Crpist€{TIDjisu N TIDjige N.... N TIDjjsrn};

3: return Cyp ists

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 33
Format Approach and Jagged Array

procedure two_freq_itemset (LB;: frequent 1l-itemsetl, LB,: frequent 1-
itemset2, :minimum support)
1: last_item<find last item in LB,;

2: for each itemiin LB, do

3 for each item; in LB, do

4: new_pattern < <itemjitem;>;

5- new_tid < TIDs(item;)NTIDs(itemy);

6 new_sc€-count the transactions in new_tid;

7 if new_pattern contains last_item then

8 append{new_pattern,new_tid,new_sc} in C; ;
9

else
10: append{new_pattern,new_tid,new_sc} in C; 4;
11: end if
12: end for
13: end for

14: L, 1€{C; 1| SC(C; 1) > 8};
15: L, ,€{C; 2| SC(C;) 2 6}
16: returnL, 4, L, 5

procedure n_frequent_itemset(L; ;: frequent i-itemsetl, LB,: frequent 1-
itemset2, 8y,: MiNimum support)
1. for each item;in L; ; do

2: last_item<find the last item in item;;

3: for each item; in LB, after last_item do

4: new_item < {<itemjitem;>};

5- new_tid< TIDs(item;)N TIDs(item;);

6: new_sc<-count the transactions in new_tid;

7: if new_item contains last element in LB, then

8: append{new_item,new_tid,new_sc}in C, »;
9: else

10: append{new_item,new_tid,new_sc}in C, s;
11: end if

12: end for

13- end for

14: L, €<{C, 1|SC(C, 1) > d};
15: I—n Zé{cn 2 | SC(Cn 2) = 8},
16: return L, ¢,L; >

The main advantage of the proposed method is that it reduces the number of candidate itemsets to be generated in
each iteration because the itemsets in L; ,, for i > 3 will not be considered for creating candidate itemsets and removal of
items in CTL in final L;. Additionally, GPU and Jagged array enhance the performance in terms of speed and usage of
memory.

A. Memory Requirement Calculation

From [25,18], it was observed that the memory requirement using a jagged array structure for the frequent itemsets
could be calculated based on the following equation.

™ =" TM, — rbytes,)

where, TM; is the total memory required for the candidate i-itemset, and rbytes; is the memory occupied by the
infrequent/rare items in the candidate i-itemset. By subtracting rbytes; from TM;, the memory for L;i.e., frequent i-
itemsets can be found.

TM; and rbytes; were calculated using equations 2 and 3, respectively.

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

34 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

™= > SC

i item
Viteme{itemset; }

x sizeof (tid) + sizeof (item))

rbytes; = > SC.

em X Sizeof (tid) + sizeof (item) ©)
Viteme{in— frequent; }

Determine CTL

Remove items in CTL from L,

[Final frequent |-itemset [Update 8., €&-n

[Remove null transactions in D]
l / \ Split L,
[LB,

[Scan D and convert it into VDF] [LB,]]
Determine count of each Generate C, candidates using
candidate in VDF ¥ “~a LBjandLB,
4
. . [Gy,] [Gy
Generate candidate |-itemset (C,)

¢ Compare candidate SC with §,,,
Ly,] [L,]

h J - l)
Generate frequent 1-itemset v
(L,) & Represent the sorted L, [—* C,] [C ,]

in Jagged array representation =
l Compare candidate SC with §

Compare candidate
SC with min_sup (8) [

new

Stop and print the
Frequent Patterns

Fig.4. Workflow of GNVDF

As in [25], the GNVDF also used the same jagged storage structure for storing frequent itemsets, and the amount
of memory requirement was calculated as follows. It first fetches the common transactions among items in the frequent
1-itemsets and then removes them from frequent 1-itemsets. Suppose if the frequent 1-itemset contains n items say
itemy, item,, items,..., item, and the corresponding TID lists say TID-List;, TID-List,, TID-Lists,...,TID-List,, then the
common TIDs(Cyjp) among the n items were found by set intersection operation using equation (4) shown below.

