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Preface

Elliptic curve mathematics has been used in construction of cryptographic systems

for more than three decades. The discrete logarithm problem induced by an elliptic

curve is supposed to offer maximum security per bit key as compared to other

legacy primitives such as ElGamal, RSA etc. Moreover, elliptic curve poses fully

exponential complexity in solving its discrete logarithm which is popularly known

as elliptic curve disrete logarithm problem (ECDLP) and hence, elliptic curve

cryptography (ECC) is of interest to modern cryptographic system designers. For

strategic applications such as kernel application in particular, the elliptic curves

need to be randomly computed to avoid any (intentionally non-disclosed) properties

of its coefficients and prime which may get exploited by the attackers using

non-disclosed or even futuristic vulnerabilities. Therefore, random approach of

computation of elliptic curves is only considered as the the trusted computational

method in this thesis and subsequently, the estimates of computational resources to

compute elliptic curves over large prime fields randomly are proposed to use them

in cryptographic applications.

In addition, as a proof of concept, a novel method of designing

cryptographically secure pseudo random number generator using the proposed

elliptic curves and clock-controlled linear feedback shift registers (LFSRs) is

presented to achieve non-reproducibility of its generated bitstreams for the

operating system kernels in addition to other randomness properties. None of

the existent kernel Cryptographically Secure Pseudo Random Number Generators



xxii

(CSPRNGs) or other CSPRNGs provide non-reproducibility of its generated

bitstreams to the date as per literature.

Hence, this thesis covers two broad areas i.e., in the first part, it covers

the computational aspects of cryptographically secure Short Weierstrass elliptic

curves which are comprehensively discussed in Chapter 4 and Chapter 5 with the

proposals of two new elliptic curves whereas in the second part, a novel CSPRNG

called KCS-PRNG (CSPRNG for Kernel Applications) using the proposed elliptic

curves is presented in Chapter 6 of this thesis. However, Chapter 1 deals with the

preliminaries and motivation of the work presented in this thesis whereas Chapter

2 covers the discussion on the survey and related works that were carried out in the

Cryptography and Computer Science domains. Chapter 2 also lays the foundation

for formulation of seven important research problems with respect to the evaluation

and computation of novel Short Weierstrass elliptic curves for their implementation

in the proposed KCS-PRNG for kernel applications. These research problems

are covered in Chapter 3 of the thesis. Finally, the thesis concludes with future

directions in Chapter 7.

Tiruchirappalli

27 January, 2022 KUNAL ABHISHEK



Abstract

Elliptic curves were first introduced by H. W. Lenstra in elliptic curve factoring

algorithm in 1984. Latter in 1985, Victor S. Miller and Neal Koblitz independently

proposed the discrete points of elliptic curve group over a finite field in construction

of discrete log cryptosystems. Elliptic curves enable fast and secure public key

cryptosystems and exhibit algebraic structures to offer benefits like smaller key

sizes and higher cryptographic strength per bit as compared to RSA. The key

advantage of elliptic curve cryptosystems is that the discrete logarithm problem

induced by elliptic curve (ECDLP) does not have any known sub-exponential

algorithm which can break the ECDLP provided that the elliptic curve parameters

are chosen carefully. The elliptic curve cryptosystems are much difficult to break

albeit easy to implement and hence, they are the popular choices to design modern

cryptosystems.

This thesis covers seven research problems related to Short Weierstrass elliptic

curves in the first part and their applications in the random number generation

used in operating system kernel in the second part respectively. In the first part

of the thesis, six research problems with respect to evaluation, computation

and trusted security aspects of elliptic curves which are aimed for cryptography

are addressed. It is imperative to note that elliptic curves over large prime

fields only offer sufficient ECDLP hardness and appropriate symmetric security

levels for implementation of cryptosystems. However, the computation of elliptic

curves randomly over the desired large prime fields demands reasonably high



xxiv

computational resources and time. These computational resources are considered

in terms of (i) the number of CPU clock cycles and, (ii) the number of attempts or

searches made in the security parameter space of the elliptic curve. The estimates

of the number of CPU clock cycles helps in determining processor requirements

whereas the number of attempts or searches helps to decide the number of CPU

cores for speeding up the curve generation process. Hence, for the first time

in the literature, two novel statistical estimates of computational resources of

elliptic curves are proposed for computation of cryptographically safe elliptic curve

randomly over a given prime field size using a standard procedure. The proposed

computational resource estimates of elliptic curves help to provide the feasibility

of deriving new elliptic curves over very large prime field sizes which additionally

solves the problem of reasonably long co-existence of the existing elliptic curve

based cryptosystems in presence of the quantum adversaries possessing certain

number of the qubits. Apart from this, it is asserted in the thesis that strategic and

military grade cryptosystems require only those elliptic curves for cryptographic

implemention which are not only secure but also trusted. Hence, two popular

deterministic and random computational approaches of elliptic curves are evaluated

from computation, security and trust perspectives. The proposed study asserted that

the random approach is preferable over the deterministic approach for computation

of elliptic curves aimed for implementation in the cryptosystems for strategic or/and

military usage. Thus, asserting the essential trust requirements in the computation

of elliptic curve, a new security notion called trusted security acceptance criteria



xxv

is proposed in the thesis to ensure that the computed elliptic curves are trusted for

implementation in cryptosystems. Subsequently, the problem of recommendation

of trusted elliptic curves over 256 bit and 384 bit prime field sizes is also solved

with the proposal of two new elliptic curves in this thesis which are named

as Kunal-George 256 bit first random elliptic curve, in short, KG256r1 and,

Kunal-George 384 bit first random elliptic curve, in short, KG384r1 respectively.

The second part of the thesis covers the seventh problem which deals with a

critical issue of non-reproducibility of the pseudorandom bitstreams generated by

a pseudo random number generator (PRNG) of an operating system kernel which

nullifies the scope of predicting any internal state of the PRNG. For the first time

in the literature, a concrete mechanism using cryptographically secure and trusted

elliptic curves is proposed to address non-reproducibility issue of pseudo random

bitstream generation. Subsequently, a novel CSPRNG called as Cryptographically

Secure Pseudo Random Number Generator for Kernel Applications (KCS-PRNG)

which generates non-reproducible bitstreams is proposed in the thesis.

Hence, the thesis evaluates the computational approaches and estimates

the computational resources of Short Weierstrass elliptic curves aimed for

cryptography respectively. The thesis contributes new criteria to derive trusted

elliptic curves over large prime field which are used in the novel design of the

proposed KCS-PRNG which is proven to be a viable CSPRNG candidate for

adoption in the operating system kernels.
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Chapter 1
Introduction

“I have grown to love secrecy. It seems to be the one thing that can

make modern life mysterious or marvelous to us. The commonest

thing is delightful if only one hides it.”

- Oscar Wilde

Cryptographic primitives take advantage of the computationally intractable

hard problems such as integer factorization problem, discrete logarithm problem

etc. Since 1985, soon after the introduction of elliptic curves in cryptography by

Neal Koblitz and Victor Miller, the discrete logarithm problem (DLP) offered by

the elliptic curves is considered to be one of the most popular and widely accepted

computationally intractable hard problem which has fully exponential complexity

in cryptanalysis provided the elliptic curve parameters are drawn carefully.

The chapter presents scope, objectives, preliminaries including building blocks

of the thesis and the main motivatations that inspired the work of the thesis.

1.1 Publications from this chapter

The Introduction in this Chapter has contributed the “Introduction” components of

the following journal papers published in the thesis.



2 1.2. Scope of the Thesis

1. Kunal Abhishek and E. George Dharma Prakash Raj, Evaluation

of Computational Approaches of Short Weierstrass Elliptic Curves for

Cryptography, Cybernetics and Information Technologies (2021). (DOI:

10.2478/cait-2021-0045)

2. Kunal Abhishek and E. George Dharma Prakash Raj, Computation of

Trusted Short Weierstrass Elliptic Curves For Cryptography, Cybernetics and

Information Technologies (2021). (DOI: 10.2478/cait-2021-0020)

3. Kunal Abhishek and E. George Dharma Prakash Raj, Computational

Investment in Generation of Elliptic Curves Randomly over Large Prime

Fields, Concurrency and Computation Practice and Experience (2022).

(Status: Under Revision)

4. Kunal Abhishek and E. George Dharma Prakash Raj, On Random Number

Generation for Kernel Applications, Fundamenta Informaticae, IOS Press

(2022). (Status: Accepted - In press)

1.2 Scope of the Thesis

The scope of the thesis broadly includes evaluation of computational techniques

and computational resource estimation of Short Weierstrass form of elliptic

curves and derivation of trusted elliptic curves over large prime fields. The

trusted elliptic curves are aimed for implementation in construction of a novel

Cryptographically Secure Pseudo Random Number Generator for the operating

system Kernels such as Linux, Windows, Android, Mac/iOS/BSD.

The scope of the research outcomes of the thesis is pictorically shown in Figure

1.1.
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1.3 Objectives of the Thesis

The objectives of the thesis are two-folded as given below:

1. To estimate the computational investment in terms of computing processor

i.e., number of CPU clock cycles and number of searches or attempts

made in the security parameter space of the elliptic curves, required

for computation of elliptic curves randomly over a large prime field.

Additionally, recommendation of two new elliptic curves over 256 bit and

384 bit prime fields which are cryptographically secure and trusted for use in

security applications.

2. The recommended elliptic curves will be used in construction of a novel

Cryptographically Secure Pseudo Random Number Generator (CSPRNG)

with non-reproducibility property of its generated bitstreams which will be a

viable candidate CSPRNG for the kernel applications.

The first objective is covered in the first part of the thesis whereas the second

objective is covered in the second part of the thesis.

The pictorial view of thesis objectives is shown in Figure 1.2.

Figure 1.2: Objectives of the thesis
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1.4 Preliminaries

1.4.1 Short Weierstrass Equation of Elliptic Curve

A Short Weierstrass elliptic curve E over a finite field Fp (where q = pm, where

p, a prime, is the characteristic of Fq) denoted by E(Fp) is the set of all solutions

(x, y) to an equation

E : y2 = x3 + ax + b (1.1)

where the coefficients a, b ∈ Fp and 4a3 + 27b2 ̸= 0, together with a special point

∞ called the point at infinity which serves as the identity element of E [1]. The

points (x, y) on E(Fp) form an abelian group.

1.4.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

Definition 1 (ECDLP): Given an elliptic curve E defined over a finite field Fq, a

point P ∈ E(Fq) of order n, and a point Q ∈ ⟨P⟩, find the integer l ∈ [0, n− 1]

such that

Q = lP (1.2)

The integer l is called the discrete logarithm of Q to the base P, denoted l = logPQ

[2].

The security of any elliptic curve cryptosystem lies in selection of those elliptic

curves whose discrete logarithm problem (ECDLP) is thought to be mathematically

infeasible to solve. Moreover, the order of an elliptic curve is expected to be

a prime to exhibit maximum ECDLP Security [3]. However, there are some

special curves whose orders have special properties on which fast algorithms like

Menezes, Okaoto and Vanstone (MOV) [4] and Frey-Ruck can be applied to solve

ECDLP with sub-exponential complexity [2, 5]. Examples of such special curves

are supersingular elliptic curves [4] (Definition 2) whose ECDLP can be reduced
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to some extension field F∗qk where k is some integer called embedding degree

[6] (Definition 3 ) of the elliptic curve and the prime field anomalous curves

[7] (Definition 4) respectively. One can use Theorem 1 [4] to determine if an

elliptic curve of a certain order exists whereas Definition 2 and Definition 4 defines

supersingular curve and prime field anomalous curve respectively. One needs to

carefully consider elliptic curve with non-supersingularity, sufficient embedding

degree, non-anomalous and suitable class number for intractable ECDLP required

for cryptography.

Theorem 1 There exists an elliptic curve of order N = q + 1− t over Fq where

q = pm, where p, a prime, is the characteristic of Fq and t is the trace of elliptic

curve E(Fq), if and only if one of the following condition holds:

1. t ̸≡ 0 (mod p) and t2 ≤ 4q

2. m is odd and one of the following holds:

i. t = 0.

ii. t2 = 2q and p = 2.

iii. t2 = 3q and p = 3.

3. m is even and one of the following holds:

i. t2 = 4q.

ii. t2 = q and p ̸≡ 1 (mod 3).

iii. t = 0 and p ̸≡ 1 (mod 4).

Definition 2 (Supersingular Elliptic Curves): If #E(Fq) = q + 1− t be the order

of elliptic curve E(Fq) then E is said to be supersingular if p | t where t be the

trace of E.
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It is deduced from Theorem 1 that E(Fq) is supersingular iff t2 = 0, q, 2q, 3q or

4q [1]. However, a randomly computed elliptic curve has the probability O( 1√
p ) of

being supersingular [6]. Supersingular elliptic curves are vulnerable to attack due to

Menezes, Okamoto and Vanstone (MOV) which solves discrete logarithm problem

(DLP) of supersingular curves to the DLP in a finite field with sub-exponential

complexity [7].

Definition 3 (Embedding Degree of Elliptic Curve): If E(Fp) be the elliptic curve

over Fp then E is said to have embedding degree k, a smallest positive integer, such

that n | (qk − 1) where n be the base point order.

It is observed that if the embedding degree k of E(Fq) is low, say, k < 6 then

E becomes a supersingular elliptic curve, if k = 6 then supersingular curve will be

in characteristic 3 only. It is also observed that ECC standards do not allow elliptic

curves with low embedding degrees. The ordinary elliptic curves certainly require

k > 6. Generally, k ≥ 20 is sufficient to guarantee intractibility of the discrete

logarithm problem in F∗qk . However, Boneh et. al. insisted to use k ≥ (q−1)
100 for

intractibility of discrete logarithm problem [8].

Definition 4 (Prime Field Anomalous Curves): If E(Fp) be the elliptic curve over

Fp then E is said to be prime field anomalous if #E(Fp) = p where #E(Fp) be

the order of E.

Prime field anomalous curves are trace one curves for which the ECDLP can be

solved in linear time [7, 9]. The prime field anomalous attack does not extend to

any other classes of elliptic curves but the one having trace one [7].

Definition 5 (Class Number): Let h(N) denotes the class number of the order N

of elliptic curve E. Then h(N) is the minimum degree of a number field over which

the elliptic curve E admits a faithful lift.
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Large class number in Complex Multiplication (CM) theory is used to prevent

possible lifting of elliptic curve to the number field using complex multiplication

where ECDLP can be solved comfortably [10]. The CM-method is discussed in

detail in Section 2.3.4.

1.4.3 Elliptic Curve Group Law

Discrete points on the elliptic curves follow Group Laws [2, 11] which states

i. Identity: P +O = O+ P = P ∀P ∈ E

ii. Negatives: If P ∈ E, then P + (−P) = O and also, −O = O

iii. Point Addition and Point Doubling: Suppose (x1, y1), (x2, y2) and (x3, y3)

denote the coordinates of P, Q and P + Q respectively, then x3 and y3 are

given by,

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2

y3 = −y1 +

(
y2 − y1

x2 − x1

)
(x1 − x3)

(1.3)

If P = Q then P + Q = P + P = 2P and therefore x3 and y3 are given by,

x3 =

(
3x1

2 + a
2y1

)2

− 2x1

y3 = −y1 +

(
3x1

2 + a
2y1

)
(x1 − x3)

(1.4)

1.4.4 Point Counting on Elliptic Curve

The order of an elliptic curve is defined by the number of points which forms the

elliptic curve group. Following are the popular point counting theorems/algorithms

on elliptic curves:
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Hasse’s Theorem

Hasse’s Theorem [2] is a fundamental theorem that provides a rough estimate of

the bounded order of elliptic curve.

Theorem 2 (Hasse) Let an elliptic curve E be defined over a finite field with q

elements (Fq) (where q = pm, where p, a prime, is the characteristic of Fq), then

order of E(Fq) satisfies

|N − q− 1| ≤ 2
√

q (1.5)

where N be the number of Fq-points on E.

The proof of Hasse’s theorem can be seen in [11].

Shank’s Baby-Step-Giant-Step (BSGS) Algorithm

It is a deterministic algorithm to find the order of a point on an elliptic curve which

requires approximately
√

N steps and around
√

N storage where N is the order

of the elliptic curve [11]. It is a fully exponential time algorithm that works on

any group [12]. The main drawback of this algorithm is that it has to store O(
√

N)

group elements and cannot be parallelized in an efficient way [13]. Details of BSGS

can be seen in [14, 15].

Naive Approach

The naive way [16] of counting rational points on elliptic curves defined over small

finite fields of odd characteristic p is to evaluate the sum p + 1 + ∑
p−1
x=0

x3+ax+b
p .

The naive approach works well with small p and Cohen [17] suggested that this

approach is appropriate for p < 10000.
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Mestre’s Algorithm

Mestre’s algorithm is a simplification of certain group theoretical computations

in the Baby-Step-Giant-Step algorithm [15]. This algorithm can be viewed as

combination of the following Theorem 3 [15] and Theorem 4 [15].

Theorem 3 Let p > 457 be a prime and E be an elliptic curve over Fp then either

E or its quadratic twist E′ admits an Fp-rational point of order at least 4
√

q.

The proof can be found in [15].

Theorem 4 Let p > 229 be a prime and let E be an elliptic curve over Fp then

either E or its quadratic twist E′ admits an Fp-rational point P with the property

that the only integer m ∈ (p + 1− 2
√

p, p + 1 + 2
√

p) for which mP = 0 is the

order of the group of points.

The proof can be seen in [15]. Theorem 3 and Theorem 4 overcomes the failure

of the Baby-Step-Giant-Step strategy when the value of m is more than one such

that mP = 0 for a number of points on the elliptic curve E. By replacing E by its

quadratic twist E′, one can avoid multiple values for m for which mP = 0. More

details can be found in [15]. Mestre’s algorithm works in field characteristic 2 and

is based on a 2− adic version of the Arithmetic-Geometric-Mean (AGM) [13].

Schoof’s Algorithm

Schoof [18] proposed the first polynomial time algorithm to compute cardinality

#E(Fq) of an elliptic curve using l − adic approach. Schoof’s algorithm proceeds

with computing trace of the Frobenius Endomorphism t modulo suficiently many

primes l such that ∏ l ≥ B where B > 4
√

q. The algorithm uses Chinese

Remainder Theorem (CRT) to compute cardinality of the elliptic curve [2]. The

observed time complexity of the algorithm is O(log3µ+2q) with space complexity
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as O(log3q) where µ is a constant such that multiplication of two m-bit integers can

be computed in O(mµ) time. It works well when elliptic curve is defined over small

prime sizes [2]. Schoof’s algorithm for computing order of the elliptic curve E over

Fq where q = 2135 has running time estimated by Koblitz [12] as approximately

equal to 3× 1019 which is certainly not a practical choice to use elliptic curve in

public key cryptosystem. Later, Elkies and Atkin [19] improved this running time

complexity of Schoof’s Algorithm with a new algorithm named as SEA algorithm.

Satoh’s Algorithm

Satoh [18] proposed p-adic methods to find group order induced by an elliptic

curve. The algorithm proceeds with lifting the elliptic curve and the Frobenius

endomorphism to a p-adic ring. In the next step the trace of the Frobenius

Endomorphism t modulo pm with pm > 4
√

q is recovered from the lifted data.

The time complexity of this algorithm is O(n2µ+1) for a fixed p whereas the space

complexity is found to be O(n3). Satoh’s algorithm is useful in case of small value

of p only as the time complexity grows as O(p2logµ p) [18] as well as in case of

small field characteristic greater than 5 [20].

SEA (Schoof-Elkies-Atkin) Algorithm

Elkies and Atkin improved Schoof’s algorithm to find elliptic curve group order by

reducing the time complexity to O(log2µ+2q) and space complexity to O(log2q)

[18]. They used isogenies to improve the efficiency of Schoof’s algorithm [11].

Using l-adic algorithm, SEA algorithm takes O((logq)4+ϵ) bit operations where ϵ

is a positive constant, to compute order of the elliptic curve with fast arithmetic and

consumes O((logq)2) memory [21]. SEA algorithm uses BSGS which demands

good resource in terms of space. Details on SEA algorithm can be seen in [16].
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1.4.5 Random Number Generation

A random number generator (RNG) is classified in two basic classes [22]: first,

a deterministic random number generator (DRNG) or a pseudorandom number

generator (PRNG) which needs a seed value as input and produces random looking

bitstreams using some deterministic algorithm. Second, a true random number

generator (TRNG) which uses physical and non-physical sources to generate true

randomness. It is imperative to note that unlike PRNG or DRNG, TRNG does

not need any seed value but uses non-deterministic effects or physical experiments

to generate the true random bits [22]. The significant differences between PRNG

and TRNG are that the PRNG generates random sequences at very fast rate which

has large period and properties of independence and equally likeliness whereas

TRNG is slow, having infinite period, costly in deployment and has the possibility

of manipulation. Unlike TRNG, PRNG has less development and deployment cost

(no need of dedicated hardware) but can produce reasonably good random looking

bitstreams. Figure 1.3 is shown to differentiate between TRNG and PRNG [23]:

Figure 1.3: TRNG and PRNG

PRNGs have vital role in generating keys, initialization vectors (IVs), nonce,

session keys etc. for cryptographic applications. A PRNG is provably secure, if

its security can be reduced to a well-established conjectured hard problem. These

PRNGs are supposed to produce output bits which are reasonably random i.e. each

bit has probability of 0.5 of occurance making them completely unpredictable.
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1.4.6 RNG Requirements

Koc [22] and Schneier [24] collated the properties that various classes of RNG

exhibit and formulated the following requirements:

1. R1 : A random sequence generated by a RNG should have good statistical

properties.

This requirement enables a RNG with a large period.

2. R2 : A random sequence generated by a RNG should be unpredictable.

This requirement makes the prediction of the next bit infeasible in the stream,

given the complete knowledge of the algorithm or hardware which generates

the sequence and all of the previous bits in the stream. This gives the notion

of Backward Secrecy.

3. R3 : A random sequence generated by a RNG should not allow to compute

previous internal state or values of the generator even if the internal state is

known. This gives the notion of Forward Secrecy.

4. R4 : A random sequence generated by a RNG should not be reliably

reproduced.

If the RNG is run twice with exactly the same input, it should produce two

completely unrelated random sequences.

From definition [24], a PRNG meets only R1 requirement whereas CSPRNG meets

R1, R2 and R3 requirements of RNG. However, a TRNG meets R2, R3 and R4

requirements of the RNG. In this thesis, the proposed KCS-PRNG is designed

in such a way that it meets the R1, R2 and R3 requirements along with the R4

requirement of RNG to a practical extent.
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1.4.7 Randomness for Kernel Applications

One of the most important kernel applications that requires high quality

randomness is Address Space Layout Randomization (ASLR) [25] which is

an efficient mitigation technique against remote code execution attacks by

randomizing the memory address of processes to disable memory exploitation.

The ASLR currently uses CSPRNG to randomize the logical elements contained

in the memory objects at the time of pre-linking (at the time of installation of

the application), per-boot (on every time the system boots), per-exec (when new

executable image is loaded in memory called pre-process randomization), per-fork

(every time a new process is created) and per-object (every time a new object is

created). Figure 1.4 [25] shows the Per-boot versus Per-exec randomization to point

out when randomization takes place in both the per-boot and per-exec processes.

Figure 1.4: Per-boot versus Per-exec randomization

Similarly, Figure 1.5 shows that mmap() system call allocates all the objects

side by side in the mmap_area area during the per-object randomization. The

rand() provides random bits of desired length to the objects as shown in Figure 1.5

[25].
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Figure 1.5: Per-object randomization

Another important kernel application is the Morris-Thompson scheme [3, 8]

which associates a n-bit random number with each password and concatenates and

then encrypts together before storing it in the password file. A CSPRNG is used

whenever a password is changed and a random number is required.

1.5 Motivation of the Thesis

1.5.1 Motivation for New Trusted Elliptic Curves

Non-standard elliptic curves are desirable for building critical strategic applications

such as kernel applications. There are many incidents reported which are discussed

in this thesis which proved that the standard elliptic curves are claimed to be

cryptographically secure but they seriously lack trust for use in cryptography.

Hence, new trusted elliptic curves are required whose parameters i.e., curve

coefficients and prime, are free from any intentionally vulnerable non-disclosed

properties.
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1.5.2 Motivation for Computational Resource Estimation of

Elliptic Curves

Computation of elliptic curves over large prime fields is a resource intensive

operation and their computation within stipulated time is a big challenge which

is often required in cryptographic interests. Thus, the motivation comes from the

possibility to see the feasibility of sufficient financial allocation to arrange the

computational resources (in terms of the CPU processor) required for generation

of large order elliptic curves within stipulated time.

