(For candidates admitted from 2016-2021 Batch)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Physics

QUANTUM MECHANICS

Time: Three hours

Maximum: 75 marks

SECTION A - $(10 \times 2 = 20)$

Answer ALL the questions.

- 1. State the physical meaning and conditions on the wave function.
- 2. What is meant by Hilbert space?
- 3. Fine the expectation value $\langle X \rangle$ of the position of a particle trapped in a box L wide.
- 4. Write a note on Zero point energy of a linear harmonic oscillator.
- 5. State stark effect.
- 6. What is meant by sudden approximation?
- 7. Define scattering cross –Section.
- 8. Write a note on spin angular momentum
- 9. Explain negative energy states.
- 10. Give a brief note on spin orbit coupling.

SECTION B - $(5 \times 5 = 25)$

Answer ALL the questions, choosing either, (a) or (b)

11. (a) Explain the properties of Hermian operators.

(or)

- (b) Show that $i\hbar \frac{d}{dt} < A_s > = [A_s, H]$ in Schrodinger representation.
- 12. (a) Obtain the energy Eigen value of a rigid rotator.

(or)

- (b). Deduce the formula for the energy of nthlevel of a particle in a box.
- 13. (a) Explain WKB approximation and apply it to tunneling problem.

(or)

(b) Deduce Fermi's golden rule in harmonic perturbations.

14. (a) How will you calculate the differential scattering cross-section by using Green's function?

(or)

- (b) State and explain the properties of L and L^2 .
- 15. (a) Derive the Kelvin Gordon equation for a free particle and give it's solution.

(or)

(b) Write about charge and current densities.

SECTION C - (3 \times 10 = 30)

Answer any THREE questions.

- 16. Derive Schrodinger equation and give its plane wave solution
- 17. Deduce the energy Eigen value of a linear harmonic oscillator using abstract operator method.
- 18. With necessary theory explain the time independent perturbation theory of first order.
- 19. Explain Born approximation and derive Rutherford's scattering formula for a screened Coulomb potential.
- 20. Obtain the Dirac equation for a free particle and deduce the Dirac matrices.