C,, ={TID—List,}~{TID — List,}...n{TID — List,} @)

The memory space required for Crp was calculated using equation (5).

length(Cryp)
CM = > sizeof (C;p) (5)

i=1

Since the method removes the Cyp from frequent 1-itemsets, the Crp need not be repeated in the subsequent
frequent itemsets, saving memory space considerably. The amount of memory saved (MS) for the entire dataset was
calculated using equation (6).

itemset; =g

MS = count(itemset,) xCM + Z {count(itemset; ;) +count(itemset, ,)}xCM (6)

i=2
where, count(itemset;), count(itemset; ;), and count(itemset; ;) refer to the number of items in frequent 1-itemset, first
and the second part of frequent i-itemsets, respectively. Thus, the total memory required for the frequent itemsets of the
entire dataset using the proposed method was calculated using equation (7).

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 35
Format Approach and Jagged Array

itemset; #¢
M ={ D TM, —rbytes}—MS @)
i=1
B. Proposed Methodology: An Example
The vertical representation of transaction dataset D as shown in Fig. 2 is considered to understand the proposed
methodology. It contains 12 items viz., {a, b, ¢, d, e, f, g, h, i, k, m, p}. Each item is represented by a row containing the
name of the item and the transactions in which the item occurs (TIDs) [26]. Let & is 6. From Fig. 2, the candidate

1-itemset is calculated. The candidate 1-itemset contains all the items in D, the TIDs in which the item occurs and the
SC. It is shown in Table 1.

Table 1. Candidate 1-itemset(C;)

Item TIDs
{3,4,5,7,8,9}
{1,3,4,5, 6}
{0,2,3,4,5,7,8,9}

n
(@)

{1,3,5,6,8,9}
{0,1,3}
{0,1,5,6,9}
{0,1,3,6,8 9}
{0, 7}
{0,1,2,6,7,8 9}
{0,1,3,4,56,7,8,9}

o [S|x|=|T|la|=|r|a|o|oc|
o[~V |o|o|w|o|o|N|o|ul|o

From the table above, the items viz., b, g, h and k are removed as infrequent because the items do not satisfied 5.
The frequent 1-itemset is shown in Table 2. Since the common transactions (CTL) are stored in Table 3, they are
removed from each item in L, the final L, is formed, and it is shown in Table 4.

Table 2. Frequent 1-itemset(L;)

1- Itemset TIDs

a 3[14|5|7(8]9

f 1/3|5|6|8]|9

i 0[1|3]|6[8]9

d 0[3|4|5|7]|8]9

m 0[1]2]|6]7]8]9

c 0[2|3|4[5|7[8|9

e 0[1|2|3|4|6|7|8]9
p 0[1|3|4|5|6|7[8]9

Now the new_min is calculated by removing the number of items in CTL as 8pey = 8 - N = 6-2 = 4. The logical
buckets from final Ly, i.e. LB; and LB,, are shown in Tables 5 and 6.

To reduce the storage space requirement further, this method finds the common transaction in which the all items
occurs either by AND operation or intersection of the TIDs of all frequent 1-itemset. i.e.{3,4,5,7,8,9} N {1,3,5,6,8,9} N
{0,1,3,6,8,91N{0,3,4,5,7,8,91N{0,1,2,6,7,8,91N{0,2,3,4,5,7, 8,9}N{0,1,2,3.4,5,6,7,8,91N{0,1,3,4,5,6,7,89} = {8,9}
and it is stored in CTL. The CTL is shown in Table 5.

Table 3. Common Transaction List(CTL)

CTL
L8 [9
Table 4. Final Frequent 1-itemset(L;)
1- Itemset TIDs
a 3 4157
f 1 3|56
i 0 1/3]|6
d 0 314(|5]|7
m 0 11267
c 0 213[4]5]7
e 0 112|3[4]|6]|7
p 0 1/3|4[5]|6]|7

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

36 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

Table 5. Logical Bucket-1(LB;)

1- Itemset TIDs
a 314|5] 7
f 113|5| 6
i 0]1|3] 6
Table 6. Logical Bucket-2(LB,)
1- Itemset TIDs |
d 0[3|4]|5]7
0[1]2]|6]|7
c 0|l2[3|4]5]7
e 0[1[2]|3[4]6]|7
p 0[1[3|4]|5]6]|7

The 2-itemset combinations viz., ad, am, ac, ae, fd, fm, fc, fe, id, im, ic, ie, dm, dc, de, mc, me, mp, and ce are in
C, ; and the items viz., ap, fp, ip, dp, mp, cp and ep are stored in C, ,. The possible combinations viz., af, ai and fi need
not be generated. It is shown in Tables 7 and 8 respectively.