1.5.3 Motivation for Designing new CSPRNG for Operating

System Kernels

The degree of security provided by ASLR technique depends on the predictability

of the random memory layout of a program in an operating system

kernel. Therefore, ‘non-reproducibility’ of the random sequences used in ASLR

is essential. The motivation of the thesis is to use trusted large order elliptic

curves in the design of a competent kernel CSPRNG such that it can generate

non-reproducible pseudo random bitstreams for kernel applications.

1.6 Organization of the Thesis

The thesis covers seven research problems in applied cryptography and computer

application domains. The thesis is overall organized in seven chapters as shown in

Table 1.1.
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Table 1.1: Organization of the Thesis

Chapter 1 - Introduction

Chapter 2 - Survey of Related Literature

Chapter 3 - Problem Statements

Part I Evaluation and Computation of Novel

Short Weierstrass Elliptic Curves

Part II Construction of Novel CSPRNG

using elliptic curves for kernel applications

Chapter 4 - The Proposed Cryptographically

Secure and Trusted Elliptic Curves Over

256 bit and 384 bit Prime Fields

Chapter 6 - Design and Implementation of

The Proposed KCS-PRNG

Chapter 5 - The Proposed Computational

Resource Estimation of Short Weierstrass

Elliptic Curves

Chapter 7 - Conclusion and Future Research
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Chapter 2
Survey of Related Literature

“It is possible to write endlessly on elliptic curves.”

- Serge Lang

The thesis evaluates Short Weiertrass elliptic curves from computational,

security and trust perspectives and demonstrates the trend in the computation of

elliptic curves in its standardization. The thesis argues that though standard elliptic

curves provide compatibility and interoperability across diverse applications, they

are not preferable in strategic applications due to the trust issues related with

the procedure of computing curve parameters. Hence, non-standard or custom

elliptic curves which are randomly generated in a closed environment are desired

for development of mission critical applications such as operating system kernel

applications, in particular. This chapter comprehensively surveys the deterministic

and random approaches of computation of the Short Weierstrass elliptic curves and

evaluates them for their implementation in kernel or strategic applications. This

chapter solves the first problem1 of the thesis which is mentioned in Chapter 3.

1Evaluation of computational approaches and selection criteria of elliptic curves over prime
fields from computation, security and trust perspectives.
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2.1 Publications from this chapter

The survey and literature review of this chapter contributes the "Literature Survey

and Review" components of the following journal papers:

1. Kunal Abhishek and E. George Dharma Prakash Raj, Evaluation

of Computational Approaches of Short Weierstrass Elliptic Curves for

Cryptography, Cybernetics and Information Technologies (2021). (DOI:

10.2478/cait-2021-0045)

2. Kunal Abhishek and E. George Dharma Prakash Raj, Computation of

Trusted Short Weierstrass Elliptic Curves For Cryptography, Cybernetics and

Information Technologies (2021). (DOI: 10.2478/cait-2021-0020)

3. Kunal Abhishek and E. George Dharma Prakash Raj, Computational

Investment in Generation of Elliptic Curves Randomly over Large Prime

Fields, Concurrency and Computation Practice and Experience (2022).

(Status: Under Revision)

4. Kunal Abhishek and E. George Dharma Prakash Raj, On Random Number

Generation for Kernel Applications, Fundamenta Informaticae, IOS Press

(2022). (Status: Accepted - In press)

2.2 Introduction

Computation of elliptic curve requires a lot of mathematical research to

compute curve’s parameters over large prime field for its use in cryptography

[26]. There are several agencies like National Institute of Standards and Technology

(NIST), Standards for Efficient Cryptography Group (SECG), Brainpool and

others who have recommended standard elliptic curves over various prime field
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orders. However, it is important to note the rationale behind the approaches

adopted for selection of elliptic curve parameters from computational and

security perspectives. In this thesis, a comprehensive review on the computational

approaches and the selection criteria of elliptic curve parameters for use in

cryptography is presented. The scope of this survey and subsequently, of this

thesis, is limited to the Short Weierstrass form of elliptic curves which are used for

constructing most of the present cryptosystems such as Public Key Infrastructure

(PKI) [27], Secure Shell (SSH), Transport Layer Security (TLS), IPSec, JSON Web

Encryption (JWE) [28] etc.

This chapter encompasses authentic observations, theories and results

contributed by renowned researchers and scientists through their publications in

various reputed journals, conferences, workshops, text books and their valuable

comments or public statements on the subject during 1978 - 2021. The chapter also

includes the experiences and observations made during the research execution of

this thesis.

The key outcomes of the chapter are as follows:

• The chapter evaluates the approaches and selection criteria for computation

of cryptographically secure Short Weierstrass elliptic curves and discusses

the evolution of elliptic curve cryptography (ECC) with theoretical

advancements in cryptographic mathematics and their significant

impact on standardization of computational methods by various

agencies. Subsequently, the chronology of attacks on ECDLP and their

countermeasures is presented which is crucial in deciding the selection

criteria of cryptographically secure elliptic curves. Additionally, the

selection criteria and verification criteria of cryptographically secure Short

Weierstrass elliptic curves are discussed and a new cryptographically secure
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Short Weierstrass elliptic curve is computed using random approach for

demonstration purposes in this chapter.

• The chapter demonstrates a trend in computational approaches of Short

Weierstrass elliptic curves in standards recommended by various agencies. A

comparative study of standard and non-standard elliptic curves from

computational, trust and security perspectives is also presented.

• The chapter presents a review on the work of Koblitz [12] who

probabilistically estimated the number of searches required to successfully

generate suitable elliptic curve over the binary field which motivated this

thesis to work further on deriving such estimates for elliptic curves over the

prime fields. The status of ECC-based cryptosystems in presence of quantum

computers is also reviewed in the light of recent work of Roetteler et. al. [39,

40].

• The chapter presents a factual study of three most popular kernel CSPRNGs

called /dev/(u)random, Yarrow and Fortuna respectively.

2.3 Computational Approaches of Elliptic Curves

2.3.1 Evolution of Elliptic Curves for Cryptography

Elliptic curves were extensively studied and reviewed for cryptography soon

after the proposals of Neal Koblitz and Victor Miller during 1985-1987. Since

then, numerous advancements in the theory of elliptic curve cryptography and its

cryptanalysis took place which are described in Table 2.1 with their significant

impacts on evolution of elliptic curve computational standards.
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Table 2.1: Evolution of Short Weierstrass Elliptic Curves for Cryptography

Year Event in Elliptic Curve Cryptography Impact on ECC Standardization

1985
Elliptic curves were proposed for use in

cryptography.

ECC were extensively studied to

develop cryptosystems.

1987

Efficient point counting algorithm on elliptic

curves by Schoof, Elkies and Atkin called

SEA algorithm was developed [18, 19].

Uses complexity O(ln5 p) for point

counting.

1992
Elliptic Curve based Digital Signature

Algorithm (ECDSA) was developed [4].

Considered as a mature signature

scheme in NIST standard.

1993

Reduction of ECDLP of supersingular elliptic

curves having trace zero to logarithm in a

finite field [4].

Became selection criteria for safe

elliptic curve in all standards.

1994

Proposal of Shor algorithm [29] generalizes

to solve ECDLP random quantum

polynomial (RQP) time using quantum

computers.

Led to realization that elliptic curves

will be unsafe once sufficient quantum

capability is built.So, new computa-

tional standard is required for quantum

resistance.

1996

It was proved that the condition N | (qk − 1)

is sufficient to realize the MOV algorithm

under mild condition. Further, it was proved

that randomly generated curves have

k > log2q [30].

Became selection criteria for safe

elliptic curve in all standards.

1997
Proposal of a linear algorithm to solve ECDLP

of trace one [9, 31].

Became selection criteria for safe

elliptic curve in all standards.

1999
NIST recommendation of 15 elliptic

curves [32].
Widely accepted standard later.

2000 SECG recommendation of elliptic curves [33]. Widely accepted standard later.

2005
Recommendation of Brainpool first set of

elliptic curves for standardization[34].

International effort for elliptic curve

standardization.

Continued to next page..
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Table 2.1 – continued from previous page

Year Event in Elliptic Curve Cryptography Impact on ECC Standardization

2010

Brainpool revised their specifications and

published. Request for Comment (RFC) 5639

[35].

Standard established.

2014

Review of existing elliptic curves generation

mechanisms by Tanja and Bernstein [36] who

coined two terms: ECDLP security and ECC

security. They observed that Short Weierstrass

form of elliptic curves are dominant in both

the software and hardware implementations.

Two new terms ECDLP security and

ECC security became important verifi-

cation criteria for curve selection with

side channel attack resistance.

2014
NUMS-curve (Nothing Upon My Sleeves)

were proposed under IETF standard [37].

Curves with better performance

proposed under IETF Standard.

2015

NIST Call for next generation elliptic curves

with new models and optimized parameters

resistant to side channel analysis was placed

[37].

NIST wanted to replace its standard

elliptic curves.

2016

NIST report [38] on Post Quantum Crypto-

graphy (PQC). Resistance of elliptic curve

cryptosystems was looked for quantum

computing.

Isogenies of supersingular elliptic

curves were discussed as resistant

to PQC instead of ECDLP.

2017-

2021

Proposal of Quantum resources required to

run Shor algorithm to solve ECDLP in

polynomial time [39, 40].

Roeteller et. al. suggested quantum

resource estimates to break ECDLP.

Note: N=Curve order, q=prime power, k= embedding degree

2.3.2 Chronology of Attacks on ECDLP and their

Countermeasures

Elliptic curves are expected to have proper implementation of the countermeasures

to resist important attacks on its ECDLP. Table 2.2 [9] briefly depicts such
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countermeasures for important discrete logarithm (DLP) based attacks and pairing

based attacks which resulted in the evolution of cryptographically safe elliptic curve

selection criteria.

Table 2.2: Chronology of Attacks on ECDLP and their Countermeasures

Year Attack/Type Description Countermeasure

1978
Pohlig-Hellman,

DLP attack

Private key can be recovered using

Chinese Remainder Theorem [41].

N must be a prime or

near prime with small

cofactor, N ≥ 2160 [2].

1978
Pollard-rho,

DLP attack

A parallelized Pollard-rho on r

processors can solve ECDLP in
(
√

πn)√
2r

steps [2, 42].

n ≥ 2160 [11, 42].

1978
Pollard’s Lambda,

DLP attack

Faster method than Pollard-rho when

ECDLP lies in subinterval [1, b]

of [1, n− 1], where b < 0.39n [11].

Private key should be

selected uniformly at

random within interval

[1, n− 1] [39].

1979
Index-Calculus,

DLP attack

ECDLP can be solved using

multiplicative group F∗q of the finite

field Fq [11].

Small prime fields should

be avoided i.e., n ≥ 2160

[11].

1985
Exhaustive Search,

DLP attack

Computes successive multiples of

base point till public key is achieved.

n should be

sufficiently large [7].

1985

Shanks’ Baby step

Giant step,

DLP attack

Fully exponential deterministic

algorithm to determine n on E(Fp)

which requires approximately
√

N

steps and around
√

N storage.

n ≥ 2160 [11].

Continued to next page..
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Table 2.2 – continued from previous page

Year Attack/Type Description Countermeasure

1993

Weil pairing and

Tate pairing attacks,

Pairing based attack

ECDLP of E(F)q can be reduced to

ordinary DLP on extension field F∗qk

for some k ≥ 1 where the number field

sieve algorithm can be used to solve

ECDLP [1, 4].

MOV reduction attack [4].

n ∤ (qk − 1) [6, 18]

∀1 ≤ k ≤ 20 [2].

p ∤ t and

t2 ̸= 0, q, 2q, 3q or 4q [4].

(Non-supersingularity)

1997
Multiple logarithm,

DLP attack

Multiple instances of ECDLP for

the same elliptic curve parameters.
n > 2160

1998

Prime field

anomalous curve,

Pairing based attack

Trace of E(F)p = 1 i.e.,

#E(Fp) = p [7, 43].
N ̸= q [4].

Note: q=size of underlying field, p=prime characteristic, n=order of a point on E, N=order of E,

r=number of processors, k=embedding degree, t=trace of curve.

Once a suitable cryptographically secure elliptic curve is selected, the public

key cryptosystem can be developed using that elliptic curve to get performance

gain and competitive security with much smaller key size than the legacy RSA or

ElGamal based cryptosystems.

2.3.3 Approaches for Computation of Short Weierstrass Elliptic

Curves

Computation of Short Weierstrass elliptic curve over prime field involves rigorous

mathematical validation of its parameters to certify its suitability for cryptography.

These validations are meant to certify that the elliptic curve has the claimed order,

resists all known attacks on ECDLP and base point order has also the claimed order
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[2]. There are usually two approaches either of which can be used to compute

an elliptic curve over prime field: first, the deterministic approach and second,

the random approach. Though in both the deterministic and random approaches,

following conditions are critical for the elliptic curve to meet cryptographic

requirements [1, 2, 44] :

1. C1 : Resistance to Pohlig-Hellman and Pollard’s Rho attack i.e., n > 2L

where n is sufficiently large prime that divides order of the elliptic curve

group #E(Fq). Here, L ≥ 160, the length in bits.

2. C2 : Resistance to Semaev–Smart–Satoh–Araki attack (Smart-ASS) [9, 43]

i.e. L ≤ ⌊log2q⌋ ensures 2L ≤ q or #E(Fq) ̸= q. It avoids the attack on

prime-field-anomalous curves.

3. C3 : n > 4
√

q guarantees that E(Fq) has a unique subgroup of order n as

#E(Fq) ≤ (
√

q + 1)2 by Hasse’s theorem and so, n2 ∤ #E(Fq).

2.3.4 Evaluation of Deterministic Approach

Generating elliptic curves in the cryptographic context is an intricate task.

It involves consideration for standardization of elliptic curves to be used in

cryptographic applications for compatibility and interoperability purposes. The

standardization of elliptic curves further involves fixing of various criteria related

to selection of the curve parameters. In this section, the deterministic approach of

computation of Short Weierstrass elliptic curve is evaluated on the basis of their

computational method, computational complexity, security, trust and specific gains

of elliptic curves computed by the deterministic method.

• Computational method

Complex Multiplication (CM) is a popular deterministic approach to select

cryptographically safe elliptic curves over prime fields and widely accepted
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approach for standardization of elliptic curves. The CM method is called the

Atkin-Morain method when the elliptic curve is derived over prime field [45].

The CM method proceeds with fixing the prime p first and then constructs

an elliptic curve over the field Fp [44]. The CM method gives a choice for

selecting primes of special forms. The CM method takes p as input and

determines the CM discriminant D. Then p is selected such that it meets

the conditions C1, C2 and C3. The CM method is efficient when p and the

elliptic curve order #E(Fp) = p + 1− t are chosen such that CM-field of E

i.e., Q(
√

t2 − 4p) has small class number [1, 2].

A crucial step of CM method is to compute the roots of a special type of

class field polynomials called the Hilbert and Weber polynomials [46]. These

polynomials are uniquely determined by the CM discriminant D.

Equations (2.1), (2.2) [47] and equation (2.3) [48] constitute the basis of

computation of Short Weierstrass elliptic curves for use in cryptography.

Definition 6 (Twist) Given E : y2 = x3 + ax + b with a, b ∈ Fp the twist of

E by c is the elliptic curve given by

Ec : y2 = x3 + ac2x + bc3 (2.1)

where c ∈ Fp.

Theorem 5 If the order of an elliptic curve #E(Fp) = p + 1− t, then the

order of its twist is given as

Ec(F
∗
p) =

 (p + 1− t) i f c is square in Fp

(p + 1 + t) i f c is non− square in Fp

(2.2)
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Algorithm 1 Elliptic curve generation over prime field using CM approach
Require: Nil
Ensure: Elliptic curve over a prime field E(Fp)

1. Choose p, a prime
2. Find smallest CM discriminant D from equation (2.3) along with trace t
3. Construct the orders of the two elliptic curves #E(Fq) = p + 1± t
4. if one of the order of the curve is a prime or nearly a prime ▷ Fix elliptic

curve order
5. else Repeat step 1 to determine D and t
6. end if
7. Construct the class polynomial HD(x) ▷ Class polynomial is

independent of p
8. Find a root j0 of HD(x)(mod p) ▷ j0 is the j-invariant of the desired

elliptic curve
9. Set k = j0/(1728− j0)(mod p) ▷ so that the elliptic curve

E : y2 = x3 + 3kx + 2k
10. if #E ̸= (p + 1− t)
11. Construct the twist Ec ▷ using a randomly selected non-square c ∈ Fp

following equations (2.1) and (2.2)
12. return Ec

13. else
14. return E

15. end if

Theorem 6 (Atkin-Morain) Let p be an odd prime such that

4p = t2 + Ds2 (2.3)

for some t, s ∈ Z. Then there is an elliptic curve E defined over Fp such

that #E(Fp) = p + 1− t.

Equation (2.3) observes that D be the integer which can be determined

from a given prime p called the CM discriminant of p. Algorithm 1 describes

a general CM method [17] for constructing an elliptic curve over a given

prime field.
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CM method adheres to “Performance over slightly sacrificed security”

principle for computation of Short Weierstrass elliptic curves. Fast elliptic

curve computation is possible in CM method due to elimination of the need

for a point counting algorithm and fixing of certain parameters like prime

p with special structures [49]. CM method allows much faster arithmetic

with elliptic curves as compared to random approach to achieve higher

performance of elliptic curve cryptosystems [2]. It provides smaller, faster

and easily implementable software code due to offline precalculations while

adopting deterministic computational approach [48]. Prime order elliptic

curves generated using CM method with a = −3 are backward compatible

with implementation supporting most of the standardized elliptic curves [50].

• Computational complexity

The bit complexity (B) of CM method depends on b and h where b=length

of field order p, h=class number, hc=cross over class number for which

the random approach and CM approach have the same runtime. When

h(D) < hc(b) where D is the CM discriminant, then CM method is faster

than random approach [44]. CM method can generate a prime order elliptic

curve in time Õ((logN)4) [48].

• Security

Deterministic approach is vulnerable due to non-disclosed attacks. The

standards developed by various agencies have deterministic way of

computing elliptic curves which are supposed to be (dis)trusted for

ultra security sensitive applications. Standards are sometimes purposely

designed in such a way that it can be manipulated by the agency who

recommended those standards [51]. Also, sufficient information about

the computational mechanisms of curve parameters have not been made
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publically available [6]. It is always a concern for researchers that the ECDLP

of deterministically computed elliptic curves can be solvable by using very

efficient sub-exponential or polytime algorithm using non-guessable very

high computing power unknown to outside world.

• Trust

The elliptic curve parameters which are selected deterministically are

sometimes distrusted due to lack of sufficient proofs of their computational

mechanisms [49]. Moreover, trust in the curve parameters is doubtful due

to possibility of intentional non-disclosed properties of the curve parameters.

There are some serious statements of distrust expressed by many reputed

scientists and researchers on NIST recommended elliptic curves which was

generated through deterministic approach. Some of such statements of

distrust are given as below:

– “I no longer trust the constants. I believe the National Security Agency

(NSA) has manipulated them through their relationships with industry.”

- Bruce Schneier [52]

– “NIST should generate a new set of elliptic curves for use with ECDSA

in FIPS 186... The set of high-quality curves should be described

precisely in the standard, and should incorporate the latest knowledge

about elliptic curves.” - Edward Felten [50, 53]

– “However, in practice the NSA has had the resources and expertise to

dominate NIST, and NIST has rarely played a significant independent

role.” - Koblitz, Koblitz and Menezes [6]

– “We don’t know how Q = [d]P was chosen, so we don’t know if the

algorithm designer [NIST] knows [the backdoor] d.” - Shumow and

Ferguson [54]
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– “Consider now the possibility that one in a million of all curves have

an exploitable structure that “they" know about, but we don’t.. Then

“they" simply generate a million random seeds until they find one that

generates one of “their" curves.” - Scott [55]

– “NIST should ensure that there are no secret or undocumented

components or constants in its cryptographic standards whose origin

and effectiveness cannot be explained.” - Steve Lipner [50, 53]

– Many more..

• Specific gains of deterministic approach

CM method can only be adopted to construct ordinary elliptic curves with

low embedded degree k > 6 [6]. CM method is not efficient if there is

no restriction on the class number of the elliptic curve [7]. This method is

useful in deriving elliptic curves with small class numbers for which ECDLP

is hard and gives the same security level as given by the elliptic curves which

are generated randomly [2, 7].

2.3.5 Evaluation of Random Approach

Random approach allows to obtain elliptic curves which are ordinary and avoids

any special form or structure. This approach uses ‘early-abort strategy’ to obtain

desired elliptic curve [2]. A general observation is that elliptic curves generated

using random approach have not been given preference for standardization like

those elliptic curves which are generated using deterministic approaches. We

evaluate random approach for computation of elliptic curves in various contexts

as given below:
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• Computational method

In random approach, the elliptic curve generation algorithm computes

curve parameters keeping ECDLP security and procedural transparency in

consideration. The elliptic curve computation algorithm considers a list

of security criteria and prefers security of the crypto applications over

their performance during elliptic curve generation in general. Algorithm 2

describes a general random approach as preferred in [1, 2, 3, 4, 9, 17, 18,

19, 29, 36] to derive cryptographically safe elliptic curve over prime field.

Here the prime p is fixed and the coefficients a and b are kept varying till a

suitable elliptic curve E with prime order N is obtained. Some validations to

meet the cryptographic requirements C1, C2 and C3 are also conducted. It

is observed that all the elliptic curve parameters such as p, a, b and Gx,y are

randomly generated in order to avoid any special structure or known values

whose choices are ambiguous.

A sample Short Weierstrass elliptic curve is computed using random

approach as shown in Algorithm 2. The curve generation process using

random approach is comprehensively discussed in Algorithm 5 of this thesis.

Random approach adheres to the principle of “security over performance”

for computation of elliptic curve parameters. Computing order of the elliptic

curve is a time-intensive task and hence, selecting elliptic curve using random

approach is a slower process as compared to the deterministic approach

where one starts with fixing the order of the elliptic curve. Point compression

and decompression also requires more computation in randomly generated

elliptic curves [49].
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Algorithm 2 Elliptic curve generation over prime field using random approach
Require: Randomness
Ensure: Elliptic curve over a prime field E(Fp), Gx,y, N

1: Select randomly a prime p of desired size
2: Fix K = GF(p) ▷ Generate a prime field K
3: Choose randomly coefficient a
4: Choose randomly coefficient b
5: Generate elliptic curve E(K) ▷ Elliptic curve over Fp

6: if 4a3 + 27b2 ̸= 0 ▷ Non-singularity check as stated in equation (1.1)
7: else go to step 3
8: end if
9: Compute cardinality or order N of E(K)

10: if N is prime ▷ Prime cardinality only to resist Pohlig-Hellman attack
11: else go to step 3
12. end if
13: if E is non-supersingular ▷ Non-supersingularity check to resist MOV

attack
14: else go to step 3
15: end if
16: if N ̸= p ▷ Non-anomalous check as per criteria C2
17: else go to step 3
18: end if
19: Select randomly a base point Gx,y on E

20: Compute base point order n ▷ Such that size of n ≥ 160 bits as per
criteria C1 and n > 4

√
p as per criteria C3

21: if n ̸= N ▷ Check for cofactor as 1
22: else go to step 18
23: end if
24: Compute Twist Ec ▷ Twist security of elliptic curve
25: if Ec is non-singular
26: Compute Cardinality N′ of Ec

27: else go to step 3
28: end if
29: if N′ is prime
30: else go to step 3
31: end if
32: if Ec is non-supersingular
33: else go to step 3
34: end if
35: return E(Fp), Gx,y, N ▷ Return elliptic curve parameters
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• Computational complexity

For random approach, the bit complexity (B) depends on the length of prime

(r0) only and falls in the range O(log5+ϵk0r0) to O(log7k0r0) where ϵ > 0

and k0 is the cofactor [44].

• Security

Random approach does not allow any special structure of the curve

parameters in order to eliminate doubts on intentional non-disclosure of

backdoors [2]. Elliptic curves which are randomly computed have no hidden

goals which can be proved in determination of the curve parameters. It

ensures that the elliptic curve parameters are trusted and not suspected to

belong to a (not publicly known to be) vulnerable class. This approach is

favourable when long term security is desired with an ignorable sacrifice

of efficiency [6]. Elliptic curves can be frequently changed for security

reasons when computed randomly [49]. The only way to compromise elliptic

curve security in such case is to solve ECDLP rather than just attacking

particular classes of weak elliptic curves [49]. Hence, random approach is

specifically preferred to obtain elliptic curves for strategic or military grade

cryptosystems.

• Trust

Random approach ensures that no intentional construction with hidden

weakness in the elliptic curve parameters is present in order to prevent future

exploitation to recover user’s private key [2]. The trust in derivation of the

elliptic curve parameters are maintained due to the use of absolutely new

values drawn randomly each time. Moreover, there are no patent issues with

randomly selected new curve parameters and therefore, it requires minimum

financial investments in using cryptosystems based on such elliptic curves.
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Random approach protects against attacks in special classes of elliptic curves

which may be discovered in future [2]. But random values of elliptic curve

parameters are always arguable by others for their origination and random

number generation, if not explained adequately.

• Specific gains of random approach

Elliptic curves are computed with nearly the same probability to ensure that

curves are not special in any sense when they are computed randomly [2,

44]. The chances of E(Fp) being supersingular is O(p
−1
2 ) which is rare in

random approach [6]. It is computationally difficult to derive elliptic curves

over large prime fields using random approach [49].

2.4 Selection Criteria of Short Weierstrass Elliptic

Curves

Elliptic curves requires certain mathematical validations before their acceptance

for implementation in cryptosystems. Table 2.3 shows important selection criteria

of Short Weierstrass elliptic curve parameters and their benefits to select elliptic

curves with desired properties.

Moreover, Table 2.3 lays the foundation of all the recommended Short

Weierstarss elliptic curves suggested by various agencies in their standards. These

mathematical validations suggest that the elliptic curve is cryptographically suitable

as the elliptic curve coefficients and the prime are selectively chosen such that the

discrete logarithm problem due to them are sufficiently hard.
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2.5 Verification Criteria of Standard Short

Weierstrass Elliptic Curves

The elliptic curves often rely on the use of special primes or special forms

of elliptic curve to gain performance benefits. The special primes like Crandall

prime, Mersenne prime, Montogomery-friendly prime etc. as discussed in Table

2.3 are used in Short Weierstrass elliptic curves which attract various known

and non-disclosed attacks. Side channel attacks are one of the popularly known

techniques which work well on special structures of prime. They also take

advantage of weak implementation of the elliptic curve. Therefore, secure

implementation of the elliptic curve is essential to defend a particular curve from

side channel attacks. The verification criteria [36] of Short Weierstrass elliptic

curves ensure secure implementation of the elliptic curve and is depicted in Table

2.4.

Here, various elliptic curves and terminologies are given respective notations

for representation in Table 2.4. One may read Table 2.4 considering A=NIST

recommended elliptic curves, B=Brainpool recommended elliptic curves, C=SECG

recommended elliptic curves, D1=ANSSI recommended elliptic curve FRP256v1,

D=CM discriminant of elliptic curve, t=trace of elliptic curve, p=prime field order

of elliptic curve, n=base point order of elliptic curve, s2 is the largest square

dividing t2 − 4p to affirm that t2−4p
s2 is square free negative integer.

<This space is intentionally left blank.>
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Table 2.4: Elliptic curve parameter verification criteria

Verification

criterion
Details

Supported by

the curve

sa f eField Prime of the forms 1 mod 4 and 3 mod 4 A, B, C, D1

sa f eEquation

Elliptic curve over prime field possessing

either Short Weierstrass or Montgomery

or Edward equation

A, B, C, D1

sa f eBase Possessing prime order of base point A, B, C, D1

sa f eRho Rho value must be ≥ 2100 A, B, C, D1

sa f eTrans f er

Safe against additive and multiplicative

transfers. Additive transfer protects from

Smart-ASS attack [9, 43] whereas

multiplicative transfer protects from

MOV attack

A, B, C, D1

sa f eDiscriminant

Absolute value of complex-multiplication

field discriminant |D| > 2100

where D = (t2 − 4p)/s2

if (t2 − 4p)/s2 mod 4 = 1 =⇒ D = t2−4p
s2

otherwise D = 4(t2 − 4p)/s2 [36]

A, B, D1

sa f eRigid
Allows only fully rigid and somewhat

rigid curves
B, C

sa f eTwist
Same ECDLP security requirements

for twist of the elliptic curve.
C

sa f eCurve
Elliptic curve is safe if all the above criteria

are met
NIL



2.6. Approaches adopted by Agencies for Elliptic Curve Computation 41

Among all the Short Weierstrass elliptic curves, Brainpool recommended

curves qualify all the verification criteria except the twist security of its

recommended curves. However, SECG curves qualify all the verification

criteria except the sa f eDiscriminant criterion and thus, Brainpool and SECG

recommended curves could not qualify overall sa f eCurve validation. Moreover,

NIST and ANSSI recommended elliptic curves have also met almost all the

verification criteria except the sa f eRigid and sa f eTwist criteria as they did not

explain the generation of their curve parameters adequately and attracted criticisms

as discussed in Section 2.3.4.

There is no sufficient verification data of NUMS-curves [37, 50] and Russian

standardized elliptic curves [59] available in public domain and therefore, they are

not included in Table 2.4.

2.6 Approaches adopted by Agencies for Elliptic

Curve Computation

Many agencies have recommended elliptic curves over various security levels for

standardization. Table 2.5 depicts the popular standard elliptic curves in Short

Weierstrass form with their generation approaches year wise. Here, randomly

generated elliptic curves means those elliptic curves whose parameters like prime

p, field coefficients a, b and basepoint Gx,y are randomly or pseudo-randomly (a

secure hash function is used to generate curve parameters from random value given

as input to the hash function to confirm that parameters are indeed computed pseudo

randomly) generated or otherwise, they are considered to be obtained from the

deterministic approach.
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It is obvious from Table 2.5 that CM method i.e., deterministic approach is

mostly adopted by the curve recommending agencies except the Brainpool. Clearly

the trend demonstrates that deterministic approach of elliptic curve computation is

preferred for standardization purposes mainly citing their performance benefits.

2.7 Review of Previous Elliptic Curves

Computational Resource Estimates

In this section, Koblitz’s work [12] is reviewed who approached the problem of

estimating the number of searches required for finding near prime order elliptic

curve randomly over F2n probabilistically. A very brief on the past conclusions

made by many researchers on quantum computations attacking ECDLP is also

presented. Moreover, this section mainly focuses on the related work of Roetteler

et. al. [39, 40] who estimated the number of qubits needed to solve ECDLP over

certain prime field size using Shor’s algorithm.

2.7.1 Koblitz’s Approach to derive Estimates for searching

Elliptic Curve randomly over F2n

Focusing on determining the order of elliptic curves of cryptographic interests,

Koblitz [12] estimated the probability of drawing a good elliptic curve in

characteristic 2 with nearly a prime order in terms of number of attempts. These

attempts were made primarily to compute the order of the elliptic curve using

Schoof’s algorithm repeatedly till an elliptic curve with suitable order is found.

This probability estimate with underlying assumptions which are detailed in [12],

are concluded from the experimental data gathered at Hewlett-Packard Laboratories
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[16]. The experiment was carried out to generate a large number of elliptic curves

over various fields of sizes used in real systems [16].

A quick recall on the probability estimate given by Koblitz [12] is as follows:

Let E be defined over F2n and is given by the equation

E : y2 + xy = x3 + a2x2 + a6 (2.4)

where n is the bit length of the binary field and whose order is a prime or almost

prime. Let it be called B-almost prime where B is some constant such that d|N

where d is a prime ≥ N/B and by doing some variation in coefficients a2 and

a6, B-almost primality of N = |E| was assumed to be same as that of a random

even integer of the same order of magnitude (not a proven conjecture but it is

assumed). As N ≈ q = 2n, therefore, for fixed B and large q, the latter probability

is asymptotic to
B/2

∑
j=1

1
jlog( q

2j )
≈ 1

n
× log2(

B
2
) (2.5)

The equation (2.5) implies that, for a prime factor of N of length larger than

134-bit with B = 2n − 134, the number of probable trials to find E with |E|

divisible by a prime whose length is larger than 40 digits or 134 bits will be n
n−135 .

For example, if we select n = 160 then Schoof’s algorithm has to run 4 times

considering actual determination of order of the curve and order of the twist of

the curve simultaneously before a suitable elliptic curve over F2n is found. The

probability estimates suggested by Koblitz work well with those classes of elliptic

curves which are defined over F2n i.e. in characteristic 2. Two important questions

yet need to be answered:

a. Can we have such resource estimate (i.e. the number of searches or attempts

made) for computation of elliptic curves randomly in prime characteristic i.e.

those elliptic curves which are defined over large prime fields?
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b. Also, can we have resource estimate for processor to be used for computation

of elliptic curves randomly over large prime fields?

In this thesis, these questions are answered using statistical estimation approach in

Chapter 5.

2.7.2 Status of Elliptic Curve-based Cryptosystems in presence

of Quantum Computers

Peter Shor [29] hoped that the laws of quantum mechanics will be helpful in

building quantum computers. In 1994, the author simulated quantum mechanics on

a classical computer leading to construct a polynomial time algorithm for factoring.

Author showed that integer factorization and discrete logarithm problems (DLP) in

finite fields of prime order can be solved in random quantum polynomial (RQP)

time with a permissible small probability of (one-sided) error. This DLP computing

polynomial time algorithm generalizes to the cases of elliptic curves as well. A

good detail on Shor’s quantum algorithms to compute ECDLP can be seen in

[2]. In 2003, Proos et. al. [60] have shown implementation of Shor’s quantum

algorithm for computing discrete logarithm problem due to elliptic curve groups.

The authors constructed a table with resource estimate for the number of qubits and

time depending on the prime field size of the elliptic curve. In 2016, Wohlwend in

his report [61], conveyed that presence of quantum computers poses a serious threat

to ECC based cryptosystem since elliptic curves are basically abelian groups. The

author opined that since quantum computers are still in the evolving stage, ECC

will be prolonged to be a great choice in cryptographic applications for a reasonably

long time.

In 2017, Roetteler et. al. [39, 40] precisely estimated quantum resources for

quantum circuits required to compute ECDLP induced by an elliptic curve over
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an n-bit prime field using Shor’s algorithm. The authors proposed an estimate

that a quantum computer can solve ECDLP with at most 9n + 2 ⌈log2(n)⌉ + 10

qubits using a quantum circuit of at most 448n3log2(n) + 4090n3 Toffoli gates

[39]. Their resource analysis was carried out by implementing Toffoli, CNOT, and

NOT gates circuits to implement the controlled addition of elliptic curve points

known as circuit generation time. The authors simulated large parts of quantum

circuits on a classical machine. Their results on resource estimation of qubits to

solve ECDLP help to plan and acquire practically available quantum resources to

target modern elliptic curve-based cryptosystems over certain prime fields sizes.

The authors concluded that attacking elliptic curve cryptography is an easier job

than attacking RSA by a quantum computer.

In light of this, one of the affordable ways to address the problem of using

elliptic curves in cryptography in presence of quantum computers is to scale up

the elliptic curve prime field size to a higher possible extent where quantum

attacks may not be feasible within reasonable time and with available number of

qubits. But generation of elliptic curves randomly over very large prime fields is a

cumbersome task which requires huge computational resources as well as time and

therefore, proper estimation and allocation of sufficient computational resources

are important.

2.8 Cryptographically Secure Random Number

Generators for Kernel Applications

2.8.1 /dev/(u)random

Linux and Android kernels use /dev/random and /dev/urandom which are

considered as CSPRNG i.e. the PRNG with inputs (meeting the requirement R2)
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for randomness generation. The limitations of these CSPRNGs are that they do not

have enough entropy in the pool and they are not generating keys larger than the

hash function that they used internally [62]. /dev/random keeps awaiting for the

entropy pool to get sufficiently filled in, which results diminished performance of

the generator. /dev/random meets the RNG requirements R1, R2 and R3 but does

not meet the R4 requirement. Though /dev/urandom has provision for unblocked

fast supply of random sequences through unblocking pool of entropy, it faces

predictability issues [63]. /dev/urandom meets the requirements R1 and R3 but

does not meet the requirement R2 and R4.

2.8.2 Yarrow

Yarrow [64] is a PRNG with true random inputs used by MacOS/iOS/FreeBSD

kernels. This CSPRNG is too complex and under-specified in entropy handling

context and also slow to provide an initial seed [62]. It uses Triple DES block

cipher for pseudorandom bitstream generation. Like /dev/random, Yarrow meets

the requirements R1, R2 and R3 but does not meet the requirement R4.

2.8.3 Fortuna

Fortuna [65, 66] is a popular CSPRNG and a refinement over Yarrow, used by the

Windows kernel which uses its entropy effectively. It uses AES-like cipher for the

generator with 256-bit size of the block cipher key and a 128-bit counter. Fortuna

produces a very good throughput of 20 clock cycles per byte on CPU type PC [65]

and 7.2 Mbps throughput in software [66]. Fortuna implicitly accumulates entropy

through hash, partitions the incoming entropy into multiple entropy pools and uses

its pools at different rate for output generation in order to guarantee that at least one

pool will remain available for use [67]. Though Viega [62] observed that Fortuna

completely foregoes the entropy estimation and, Fortuna and Yarrow both do not
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exhibit information-theoretic security as well. Like Yarrow, Fortuna also meets

the requirements R1, R2 and R3 but does not meet ‘non-reproducibility’ i.e., the

requirement R4.

It is imperative to note that the present kernel CSPRNGs do no meet the

requirement of ‘non-reproducibility’ i.e., the requirement R4 which is a crucial

feature that helps to prevent the kernel better from exploitation as discussed in

Section 1.4.7. In this work, the proposed KCS-PRNG is designed in such a way

that all the four requirements (R1 to R4) of an ideal RNG are met to ensure better

prevention of the kernel from exploitation.

2.9 Summary

Short Weierstrass elliptic curves are widely used for cryptographic purposes. An

evolution chart of events is presented which has significant impact on introducing

elliptic curves for use in cryptography. A comprehensive list about important

attacks on ECDLP and their countermeasures is presented in this chapter which

became the basic selection criteria of elliptic curves for their consideration in

cryptography. Two popular approaches i.e., deterministic and random approaches

to compute cryptographically secure Short Weierstrass elliptic curves and rationale

behind them are evaluated in detail which favoured random approach for the

elliptic curve implementation in the kernel applications. This chapter also lays

the foundation for trusted elliptic curves which are discussed in Chpater 4 of

the thesis. The rationale behind selection criteria and verification criteria to

compute cryptographically suitable elliptic curve parameters are also discussed. A

trend of approaches for computation of elliptic curve parameters for cryptographic

purposes is demonstrated in this chapter which favoured deterministic approach in

standardization so far.
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Further, Koblitz’s estimate to determine the number of searches needed

probabilistically to randomly search a near prime order elliptic curve over F2n

where n is the bit length of the binary field is reviewed in this chapter. This

thesis gets motivation from his work and presents novel statistical derivation of such

estimate over Fp where p is a large prime in Chapter 5. Additionally, the processor

estimate in terms of the number of CPU clock cycles required to randomly obtain

a prime order elliptic curve is also presented as one the research outcomes of this

thesis in Chapter 5.

Hence, it is inferred that this comprehensive evaluation and analysis of

computational approaches of cryptographically safe elliptic curves will be helpful

to those who wish to compute Short Weierstrass elliptic curves for cryptosystems

design, in particular, in the design of kernel CSPRNGs with desired properties of

the underlying elliptic curves.

Further, in the last section of this chapter, three popular kernel CSPRNGs

namely /dev/(u)random, Yarrow and Fortuna were reviewed and it was observed

that all of them meet the randomness requirements R1, R2 and R3 but they

do not meet the randomness requirements R4 which is very crucial for strategic

applications such as kernel applications. This thesis covers this critical issue based

on the observations made in the survey conducted and resolves it in Chapter 6. The

next chapter enlists various problem statements which are observed in this chapter.
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Chapter 3
Problem Statements

“A problem well stated is a problem half solved.”

- John Dewey

In this chapter, seven research problems are discussed in context of Short

Weierstrass elliptic curves and the random number generation in operating system

kernels. Based on the survey carried out in Chapter 2, these seven problem

statements are ellaborated in two parts of this chapter.

3.1 Part I: Evaluation and Computation of Novel

Short Weierstrass Elliptic Curves

Elliptic curves over large prime fields are considered to provide provable security to

the cryptographic schemes. Six important problems are encountered in computation

of cryptographically secure elliptic curves over prime field which are stated as

below:
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3.1.1 Problem 1

Evaluation of computational approaches and selection criteria of elliptic

curves over prime fields from computation, security and trust perspectives.

A comprehensive evaluation of standard computational approaches and selection

criteria of cryptographically secure elliptic curves over the prime fields is presented

in Chapter 2 of the thesis. Chapter 2 of the thesis also recommends the preferable

computational approach and selection criteria of desired elliptic curves for their

implementation in critical cryptosystems of strategic nature.

3.1.2 Problem 2

Computation of cryptographically secure as well as trusted elliptic curves

over the prime fields.

Chapter 4 discusses about the trust issue of the present standard elliptic curves

recommended by various international bodies like NIST, Brainpool, SECG etc.

in detail. Chapter 4 also introduces a new security notion called the trusted

security of elliptic curves and proposes three trusted security acceptance criteria to

ensure elimination of any possible computational manipulation of the elliptic curve

parameters.

3.1.3 Problem 3

Recommendation of new elliptic curves over large prime field sizes whose

method of generation is trusted and cryptographically strong.
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Chapter 4 recommends two new elliptic curves over 256 bit and 384 bit prime field

sizes which are cryptographically secure as well as trusted for implementation in

crucial cryptographic applications such as in kernel applications.

3.1.4 Problem 4

Computation of cryptographically secure elliptic curve over large prime field is

an intricate and resource intensive task. This leads to two critical problems with

respect to estimation of computational resources requirement for randomly deriving

elliptic curves over large prime fields which are stated in Problem 4 and Problem 5

respectively.

To provide an estimate of computational resources in terms of computing

processor i.e., number of the CPU clock cycles to compute cryptographically

safe elliptic curve randomly over desired prime field size for cryptographic

purposes.

Chapter 5 addresses Problem 4 and provides precise statistical estimate of

CPU processor in terms of CPU clock cycles required for computation of

cryptographically secure elliptic curves randomly over large prime fields.

3.1.5 Problem 5

To provide an estimate of computational resources in terms of number of

attempts or searches to be made in the security parameter space of the elliptic

curve to compute cryptographically safe elliptic curve randomly over desired

prime field size for cryptographic purposes within stipulated time.



54
3.1. Part I: Evaluation and Computation of Novel Short Weierstrass Elliptic

Curves

Chapter 5 addresses Problem 5 and provides precise statistical estimate of number

of searches or attempts required for computation of cryptographically secure

elliptic curves randomly over large prime fields.

3.1.6 Problem 6

In addition, an important question comes into light that how the present elliptic

curve cryptography-based applications will be able to co-exist with future quantum

computers having certain number of qubits. It was shown by Roetteler et. al.

[39, 40] that a quantum computer with certain number of qubits can break ECDLP

imposed by the elliptic curves over a certain prime field size. Hence, there is a need

felt for recommendation of the reasonable amount of CPU processor and stipulated

timelines respectively required for computation of cryptographically secure elliptic

curve over desired prime field size which can co-exist in presence of the quantum

adversaries.

To estimate computational investment for cryptographically secure elliptic

curves over very large prime fields in order to verify feasibility and to prepare

existing ECC-based cryptosystem to be kept resilient to quantum attacks using

available number of qubits.

Chapter 5 also addresses Problem 6 and provides a tabular comparison of

requirements of the elliptic curve field sizes which will be resilient against certain

number of qubits under quantum attack.

We address above mentioned six problems in Part I of this thesis which are

covered across Chapter 2 and Chapters 4 - 5.
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3.2 Part II: Construction of a Novel CSPRNG Using

Short Weierstrass Elliptic Curves For Kernel

Applications

The operating system kernel is the lowest level software interacting with

the hardware and user programs. The kernel needs software based random

number generator (RNG) which can essentially generate statistically validated,

unpredictable as well as non-reproducible bitstreams for its critical kernel

operations such as Address Space Layout Randomization (ASLR), safe storage

of users’ passwords and cryptographic key generation, etc. As software based

RNG are based on deterministic algorithms, therefore, non-reproducibility property

of the generated bitstreams has not been so far possible for sensitive kernel

applications in a computer.

3.2.1 Problem 7

A new competitive candidate CSPRNG for kernel or cryptographic usage

is highly desirable which could exhibit statistical properties of randomness and

unpredictability along with the non-reproducibility property of randomness.

Chapter 6 gives the proposal of new CSPRNG for kernel applications called as

KCS-PRNG which is proven to be a viable CSPRNG candidate for adoption in the

operating sysem kernels in the thesis.

We address the seventh problem in Chapter 6 in Part II of this thesis.
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Chapter 4
The Proposed Cryptographically

Secure and Trusted Elliptic Curves

Over 256 bit and 384 bit Prime Fields

“Consider now the possibility that one in a million of all curves

have an exploitable structure that “they" know about, but we don’t..

Then “they" simply generate a million random seeds until they find one

that generates one of “their" curves. Then they get us to use them.”

- Michael Scott

In this chapter, a new security notion called trusted security of elliptic curve

is proposed. Addtionally, two new Short Weierstrass elliptic curves over 256 bit

and 384 bit prime field sizes are recommended for cryptographic purposes as the

solutions to Problem 21 and Problem 32 as mentioned in Chapter 3.

1Computation of cryptographically secure as well as trusted elliptic curves over the prime fields.
2Recommendation of new elliptic curves over large prime field sizes whose method of generation

is trusted and cryptographically strong.
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4.1 Publications from this chapter

The research outcomes of this chapter contributes the following publications:

1. Kunal Abhishek and E. George Dharma Prakash Raj, Evaluation

of Computational Approaches of Short Weierstrass Elliptic Curves for

Cryptography, Cybernetics and Information Technologies (2021). (DOI:

10.2478/cait-2021-0045)

2. Kunal Abhishek and E. George Dharma Prakash Raj, Computation of

Trusted Short Weierstrass Elliptic Curves For Cryptography, Cybernetics and

Information Technologies (2021). (DOI: 10.2478/cait-2021-0020)

4.2 Introduction

Short Weierstrass elliptic curves are considered to be as secure for cryptography

as the underlying hardness of their elliptic curve discrete logarithm problem i.e.,

ECDLP which is defined as finding a scalar k knowing any two points P and Q

on elliptic curve E holding the relation Q = kP. This is known as the ECDLP

security of the selected elliptic curve when used for cryptography [36]. The most

efficient publicly known method to solve ECDLP or break the ECDLP security is

the Pollard’s Rho algorithm which takes approximately 0.886×
√

n point additions

where n is the base point order [36, 51]. One must select an elliptic curve

which is ECDLP secure for cryptographic applications. Another notion of security

for selecting suitable elliptic curves for cryptography is known as elliptic curve

cryptography security i.e., ECC security in short, the term coined by Bernstein

and Lange [36] which ensures prevention from any information leakage from the

implementation flaws of the elliptic curve. Most of the popular standards today

such as National Institute of Standards and Technology (NIST) [32], Brainpool
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[35], Standards for Efficient Cryptography 2 (SEC2) [33], IEEE P1363 [68] etc.

recommended those elliptic curves which are ECDLP secure and attain some sort of

ECC security (for only some standard curves [36]). It is worthwhile to note that an

ECC based cryptosystem can be compromised by either compromising the ECDLP

security or the ECC security. All the present day standards have recommended

Short Weierstrass elliptic curves keeping either or both of these security notions

into consideration. This chapter introduces a critical security notion which we call

as “trusted security” of elliptic curves which ensures that the selected elliptic curve

is free from any manipulation from its computation perspective and can be trusted

for use in cryptographic applications. The trusted security notion of computation of

elliptic curves minimizes the risks involved in generation of safe curve parameters

deterministically where they are vulnerable to (intentionally) non-disclosed attacks

with (intentionally) non-disclosed properties of the curve parameters. In such cases,

the ECDLP can be solvable by using very efficient sub-exponential or polynomial

time algorithm using non-guessable high computing power.