Table 7. Candidate 2-itemset - Part |

Cys TIDs sC
ad 3,4,57 4
am 7 1
ac 3,4,57 4
ae 34,7 3
fd 3,5 2
fm 1,6 2
fc 35 2
fe 1,3,6 3
id 0,3 2
im 0,1,6 3
ic 0,3 2
ie 0,1,3,6 4
dm 0 1
dc 0,3,4,57 5
de 0,347 4
mc 0,2 2
me 0,1,26,7 5
ce 0,23,4,7 5

Table 8. Candidate 2-itemset - Part 11

C., TIDs SC
ap 3,4,57 4
fp 1,3,5,6 4
ip 0,1,3,6 4
dp 0,3,4,5,7 5
mp 0,1,6,7 4
cp 0,3,4,57 5
ep 0,1,3,4,6,7 6

The items viz., am, ae, fd, fm, fc, fe, id, im, ic, dm and mc are infrequent in C, ; and no item is infrequent in C; ,.
Therefore, the frequent 2-itemsets are stored in L, ; and L, , in jagged array notation as shown in Tables 9 and 10
respectively. The candidate 3-itemsets from L, ; and LB, viz., adm, adc, ade, ace and dce, stored in C;; and the
patterns adp, acp, iep, dep, mep, dcp and cep are kept in Cs , as shown in Tables 11 and 12 respectively. The L ; and
L , are shown in Tables 13 and 14, respectively. Similarly, C, ; and C, , are shown in Tables 15 and 16, respectively.
L, and Ly pare Ly 3 = {3} and Ly , is shown in Table 17.

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 37
Format Approach and Jagged Array

Table 9. Frequent 2-itemset - Part |

Los 1Ds
ad
ac
ie

dc
de
me
ce

w(n|[s|s|w|a|a|d

o|o(Oo|o|o|w|w

NP (WWw|Fk[~>

slo|~|o|o|~|~
~

Table 10. Frequent 2-itemset - Part |1

Lz 2 IDs
ap
fp
ip
dp
mp
cp
€p

o|lo|o|o|o|r|w

Rlw|k|w|Fk|w|~

w(n|o|s|wla|o|H

alo|N|o|o|o|~
~

Table 11. Candidate 3-itemset - Part |

Csy TIDs SC
adm 7
adc 3,4,57
ade 3,4,7
ace 3,4,7
dce 0,34,7

AW~ |F

Table 12. Candidate 3-itemset - Part 11

w
O

Cs, TIDs
adp 3,457
acp 3,4,5,7
iep 0
dep 0,
mep 0,1,6,
dcp 0,3,4,57
cep 0,347

E SN B - o B

Table 13. Frequent 3-itemset - Part |

Lsa TIDs
adc 3 4 5 7
dce 0 3 4 7

Table 14. Frequent 3-itemset - Part 11

Ls, TIDs |
adp
acp
iep
dcp
dep
mep
cep

o|lo|o|o|o|w|w

w|k|lw|w|k| s

aslo|s|b|w|o

~N(~N|~|o|o |~ ~
~

Table 15. Candidate 4-itemset - Part |

Cs1 TIDs SC
adce 3,4,7 3

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

38 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array

Table 16. Candidate 4-itemset - Part 11

C4 2 TIDs SC
adcp 3,4,57 4
dcep 0,347 4
Table 17. Frequent 4-itemset - Part 11
L4 2 TIDs

adcp 314 |5 |7
dcep 0|3 4 | 7

Now, L, 4 is an empty list, so the algorithm terminates. It is observed from the experiment that the time needed for
finding frequent items for sample dataset D in the example without the use of GPU is 0.8111 sec, whereas the wall time
is 0.0073ms with GPU. The total memory requirement for the frequent itemset for the above dataset using the method in
[18] is TM = 124+210+137+32=503 bytes. By using GNVDF, the memory requirement for the common transaction is
CM = 2+2 = 4 bytes and the amount of memory saved using the proposed method is MS = (8>4) + {(7>4 + 7>4) + (2>4
+ 7)) + (04 + 2>4)} = 32 + 56 + 36 + 8 = 132 bytes. Therefore, the final memory requirement is
TMging = 503 - 132 = 371 which is 26.24% of memory saved for this example dataset compared to the memory
requirement in [18]. It is also noted that the number of common transactions is directly proportional to the amount of
memory saved.