The key outcomes of this chapter are as follows:

• Introduction of a new security notion called as “trusted security acceptance

criteria” as an important security evaluation criterion along with the ECDLP

security and ECC security criteria for computation of Short Weierstrass

elliptic curves aimed for cryptography. The chapter also includes evaluation

of standard Short Weierstrass elliptic curves from trust perspective.

• Argument that trust in generation method of elliptic curves can be achieved

only through computation of the curve parameters randomly without

considering any of their pre-studied values such as −3 or Mersenne primes

etc. The randomly selected elliptic curve parameters can be derived using

any good quality user trusted random number generator (RNG) along with

competitive performance of the elliptic curve.
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• Demonstration of two new elliptic curves defined over 256 bit and 384

bit prime field sizes respectively for cryptography which are secure from

ECDLP security, ECC security as well as trusted security perspectives and

evaluation of these proposed elliptic curves with respect to cryptographic

key pair generation, signing and verification from performance perspective.

4.3 Discussion on Distrusted Standardized Elliptic

Curves

It is important to select those elliptic curves which are cryptographically secure

and trusted for constructing cryptographic systems. Transport layer security

(TLS), secure shell (SSH) and Internet Protocol Security (IPSec) [28], public

key infrastructure (PKI) [27] etc. are some of the popular applications which

require safe elliptic curves in their cryptosystem design. Most of such commercial

applications use standard elliptic curves over prime field of 256 bit sizes for

sufficient security and interoperability purposes. However, Bernstein et. al. [51]

has recently pointed out some mechanisms such that a new elliptic curve can

be proposed to sabotage the public standards. They demonstrated convincing

methods by which they were able to implant vulnerability in the elliptic curves

known as BADA55 curves by utilizing the gain of many bits of freedom [51]

which satisfies the public standards and can be put forward for standardization to

fool the users. This essentially proves that an attacker can exploit unknown (his

known) vulnerability to sabotage existing public standards and justify his selection

of elliptic curve parameters citing performance gain and his own way of getting

randomness i.e. verifiably random etc. which is used in the generation of the

vulnerable curve parameters. Bernstein et. al. [51] comprehensively demonstrated

how a wrong or non-trustable elliptic curve can be derived using the procedure
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led by the public standards and their recommended public criteria. They showed

that plausible variations in the Brainpool curve generation procedure and Microsoft

curve generation procedure respectively can be used to sabotage public standard.

Further, the Agence nationale de la securite des systemes d’information (ANSSI)

standard recommended FRP256V1 elliptic curve which has low twist security of

order 279 which means that there are 279 elliptic curve additions required to

mount the twist attack to get user’s secret key [51]. Also, there is no reasonably

sufficient documentation available for this curve. Furthermore, Bernstein et. al.

demonstrated computation of the BADA55-R-256 curve which meets the public

security criteria for ECDLP security and ECC security but still being a manipulated

curve. Finally, it is understood that computation of an elliptic curve can be

manipulated by any deterministic method of computation of the curve parameters

and variety of reasons can be cited with selection of the curve parameters adhering

to some public standard of proposer’s convenience. Summarizing, the problems

pertained with the trust factor consists of one or more issue(s) from the following:

• No sufficient explanation on the RNG used for seed or randomness

generation.

• Intentional variation in standard elliptic curve generation procedure

recommended by the curve proposing agencies by themselves.

• Intentional hiding of information about the curve parameters even providing

detailed documentations on curve generation process of standard elliptic

curves.

• Sabotaged standards.

• Root problem of the lack of trust is the deterministic approach adopted by all

the agencies in standardizing their proposed elliptic curves.
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With the above prevalent issues, an obvious question arises that “because you

can explain, does not mean that you will explain everything”. This question

is answered by introducing a set of three important security evaluation criteria in

the thesis called “trusted security acceptance criteria” for computation of suitable

elliptic curves for cryptography which can be additionally invoked along with the

ECDLP security and ECC security criteria to mitigate the trust issues in curve

generation process to a great extent. Before proceeding further, it is important

to get an insight into the usability of standard and non-standard i.e., self-derived

elliptic curves to know their purpose and benefits of using them under appropriate

circumstances. Following section gives a new insight for the same.

4.4 Standard Elliptic Curves and Non-standard

Elliptic Curves

Elliptic curves are standardized to enable compatibility and interoperability across

diverse applications. Moreover, non-standard elliptic curves are mostly used by

strategic or military applications and sometime non-military but other critical

infrastructures applications such as Command and Control systems of nuclear

reactors etc. These applications do not really believe in Kerckhoffs’s principle [69]

which says “A cryptographic system should be secure even if everything about the

system, except the key, is public knowledge.”. Unlike Kerckhoff’s principle, the

strategic applications do believe that not only the keys but the algorithm should

also be kept private to protect critical information infrastructure better. In such

cases, they compute elliptic curves preferably using random approach instead

of deterministic approach. The thesis contributes a new insight to observe some

remarkable differences between the standard and non-standard elliptic curves from

computation, trust and security perspectives as portrayed in Table 4.1.
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Table 4.1: Comparison of Standard Elliptic Curves with Non-standard Elliptic
Curves

Standard Elliptic Curve Non-standard Elliptic Curve

Prefers deterministic approach of

computation to get performance

benefits in elliptic curve arithmetic.

This helps in standardization of

elliptic curves by global acceptance.

Prefers random approach of comp-

utation for long term security so that

any special kind of curve is avoided

which may lead to vulnerability to an

unanticipated attack.

Adheres to Kerckhoffs’s principle

of security and fixes elliptic curves

for compatibility and interoperability

among diverse applications across

the globe.

Adheres mostly to strategic principle

of security which says that keys and

algorithm both need to be kept secret.

Standard elliptic curves are subject to

public exposure and often attract

cryptanalysis as more people use it.

Hence, there is always a high chance

of collision with the secret key [70].

Negligible chance of collision with the

secret key that’s why random approach

is preferred.

Distrust comes with presence of

special structures of the curve

parameters.

Trusted new values of curve parameters

known to designer only. Prefers random

approach to compute elliptic curve

parameters.

Standard elliptic curves are globally

accepted and trusted.

Not published and mostly not supported

by the standards. Hence, trusted by their

proposers or/and in closed group only.

Continued to next page..
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Table 4.1 – continued from previous page

Standard Elliptic Curve Non-standard Elliptic Curve

Compatible across applications and

interoperable due to standardization.

Not compatible. Applications need to

be made interoperable explicitly.

Better approach in case where

elliptic curve needs to be computed

over large prime fields.

Better approach in case where elliptic

curve needs to be transparently comp-

uted without any special structures

known to others.

Curve parameters and compression

techniques have patent issues.
No patent issues.

Already published and analyzed

thoroughly. Non-deniable chances

of hiding backdoors.

Derivation procedure of curve para-

meters are known to the proposers only

and hence, negligible chances of back-

doors. High degree of trust observed by

the proposers of non-standard elliptic

curves.

Standard elliptic curves are fixed

to maintain compatibility among

applications.

Non-standard elliptic curves have edge

over the standard ones as they can be

replaced frequently for added security.

More prone to get attacked by

sophisticated advancements in

mathematics and discoveries.

In case of randomly selected curve

parameters, curve is safe until sub-

exponential algorithm is known to

break it in particular [3].
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4.5 Trusted Security Acceptance Criteria for Elliptic

Curves for Cryptography

Standard elliptic curves followed deterministic approach in computation of their

coefficients and primes. Most of them used pre-studied values whose credibility

and trustworthiness are doubted [51, 71, 72, 73] due to origination of the curve

parameters and lack of proof for the randomness used in the curve generation

process such as use of computationally convenient primes like powers of two

etc. Hence, there is a need to introduce additional security acceptability criteria

to invoke trust in the computation of elliptic curve parameters for use and in

standardization. In this chapter, a set of three new security evaluation criteria of

cryptographically safe elliptic curve called the “trusted security acceptance criteria”

for elliptic curves used for cryptography is introduced which are as follows:

1. T1: User trusted random number generator (RNG) to provide

(pseudo)randomness.

A RNG should be selected preferably by its user for assuring that user

is fully aware of the technicality of the RNG and hence he/she trusts

it completely. Apart from the trust aspect, the RNG should adhere to

the following properties as indicated by Koc [22] and Schneier [24] and

discussed in Section 1.4.6:

• The bitstream generated by a pseudo random number generator (PRNG)

or cryptographically secure PRNG (CSPRNG) should be statistically

sound i.e., it has a large period.

• The bitstream generated should be unpredictable i.e., the RNG should

be forward secure as well as backward secure.
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The curve parameters should be chosen randomly in a trustworthy way to

avoid any uneasy explanation about the generation of the curve constants and

hence, the requirement of user trusted and strong RNG is critical in trust

building.

2. T2: No pre-studied values of the curve coefficients and prime.

The well-known constants are accepted by everyone without hesitation but

their non-exposed property may be used for construction of vulnerable

elliptic curves. BADA55-VPR-224 is such an example which used cos(1)

constant [51]. The elliptic curve coefficients a, b must not use any pre-studied

values to avoid the scope of manipulation. Moreover, the prime field order

p can only have special structure if it is randomly selected with suitable size

(normally ≥ 224) bits for fast reduction on the elliptic curve.

3. T3: Reproducibility of new elliptic curves of nearly the same cryptographic

strength and suitability using the same method and apparatus.

One must get new elliptic curves of nearly the same cryptographic strength

using the same method and apparatus. The Pollard’s rho values of the elliptic

curves and their respective twisted curves are considered as the measurement

of their cryptographic strengths which is the number of elliptic curve point

additions to solve the ECDLP. Generally, 0.886 ×
√

n elliptic curve point

additions are required to break the ECDLP where n is the order of the base

point [36, 51].

<This space is intentionally left blank.>
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4.6 Evaluation of Standard Elliptic Curves from

Trust Perspective

Standard Short Weierstrass elliptic curves claimed to have followed rigorous

ECDLP security validations and sometime ECC security validations together to

arrive at the curve parameters for recommendation. They claimed that they used

seeds which were randomly generated and some of them adhered to verifiably

random way of obtaining the curve parameters. Table 4.2 evaluates standard elliptic

curves from trust perspectives for use in cryptography:

Table 4.2: Evaluation of standard Short Weierstrass elliptic curves from trust
perspectives

Elliptic curve
Trusted Security
(T1, T2, T3)

Remarks

NIST P224r1 None
Deterministic approach with pre-studied coefficients
and prime [32]

NIST P256r1 None
Deterministic approach with pre-studied coefficients
and prime [32]

NIST P384r1 None
Deterministic approach with pre-studied coefficients
and prime [32]

secp224r1 None
Special structure of prime p (Mersenne prime)
and insufficient documentation [33]

secp256r1 None
Special structure of prime p (Mersenne prime)
and insufficient documentation [33]

secp384r1 None
Special structure of prime p (Mersenne prime)
and insufficient documentation [33]

secp521r1 None
Special structure of prime p (Mersenne prime)
and insufficient documentation [33]

ANSSI
FRP256v1

None
Pre-studied value of coefficient a and insufficient
documentation [51, 74]

Brainpool T2
None of the Brainpool curves are generated by
their own stipulated procedure [51, 35]

NUMS curves None
Deterministic approach with pre-studied
coefficients and prime.[51, 3]

It is imperative to note from Table 4.2 that, there is an ardent need for new
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elliptic curves which are cryptographically secure as well as trusted. Following

section will focus on the generation details of trusted Short Weierstrass elliptic

curves to be used for cryptography.

4.7 Cryptographically Secure Elliptic Curve

Generation using the Proposed Trusted Security

Acceptance Criteria

Short Weierstrass elliptic curves can only exhibit prime order [50] which does not

loose any bit of security of ECDLP [3]. However, elliptic curves of cryptographic

interests must get validated against their ECDLP security, ECC security as well as

trusted security. It is now observed from previous sections that random approach of

computing safe elliptic curves is the only way to achieve all of these three security

notions. A standard procedure is shown as the flow chart in Figure 4.1 to get bird’s

eye view of generation of the trusted Short Weierstrass elliptic curves intended for

cryptography.

<This space is intentionally left blank.>
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Figure 4.1: Flow chart of generation of cryptographically secure and trusted Short
Weierstrass elliptic curve

An entropy harvester which is used to obtain sufficient number of true random

bits from various physical noise sources like device randomness, disk randomness,

Human Interface Device (HID) (key board, mouse, etc.), interrupt randomness, etc.

is used to seed a user trusted (means user is aware of the technicality of the RNG

and associated security risks completely) PRNG/CSPRNG as depicted in Figure

4.1. The user trusted PRNG supplies desired number of (pseudo)random bits to

generate suitable p, a and b. An elliptic curve E is constructed over prime field Fp

(where p is fixed in this case, but one can choose other way also to generate suitable

elliptic curves by fixing the curve order N randomly etc.) with coefficients a and

b. Now E is subjected to ECDLP security validation failing which will re-generate

the coefficients a and b until it gets suitable curve coefficients for E to be ECDLP

secure. A base point Gx,y is also selected randomly over elliptic curve E and

gets verified for its prime order for acceptability. Once E is validated for ECDLP

security, it is subjected to security validation from ECC security perspective which
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expects E to have its twist E′ also to be as secure as E is. In case of the fact

that ECC security validation does not pass, one needs to re-generate the prime p

and subsequently coefficients a and b to get ECDLP security and ECC security

validated successfully. Finally, the ECDLP secure and ECC secure elliptic curve

E is verified with the proposed trusted security acceptance criteria (indicated in

yellow decision box in Figure 4.1 failing which the process is re-initiated with

deriving prime p and coefficients a and b as fresh until one gets an acceptable E.

Lastly, E and G are returned as the output. The elliptic curve generation procedure

is detailed in Algorithm 3.

4.7.1 Assumptions

Following assumptions are made while computing the curve parameters using

Algorithm 3:

i. User trusted cryptographically strong RNG is available to provide randomness

required in computation of secure elliptic curve.

ii. Sufficient entropy is available in the system. Generally, more than 2000 bits of

entropy is expected to be available with the system to seed the RNG sufficiently to

uninterruptedly generate elliptic curves up to over 384 bit prime field sizes. Also,

the operating system is not used for the first time after installation as sufficient

entropy will not be available with the machine.

iii. Compilers, CPU Processors, SAGE and other participating modules in the curve

parameter generation are trusted.

<This space is intentionally left blank.>
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Algorithm 3 Generation of cryptographically safe and trusted Short Weierstrass
elliptic curve

Require: Prime field size (l ) in bits and randomness from user trusted RNG
Ensure: Trusted cryptographically safe elliptic curve E over prime field Fp with

base point Gx,y
1: Input prime field size l in bits
2: Obtain seed S as true random bits of desired length from entropy harvester
3: Set seed S for user trusted RNG
4: Select randomly prime p such that p ≡ 3 mod 4 ▷ for fast arithmetic on E

5: Choose randomly the coefficient a of E

6: Choose randomly the coefficient b of E

7: Construct the elliptic curve E with curve parameters p, a and b
8: Enforce ECDLP security validation:
9: if discriminant = 4a3 + 27b2 ̸= 0 AND curve order N is prime AND E is

non-anomalous case AND E is not supersingular curve then
10: continue
11: Else go to step 5
12: end if
13: Generate randomly the base point Gx,y on E

14: if base point order n is prime then
15: continue
16: Else go to step 13
17: end if
18: if cofactor is 1 AND Pollard’s rho value < 2100 AND embedding degree k ≥

(N−1)
100 then

19: continue
20: Else go to step 5
21: end if
22: Enforce ECC security validation: ▷ If E is twist secure i.e., all validations

in step 8 applied to the twist E′

23: if twist discriminant of E = 4a3 + 27b2 ̸= 0 AND order of E′ i.e. N is prime
AND E′ is non-anomalous case AND E′ is not supersingular curve then

24: continue
25: Else go to step 4
26: end if
27: Generate randomly the base point G′x,y on E′

28: if base point order n′ is prime AND cofactor of E′ is 1 then
29: continue
30: Else go to step 4
31: end if
32: if cofactor is 1 AND Pollard’s rho value of E′ < 2100 AND embedding degree

of E′ i.e. k′ ≥ (N−1)
100 then

33: continue
34: Else go to step 4
35: end if

continued to next page..
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Algorithm 3 Generation of trusted.. (continued from previous page)
36: Enforce trusted security validation:
37: if RNG is trusted then ▷ Proposed validation criterion T1
38: continue
39: Else go to step 2
40: end if
41: if coefficients a and b have no pre-studied value then ▷ Proposed validation

criterion T2
42: continue
43: Else go to step 2
44: end if
45: if elliptic curves with similar cryptographic strength can be generated with the

same method and apparatus then ▷ Proposed validation criterion T3
46: continue
47: Else go to step 2
48: end if
49: return E : p, a, b and Gx,y

4.7.2 Standard Procedure for Elliptic Curve Generation

including Trusted Security Acceptance Criteria

The standard procedure shown in Algorithm 3 along with the proposed trusted

security acceptance criteria as discussed in Figure 4.1 with detailed security

validations of elliptic curve from ECDLP security, ECC security and trusted

security perspectives.

The elliptic curve field size (l) in bits is taken as the input in step 1 in Algorithm

3. A seed S is extracted from the entropy harvester in step 2. The /dev/random

is used as the PRNG which takes true random bits through a hardware based

RNG (HRNG) that extracts entropy directly. The /dev/random PRNG is available

with Linux Fedora kernel version 4.13.9 for obtaining randomness in desired bit

lengths. The HRNG uses various noise sources like input randomness, device

randomness, disk randomness, HID (key board, mouse etc.), interrupt randomness

to provide random bits as the seed S to /dev/random in step 3. S is used to initialize

/dev/random to provide randomness to the curve generation process as and when
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required. As the curve generation program needs a user trusted secure RNG,

it is left to the user to select his/her trusted RNG for fulfilling the randomness

requirements. Here the focus is to recommend users to use their own trusted

RNGs to avoid any possible manipulation in curve computation and here, the

demonstration is made to show how a trusted Short Weierstrass elliptic curve can

be generated for cryptography. In step 4, the prime p of user desired l bit length

is randomly selected and subsequently, checked that it should hold the form of

p ≡ 3 mod 4 for fast reduction i.e., fast elliptic curve arithmetic on E. It is

noted that p is first chosen randomly and then verified for this form to avoid any

pre-studied value. The curve coefficients a and b are then chosen randomly in

step 5 and step 6 respectively using different seeds i.e., a and b have independent

initializations. Now, an elliptic curve E is constructed with p, a and b in step 7.

The ECDLP security validations are enforced in steps 8 to steps 22 which

includes validations of non-singularity, prime curve order, non-anomalous property,

non-supersingularity in step 9 whereas the random selection of base point in step

13 with prime base point order in step 14. The elliptic curve is validated for

having small cofactor as 1, high Pollard’s rho and high embedding degree in 18

respectively. The non-singularity of elliptic curve confirms that curve is smooth

and indeed an elliptic curve [19, 75, 76]. Prime order elliptic curve with order N

is resistant to Pohlig-Hellman attack when N ≥ 2160 [2]. Non-anomalous case

of elliptic curve i.e., when curve order N ̸= p, confirms that curve is resistant

to pairing based attacks [2]. Non-supersingularity of elliptic curve prevents the

ECDLP from the Menezes, Okamoto and Vanstone (MOV) reduction attack with

sub-exponential complexity which takes place when the conditions that p divides

trace t or/and t2 = 0, p, 2p, 3p or 4p are met [4, 7]. The cofactor value determines

the cryptographic security and gives maximum security when selected as 1 [2, 7].

The Pollard’s rho value of elliptic curve determines the number of elliptic curve
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point additions to find a collision. This check is very important as a parallelized

Pollard-rho on r processors can solve ECDLP in steps [2, 42]. The embedding

degree of elliptic curve k ≥ 20 is considered sufficient to guarantee intractability

of the discrete logarithm problem in the extension field [6].

The ECC security validations are enforced in step 9 of Algorithm 3 in which it

looks for the twist of the selected elliptic curve to be secure against all the ECDLP

security validations as described above. The twist security of elliptic curve prevents

from any implementation flaws or information leakage about the user’s secret key

[36].

The trusted security validations are carried out in step 36 to ensure the method

of generation of elliptic curve is trusted in terms of the randomness used in the

curve generation process and that the curve parameters are drawn randomly. Step

37 confirms that the RNG used for randomness is trusted by the user and the curve

parameters have no pre-studied or known values. It also ensures that the procedure

described in Algorithm 3 can be used to obtain Short Weierstrass elliptic curves of

nearly the same cryptographic strength each time on its execution which is shown

in step 45. Finally, a trusted and secure elliptic curve E : p, a, b and base point G is

returned as the outcome in step 49.

4.7.3 Creation of Database of Trusted and Secure Elliptic

Curves

A database of 500 elliptic curves over 256 bit prime field were created using the

proposed method as discussed in Section 4.7.2. It took around six months time

using computational resources and programing tools as mentioned in Section 4.8.1

in the creation of the database. All the elliptic curves have undergone thorough

security analysis for their cryptographic security which is discussed in Section

4.9 with Pollard’s Rho value in the range of 127.0 to 127.8 on an ideal 128
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point scale. The database is kept growing by adding more such elliptic curves

in order to supply cryptographically secure and trusted curves for generation of

non-reproducible pseudorandom bitstreams by the proposed KCS-PRNG which is

comprehensively discussed in Chapter 6 of the thesis.

4.8 Demonstration of Trusted Short Weierstrass

Elliptic Curves

Algorithm 3 is used to derive and propose two trusted Short Weierstrass elliptic

curves KG256r1 and KG384r1 defined over 256 bit and 384 bit respectively for

demonstration. The details of the proposed KG256r1 and KG384r1 are shown in

Table 4.3 and Table 4.4 respectively. These elliptic curves have undergone security

analysis in Section 4.9 to ensure that the elliptic curves generated using Algorithm

3 have nearly the same cryptographic strength in terms of Pollard’s rho complexity

and other criteria like big discriminant, embedding degree, trace etc. while being

compliant with the three security notions i.e. ECDLP security, ECC security and

trusted security.

<This space is intentionally left blank.>
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Table 4.3: The proposed KG256r1 elliptic curve

KG256r1

p
105659876450476807015340827963890761976980048986351025
435035631207814085532543

a
577801306981151765834884991713447710888985073378732385
90400955371129685138826

b
1024519508410737479493167964958969379607021154869753637
98323596797327090813462

N
105659876450476807015340827963890761976544313325663770
762399235394744121359871

Gx,y

(53851663331146464978109980746124159858219863711514859
54586014078688791960064,
884401665317899467231260835467506331798660390928837647
84041611065547926159080)

h 1 (smallest cofactor)

Table 4.4: The proposed KG384r1 elliptic curve

KG384r1

p
3085049365668014934007996642175611388879720170590096638184

0288086888802411176587972020735012523469267564505420764051

a
2689376848857934359417998845213258254140716666751951067196

901653139051892648485257788827989185822359193013251735562

b
28267991444108104519406497967498656605314105752925343839767

45724330749097582395451638354661270280127278365677483939

N
3085049365668014934007996642175611388879720170590096638184

1438754683900390077617323565554872996073979103765917522731

Gx,y

(26382167469722729078686791539259191084630652622205406190302

146794523414127451183423914120811487055055064792875345576,

2026280513166061521958958664622807850154518183419964215

1194102089344927295889857293563989127020260020122002404045204)

h 1 (smallest cofactor)
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4.8.1 Resources used

The curve generation programme is written in Python language using Python

version 2 and Python version 3.6 compilers ran on a desktop server having

2*Intel(R) Xeon(R) E5-2620v4 processor with 32 CPU cores, 2.1 GHz clock

frequency and 128 GB DDR4 memory. The desktop server is equipped with Linux

Fedora operating system (kernel version 4.13.9) and SAGE version 8.1 is used for

number theory arithmetic support for the curve generation program.

4.9 Security Analysis of the Proposed KG256r1 and

KG384r1 Elliptic Curves

4.9.1 Analysis of the ECDLP and ECC Security of the Proposed

KG256r1 and KG384r1 Elliptic Curves

SafeCurves verification script [36] is used to verify ECDLP security and ECC

security of the elliptic curve parameters. Algorithm 4 describes the SafeCurves

verification script which was used to verify the KG256r1 and KG384r1 elliptic

curves against its ECDLP and ECC security.

It is obvious that ECDLP security is a crucial security requirement for

qualifying any elliptic curve for cryptography. However, SafeCurves [36] proposed

ECC security as another security notion for evaluating elliptic curves to ensure that

the ECC implementations do not reveal or leak information about user’s secret key.

For Short Weierstrass elliptic curves, a twist secure elliptic curve can prevent ECC

implementation flaws such as invalid-curve attacks and twist attacks. The elliptic

curve E′ is twist secure if its twist E′ is secure which means that all the ECDLP

security validations are also successfully compliant by E′.
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Algorithm 4 Verification of the proposed elliptic curve parameters for
cryptographic security

Require: Elliptic curve parameters p, a, b, N, Gx,y
Ensure: Safe/Weak Elliptic Curve

1: if shape of elliptic curve is Short Weierstrass then
2: continue
3: Else return “Not Short Weierstrass elliptic curve”
4: end if
5: if p is prime then
6: continue
7: Else return “Weak elliptic curve”
8: end if
9: if discriminant < −2100 then

10: continue
11: Else return “Weak elliptic curve”
12: end if
13: if base point order is prime then
14: continue
15: Else return “Weak elliptic curve”
16: end if
17: if GCD (Curve order, base point order)=1 then
18: continue
19: Else return “Weak elliptic curve”
20: end if
21: if base point is on curve then
22: continue
23: Else return “Incorrect base point”
24: end if
25: if co-factor is 1 or 2 or 4 then
26: continue
27: Else return “Weak elliptic curve”
28: end if
29: if p + 1− t is a multiple of base point order n then
30: continue
31: Else return “Weak elliptic curve”
32: end if
33: if embedding degree of curve ≥ (N−1)

100 then
34: continue
35: Else return “Weak elliptic curve”
36: end if

continued to next page..
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Algorithm 4 Verification of the proposed elliptic.. (continued from previous page)
37: if elliptic curve is MOV safe then
38: continue
39: Else return “Weak elliptic curve”
40: end if
41: if base point order of twist ! = p then
42: continue
43: Else return “Weak elliptic curve”
44: end if
45: if twist equation is elliptic then
46: continue
47: Else return “Weak elliptic curve”
48: end if
49: if twist shape is Short Weierstrass then
50: continue
51: Else return “Weak elliptic curve”
52: end if
53: if co-factor of twist is 1 or 2 or 4 then
54: continue
55: Else return “Weak elliptic curve”
56: end if
57: if GCD (base point order of twist, p) = 1 then
58: continue
59: Else return “Weak elliptic curve”
60: end if
61: if Pollard’s rho value of elliptic curve ≥ 2100 then
62: continue
63: Else return “Weak elliptic curve”
64: end if
65: if rigidity is True then
66: continue
67: Else return “Weak elliptic curve”
68: end if
69: if twist rho value ≥ 2100 then
70: continue
71: Else return “Weak elliptic curve”
72: end if
73: if Joint Rho ≥ 2100 then
74: continue
75: Else return “Weak elliptic curve”
76: end if
77: Otherwise, return “Cryptographically safe elliptic curve”
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Both the KG256r1 and KG384r1 elliptic curves qualified all the ECDLP

and ECC security verifications executed in Algorithm 4. The field orders p

and curve orders N of both the elliptic curves were verified deterministically

for being a prime number using Pocklington’s theorem. Any special

structure of prime or pre-studied value is avoided in order to prevent

from any vulnerability. For example, NIST P-224 prime i.e., p =

2224 + 296 + 1 was used by BADA55-VPR-224 and standard ANSSI prime

0xF1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF3

53D86E9C03 was used by BADA55-R-256 curve respectively to demonstrate

vulnerable curves to the community [51]. Moreover, the discriminants, embedding

degrees, cofactor values and Pollard’s rho values of both the proposed curves and

their respective twist curves are verified successfully possessing more than their

expected threshold values. These curves are also verified to confirm that they are

not a case of anomalous and supersingular ones as discussed in Section 4.7.2 and

thus, they are suitable for cryptography. Table 4.5 and Table 4.6 shows these values

possessed by both the KG256r1 and KG384r1 elliptic curves.

<This space is intentionally left blank.>
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4.9.2 Analysis of Trusted Security of KG256r1 and KG384r1

Elliptic Curves

Validation of Trusted Security criteria: T1

In this thesis, the /dev/random PRNG is trusted and used for curve generation

procedure due to the fact that it has faced a lot of successful cryptanalysis [62, 63,

77] and sustained long with the Linux kernel since 1994 [63]. Moreover, the latest

versions (version 4.8 or later) of /dev/random have overcome [78] the criticism of

having possible entropy attacks [51]. Also, Linux Fedora kernel version 4.13.9 is

used and /dev/random is selected as the PRNG (sometimes /dev/random is referred

as true random number generator (TRNG) because it has the direct interface with

the HRNG). The actual point is made here that choose your trusted RNG and own

the risk associated with your selection.

Validation of Trusted Security criteria: T2

To validate the T2 criterion, no pre-studied values of the curve coefficients a and b

are used as they have been chosen randomly and independently. The prime numbers

p in both the proposed curves KG256r1 and KG384r1 are selected randomly first

and then chosen with a form of p ≡ 3 mod 4 for performance tuning and there

is no evidence of these primes p and coefficients a and b reported in past as the

pre-studied ones.

Validation of Trusted Security criteria: T3

To validate the T3 criterion, we conducted an experiment by taking three trials of

executing Algorithm 3 under the same operational environment with same method

and apparatus to retrieve three independent elliptic curves of the same field lengths.

Subsequently, it is examined if they exhibit nearly the same cryptographic strength
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measured in terms of Pollard’s rho value for the curves and their respective twists

as discussed in Section 4.7.2. Table 4.7 shows the results obtained from this

experiment which proves the successful validation of T3 criterion by the proposed

KG256r1 and KG384r1 elliptic curves.

Table 4.7: Validation of Trusted Security criteria: T3

Trial# Elliptic curve parameters E : p, a, b
Pollard’s rho value /

Twist rho value

1

p: 87052253706622316800662279631344302713612

816742118516445715106163825624186987

a: 17461513680488110202189680065467433355982

187313809984308530183605390654503146

b: 47423645344793070876962443040716664351751

66931536995811081067226406616322940

Gx,y: (345624448642634477922898816667823681

99808912751831663386444135083641970670103,

44973717098200324632781286735408077067

884851416905001940895476727480258436423)

Rho: 2127.6

Twist Rho: 2127.6

2

p: 83857931886285555818472058950522827195247211

639379970952195176566538052148959

a:152220314103590540280417930887083748851745810

07053672026416069700422500171995

b: 757236637128308681589266033304884863127887549

15163584116380630010872983931491

Gx,y: (7999114561329985086166092260187304650431

4421039422310330231620709939495217575,

7404893030059505468635576438059973071448

4651315014966555 673263252180995491420)

Rho: 2127.6

Twist Rho: 2127.6

Continued to next page..
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Table 4.7 – continued from previous page

Trial# Elliptic curve parameters E : p, a, b
Pollard’s rho value /

Twist rho value

3

p: 115455173683647336766695198555386616062185957400

074700902465398650769617153383

a: 89247089594531861167221907824679361896477781827

771349654639873760799894221702

b: 47456080838438598020722203116343582455579601993

324094611207713288744264819618

Gx,y: (873809728619089429266018928122097140385344

82432156502027178728221855540030831,

1090102247036102758077769996625873990104156

05756892207650 540783549332069147687 )

Rho: 2127.8

Twist Rho: 2127.8

4.10 Results and Discussion

The proposed elliptic curves KG256r1 and KG384r1 are compared with other

similar standard Short Weierstrass elliptic curves like NIST, SEC2, Brainpool,

FRP256v1 and NUMS curves from ECDLP security, ECC security and trusted

security perspectives in this section.

4.10.1 Comparison of the Proposed KG256r1 and KG384r1

Elliptic Curves with Standard Elliptic Curves from

ECDLP and ECC Security Perspectives

It is imperative to note from Table 4.8 that none of the standard elliptic curves have

passed all the SafeCurves verification criteria [36] of ECDLP security and ECC

security. However, Brainpool recommended elliptic curves have deviated in their

own stipulated procedure of generation [51] and hence can not be trusted easily.
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Also, their verifiably random generation method is under question as such thing can

be intentionally implanted to manipulate the standard as demonstrated by Bernstein

et. al. through BADA55 curves [51].

Table 4.8: Comparison of ECDLP Security and ECC Security of the proposed
elliptic curves

Verification

criteria
Details

Supported by

elliptic curve

safeField
Prime of the forms 1 mod 4 and

3 mod 4

A, B, C, D1, KG256r1,

KG384r1

safeEquation

Elliptic curve over prime field

possessing either Short Weierstrass or

Montgomery or Edward equation

A, B, C, D1, KG256r1,

KG384r1

safeBase Possessing prime order of base point
A, B, C, D1, KG256r1,

KG384r1

safeRho Rho value must be ≥ 2100
A, B, C, D1, KG256r1,

KG384r1

safeTransfer

Resistant to Smart-ASS attack

(additive transfer) and MOV attack

(multiplicative transfer)

A, B, C, D1, KG256r1,

KG384r1

safeDiscriminant

Absolute value of complex-

multiplication field discriminant

|D| > 2100

A, B, D1, KG256r1,

KG384r1

safeRigid
Allows only fully rigid and somewhat

rigid curves

B, C, KG256r1,

KG384r1

safeTwist
Above security requirements for twist

of the curve as well
C, KG256r1, KG384r1

safeCurve
Elliptic curve is safe if all the above

criteria are met
KG256r1, KG384r1

Note: A = NIST recommended elliptic curves, B = Brainpool recommended elliptic curves, C =

SEC2 elliptic curves, D1 = ANSSI recommended elliptic curve FRP256v1
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4.10.2 Comparison of Cryptographic Security of the Proposed

KG256r1 and KG384r1 with Standard Elliptic Curves

The proposed elliptic curves KG256r1 and KG384r1 are compared with standard

Short Weierstrass elliptic curves from overall security of ECDLP, ECC and trust

perspectives in Table 4.9 and shown in Figure 4.10.2.

Figure 4.2: Bar chart for comparative security evaluation of the proposed elliptic
curves with standard elliptic curves

It is observed from Table 4.9 that only the proposed KG256r1 and KG384r1

elliptic curves are secure from ECDLP, ECC and trust perspectives whereas

standard elliptic curves have met the ECDLP security validations only.

4.10.3 Performance of the Proposed Elliptic Curves

The proposed KG256r1 and KG384r1 elliptic curves are demonstrated with

cryptographic operations such as key pair generation, signing and verification

on desktop machine having x86_64 with Intel(R) Core(TM) i5-10400 CPU

with 2.90GHz processor, 16GB DDR4 memory using GNU/Linux version

5.4.0-58-generic and Python Version 3.8.5 software library. Table 4.10 shows

the performance metrics of the proposed elliptic curves in various cryptographic

implementations. The values indicated are the average outcomes of 10000 trials.
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4.11 Summary

Three new trusted security acceptance criteria T1 - T3 are proposed in this chapter

to compute cryptographically safe elliptic curves over the prime fields. These

trusted security acceptance criteria or simply, the trusted security criteria are

invoked along with the ECDLP security and ECC security in order to minimize

the scope of manipulation in the curve parameters due to some (intentionally)

non-disclosed property or methods exhibited by their proposers and sabotaged

standards. It is shown that only randomly drawn curve parameters possess the

essential trust factor where a user trusted strong RNG plays a crucial role.

The choice of selection of RNG is left with the users who will own the risks

associated with their chosen RNG to generate the seed and randomness for curve

parameters generation requirements. Two new elliptic curves called KG256r1

and KG384r1 are also introduced after validating the newly proposed trusted

security acceptance criteria along with the ECDLP and ECC security validations.

Furthermore, it is experimentally proved that if elliptic curves are generated

keeping these three security notions into consideration then they would have

nearly the same cryptographic strength in terms of Pollard’s rho complexity and

trustworthiness or suitability. Hence, it is inferred that one must verify trusted

security acceptance criteria for randomly generated elliptic curves in addition to

ECDLP and ECC security validations for secure implementation of elliptic curve

based cryptosystems.

The proposed argument of trusted security and demonstrated KG256r1 and

KG384r1 elliptic curves gives the feasibility of future standardization of such

randomly generated elliptic curves for trusted cryptographic implementations.

The next chapter discusses the computational resource estimates to compute

elliptic curves over large prime fields to solve the Problems 4 - 6 as mentioned in

Chapter 3.
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Chapter 5
The Proposed Computational Resource

Estimation of Short Weierstrass Elliptic

Curves

“Science is telling us that we can do phenomenal things if we put

our minds and our resources to it.”

- Anthony Fauci

This chapter presents statistical estimates of computational resources required

for elliptic curves randomly over prime fields of large sizes. This chapter solves the

Problems 41, Problem 52 and Problem 63 as mentioned in Chapter 3.

1To provide an estimate of computational resources in terms of computing processor i.e., number
of the CPU clock cycles to compute cryptographically safe elliptic curve randomly over desired
prime field size for cryptographic purposes.

2To provide an estimate of computational resources in terms of number of attempts or searches
to be made in the security parameter space of the elliptic curve to compute cryptographically safe
elliptic curve randomly over desired prime field size for cryptographic purposes within stipulated
time.

3To estimate computational investment for cryptographically secure elliptic curves over very
large prime fields in order to verify feasibility and to prepare existing ECC-based cryptosystem to
be kept resilient to quantum attacks using available number of qubits.
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5.1 Publications from this chapter

The thesis contributes the following journal paper from this chapter.

1. Kunal Abhishek and E. George Dharma Prakash Raj, Computational

Investment in Generation of Elliptic Curves Randomly over Large Prime

Fields, Concurrency and Computation Practice and Experience (2022).

(Status: Under Revision)

5.2 Introduction

Elliptic curves are studied extensively in literature for their applications in

cryptography. The security of elliptic curve-based system depends upon the number

of discrete points exhibited by the elliptic curve group [79]. Therefore, the size of

the field i.e., prime p needs to be of maximum bit length to offer large number of

discrete points in the elliptic curve group. The number of discrete points exhibited

by elliptic curve group is known as order or cardinality (which is the set of all

discrete points) of the elliptic curve. Here, a prime order or prime cardinality

elliptic curve means an elliptic curve E over a finite field Fp with |E(Fp)|= a

prime. But computing elliptic curve over a large prime field in reasonable time

requires huge computational resources in terms of the processor and the number of

searches. The reason is that, apart from other cryptographic validations of elliptic

curve parameters, the searches are made extensively to find a prime order elliptic

curve and the order of elliptic curves are validated through factorization method

[16] which is a time and resource intensive task. Hence, challenges lie with

organizations in planning computational resources needed for computing elliptic

curves over desired large prime fields within stipulated time. Here, the estimates

of the number of CPU clock cycles helps in determining processor requirements

whereas the number of attempts or searches helps to decide the number of CPU
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cores for speeding up the curve generation process. There is no such research

being carried out in literature to estimate the computational resources needed

for computation of elliptic curves over given large prime fields. Interestingly,

Koblitz [12] estimated the probability to draw a suitable random elliptic curve in

characteristic 2 in terms of the number of searches for computing a near prime

order elliptic curve using Schoof’s algorithm. In light of this, one of the goals of

this thesis is to derive new computational resource estimates for obtaining suitable

prime order elliptic curves randomly over large prime fields.

In particular, the contributions of this chapter are as follows:

• The statistical estimates of computational resources needed to randomly

obtain cryptographically suitable prime order elliptic curve over a given

prime field size are proposed. These estimates can be predicted from two

novel regression equations derived in this chapter. The first regression

equation estimates computational resource in terms of the number of CPU

clock cycles whereas the second regression equation estimates the number of

attempts or searches to be made in the security parameter space of elliptic

curve.

• This work is motivated from Koblitz’s estimate [12] to determine the number

of searches needed probabilistically to randomly search a near prime order

elliptic curve over F2n where n is the bit length of the binary field. In this

chapter, a statistical derivation of such estimate is proposed over Fp where p

is a large prime. Additionally, the processor estimate in terms of the number

of CPU clock cycles required to randomly obtain a prime order elliptic curve

is also proposed in this thesis.

• This chapter present computational resource estimates of computing

cryptographically suitable elliptic curves randomly over prime fields of sizes
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384, 512, 521 and 1024 bits. A table of computing resource estimates with

respect to the elliptic curve prime field sizes is also presented which is used

for deciding the prime field size over which an elliptic curve will be resilient

to quantum attacks with certain number of qubits as estimated by Roetteler

et. al. [39, 40].

5.3 The Proposed Approach

The thesis adopts statistical estimation approach to determine computational

resource estimates in terms of the number of CPU clock cycles i.e. processor

requirements as well as the number of attempts to be made in the security parameter

space to randomly generate elliptic curves over large prime fields. The number

of searches is crucial for time management in order to obtain cryptographically

suitable elliptic curve. Once the number of searches is known, the number of CPU

processor cores can easily be decided across which curve searching routine can

independently and parallelly run using early-abort strategy. This multiprocessing

approach gives controlled speed up in the curve searching process. Hence the

number of searches is considered as another important computational resource for

estimation purposes in this chapter. A standard procedure as described in Algorithm

5 is followed to generate cryptographically suitable elliptic curves randomly

using a trusted RNG as discussed in Section 4.9.2. Further, this section includes

the proposed statistical approach for estimation of computational resources for

computing elliptic curves randomly over the prime fields.

<This space is intentionally left blank.>
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5.3.1 Generation of cryptographically safe elliptic curve over

prime field

In this chapter, a novel statistical estimate of computational resources is proposed

for computing cryptographically safe elliptic curve randomly over a given prime

field size using a standard procedure. This standard procedure taken from various

sources [1, 2, 3, 4, 9, 17, 18, 19, 28, 36] as mentioned in Algorithm 5 which is also

detailed in Algorithm 3 in Chapter 4 with trusted security validations. Algorithm 5

is followed to randomly generate cryptographically safe elliptic curve over desired

prime field size. Algorithm 5 follows with fixing a prime p and varying the field

elements a and b of Weierstrass equation of the elliptic curve along with varying the

order N till a suitable elliptic curve E is found with N as a prime along with other

cryptographic validations. This elliptic curve generation procedure is considered as

the standard procedure because every parameter related to the elliptic curve like p,

a, b and Gx,y are randomly generated and they do not have any special structure or

pre-studied values. This standard procedure is represented by Ψ.

In the first step at line 1, the number of CPU clock cycle (CC) which is initially

set to 0, starts recording the number of CPU clock cycles throughout the execution

of Algorithm 5. The number of CPU clock cycles is determined by the relationship

CC = CT × CF (5.1)

where CT is the CPU time and CF is the CPU clock frequency [80]. In step

2 and step 3 of Algorithm 5, a prime p is selected randomly of desired length

in bits. The prime p is then transformed into field k at line 4 of Algorithm 5.

By selecting elliptic curve E randomly over Fp, we mean that coefficients of

E(a, b) are chosen randomly in the field Fp [16] and are given at lines 5 and

6 in Algorithm 5. An elliptic curve E(a, b) over field k is generated at line 7.
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Algorithm 5 Standard Procedure Ψ: Generation of cryptographically safe random
elliptic curve over a given prime field size
Require: Size of prime Field p in bits, number of searches made as searchCount set to zero,

number of CPU clock cycles as CC set to zero
Ensure: A cryptographically safe randomly generated elliptic curve E over prime field p, base

point, curve order, number of searches and number of CPU clock cycles
1: Start and record CC
2: Select prime field size in bit
3: Select randomly a prime p on selected size
4: Fix k = GF(p) ▷ Generate the field
5: Select randomly coefficient a ▷ Field element
6: Select randomly coefficient b ▷ Field element
7: Generate elliptic curve E(k) ▷ Elliptic curve over Fp

8: if 4a3 + 27b2 ̸= 0 ▷ Non-singularity check
9: else go to step 5

10: end if
11: Compute order N of E

12: searchCount++ ▷ Record number of searches made in the cardinality space of the elliptic
curve

13: if N is prime ▷ Prime cardinality only
14: else go to step 5
15: end if
16: if E is non-supersingular
17: else go to step 5
18: end if
19: if N ̸= p ▷ Non-anomalous check
20: else go to step 5
21: end if
22: Select randomly a base point Gx,y on E

23: Compute base point order n
24: if n ̸= N ▷ Cofactor check
25: else go to step 18
26: end if
27: Compute Twist E′

28: if E′ is non-singular
29: Compute Cardinality N′ of E′

30: else go to step 5
31: end if
32: if N′ is prime
33: else go to step 5
34: end if
35: if E′ is non-supersingular
36: else go to step 5
37: end if
38: Stop recording CC ▷ As desired elliptic curve is computed by now, stop counting the number

of CPU clock cycles
39: return E, G, N, searchCount, CC
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Algorithm 5 checks at line 8 if the elliptic curve E has non-zero discriminant

i.e. 4a3 + 27b2 ̸= 0 to ensure that cubic curve is indeed an elliptic curve [11,

19, 75, 76]. We need prime order elliptic curves to resist Pohlig-Hellman and

Pollard’s rho attacks [2]. Finding the number of discrete points i.e., the order

of the elliptic curve over large prime field for strongest possible system requires

a lot of effort as far as computational investment i.e. computational resources

are concerned [16]. Algorithm 5 runs SEA algorithm at line 11 to determine

the order or cardinality of elliptic curve. This step requires O((logq)4+ϵ) bit

operations where ϵ is a positive constant and consumes O((logq)2) memory as

given in Section 1.4.4. The number of searches is then counted in step 12. Line

13 checks if the order N is a prime number for ECDLP security [1, 3] which is

the most computationally expensive operation. Algorithm 5 uses Multi Polynomial

Quadratic Seive (MPQS) method using Gaussian elimination to verify if the order

is prime at line 13. MPQS factorization method under plausible assumptions

factorizes a number, say N here, in time O(exp(c× (lnNlnlnN)
1
2 )) where c ∼ 1

[81]. At line 16, only non-supersingular elliptic curve is accepted to retain fully

exponential complexity for ECDLP hardness [2, 4, 16, 51]. Menezes et al. [4]

showed that supersingular elliptic curves have Trace of Frobenius equal to zero

due to which ECDLP can be reduced to the discrete logarithm problem in a finite

field to a problem with sub-exponential complexity. Elliptic curve to be computed

should not be of anomalous kind where MOV attack is feasible. The anomalous

condition [2, 7, 16, 43, 82] is added at line 19 in Algorithm 5. At line 22, a base

point Gx,y is chosen randomly on E [44]. By random, we mean here that a random

element x0 < p ∈ Fp is chosen and we check if x3
0 + ax0 + b is a square root

in Fp, otherwise we search for another random x0 till we get a suitable one [44].

The bit-complexity for selecting random base point on E over Fp and verifying

base point order both are O(log4p) [17]. The base point order n is determined
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using Lagrange’s theorem at line 23. The base point order is checked to be same

as the order of the curve at line 24 so that cofactor value should be 1 for enhanced

cryptographic security of the elliptic curve though it is permissible as 2 or 4 as

well. At lines 28, 32, 35, we followed Lange et. al. [36] to impose all ECDLP

security requirements of E on its twist E′. Now the value of CC is noted at line

38 and finally, desired elliptic curve E, base point G and order N along with the

number of CPU clock cycles and the number of searches are returned as output of

Algorithm 5 at line 39.

5.3.2 Estimation of computational Resources for Computing

Random Elliptic Curves over Prime Fields

The Algorithm 6 is proposed to construct two new linear regression equations

which are derived independently to estimate the number of CPU clock cycles (η)

and the number of searches or attempts (ω) respectively. A comparison table is

also presented as one of the outcomes which helps in deciding prime field size of

elliptic curve which will be resilient to quantum attacks using certain number of

qubits.