4. Experimental Results and Discussion

The proposed algorithm was implemented using Python with CUDA Toolkit with NVIDIA GPU. An extensive
experiment was conducted using four real-time datasets viz., chess, mushroom, t25i10d10k and c20d10k to evaluate the
performance of GNVDF. The datasets and their details were shown in Table 18. They were obtained from the FIMI
repository and an open-source Data Mining Library. The reason for choosing those datasets is that many researchers
used those bench-mark datasets in Frequent Itemset Mining (FIM) and Association Rule Mining(ARM) based research.
The runtime performance of the proposed method without GPU acceleration was obtained for each dataset, with the
minimum threshold values ranging from 20% to 70% and is shown in Table 19. Similarly, the proposed algorithm was
executed with GPU acceleration using the same minimum support range and results were tabulated in Table 20.

Table 18. Datasets used in experiments with their properties

Datasets No. o_f l_\lo. of Average item gount per
transactions items transaction
chess 3196 75 37.00
mushrooms 8416 119 23.00
t25i10d10k 9976 929 24.77
¢20d10k 10000 192 20.00
Table 19. Runtime (in ms) performance of the proposed algorithm without GPU
#
oS, ? chess | mushroom | t25i10d10k | c20d10k
20 10759.6 14501.6 16332.5 16334.2
30 9845.5 13464.2 16225.8 16006.2
40 7972 11103.8 13885.7 15441.2
50 7101.7 10224.4 12645.6 14956.2
60 6293.4 9834 11101.2 13412.4
70 5082.2 8253 9256.4 12035.1
Table 20. Runtime (in ms) performance of the proposed algorithm with GPU-acceleration
#
I\?ISST chess mushroom t25i10d10k c20d10k
20 119.5511 145.0160 161.7079 161.7248
30 107.0163 138.0940 156.0173 158.4772
40 83.9158 117.2770 129.7729 131.9761
50 73.2134 104.5091 108.3670 110.6496
60 64.2184 88.8096 102.4380 105.3511
70 53.4968 74.0512 83.6424 92.9924

Copyright © 2021 MECS

DS-Dataset "MS-min_sup(3)

I.J. Modern Education and Computer Science, 2021, 4, 28-41

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 39
Format Approach and Jagged Array

The graphical representation of the runtime performance of each dataset with and without GPU usage was
illustrated in Fig.5. From tables 19 and 20, it was observed that when the number of items and transactions in a dataset
increases, the time required for finding frequent patterns also increases. In general, there is an inverse relationship
between the min_sup threshold and the time needed to determine the frequent patterns. i.e., when the min_sup threshold
is increased, the number of generated candidate itemsets, followed by frequent patterns, is minimized, consuming less
time for the higher threshold.

Fig.5. showed that the GPU acceleration significantly enables the execution speed of the proposed methodology,
and GNVDF with GPU is faster by 90 to 135 times when compared with GNVDF without GPU acceleration. The
reason for the performance enhancement is that the GPUs have many computing cores that allow the parallel execution
of computation-intensive tasks. Since the GNVDF uses the VDF approach, the number of database scans is restricted to
one [27] for determining each item’s support count, which in turn reduces the overtime for finding the frequent patterns.
But, VDF requires more memory for additional information like TID's than HDF [27], so a Jagged array has been used
to minimise memory space is an advantage. Further, the elements in CTL removed from frequent 1-itemset save the
memory space considerably more than the existing classical algorithms.

12000 18000
=4—125i10d10k - Without GPU

«=#=Chess - Without GPU = 16000 - —i=-125i10d10k - With GPU

= 10000 & sl
L «{~Chess - With GPU : 14000 -
% 3000 2 12000 -
H =z
£ £ 10000 -
§ 6000 - E
- E 8000 -
2 2
S 4000 - s 6000 -
£ |
¥ il g 4000 -
& & 2000 -
0 —g————a 0 - —m——o—o—a
0 20 40 60 80 0 20 40 60 80
Min Sup Min Sup
A B
16000 - 18000 . - =
~4—Mushroom - Without GPU T ggig:' ::::2*;5“

7 14000 | ~&~Mushroom - With GPU §1°°°° | E=c2 IV ‘
=
& 12000 = 14000
® e -
£ 10000 - e 12000
E E 10000 -

8000 G
2 %5 8000 -
2 6000 g
s s 6000 -
= =
Rk € 4000 -
= =

0 s a3

0 20 40 60 80 0 20 40 60 80
Min Sup Min Sup
C D

Fig.5. Runtime performance of the proposed method with and without GPU acceleration of each dataset
5. Conclusion