In step 1 of Algorithm 6, a new experiment is conducted to create a large real

time training data set (Θ) consisting of the number of CPU clock cycles (η) and

the number of searches or attempts (ω) made in successful generation of 2400

elliptic curves over different prime fields sizes, recorded as its elements. Similarly,

a test data set (Θ̈) is also created with the number of CPU clock cycles and the

number of attempts made in successful generation of 1170 elliptic curves over 21

different prime fields sizes, recorded as its elements. In step 2 of Algorithm 6,

statistical modeling using regression is performed on Θ to infer about the estimates

of computational resources η and ω required for computation of elliptic curves over

desired prime fields sizes. Here, η and ω are the estimates derived as the average
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Algorithm 6 Estimating computational resources to compute random elliptic curve
E over given large prime field Fp

Require: A standard procedure Ψ (Algorithm 5), 40 primes p1, p2, . . . , p40 of various bit lengths
in the range [18, 252] bits with an interval of 6 bits, 18 primes p41, p42, . . . , p58 of different bit
lengths in the range [14, 218] bits with an interval of 12 bits and 3 primes p59, p60, p61 of bit
lengths 254, 266 and 278 bits respectively

Ensure: Computational resources, statistical test results, verification result of resource estimates
and comparison table

1: [Conduct new experiment]

1.1 Create Training Data Set Θ = []m×n where m = number of rows = 40 and n = number
of columns = 3

1.2 Create Test Data Set Θ̈ = []r×s where r = number of rows = 18 and s = number of
columns = 3

1.3 loop Input pi with i = 1, 2, ..., 40 where p1 = 18-bit prime, p2 = 24-bit prime, ...,
p40 = 252-bit prime:

1.3.1 loop 60 times:
1.3.1.1 Run Ψ with input as pi

1.3.1.2 Record the number of CPU clock cycles η

1.3.1.3 Record the number of searches ω

1.3.2 end loop
1.3.3 Compute average (η), average (ω)
1.3.4 Set Θ = [pi, average (η), average (ω)]
1.3.5 i++

1.4 end loop

1.5 loop Input pi with i = 41, 42, ..., 58 where p41 = 134-bit prime, p42 = 146-bit prime,
..., p58 = 218-bit prime:

1.5.1 loop 60 times:
1.5.1.1 Run Ψ with input as pi

1.5.1.2 Record the number of CPU clock cycles η

1.5.1.3 Record the number of searches ω

1.5.2 end loop
1.5.3 Compute average (η), average (ω)
1.5.4 Set Θ̈ = [pi, average (η), average (ω)]
1.5.5 i++

1.6 end loop

1.7 loop Input pi with i = 59, 60, 61 where p59 = 254-bit prime, p60 = 266-bit prime,
p61 = 278-bit prime:

1.7.1 loop 30 times:
1.7.1.1 Run Ψ with input as pi

1.7.1.2 Record the number of CPU clock cycles η

1.7.1.3 Record the number of searches ω

1.7.2 end loop
1.7.3 Compute average (η), average (ω)
1.7.4 Set Θ̈ = [pi, average (η), average (ω)]
1.7.5 i++

1.8 end loop

continued to next page..
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Algorithm 6 Estimating computational resources.. (continued from previous page)
2: [Statistical modeling]

2.1 Regression analysis and derivation of desired regression equations for η and ω with best
fit based on Θ

3: [Estimation of desired computational resources from Θ]

3.1 return Processor estimate η for a given p

3.2 return Estimate of searches ω for a given p

4: [Test the statistical model]

4.1 return Statistical test results, the tuple (R2, R2
adjusted, r, p− value)

4.2 Verify predicted estimates with the estimates obtained from Θ̈

4.3 return TRUE if predicted estimates from Θ ≤ actual estimates from Θ̈ or FALSE
otherwise

5: [Comparison]

5.1 Create comparison table with p of E as its first column, qubits required to solve ECDLP
as its second column and resource estimates η and ω required to compute E as its third
column

5.2 return comparison table

number of CPU clock cycles and the average number of searches respectively from

60 observations for each prime field case. In step 3, computational resources based

on Θ is estimated in terms of η and ω for a given prime p, are returned. In step

4, the coefficient of determination R2, R2
adjusted, correlation coefficient r and p−

value of the test statistics are checked. The R2 value is calculated by squaring the

Pearson correlation coefficient that reveals the percentage of variance explained in

each of the two correlated variables by the other variable [84]. High R2
adjusted

value indicates a model with small test error [85]. High r value shows the strength

of association between the two variables whereas suitable p − value denotes the

statistical significance of the test. The predicted resource estimates derived from the

models based on Θ are compared with the resource estimates obtained from Θ̈. It

is verified if the upper bound of the predicted computational resource estimates are

close to the actual computational resource estimates from Θ̈ under 99% confidence

interval. In step 5, a comparison table is returned with the prime field size p,

the number of qubits required to solve ECDLP and the computational resource
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estimates η and ω required to compute the elliptic curve over Fp.

As indicated in step 1 of Algorithm 6, an experiment is conducted to create a

new data set of elliptic curves for training purposes and another data set for testing

purposes followed by regression analysis on training data set to obtain the models

for desired estimates of computational resources. The detailed experimentation and

regression analysis are explained in the following subsections.

Experimentation

In this section, The assumptions and the controls which are used in the

experimentation are discussed. Further, the section discusses the computational

environment used in the experimentation as well as the methodology by which a

large data set is created for modeling and inferencing purposes in this thesis.

i. Assumptions and Control in Experiment

• Algorithm 5 is fixed for experimentation.

• Resource requirements for operating system routines are not considered.

• Communication overheads are not considered.

• X is a non-stochastic controlled variable in this experiment.

ii. Experimentation Environment

An experimentation set up is organized with a Desktop Server having Intel Xeon

E5-2620 v4 at 2.1 GHz clock frequency with 32 processor cores with 2 threads per

core and 128 GB DDR4 RAM. The SAGE version 8.1 package for elliptic curve

generation program on Linux Fedora kernel version 4.13.9 is used. Python versions

2 and 3.6 compilers are used for generating the data sets for experimentation.
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MINITAB version 19 and R software were used for statistical calculations pictorial

output representations.

iii. Data Set Creation

Algorithm 5 is used to generate elliptic curves over given prime fields sizes.

The computational resource estimates η and ω are recorded during elliptic curve

generation process till a suitable elliptic curve of prime order is found.

A new data set of elliptic curves over desired prime field sizes was created for

modeling purposes. The size of the data set was carefully selected for accuracy of

the proposed models. Since the Central Limit Theorem (CLT) proves that even if

the population is non-normally distributed, the sampling distribution of the mean

will most likely approximate a nice, normal, bell-shaped distribution as long as

sample contains at least 30 cases [84]. Therefore, it is reasonable to have at least

10 cases for each of the 30 predictor variables in the model [84] which means

the data set should hold at least 30 × 10 = 300 observations in the sample for

inferencing. Hence, keeping data size in view, a new sufficiently large data set

consisting of η and ω as its elements is created from 40 × 60 = 2400 elliptic

curves computed under the experimental environment as mentioned in Section 5.3.2

to satisfy the sample size criteria as given in [84]. The elliptic curves are defined

over 40 prime fields sizes in the range of [18, 252] prime field bit lengths with an

interval of 6 bits. Each data element in the data set is the arithmetic mean of 60

distinct observations over each prime field size (see Algorithm 6). This data set is

considered as training data set (called Θ) to construct the regression model with

best fit. Similarly, a test data set (called Θ̈) with η and ω as its elements, is also

created from (18× 60)+ (3× 30) = 1170 elliptic curves defined over 21 different

prime fields sizes in the range of [14, 218] bit lengths for interpolation cases and

254, 266 and 278 bit lengths for extrapolation cases with an interval of 12 bits
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each. 18 data elements (interpolation cases) in Θ̈ is arithmetic mean of 60 distinct

observations for each prime field size whereas 3 data elements (extrapolation cases)

in Θ̈ is arithmetic mean of 30 distinct observations for each prime field size. The

test data set is created for comparison with predicted values observed from the

regression model based on Θ. The maximum prime field size for Θ is limited

to 252-bits and that of Θ̈ as 218 bits for interpolation cases only. However, 3

extrapolation values i.e. 254, 266 and 278 bits to Θ̈ are added separately to further

verify the accuracy of the derived model based on Θ.

Table 5.1 shows Θ with prime field size as input in the first column (ignoring

case# column), total number of CPU clock cycles recorded in second column and

number of attempts made by the machine in successful generation of the elliptic

curve in the third column with a total of 40 entries. Similarly, Table 5.2 shows Θ̈

with the same attributes as in Table 5.1 in its three columns (ignoring case# column)

but having only 21 entries.

Here, the prime field size is considered as X as the Predictor Variable whereas

the number of CPU clock cycles (Y) and the number of attempts (Z) made for

elliptic curve computation are considered as Regression Variables for two separate

models respectively. The data values in Θ and Θ̈ were recorded from experiments

under controlled environment as discussed in Section 5.3.2.

The number of CPU clock cycles and the number of searches made in the

security parameter space of elliptic curve to find a prime order elliptic curve

depends on the prime field over which elliptic curve is defined. The asymptotic

complexity in bit operations for computing the order of elliptic curve using SEA

algorithm is O((logq)4+ϵ) where ϵ is a positive constant [21]. Further as stated

earlier in Section 5.3.1, MPQS method is used to check the order of the elliptic

curve N to be a prime with asymptotic complexity O(exp(c × (lnNlnlnN)
1
2 ))

where c ∼ 1. Algorithm 5 repeats computing a new elliptic curve randomly until a
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Table 5.1: Training Data Set (Θ)

Case# Prime Field Size
in bits (X)

Number of CPU
clock Cycles (Y)

Number of Searches
made (Z)

1 18 1.7852E+11 712
2 24 1.926E+11 865
3 30 2.52581E+11 1196
4 36 1.05707E+13 1504
5 42 5.50157E+11 1627
6 48 1.06851E+12 1873
7 54 2.45426E+12 2001
8 60 3.98226E+12 3166
9 66 1.69909E+13 2943

10 72 2.54716E+13 3456
11 78 3.38216E+13 4164
12 84 3.9335E+13 3827
13 90 6.41849E+13 5642
14 96 8.00742E+13 5536
15 102 1.07634E+14 6654
16 108 1.46966E+14 7389
17 114 2.44204E+14 10860
18 120 2.07239E+14 7845
19 126 2.76189E+14 8428
20 132 6.13986E+14 13714
21 138 6.26786E+14 12135
22 144 8.27762E+14 14344
23 150 9.05017E+14 14013
24 156 1.0066E+15 13661
25 162 1.4215E+15 15117
26 168 2.07947E+15 19891
27 174 2.08301E+15 17982
28 180 2.24864E+15 17267
29 186 2.40415E+15 16479
30 192 4.36018E+15 25488
31 198 5.6743E+15 26916
32 204 5.34167E+15 23379
33 210 5.89211E+15 23242
34 216 6.15421E+15 22411
35 222 9.71521E+15 28740
36 228 1.07283E+16 29068
37 234 1.15439E+16 28272
38 240 1.40148E+16 31181
39 246 1.94564E+16 39541
40 252 1.84172E+16 34062
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Table 5.2: Test Data Set (Θ̈)

Case# Prime Field Size
in bits (X)

Number of CPU
clock Cycles (Y)

Number of Searches
made (Z)

1 14 1.56532E+11 538
2 26 2.0379E+11 967
3 38 3.42903E+11 1333
4 50 1.13694E+12 1789
5 62 3.50459E+12 2896
6 74 2.64485E+13 3782
7 86 3.16236E+13 3203
8 98 7.39033E+13 4838
9 110 1.75149E+14 8428

10 122 2.40678E+14 9134
11 134 6.5509E+14 14068
12 146 6.03467E+14 9853
13 158 1.32985E+15 15955
14 170 2.01196E+15 18813
15 182 2.56179E+15 18957
16 194 4.35943E+15 22208
17 206 5.27928E+15 22354
18 218 8.28908E+15 28787
19 254 1.13898E+16 18547
20 266 2.22417E+16 28769
21 278 2.63487E+16 28464

prime order curve is found resulting high cost of CPU clock cycles as observed in

Table 5.1 and Table 5.2.

Regression Analysis on Training Data Set

The Scatterplot of Predictor versus Response is the first step for regression analysis

[86]. Hence, the Scatterplots of X vs. Y and X vs. Z to verify relationship between

X and Y as well as between X and Z are plotted to verify if any unusual points

or outliers are present in the data set Θ. The desired Scatterplots are presented in

Figure 5.1(a) and Figure 5.1(b) respectively.

It is evident from Figure 5.1 that X and Y as well as X and Z have non-linear

relationship and no such far outliers are visible and therefore, a polynomial

regression model i.e. second order or quadratic model qualifies to be a fit case

[85].
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(a)

(b)

Figure 5.1: Scatterplots for: (a) Prime Field Size in bit Vs. Number of CPU
Clock Cycles; (b) Prime Field Size in bits Vs. Number of Searches
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i. Model selection with best fit for estimation of the number of CPU clock cycles

(η) and number of searches made (ω)

The two regression equations for η and ω respectively are derived with best fits

from Θ under the following assumptions:

1. ϵi is a random variable and is assumed to have normal distribution, N ∼

(0, σ2) and Cov(ϵi, ϵj)∀i ̸= j(i, j = 1, ..., 40). So, our expectation is

E(ϵi) = 0 and variance V(ϵi) = σ2.

2. E(Yi) = E(β0 + β1Xi + β2X2
i + ϵi)

= β0 + β1X + β2X2
i + 0

= β0 + β1X + β2X2
i and,

V(Yi) = E(β0 + β1Xi + β2X2
i + ϵi)

= V(ϵi) = σ2.

3. For statistical inferences, we assume ϵi
iid∼ N(0, σ2) and, Yi

iid∼ N(β0 +

β1Xi + β2X2
i , σ2).

Now ϵi
iid∼ N(0, σ2) leads to consequences like Yi

iid∼ N(β0 + β1Xi +

β2X2
i , σ2).

The polynomial regression (quadratic) models for Figure 5.1 i.e. for estimation

of the number of CPU clock cycles and number of searches made can be

constructed as

Y = β0 + β1Xi + β2X2
i + ϵi (5.2)

where regression coefficient β0 is known as Intercept, β1 is called linear effect

parameter and β2 is called quadratic effect parameter. ϵi is the error which is

normally observed as independent and identically distributed (iid) random variable

with N(0, σ2). As desired, E(Y) = β0 + β1Xi + β2X2
i and Var(Y) = σ2 in



110 5.3. The Proposed Approach

our case. It is also noted that parameters β0, β1, β2 and variance σ2 are unknown

whereas ϵi is unobserved. Here, the goal is to determine or estimate these unknown

parameters while minimizing the error ϵi.

Let us first determine how the variables X and Y as well as X and Z are

associated with each other by computing Pearson correlation coefficient r which

is given by the formula

r =
∑ (zx, zy)

N
(5.3)

where r = Pearson correlation coefficient, zx = (X− µ)/σ = z score for variable

X, zy = (Y − µ)/σ = z score for variable Y, µ = population mean, σ = standard

deviation, N = number of pairs of X and Y scores and observing their Scatterplots

of correlation coefficients as shown in Figure 5.2(a) and Figure 5.2(b) respectively.

The value of correlation coefficient r is determined between X and Y as 0.789

from (5.3) in the confidence interval (0.569, 0.904) which shows strong association

between both the variables. Similarly, r value between X and Z is determined from

(5.3) as 0.965 in the confidence interval (0.920, 0.985) which shows very strong

association between both the variables. Further, suitable polynomial regression

models for estimating CPU clock cycles and number of searches can be obtained

with best fit using Ordinary Least Squares (OLS) method in which parameter

estimates are chosen to minimize a quantity called the Residual Sum of Squares

(RSS) [86]. The quality of the fitted line is assessed by two methods: The

“lack of fit” determined by the Residual Standard Deviation/Error (RSD/RSE)

and the “measure of fit" determined by the Coefficient of Determination R2 [85].

Furthermore, R2
adjusted is computed to assure that all the correct variables only are

included in the model and no noise variables are present [84]. R2 and R2
adjusted

statistics together gives adequately the superiority of the improved alternative

model. The derivation of polynomial regression (quadratic) model is given in

Algorithm 7 which is used to obtain both the models η and ω.
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(a)

(b)

Figure 5.2: Correlation Plots for: (a) X Vs. Y; (b) X Vs. Z
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Algorithm 7 Finding Polynomial Regression (Quadratic) Model and Test Statistics

Require: (xi, yi) where xi ∈ X and yi ∈ Y where i = 1, 2, · · · , n from training
data set Θ and n = 40

Ensure: Regression coefficients β0, β1, β2 and p-value, R2, R2
adjusted

1: [Estimation of β0, β1 and β2]

1.1 Compute Residual Sum of Squares(RSS):

RSS = ϵ2
1 + ϵ2

2 + ϵ2
3 + ..... + ϵ2

n

where ϵ is the residual or error and n is the number of observations

⇒ RSS =
n

∑
i=1

(yi − β0 − β1 × xi − β2 × x2
i )

2

1.2 Use Least Square approach to compute β0, β1 and β2 such that RSS
is minimum. Take partial derivative of RSS w.r.t. β0, β1 and β2 and
equating them to zero:

∂(RSS)
∂β0

= 0 = −2
n

∑
i=1

(yi − β0 − β1 × xi − β2 × xi
2)

∂(RSS)
∂β1

= 0 = −2
n

∑
i=1

xi × (yi − β0 − β1 × xi − β2 × xi
2)

∂(RSS)
∂β2

= 0 = −2
n

∑
i=1

xi
2 × (yi − β0 − β1 × xi − β2 × xi

2)

which implies

n

∑
i=1

yi = nβ0 + β1

n

∑
i=1

xi + β2

n

∑
i=1

xi
2 (5.4)

n

∑
i=1

xiyi = β0

n

∑
i=1

xi + β1

n

∑
i=1

xi
2 + β2

n

∑
i=1

xi
3 (5.5)

n

∑
i=1

xi
2yi = β0

n

∑
i=1

xi
2 + β1

n

∑
i=1

xi
3 + β2

n

∑
i=1

xi
4 (5.6)

1.3 Compute β0, β1 and β2 using (5.4), (5.5) and (5.6)

continued to next page..
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Algorithm 7 Finding Polynomial Regression.. (continued from previous page)
2: [Assessing statistical significance of the test]

2.1 Statistical Significance of the Test

2.1.1 Formulate H0 : β1, β2 = 0 and Hα : β1, β2 ̸= 0

2.1.2 Compute p− value at α = 0.01

3: [Assessing accuracy of the model]

3.1 Compute coefficient of determination R2

R2 = 1− RSS
TSS

which implies

R2 = 1− RSS
∑n

i=1 (yi − y)

where y = 1
n ×∑n

i=1 yi

3.2 Compute R2
adjusted

R2
adjusted = 1− RSS/(n− d− 1)

TSS/(n− 1)

where d is the number of variables

3.3 Compute RSD

RSD =

√
1

n− 2
× RSS (5.7)

4: [Results]

return β0, β1, β2 and p− value, R2, R2
adjusted

In step 1 of Algorithm 7, the value of RSS is first calculated with a goal to

minimize it. Then OLS approach is followed so that RSS will be minimum [87].
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In step 2, the statistical significance of the test is accessed. The R2 and R2
adjusted

values are obtained in step 3 to analyze the model that fits best with Θ to determine

η and ω in computing a suitable random elliptic curve randomly. Thus, accuracy

of the model is obtained by observing R2, R2
adjusted and RSD values in step 3

of Algorithm 7. Thus, accuracy of the model is obtained by observing R2 and

R2
adjusted values in step 3 of Algorithm 7. Finally, the parameters β0, β1, β2,

p − value, R2 and R2
adjusted is returned in step 4 as the output of Algorithm

7. The “goodness of fit" is verified for which the models’ statistics for η and ω

are summarized in Table 5.3 and Table 5.4 respectively. Table 5.3 and Table 5.4

presents the p − value and the degree of freedom which denotes the statistical

significance of the models (linear and polynomial quadratic) for η and ω and the

approximate number of observations in the data set Θ for determining statistical

significance respectively [84].

Linear model without the quadratic term has smaller R2, R2
adjusted and higher

RSD values [85]. Therefore, the statistical properties of the coefficients’ estimates

R2, R2
adjusted and RSD are improved by adding the quadratic term in the regression

equations. These values are shown in Table 5.3 and Table 5.4 for η and ω

respectively. The Model Statistics for η and ω are then compared based on these

statistical properties of the coefficients of the equations. We observed in both the

Table 5.3 and Table 5.4 that quadratic model has better R2, R2
adjusted and minimal

RSD values than that of linear model and hence, quadratic model is preferred over

the linear model.

a. Model Selelction for η

It is evident from Table 5.3 that polynomial quadratic model is the best fit with

higher R2 value and therefore, it is chosen over the alternative linear model. The

resulting fitted line for desired quadratic model is shown in Figure 5.3(a).
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The best fitted model for η can be constructed with prime field size (X) and

number of CPU clock cycles (Y) as inputs to Algorithm 7. The output of Algorithm

7 is the desired model for η which is represented as

Y = 3.99E + 15− 1.16E + 14× X + 6.43E + 11× X2 (5.8)

where β0 = 3.99E + 15, β1 = −1.16E + 14 and β2 = 6.43E + 11.

Here, p− value, R2 and R2
adjusted values of the model are computed as < 0.005,

91.71% and 91.26% respectively as shown in Table 5.3.

b. Model Selelction for ω

It is evident from Table 5.4 that R2 values of quadratic model is higher than the

corresponding linear model, therefore a quadratic model is selected for estimating

ω. The fitted line for the desired quadratic model is shown in Fig. 5.3(b).

The best fitted model for ω can be constructed with prime field size (X) and

number of searches or attempts made (Z) as inputs to Algorithm 7. The desired

model of ω is the output of Algorithm 7 which is represented as

Z = −151 + 21.86× X + 0.4719× X2 (5.9)

where β0 = −151, β1 = 21.86 and β2 = 0.4719.

Here, p− value, R2 and R2
adjusted values of the model are computed as < 0.005,

96.70% and 96.53% respectively as shown in Table 5.4.
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(a)

(b)

Figure 5.3: Fitted Line Plots for: (a) Number of CPU Clock Cycles (η); (b)
Number of Searches made (ω)
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5.4 Results and Discussion

The desired computational resource estimates are derived by equations (5.8) and

(5.9) which are novel in light of Koblitz’s estimates as discussed in Section 2.7.1.

Koblitz gave probabilistic resource estimate of number of searches made over F2n

where the experimentation was carried out at Hewlett Packards Lab [16] to derive

a large number of elliptic curves. However, resources in terms of processor were

not estimated by the author. In contrast with Koblitz’s estimates, proposed resource

estimates include processor estimates in terms of the number of CPU clock cycles

along with the number of searches made in the security parameter space of the

elliptic curve. The proposed resource estimates are based on experiments that were

carried out to create a large data set with elliptic curves over Fp and modeled with

regression technique.

Further, the proposed regression models (5.8) and (5.9) are able to precisely

predict the computational resources required for random generation of an elliptic

curve over a given prime field size. The presented model is also verified with the

test data set and found to be within the upper bound of the resource prediction

interval. The Prediction Plots for computational resources are shown in Figure

5.4(a) and Figure 5.4(b). The blue fitted line in Figure 5.4(a) shows the predicted

value of Y for its corresponding X value whereas the red dashed line shows 99%

prediction interval. Similarly, the blue fitted line in Figure 5.4(b) shows the

predicted value of Z for its corresponding X value whereas the red dashed line

shows 99% prediction interval.

The results of computational resource estimates (Ypredicted, Zpredicted)

determined by (5.8) and (5.9) with the experimental estimates (Yactual, Zactual)

observed from Θ̈ (as given in Table 5.2) collated with three extrapolated X-values

are compared and shown in Table 5.5. It is observed from Table 5.5 that the

proposed regression models (5.8) and (5.9) has precisely predicted the number
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(a)

(b)

Figure 5.4: Prediction Plots for: (a) Prime Field Size Vs. Number of CPU Clock
Cycles (η); (b) Prime Field Size Vs. Number of Searches made (ω)
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Table 5.5: Resource prediction for interpolation and extrapolation cases

X Yactual

Ypredicted
(99% Prediction
Interval
Upper Bound)
from (5.8)

Prediction
matched?
(Yes/
No)

Zactual

Zpredicted
(99% Prediction
Interval
Upper Bound)
from (5.9)

Prediction
matched?
(Yes/
No)

Interpolation
14 1.56532E+11 7.07955E+15 Yes 538 6346.2 Yes
26 2.0379E+11 5.85252E+15 Yes 967 6639.1 Yes
38 3.42903E+11 4.85648E+15 Yes 1333 7128.9 Yes
50 1.13694E+12 4.08310E+15 Yes 1789 7804.5 Yes
62 3.50459E+12 3.52376E+15 Yes 2896 8654.4 Yes
74 2.64485E+13 3.17019E+15 Yes 3782 9667.6 Yes
86 3.16236E+13 3.01496E+15 Yes 3203 10834 Yes
98 7.39033E+13 3.05184E+15 Yes 4838 12146 Yes
110 1.75149E+14 3.27592E+15 Yes 8428 13597 Yes
122 2.40678E+14 3.68367E+15 Yes 9134 15181 Yes
134 6.5509E+14 4.27293E+15 Yes 14068 16897 Yes
146 6.03467E+14 5.04294E+15 Yes 9853 18742 Yes
158 1.32985E+15 5.99423E+15 Yes 15955 20719 Yes
170 2.01196E+15 4.12875E+15 Yes 18813 22828 Yes
182 2.56179E+15 8.44978E+15 Yes 18957 25076 Yes
194 4.35943E+15 9.96199E+15 Yes 22208 27467 Yes
206 5.27928E+15 1.16714E+16 Yes 22354 30010 Yes
218 8.28908E+15 1.35853E+16 Yes 28787 32715 Yes
Extrapolation
254 1.13898E+16 2.06370E+16 Yes 18547 41910 Yes
266 2.22417E+16 2.34516E+16 Yes 28769 45372 Yes
278 2.63487E+16 2.65094E+16 Yes 28464 49046 Yes

of CPU clock cycles (η) and number of searches made (ω) for various prime fields

sizes in both the interpolation and extrapolation cases. A use case of our resource

estimates in Table 5.6 is presented that helps to decide suitable prime field size of

elliptic curve which will be resilient to quantum attacks using certain number of

qubits. For example, Roetteler et. al. [39, 40] proposed these qubits estimates

required to break ECDLP over prime fields sizes of 192, 224, 256, 384, 512, 521

and 1024 bits as shown in Table 5.6. Now, since a quantum computer with 3500

qubits can solve ECDLP over 384 bit prime field as shown in Table 5.6, therefore,

the resilient prime field size of safe elliptic curves can be decided as 512 bit that

requires 4636 qubits which is far from attacker’s reach. Accordingly, computational

resources to generate elliptic curve with 521 bit can be estimated from (5.8) and
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(5.9) as shown in Table 5.6.

Table 5.6: Estimate of computational investment for elliptic curves whose
discrete logarithm problem (ECDLP) is intractable against quantum attacks

Prime Field Size

p (n-bit) of E

Qubits to solve

ECDLP [39, 40]

Proposed Computational Resources under 99%

prediction interval (upper bound)

Number of CPU clock cycles Number of Searches

192 1754 9.69644E+15 27058.2

224 2042 1.46215E+16 34131.7

256 2330 2.10894E+16 42472.7

384 3484 6.43080E+16 91060.4

512 4636 1.34915E+17 163520

521 4719 1.40878E+17 169470

1024 9246 6.79685E+17 676720

5.5 Limitation of the Proposed Resource Estimate

It is noted that the predicted computational resources lie on a growing parabolic

path as shown in Figure 5.5 which asserts that prediction of both η and ω

in extrapolation cases up to 1024 bit prime field size would be precise for

consideration. Moreover, as the proposed approach is to randomly choose elliptic

curves from its security parameter space, there is an undeniable possibility that the

predicted resource estimates in both interpolation and extrapolation cases may not

be appropriate. For example, one may get an ideal elliptic curve over a given prime

field size within the first or within few attempts itself in the best case scenario

causing the predicted estimates appeared to be entirely inappropriate. But such

events are extremely unlikely and rare to happen. However, it is always a good

idea to consider not less than an average case (keeping in view the large prime field
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(a)

(b)

Figure 5.5: Extrapolation Plots for: (a) number of CPU Clock Cycles (η); (b)
number of Searches (ω)
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size) to decide such computational resources needed for generation of elliptic curve

randomly.

5.6 Determination of CPU Processor from

Computational Resources Estimates

Let us assume c be the number of CPU cores, P be the CPU processor’s capacity

in Giga Hertz (GHz), x be the number of CPU clock cycles and t be the time in

seconds, then processor’s capacity is determined as the rate of CPU clock cycles

i.e.,

P =
x
t

=⇒ P× c =
x
t

=⇒ t =
x

P× c
(5.10)

Now, from Table 5.6, for 512 bit prime field size, the value of x = 1.34915E + 17.

As there is a very slow upgradation in the CPU processor capabilities since 2006

which is normally in the range of 3 GHz to 3.6 GHz, let us consider that we have

single CPU processor of 3 GHz processing power only. From Equation (5.6), it

can be calculated that

t =
1.34915E + 17× 10−9

3× c
(5.11)

Here, Equation (5.6) suggests that number of CPU cores will decide the stipulated

time for a successful derivation of an elliptic curve over a prime field size (in this

particular case, it is 512 bit) using a single core processor of 3 GHz processing

power. Now, to set up a trade-off between the appropriate requirement of CPU

cores and time to successfully derive the elliptic curve, it is needed to consider the

number of searches or attempts made for the same. It is obvious from Table 5.6

that 512 bit prime field size will require around 163520 searches or attempts in the

security parameter of the elliptic curve. Let us assume that 1000 cores machine with

3 GHz processing power with each core is available and they will be assigned with
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163520

1000 ≈ 164 searches to each one of them, then, the approximate time requried for

successful generation of a suitable elliptic curve will be

t =
1.34915E + 17× 10−9

3× 1000
=⇒ t ≈ 44971.67 Seconds ≈ 12.5 Hours (5.12)

Here, it should be noted that searching the suitable elliptic curve requires a prime

order elliptic curve that are validated through factorization method which is time

intensive task. Therefore, each core should be loaded with minimum possible

number of searches while implementing more number of CPU processing cores

to the machine.

5.7 Summary

Computing new elliptic curves randomly over large prime fields for cryptographic

purposes has been one of the biggest challenges observed in strategic interest

because of huge computational resource requirements in terms of processor and

targeted time line for curve computation. The thesis in this chapter approached

such problem statistically using realistic data and practical assumptions and

controls in the experiments as well as in analysis. Two large data sets with

2400 and 1170 elliptic curves were created for modeling and testing purposes

respectively. Subsequently, computational resources i.e. the number of CPU clock

cycles (Y) and number of searches (Z) are proposed from two novel equations

Y = 3.99E + 15 − 1.16E + 14 × X + 6.43E + 11 × X2 and Z = −151 +

21.86 × X + 0.4719 × X2 respectively where X is the prime field size in bits.

These equations were derived under 99% confidence interval along with certain

statistical assumptions. Convincing statistical results about these equations were

reported with the “goodness of fit" measured as R2 value (called the coefficient of

determination) which equals 91.71% and 96.70% in each case respectively, the
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correlation coefficient (r) values between X, Y and between X, Z equals 0.789

and 0.965 respectively, p − value for both equations were found to be < 0.005

with 39 degree of freedom for each equation respectively. The predicted resource

estimates from the proposed equations were verified with real time test data both

in interpolation and some extrapolation cases which confirms accuracy of the

proposed regression models. In the light of Koblitz’s work [12], novel statistical

resource estimates for computing the number of searches as well as the number

of CPU clock cycles (processor’s estimate) to obtain a prime order elliptic curve

defined over prime field are proposed. We further presented computational resource

estimates of elliptic curves over prime fields sizes of 384, 512, 521 and 1024 bits

against the quantum estimates suggested by Roetteler et. al. [39, 40] to break

the ECDLP. The advantage of the proposed work is that it suggests computational

investments to compute new elliptic curves over chosen large prime field size

which will be resilient to practical number of qubits under attack and therefore, the

existing elliptic curve based cryptosystems may be kept alive. The contributions of

this chapter in the thesis will help organizations to decide and allocate appropriate

computational resources to randomly compute new elliptic curves over large prime

fields within stipulated time. Moreover, the training data set can further be enlarged

with more number of elliptic curves over different large prime fields to enhance the

accuracy of the proposed models. This work can also be extended to find new

computational resources to randomly obtain elliptic curves over the binary fields

using appropriate procedure.

The next chapter deals with the construction of a novel kernel CSPRNG which

uses cryptographically secure and trusted elliptic curves over large prime field

whose requirements of computational resources are discussed in this chapter and

whose method of computation is already discussed in Chapter 4 of the thesis.
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Part II

Construction of a Novel CSPRNG

Using Elliptic Curves For Kernel

Applications
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Chapter 6
Design and Implementation of The

Proposed KCS-PRNG

“Random Numbers should not be generated with a method chosen

at random”

- Donald Knuth

In this part of the thesis, a novel CSPRNG for kernel applications is designed

and implemented whose generated bitstreams are statistically random looking and

unpredictable with non-reproducibility property. This chapter in the second part of

the thesis solves the Problem 71 as mentioned in Chapter 3.

6.1 Publications from this chapter

The thesis contributes the following publications from this chapter.

1A new competitive candidate CSPRNG for kernel or cryptographic usage is highly desirable
which could exhibit statistical properties of randomness and unpredictability along with the
non-reproducibility property of randomness.
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1. Kunal Abhishek and E. George Dharma Prakash Raj, On Random Number

Generation for Kernel Applications, Fundamenta Informaticae, IOS Press

(2022). (Status: Accepted - In press)

2. Kunal Abhishek and E. George Dharma Prakash Raj, Operating System

Security: A Short Note, IEEE India Info. Vol. 14 No. 2 Apr - Jun 2019.

6.2 Introduction

The design goals of RNG heavily depend on its target applications. A simple

application like stochastic simulations or Monte Carlo integrations may require

RNG to generate nothing more than a random looking bitstream [22]. However,

a sensitive application of RNG like an operating system kernel on top of which

entire critical systems run, certainly requires RNG to generate high quality pseudo

random bitstreams which are also provably secure, unpredictable and must be

non-reproducible which only a True Random Number Generator (TRNG) can

provide in principal.

Moreover, a kernel uses a RNG to create ASLR offsets [25], generate salts

to securely store users passwords [88] and generate random keys to implement

various cryptographic primitives like encryption, authentication etc. The ASLR

is one of the most important techniques used by the kernel (in special cases

termed as Kernel-ASLR or KASLR) which randomizes the process layout to

protect the locations of the targeted functions such as stack, heap, executable,

dynamic linker/loader etc. [25]. The ASLR not only demands statistically

qualified high quality pseudorandom number generator but also requires the output

bitstream to be provably secure and unpredictable. Hence, a CSPRNG (or

simply a PRNG with regular entropy inputs for unpredictability) is a preferred

type of RNG for kernel applications. There are many good CSPRNGs which
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are implemented in various operating systems and are used by their kernels.

Fortuna, Yarrow and /dev/(u)random are the popular CSPRNGs which are currently

implemented by Windows, MacOs/iOS/FreeBSD and Linux/Android operating

systems respectively [67, 89]. In this thesis, a new CSPRNG which exhibits

‘non-reproducibility’ property of a TRNG is proposed taking security of the above

kernel applications into consideration.

In particular, the key contributions of this chapter are:

• A novel CSPRNG design comprises of two non-standard and verified secure

elliptic curves and nine LFSRs uniquely configured in a clock-controlled

fashion to attain exponential linear complexity is used to construct the

proposed KCS-PRNG.

• A novel architecture of the KCS-PRNG is proposed to mitigate the gap of

‘non-reproducibility’ property.

• Two new non-standard and verified elliptic curves are used in this chapter (as

described in Chapter 5) to mitigate the gap of ‘non-reproducibility’ property

of the generated pseudorandom bitstreams by the proposed KCS-PRNG.

Both elliptic curves are generated randomly over 256-bit prime fields to

ensure cryptographic and implementation security and randomly retrieved

from a newly created database of such elliptic curves.

• Extensive security analysis of the proposed KCS-PRNG carried out to ensure

theoretical security.

• Experimental validation and demonstration of statistical qualities of

randomness using NIST, Diehard, TestU01 test suites.

• Experimental validation and demonstration of ‘non-reproducibility’ property

of the proposed KCS-PRNG.
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• The proposed KCS-PRNG is compared with present kernel CSPRNGs like

Fortuna, Yarrow and dev/random and an existing PRNG [90]. The proposed

KCS-PRNG is also compared with an existing TRNG [91] in context of

non-reproducibility of the generated random bitstreams.

6.3 The Proposed Design of KCS-PRNG

Generation of high quality cryptographically secure pseudorandom bitstreams is

an intricate task which needs efficient design of the generator taking statistical

properties of randomness (R1), unpredictability (R2, R3) and non-reproducibility

(R4) of the output bitstreams into consideration (refer Section 1.4.6). For

this reason, the proposed KCS-PRNG binds two modules in its design: first,

a combination of two cryptographically safe elliptic curves and a nonlinear

Sequence Generator consisting of nine clock-controlled LFSRs in alternating step

configuration.

Following are the design decisions and assumptions of the proposed

KCS-PRNG:

6.3.1 Selection of Elliptic curves

The main motivation of using elliptic curves in the proposed KCS-PRNG instead of

stream ciphers/block ciphers like ChaCha20 and Triple DES or AES respectively

as used by /dev/(u)random [62], Yarrow [64] and Fortuna [66] respectively is that

one can choose different points on the selected elliptic curve to generate completely

unrelated bitstreams under identical start conditions using the novel configuration

used in the proposed design of KCS-PRNG. Moreover, the combination of elliptic

curve and LFSR has been proven to exhibit enhanced randomness properties [12].

Two elliptic curves are used in KCS-PRNG for added complexity where each
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elliptic curve provides nearly 2128 key space. Moreover, the advantages of keeping

elliptic curves with the clock-controlled LFSRs is two-fold: first, the elliptic curves

are used for mitigating the gap of ‘non-reproducibility’ property (R4). Second,

elliptic curves are used to generate bitstreams which are non-invertible due to

underlying hard ECDLP and hence, they make the proposed KCS-PRNG provably

secure as well as forward secure to resist backtracking attacks. However, the

choice of elliptic curves is considered to be a randomly generated one rather

than the standard elliptic curves with fixed coefficients as being recommended by

agencies like NIST [32], Brainpool [34] etc. The random derivation of elliptic

curve parameters ensures trust and transparency in the implementation of elliptic

curves [51]. Two elliptic curves selected for use in the KCS-PRNG are presented

in Section 6.6 of this chapter whose computational details are described in Chapter

5 of this thesis.

6.3.2 Selection of a Clock-controlled LFSRs

The proposed KCS-PRNG is targeted for integration in the operating system

kernel and therefore, it is implemented in software. However, implementation

of LFSR in software is slower than its hardware implementation [24, 93].

To address this performance issue, the Galois scheme is selected for optimal

performance gain by the LFSRs in software without compromising the LFSR

period and its cryptographic properties [24]. The chosen Galois configuration

also saves excess operations as all the XOR operations are performed as a

single operation [24]. A nonlinear Sequence Generator consisting of nine LFSRs

L1, L2, L3, L4, L5, L6, L7, L8 and L9 with corresponding primitive polynomial

degrees 29, 31, 37, 41, 43, 47, 53, 59 and 61 respectively is selected. The primitive

polynomials for these LFSRs feedback functions are

L1 = x29 + x25 + x21 + x17 + x14 + x10 + x6 + x3 + 1,
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L2 = x31 + x27 + x23 + x19 + x15 + x11 + x7 + x3 + 1,

L3 = x37 + x32 + x27 + x23 + x18 + x13 + x9 + x5 + 1,

L4 = x41 + x36 + x31 + x26 + x20 + x15 + x10 + x5 + 1,

L5 = x43 + x37 + x31 + x25 + x20 + x15 + x10 + x5 + 1,

L6 = x47 + x41 + x35 + x29 + x23 + x17 + x11 + x5 + 1,

L7 = x53 + x46 + x40 + x33 + x26 + x19 + x13 + x7 + 1,

L8 = x59 + x52 + x44 + x36 + x29 + x22 + x14 + x7 + 1,

L9 = x61 + x53 + x45 + x38 + x30 + x23 + x15 + x7 + 1.

These primitive polynomials used by the nine LFSRs have uniformly distributed

feedback coefficients selected from Rajski et. al. [94]. These nine LFSRs

L1, L2, · · · , L9 are further divided into three groups called Sequence Generator

1 (SG1), Sequence Generator 2 (SG2) and Sequence Generator 3 (SG3). SG1

has three LFSRs L1, L2 and L3 whose output streams x1, x2 and x3 are combined

nonlinearly using nonlinear function

y1 : f (x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x3x1 (6.1)

The resulting sequence y1 has period (2L1 − 1)(2L2 − 1)(2L3 − 1) and linear

complexity (L1L2 + L2L3 + L1L3). Similarly, from equation (6.1), the linear

complexities of the sequences y2 and y3 generated from SG2 and SG3 are (L4L5 +

L5L6 + L6L4) and (L7L8 + L8L9 + L9L7) respectively. It may be noted that the

initial state bits of all LFSRs together are ∑9
i=1 Li = 401 bits.

SG1, SG2 and SG3 are configured in alternating step scheme to provide high

linear complexity and large period to the Sequence Generator [95]. SG1 is

considered as the Controller of the Sequence Generator in the alternating step

mode. It is known that the linear complexity LC(x) of the overall alternating step
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generator is bounded as follows [95]:

(LC2 + LC3)
2LC1−1 < LC(x) ≤ (LC2 + LC3)

2LC1 (6.2)

where LC1, LC2 and LC3 are the linear complexities of SG1, SG2 and SG3

respectively. The Alternating Step Sequence Generator used in the proposed

KCS-PRNG is depicted in Figure 6.1 and described in Algorithm 8 [95].

6.3.3 The Proposed Novel KCS-PRNG Architecture

The proposed KCS-PRNG architecture is shown in Figure 6.2. The KCS-PRNG

uses a Field Converter, Elliptic curve Point Multiplication and a Selector in addition

to the Sequence Generator and two elliptic curves in its design.

Algorithm 8 Alternating Step Sequence Generator using Clock-controlled LFSRs
Require: Sequence Generators SG1, SG2 and SG3, output bit length n
Ensure: n-bit sequence

1. Loop n-times:

2. SG1 is clocked

2.1. if output of SG1 is 1

2.1.1 SG2 is clocked ▷ SG3 is not clocked but its previous output bit
is repeated. In case of the first clock cycle, previous output bit of SG3 is
taken as 0.

2.2. else
2.2.1. SG3 is clocked ▷ SG2 is not clocked but its previous output bit

is repeated. In case of the first clock cycle, previous output bit of SG2 is
taken as 0.

2.3. end if
3. return SG2 ⊕ SG3 ▷ Output of Sequence Generator in alternating step

4. end Loop
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Algorithm 9 Selection of 2 Elliptic curves
Require: Look-up Table T (ECn, ECn_ID_Status) where n is number of elliptic

curves
Ensure: 2 Elliptic curves ECr, ECs from T where r, s ∈ [1, n] and r ̸= s

1. Count n ▷ Elliptic curves with ECn_ID_Status = 0 ∀ n in T
2. if n ≥ 2

2.1. Fetch ECr, ECs from T where ECr_ID_Status = 0 and
ECs_ID_Status = 0

2.2. Set ECr_ID_Status←− 1,
ECs_ID_Status←− 1

2.3. Update T
2.4. return ECr, ECs

3. else
3.1. Set ECn_ID_Status = 0 ∀ n in T ▷ n is the number of elliptic curves

in T
3.2. Go to step 1

4. end if

The two elliptic curves are selected using the procedure as shown in Algorithm

9. A look-up table T with tuples (EC, EC_ID_Status) is created by retrieving

elliptic curves from the database as discussed in Section 4.7.3 where EC is the

elliptic curve and EC_ID_Status is the flag value to mark 0 for ‘un-used curve’

and 1 for the ‘used curve’. T consists of 500 elliptic curves initially which are

randomly generated and are cryptographically secure non-standard curves. All

elliptic curves in T are initially marked with EC_ID_Status = 0. On each

reboot of the proposed KCS-PRNG, it picks up two elliptic curves from T using

Algorithm 9 and sets the corresponding EC_ID_Status = 1 of both the used

elliptic curves in T . The advantage of T is that even if the same seed (entropy)

is supplied to the proposed KCS-PRNG on reboot of the generator, two new

elliptic curves with EC_ID_Status = 0 will be selected from T . The change

of elliptic curves on each reboot of the KCS-PRNG changes the final output
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by altering masking value between the output bits of the elliptic curves and the

Sequence Generator. Hence, entirely unrelated bitstream are obtained as the output

of the proposed generator even using exactly the same seed as input. When all

elliptic curves in T are used then EC_ID_Status flags are reset to 0 for all

elliptic curves in T in order to maintain unblocked supply of elliptic curves to the

KCS-PRNG. More elliptic curves can be inserted into T to consistently mitigate

the requirement of ‘non-reproducibility’ property R4 of the KCS-PRNG. Here, the

mitigating factor of the the RNG requirement R4 is directly proportional to the

number of un-used elliptic curves available in T . This idea makes the proposed

KCS-PRNG to mitigate the RNG requirement R4 to a practical extent.

6.3.4 Initialization of KCS-PRNG

The proposed KCS-PRNG uses two phases of pseudorandom bitstreams

generation. In the first phase, the Sequence Generator is initialized whereas in the

second phase, the desired length of pseudorandom bitstreams are generated using

the Sequence Generator and the elliptic curves. The initialization phase involves

two stages which includes, first, loading the key and initialization vector (IV) in to

the generator and second, diffusing the key-IV pair across the entire states of the

Sequence Generator [96] as described in the Algorithm 10 and as shown in Figure

6.3 and Figure 6.4 .

Algorithm 10 takes 574-bit of entropy bits which are harvested from various

physical non-deterministic noise sources and generates 401-bit of key and 173-bit

of Initialization Vector (IV). The key is first parallelly loaded in to SG1, SG2 and

SG3 of the Sequence Generator as shown in step 1. It is ensured that all the most

significant bits (MSBs) of L1, L2 and L3 will be set to 1 in step 2 and step 3. The

Sequence Generator is then clocked 128 times so that the key is diffused across the

entire states of all the nine LFSRs L1, L2, · · · , L9 and a new state of the Sequence
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Figure 6.3: Initialization Stage 1: Loading and diffusion of the key

Generator is obtained in step 4 as shown in Figure 6.3. In steps 5, 6 and 7, a

173-bit IV is loaded in to L1, L2 and L3 of SG1 in bitwise fashion by XORing

with the corresponding usual feedback bit of the LFSR and the output bit of the

Sequence Generator to feedback the LFSRs through MSBs as shown in Figure 6.4.

In step 8, the Sequence Generator is once again clocked 128 times to diffuse the

IV completely among the LFSRs in SG1 and gets entirely new states of all the nine

LFSRs. It is ensured that the MSBs of all the nine LFSRs L1, L2, · · · , L9 are set to

1 as shown in steps 9 and 10. Step 11 returns the initialized Sequence Generator.

<This space is intentionally left blank.>
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Algorithm 10 Initialization of Sequence Generator
Require: 401-bit entropy for Key and 173-bit entropy for Initialization Vector (IV)
Ensure: Initialized Sequence Generator

1. Initialize SG1, SG2 and SG3 with 401-bit Key ▷ Stage 1: Loading
LFSRs from the input Key

2. if MSB of any LFSR is 0

2.1. Ensure MSB of LFSR as 1

3. end if
4. Clock Sequence Generator 128 times ▷ Stage 2: Diffusion of key into all

LFSRs states in the Sequence Generator

5. Loop 173 times:

6. Clock SG1 with feedback = Feedback bit ⊕ IV bit ⊕ output bit of
Sequence Generator ▷ Stage 1: Loading 173-bit IV to SG1

7. end Loop
8. Clock Sequence Generator 128 times ▷ Stage 2: Diffusion of IV into all

LFSRs states in SG1

9. if MSB of the Sequence Generator is 0

9.1. Ensure MSB of the Sequence Generator as 1

10. end if
11. return Initialized Sequence Generator
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6.3.5 KCS-PRNG Bitstream Generation

The Sequence Generator generates two sequences z1 and z2 of 256-bit length each

of which is used by the field converter as the inputs. The field converter transforms

z1 and z2 into integers and then transforms them into the field elements Pr1 and Pr2

of the two elliptic curves. These field elements or the secrets Pr1 and Pr2 are given

as inputs to the two elliptic curve point multiplication functions as described in

Algorithm 11. The secrets Pr1 and Pr2 are multiplied with their corresponding base

points G1 and G2 which yields a new point on their respective elliptic curves. The

x-coordinates of the two points obtained are only assigned to as the two integers

Pb1 and Pb2 after transformation from the field elements. A selector is used to

switch between the outputs of the two elliptic curves point multiplication functions

to double the size of key space offered by the proposed KCS-PRNG.