A GPU-accelerated novel method for finding the frequent itemset called GNVDF has been proposed in this
research article. It uses an innovative approach to discover the candidate and frequent itemsets by removing
unnecessary itemsets to form the subsequent itemsets. It also utilizes GPU for speeding up the process. It also
empowers the use of a jagged array storage structure and removes the common elements in 1-frequent itemsets. With
GPU-acceleration and innovative way of determining itemsets, the time required is significantly decreased. Similarly,
with a jagged storage structure, the memory requirement is also minimized than the classical algorithms. From the
extensive experiments made, it is observed that the GNVDF with GPU is 90-135 times faster than with GNVDF
without GPU and also proved that it suits both sparse and dense datasets. Further, the use of the VDF approach restricts
the database scan to one.

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

40 GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data
Format Approach and Jagged Array
References
[1] H.Hamidi and A. Daraei, "Analysis of Pre-processing and Post-processing Methods and Using Data Mining to Diagnose Heart

(2]
(3]

[4]
[5]
[6]
[7]
(8]
9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]
(23]
[24]
[25]
[26]

[27]

Diseases," International Journal of Engineering (1JE), TRANSACTIONS A: Basics, vol. 29, no. 7, pp. 921-930, 2016.

J. Han, J. Pei and M. Kamber, Data mining: concepts and techniques, Morgan Kaufmann Publishers, 2011.

H. Lisnawati and A. Sinaga, "Data Mining with Associated Methods to Predict Consumer Purchasing Patterns", International
Journal of Modern Education and Computer Science(IJMECS), vol. 12, no. 5, pp. 16-28, 2020.

A. Sinha, B. Sahoo, S.S.Rautaray and M. Pandey, "An Optimized Model for Breast Cancer Prediction Using Frequent Itemsets
Mining", International Journal of Information Engineering and Electronic Business(IJIEEB), vol.11, no.5, pp. 11-18, 2019.

L. Vu and G. Alaghband, "A self-adaptive method for frequent pattern mining using a CPU-GPU hybrid model," in
Proceedings of the Symposium on High Performance Computing, 2015.

D. Albert, K. William, Fayaz and D. Veerabhadra Babu, "Exploiting Parallel Processing Power of GPU for High Speed
Frequent Pattern Mining", International Journal of Computer Engineering and Applications, vol. 7, no. 2, pp. 71 - 81, 2014.

W. Fang, M. Lu, X. Xiao, B. He and Q. Luo, "Frequent itemset mining on graphics processors,” in Proceedings of
International Conference on Network and Parallel Computing, 2009.

S. M. Fakhrahmad and G. Dastghaibyfard, "An Efficient Frequent Pattern Mining Method and its Parallelization in
Transactional Databases,” Journal of Information Science and Engineering, vol. 27, no. 2, pp. 511-525, 2011.

J. Zhou, K. M. Yu and B. C. Wu, "Parallel frequent patterns mining algorithm on GPU", in Proceedings of International
Conference on Systems, 2010.

D. William Albert, K. Fayaz and D. Veerabhadra Babu, "HSApriori: high speed association rule mining using apriori based
algorithm for GPU," International Journal of Multidisciplinary and Current Research, vol. 2, pp. 759-763, 2014.

M. Tiwary, A. K. Sahoo and R. Misra, "Efficient implementation of apriori algorithm on HDFS using GPU," in Proceedings of
International Conference on High Performance Computing and Applications, 2014.

J. Li, F. Sun, X. Hu and W. Wei, "A multi-GPU implementation of apriori algorithm for mining association rules in medical
data," ICIC Express Letters, vol. 9, no. 5, pp. 1303-1310, 2015

L. Vu and G. Alaghband, "A self-adaptive method for frequent pattern mining using a CPU-GPU hybrid model,” in
Proceedings of the Symposium on High Performance Computing, 2015.

Y. Li, J. Xu, Y. H. Yuan and L. Chen, "A new closed frequent itemset mining algorithm based on GPU and improved vertical
structure," Concurrency and Computation Practice and Experience, vol. 29, no. 06, pp. 1-12, 2016.

K.W. Chon, S. H. Hwang and M. S. Kim, "GMiner: A fast gpu-based frequent itemset mining method for large-scale data,"
Information Sciences, vol. 439-440, pp.19-38, 2018.

Y. Wang, T. Xu, S. Xue and Y. Shen, "D2P-Apriori: A deep parallel frequent itemset mining algorithm with dynamic queue,"
in Proceedings of 10th International Conference on Advanced Computational Intelligence, 2018.

Y. Djenouri, D. Djenouri, A. Belhadi and A. Cano, "Exploiting GPU and cluster parallelism in single scan frequent itemset
mining," Information Sciences, vol. 496, pp. 363-377, 2019.

P. Sumathi, and S. Murugan, A Memory Efficient Implementation of Frequent Itemset Mining with Vertical Data Format
Approach, International Journal of Computer Sciences and Engineering. 6(2018) 152-157.

W. Gan, J. C. Lin, P. Fournier-Viger, H. C. Chao and P. S. Yu, "Survey of parallel sequential pattern mining," ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 13, no. 3, pp. 1-34, 2019.

Y. M. Guo and Z. J. Wang, "A vertical format algorithm for mining frequent item sets," in Proceedings of 2nd International
Conference on Advanced Computer Control, 2010.

E. Hashemzadeh and H. Hamidi, "Using a Data Mining Tool and FP-growth Algorithm Application for Extraction of the Rules
in Two Different Dataset,” International Journal of Engineering (IJE), TRANSACTIONS C: Aspects, vol. 29, no. 6, pp. 788-
796, 2016.

M. Samoliya and A. Tiwari, "On the Use of Rough Set Theory for Mining Periodic Frequent Patterns”, International Journal of
Information Technology and Computer Science (IJITCS), vol.8, no.7, pp.53-60, 2016.

P. Prithiviraj and R. Porkodi, "A comparative analysis of association rule mining algorithms in data mining: a study," American
Journal of Computer Science and Engineering Survey, vol. 3, pp. 98-119, 2015.

F. Wang, J. Dong and B. Yuan, "Graph-based substructure pattern mining using cuda dynamic parallelism," in Proceedings of
International conference on intelligent data engineering and automated learning, 2013.

B. De Alwis, S. Malinga, K. Pradeeban, D. Weerasiri and S. Perera, "Horizontal format data mining with extended bitmaps," in
International Conference of Soft Computing and Pattern Recognition,2011.

P. Suresh, K. N. Nithya and K. Murugan, "Improved Generation of Frequent Item Sets using Apriori Algorithm," International
Journal of Advanced Research in Computer and Communication Engineering, vol. 4, no. 10, pp. 25-27, 2015.

A.Subashini and M. Karthikeyan, "Itemset Mining using Horizontal and Vertical Data Format," International Journal for
Research in Engineering Application & Management, vol. 05, no.03, pp. 534-539, 2019.

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

https://dl.acm.org/doi/proceedings/10.5555/2872599
https://link.springer.com/conference/npc
https://link.springer.com/conference/npc
https://dl.acm.org/doi/proceedings/10.5555/2872599

GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns Using Vertical Data 41
Format Approach and Jagged Array

Authors' Profiles

P.Sumathi received her B.Sc and M.Sc degrees in Computer Science from Seethalakshmi Ramaswami College,
affiliated to Bharathidasan University, Tiruchirappalli, India in 2001 and 2003 respectively. She received her M.Phil
degree in Computer Science in 2008 from Bharathidasan University. She is presently working as an Assistant
Professor in the Department of Computer Science, Vysya College, Salem. She is currently pursuing a Ph.D. degree
in Computer Science at Bharathidasan University. Her research interests include Data Mining, Data structures and
Database concepts.

Dr.S.Murugan received his M.Sc degree in Applied Mathematics from Anna University in 1984 and M.Phil degree
in Computer Science from Regional Engineering College, Tiruchirappalli in 1994. He is an Associate Professor in
the Department of Computer Science, Nehru Memorial College (Autonomous), affiliated to Bharathidasan
University since 1986. He has 32 years of teaching experience in the field of Computer Science. He has completed
his Ph.D. degree in Computer Science with a specialization in Data Mining from Bharathiyar University in 2015.
His research interest includes Data and Web Mining. He has published many research articles in reputed National
and International journals.

How to cite this paper: P. Sumathi, S.Murugan, " GNVDF: A GPU-accelerated Novel Algorithm for Finding Frequent Patterns
Using Vertical Data Format Approach and Jagged Array ", International Journal of Modern Education and Computer
Science(IJMECS), Vol.13, No.4, pp. 28-41, 2021.DOI: 10.5815/ijmecs.2021.04.03

Copyright © 2021 MECS I.J. Modern Education and Computer Science, 2021, 4, 28-41