Algorithm 11 Elliptic curve point multiplication
Require: Secrets Pr1 and Pr2 for 2 elliptic curves
Ensure: Points Pb1 and Pb2 of 2 elliptic curves in integer form

1. Pb1 ←− G1 × Pr1 ▷ G1 is the base point selected on first elliptic curve
and Pb1 is the x-coordinate of Pb1

2. Pb1 ←− Integer(Pb1) ▷ Integer() is transformation function from field
to integer

3. Pb2 ←− G2 × Pr2 ▷ G2 is the base point selected on second elliptic
curve and Pb2 is the x-coordinate of Pb2

4. Pb2 ←− Integer(Pb2) ▷ Integer() is transformation function from field
to integer

5. return Pb1 , Pb2

Algorithm 12 describes the cryptographically secure pseudorandom bitstream

generation scheme of the proposed KCS-PRNG. In step 1, two elliptic curves with

hard ECDLP are selected from T . In step 2, the Sequence Generator is initialized

with 401-bit key and 173-bit IV as discussed in Algorithm 10. The Sequence

Generator is used to generate 256-bit sequence z1 by clocking 256 times in step
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3. In step 4, z1 is converted into the field element of the first elliptic curve and

considered as the secret Pr1 . Step 5 involves generation of Pb1 by using elliptic

curve point multiplication function taking the secret Pr1 as input. Similarly, steps

6, 7 and 8 are used to generate the integer Pb2 from the second elliptic curve

point multiplication function. The Sequence Generator continuously generates

n-bit length sequences as bounded by
⌈ n

256

⌉
times loop in step 12. The proposed

KCS-PRNG uses a selector in step 13 to iteratively select among Pb1 and Pb2 . In

step 15, the Sequence Generator is clocked 256 times to generate 256-bit sequence

s. The integers Pb1 or Pb2 is masked with s to produce 256-bit output by the

KCS-PRNG. If n < 256, then 1-bit output of the Sequence Generator is masked

with 1-bit of Pb1 or Pb2 (as decided by the selector in step 13) traversing from its

Least Significant Bit (LSB) to MSB and result is returned. Once MSB of the Pb1

or Pb2 is used, the masking of the output of the Sequence Generator starts from the

LSB of the Pb1 or Pb2 once again in rotating fashion. The KCS-PRNG is reseeded

on every 100000 bit of output to maintain backward secrecy as shown in step 22.

<This space is intentionally left blank.>
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Algorithm 12 The proposed KCS-PRNG bitstream generation
Require: Desired length of bitstream n, (574 × r)-bit entropy for key and IV

where r =
⌈ n

100000

⌉
= number of (re)seeding required for KCS-PRNG

Ensure: n-bit cryptographically secure pseudorandom bitstream

1: Run Algorithm 9 to select two elliptic curves from T

2: Run Algorithm 10 with input of 401-bit key and 173-bit IV to initialize the

Sequence Generator

3: Run Algorithm 8 to generate 256-bit sequence z1

4: Transform z1 into field element Pr1 of first elliptic curve using field converter

5: Run Algorithm 11 with Pr1 as input to generate the integer Pb1

6: Run Algorithm 8 to generate 256-bit sequence z2

7: Transform z2 in to field element Pr2 of second elliptic curve using field

converter

8: Run Algorithm 11 with Pr2 as input to generate the integer Pb2

9: Set countSel = 1

10: Set bitCount = 1

11: Set t = 1 where t = 1 to
⌈ n

256

⌉
12: Loop

⌈ n
256

⌉
times:

continued to next page..
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Algorithm 12 The proposed KCS-PRNG.. (continued from previous page)

13: if countSel == t× 256 ▷ Use Selector to select between the two elliptic

curves

13.1. if t is even

13.1.1. Set el = Pb2

13.1.2. else

13.1.3. Set el = Pb1

13.2. end if

13.3. countSel = 0

13.4. t++

14: Clock Sequence Generator 256 times to generate 256-bit sequence s

15.1 if n < 256

15.2 return X⊕ ith position of el from LSB (i = 0) to MSB (i = 255) where

X is 1-bit output from Sequence Generator and i = 0 to 255 ▷ Output of

KCS-PRNG

15.3 else

15.4 return el ⊕ s ▷ Output of KCS-PRNG

15: end if

16: end if

17: i++

continued to next page..
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Algorithm 12 The proposed KCS-PRNG.. (continued from previous page)
18: if i == 255

18.1. i = 0

19: end if

20: countSel++

21: bitCount++

22: if bitCount == j× 100000 where j = 1 to r

22.1. n = n− (j× 100000)

22.2. j++

22.3. Go to step 2 ▷ Reseed the KCS-PRNG on every 100000 bits of output

23: end if

24: end Loop

6.3.6 Assumptions

Following assumptions are made in the proposed design of KCS-PRNG:

• KCS-PRNG always maintains 574-bit initial entropy.

• KCS-PRNG expects high per-bit entropy ≊ 1 for initialization. The

generation details of entropy used in KCS-PRNG is outside the scope of this

thesis and planned as a topic of future research.

• The key and IV are parts of the seed and hence, they are immediately

shredded after use and is non-recoverable.

• The (Re)keying and (Re)IVing are done using different TRNGs or entropy

harvesters using various different physical noise sources.
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• Elliptic curves used in KCS-PRNG are randomly generated,

cryptographically safe and trustworthy.

• Look-up Table T has authorized access only.

6.4 Security Analysis of the proposed KCS-PRNG

6.4.1 Linear complexity analysis

Let linear complexities of the Sequence Generators SG1, SG2 and SG3 be LC1, LC2

and LC3 respectively and following equation (6.1), are given by

LC1 = L1L2 + L2L3 + L1L3 = 3119

LC2 = L4L5 + L5L6 + L4L6 = 5711

LC3 = L7L8 + L8L9 + L7L9 = 9959

(6.3)

where L1, L2, · · · , L9 are the lengths of the LFSRs.

Moreover, while SG1 is clocked regularly, SG2 and SG3 are connected in

alternating step configuration. Thus, following equation (6.2), the overall linear

complexity (LC) of the scheme is given by

(5711 + 9959)2×3119−1 < LC(x) ≤ (5711 + 9959)2×3119

=⇒ 156706237 < LC(x) ≤ 156706238
(6.4)

It is imperative to note that the Sequence Generator of the proposed KCS-PRNG

exhibits exponentially large linear complexity as demonstrated in equation (6.4)

and therefore, the proposed generator is resistant to the Berlekamp-Massey attack

[95].
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6.4.2 Correlations test

Two correlation tests of random bitstreams generated by the proposed KCS-PRNG

are conducted to verify non-correlation in the bitstream. The first test conducted

was Serial or Autocorrelation test (sstring − AutoCor test) which measures the

correlation between the bits with the lag d [97]. In this test, a n-bit string is

generated by the KCS-PRNG at the first level and the test statistic is computed

such that it has the binomial distribution with the parameters being approximately

standard normal for large n − d. The restriction imposed were r + s ≤ 32 and

1 ≤ d ≤ ⌊n
2 ⌋ where r be the number of MSBs which are eliminated from the

output before applying the test, s be the MSBs chosen from each generated random

number and N be second-level number of replications [97, 98]. The second test

conducted was the Hamming Correlation test (sstring− HammingCorr) [98] in

which the bit sequences generated by the proposed KCS-PRNG were verified for

exhibiting uniform bits distribution without correlation. Both the Autocorrelation

test and the Hamming Correlation test were conducted during TestU01 testing of

the proposed generator. The proposed KCS-PRNG passed both the tests. Further,

ENT tool [99] was used to measure bitwise correlation in the random bitstream

file of 1GB size generated by the proposed KCS-PRNG which was estimated to be

0.000034. The obtained correlation is very close to the ideal correlation value of 0.0

and thus, concludes that the proposed design of the KCS-PRNG has no correlation

issues and their results are shown in Table 6.1.

<This space is intentionally left blank.>
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Table 6.1: Correlation test of the proposed KCS-PRNG.

sstring-AutoCor test N=1, n=1048513, r=0, s=32, d=1

Normal statistic 0.41

p-value of test 0.34

Number of bits used 1048544

Result Passed the test

sstring-AutoCor test N=1, n=1048514, r=0, s=32, d=2

Normal statistic 0.80

p-value of test 0.21

Number of bits used 1048544

Result Passed the test

sstring-HammingCorr test N=1, n=32768, r=0, s=32, L=32

Normal statistic -0.56

p-value of test 0.71

Number of bits used 1048576

Result Passed the test

sstring-HammingCorr test N=1, n=16384, r=0, s=32, L=64

Normal statistic 0.45

p-value of test 0.33

Number of bits used 1048576

Result Passed the test

sstring-HammingCorr test N=1, n=8192, r=0, s=32, L=128

Normal statistic 1.57

p-value of test 0.06

Number of bits used 1048576

Result Passed the test
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6.4.3 Period analysis (Validation of Requirement R1)

The Sequence Generator used in the KCS-PRNG comprises of nine LFSRs whose

lengths L1, L2, · · · , L9 are coprime to each other. Hence, the period (P) of the

Sequence Generator is given by

P =
9

∏
i=1

(2Li − 1) (6.5)

which is approximately 2401.

6.4.4 Key space analysis

It is evident from equation (6.5) that the Sequence Generator in KCS-PRNG has a

period of 2401 and thus, provides 2401 key space in case the generator gets seeded

once and no reseeding happens. Moreover, the KCS-PRNG also uses two elliptic

curves which provides 2128 and 2256 key space for n ≤ 256 and n > 256 bits of

output respectively to impose a successful Pollard’s rho attack to solve the ECDLP.

Hence the key space offered by the proposed KCS-PRNG is given by

K =

 (2401 × 2128)r = 2529r i f (n ≤ 256)

(2401 × 2256)r = 2657r i f (n > 256)
(6.6)

where r be the number of (re)seeding the KCS-PRNG and n be the number of

output bits of the proposed KCS-PRNG.

It is imperative to note that the key space offered by the proposed KCS-PRNG

depends on the number of times the KCS-PRNG (re)seeds itself in single boot and

therefore, exhibits virtually infinite key space in the range K ∈ [2529, ∞) which

is quite higher than the safe key space threshold of 2128 as recommended by [90,

100]. Therefore, the proposed KCS-PRNG comfortably resists brute force attacks.
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6.5 Experimental Validation of the Proposed

KCS-PRNG

6.5.1 Experimental Validation of Requirement R1

i. NIST statistical test results

NIST test suite consists of 15 statistical tests to certify statistical strength of

randomness of the RNG. An output bitstream of 1GB file size is generated

by the proposed KCS-PRNG and subjected to the NIST tests using NIST

statistical test suite SP 800-22 version 2.1.2 [101]. The input block size was

set to be 1000000 bits and 1000 bitstreams. The significance level α was

selected as 99% to conduct the test. The proposed KCS-PRNG passed all the

NIST statistical tests and the details of test results obtained are depicted in

Table 6.2.

The p-value measures randomness and supposed to be greater than 0.01 i.e.,

the confidence level to conclude that the sequence is uniformly distributed

whereas the proportion i.e., the minimum pass rate for the test should fall in

the range [0.98056, 0.99943] having the confidence interval α=0.01 and 1000

bitstreams [91]. As indicated in Table 6.2, the proposed KCS-PRNG not only

qualifies the pass rate threshold of 0.98056 but also reports better pass rate

of 0.9896 as compared to the pass rates of 0.987 and 0.9887 reported by the

TRNG [91] and the PRNG [90] respectively.

<This space is intentionally left blank.>
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Table 6.2: NIST test results of the proposed KCS-PRNG output bitstreams of
1GB file size with the input of 1000000-bit block size and 1000 bitstreams.

Statistical Test p-value Proportion Result

Frequency 0.737915 0.991 Pass

Block Frequency 0.591409 0.988 Pass

CumulativeSums* 0.680755 0.993 Pass

Runs 0.281232 0.992 Pass

Longest Run 0.526105 0.996 Pass

Rank 0.036113 0.996 Pass

FFT 0.103138 0.990 Pass

NonOverlappingTemplate* 0.794391 0.990 Pass

Overlapping 0.779188 0.987 Pass

Universal 0.773405 0.991 Pass

Approx Entropy 0.653773 0.989 Pass

RandomExcursions* 0.489508 0.983 Pass

RandomExcursionsVariant* 0.163362 0.985 Pass

Serial* 0.680755 0.988 Pass

Linear Complexity 0.682823 0.985 Pass
*Only the result of first test instance is indicated here from the original results due to limitation of space.

ii. Diehard test results [102]

Diehard version 3.31.1 tests conduct a series of statistical tests and determine

the p-values of the output bitstreams. The p-values indicate deviation of bit

prediction from ideally expected probability of half. The expected p-value of

a test should be in the range [0.025, 0.975] [103]. The proposed KCS-PRNG

passed all the diehard tests as shown in Table 6.3.
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Table 6.3: Diehard test results of the proposed KCS-PRNG output bitstreams of
1GB file size.

test-name ntup tsamples psamples p-value Assessment

diehard-birthdays 0 100 100 0.27561288 Passed

diehard-operm5 0 1000000 100 0.13184067 Passed

diehard-rank-32x32 0 40000 100 0.44295780 Passed

diehard-rank-6x8 0 100000 100 0.88076181 Passed

diehard-bitstream 0 2097152 100 0.42947798 Passed

diehard-opso 0 2097152 100 0.12604767 Passed

diehard-oqso 0 2097152 100 0.94641900 Passed

diehard-dna 0 2097152 100 0.24390543 Passed

diehard-count-1s-str 0 256000 100 0.62287409 Passed

diehard-count-1s-byt 0 256000 100 0.91047395 Passed

diehard-parking-lot 0 12000 100 0.79390338 Passed

diehard-2dsphere 2 8000 100 0.17731451 Passed

diehard-3dsphere 3 4000 100 0.45129204 Passed

diehard-squeeze 0 100000 100 0.53561994 Passed

diehard-sums 0 100 100 0.94209561 Passed

diehard-runs* 0 100000 100 0.14811353 Passed

diehard-craps* 0 200000 100 0.92115680 Passed

marsaglia-tsang-gcd* 0 10000000 100 0.53120802 Passed

sts-monobit 1 100000 100 0.64501072 Passed

sts-runs 2 100000 100 0.94961272 Passed

sts-serial* 1 100000 100 0.62077367 Passed

rgb-bitdist* 1 100000 100 0.95378266 Passed

rgb-minimum-distance* 2 10000 1000 0.87517368 Passed

rgb-permutations* 2 100000 100 0.75286377 Passed

rgb-lagged-sum* 0 1000000 100 0.00308570 Passed

rgb-kstest-test 0 10000 1000 0.03414230 Passed

dab-bytedistrib 0 51200000 1 0.17158919 Passed

dab-dct 256 50000 1 0.07312246 Passed

dab-filltree* 32 15000000 1 0.61801753 Passed

dab-filltree2* 0 5000000 1 0.69361846 Passed

dab-monobit2 12 65000000 1 0.42742922 Passed

*Only the result of first test instance is indicated here from the original results due to limitation of space.
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iii. TestU01 test results [97]

TestU01 is believed to impose the toughest tests to evaluate the statistical

quality of random bitstreams [90]. The binary bitstream of 1GB file size

generated by the proposed KCS-PRNG is subjected to the Rabbit and

Alphabit test batteries of TestU01. The Rabbit and the Alphabit, by default,

selected 1048576 bits (220 bits) for SmallCrush (a fast statistical test battery)

evaluation and applied 38 and 17 statistical tests respectively to the proposed

KCS-PRNG output bitstream. The output bitstreams of KCS-PRNG are

found to have p-values within the acceptable range of [0.001, 0.999] [103]

which proved that the proposed KCS-PRNG exhibits long period, good

structure and non-linearity.

6.5.2 Validation of Requirements R2 and R3

i. Next bit test

This test states that if a sequence of m-bits is generated by a generator,

there should not be any feasible method which can predict the (m + 1)th

bit with the probability significantly higher than half [104, 105]. This

test is associated with predictability of the successive bits generated by the

KCS-PRNG.

Since the KCS-PRNG is reseeded with fresh additional entropy of 574 bits

(401 bits of key and 173 bits of IV), therefore, it maintains backward security

[65].

ii. Test for state compromise extension attacks

This test states that if some state of a generator is leaked at a given time

to an attacker, it would not be possible to recover unknown PRNG outputs

from that known state [106]. Fundamentally, the state compromise extension
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imposes two kinds of attack: first, a backtracking attack to learn previous

outputs of the generator knowing some internal state of the generator at a

particular time and second, the permanent compromise attack which enables

all the future and past states of the generator vulnerable with the knowledge

of some state at a given time [106].

Since the proposed KCS-PRNG is forward secure and provably secure due to

underlying ECDLP intractability, therefore, it is resistant to the backtracking

attack. Furthermore, as discussed in the next bit test, the proposed

KCS-PRNG is (re)seeded on every 100000 bits of output generation,

therefore, it exhibits backward secrecy and thus, resists the permanent

compromise attack as well.

iii. Entropy Estimation (Experimental Validation of Requirement R2, R3)

Entropy is the measurement of unpredictability or uncertainty. For an ideal

TRNG, the expected entropy is 1 per bit which means that each bit i.e., ‘0’

or ‘1’ have equal proportion 0.5 in the file containing random bitstream [91].

The proposed KCS-PRNG is subjected to ENT tool [99] for estimation of

the entropy of the KCS-PRNG generated 1GB file of random bitstream. The

observed value of the entropy of output bitstream generated by the proposed

KCS-PRNG is found to be 0.99999975 per bit which asserts that the design

of KCS-PRNG maintains nearly an ideal unpredictability.

6.5.3 Experimental Validation of Requirement R4

Non-reproducibility test

The non-reproducibility test is conducted to validate if the RNG requirement

R4 is met by the proposed KCS-PRNG. This test is conducted by running the

generator twice with exactly the same input and verifying if the output sequences
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are completely unrelated. Authors [91] have referred the non-reproducibility test as

the restart test and they validated the first 20 bit output sequences of the generator

six times under identical start conditions. Table 6.4 shows that the proposed

KCS-PRNG has passed the non-reproducibility test six times by producing six

completely unrelated 32 bits using the same inputs to the proposed generator.

Table 6.4: Non-reproducibility test of the proposed KCS-PRNG under identical
start conditions.

Key Input (401-bit entropy)

1905119BCDC809077DB45D

1B3921DB5C06D11 C56C7FE

B4F8EE935A2FB16B055281816

DFC551AC73C3BBF76EE26B13

0B8F5E68

IV Input (173-bit entropy)
190B6B491CDD9E97E6AB

26552990F5481183DEF9AE55

Check First run of KCS-PRNG

32-bit Output 01010100111011111110001110100100

Check Second run of KCS-PRNG

32-bit Output 00010010000100001111001111111110

Check Third run of KCS-PRNG

32-bit Output 11000101110001101011100101111101

Check Fourth run of KCS-PRNG

32-bit Output 01101010010110101011000010110101

Check Fifth run of KCS-PRNG

32-bit Output 10110001000111011001101100011011

Check Sixth run of KCS-PRNG

32-bit Output 01001100110010111100010011100110

Moreover, the KCS-PRNG uses two different elliptic curves on each boot

and therefore, the output bitstream would be entirely unrelated even generated

under identical start conditions. Hence, it is inferred that the proposed
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KCS-PRNG generates non-reproducible pseudorandom bitstreams, provided it

maintains minimum number of un-used elliptic curves (i.e., t + 1 where t ≥ 1

is the number of (re)boots made by the KCS-PRNG such that the generator gets at

least two un-used elliptic curve on each (re)boot) in the look-up table consisting of

elliptic curves.

6.6 Details of Two Elliptic Curves used in the

Proposed KCS-PRNG

Elliptic curves over 256-bit prime fields whose ECDLPs are found to be hard and

secure from ECC and trusted security perspectives, are selected for use in the

proposed KCS-PRNG. The elliptic curves are generated randomly over the 256-bit

prime field size in order to build the trust as indicated in Chapter 4 and Chapter

5 of this thesis. The verification details against the criteria as suggested in [36]

of the two elliptic curves selected for experimentation purposes in this work are

summarized in Chapter 4 of this thesis. There are 256 elliptic curves randomly

retrieved from the database of elliptic curves which was created as discussed in

Section 4.7.3 to construct the look-up table T consisting of elliptic curves defined

over 256 bit prime field only. Two elliptic curves are then randomly picked up from

T which we name as KG256r2 and KG256r3 for demonstration purpose with the

proposed KCS-PRNG in this chapter. The look-up table T is already discussed in

Section 6.3.3.

<This space is intentionally left blank.>
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Table 6.5: First elliptic curve (KG256r2) used in the proposed KCS-PRNG

Elliptic curve

parameter/Validation
Value

Equation Model Short Weierstrass

Prime field p
1079509164487988591757265201276956417019056

50240413266754029756463013406356611

Coefficient a
37288718339379050173383988587093867748801744

3500794637387049768833559724285251

Coefficient b
91650467184519528527195669822400897623288163

942118409928885486392870684003490

Co-factor h 1

Base Point Gx,y

(28831630929998164044751948148304794518209

551125899507703388281731108281937385, 894203

08754698971577304928393115879486892623443

011694348881823094559544462040)

Table 6.6: Second elliptic curve (KG256r3) used in the proposed KCS-PRNG

Elliptic curve

parameter/Validation
Value

Equation Model Short Weierstrass

Prime field p
10974685584427577354895445753642658065143

6369726592499974288558315649948115511

Coefficient a
80787537287691934109632692617445837542461

294823874289048908982586661103746054

Coefficient b
88391368415133822638584996602724908717473

533081637647356906579631633934583732

Co-factor h 1

Base Point Gx,y

(818187913518001917867298577272592592457045

7398618324110725357065069006812355, 7267398

24138688932221586625748634204798379752280001

95672530949347375399560002)
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6.7 Performance Analysis of the Proposed

KCS-PRNG
The proposed KCS-PRNG was run on Intel® CoreTM i7-7700 CPU @ 3.60GHz

processor. The source code of the KCS-PRNG is developed in C++ and extensively

used CryptoPP version 8.2.1 library. The KCS-PRNG software program was run

on Ubuntu version 16.04.1 with kernel version 4.15.0-96-generic. The KCS-PRNG

program was (re)seeded on every 100000 bits output in generation of 1GB file

of cryptographically secure pseudorandom bitstream. It gave an impressive

throughput of 2.5 Mbps in software which asserts its high throughput-oriented

design. The proposed KCS-PRNG for kernel applications offers a better security

by meeting all the RNG requirements from R1 to R4 as compared to the existing

PRNG [90] and kernel CSPRNGs like/dev/random [62, 63], Yarrow [64], and

Fortuna [65, 66].

6.8 Comparison of proposed KCS-PRNG with

recent Kernel CSPRNGs and TRNG

The proposed KCS-PRNG is designed to meet all the requirements of a RNG as

discussed in Section 1.4.6. The features of the proposed KCS-PRNG are compared

with the popular CSPRNGs used by the current operating system kernels and a

recently well acknowledged TRNG [91] in Table 6.7. The reason behind the

comparison of KCS-PRNG with TRNG is that, it meets the RNG requirement R4

which a TRNG only meets. Table 6.7 also consolidates interesting comparison

results of KCS-PRNG with an existing TRNG based on Oscillator-Rings [91].
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6.8. Comparison of proposed KCS-PRNG with recent Kernel CSPRNGs and

TRNG

The KCS-PRNG is compared with popular kernel CSPRNGs namely

/dev/(u)random used by Linux and Android kernels, Yarrow used by

MacOS/iOS/FreeBSD kernel and Fortuna used by Windows kernel respectively

on the basis of various criteria related to cryptographic security, randomness tests

and throughput to conclude their suitability for strategic applicatons such as kernel

applications.

The kernel CSPRNGs use design which are based on non-invertible functions

which are supposed to be cryptographically hard. Such CSPRNGs are considered

to be provably secure for use. /dev/(u)random, Yarrow and Fortuna are the

kernel CSPRNGs which uses ChaCha 20 (a secure stream cipher), 3DES and

AES128 in counter mode (secure block ciphers) respectively which are the

non-invertible functions supposed to be cryptographically hard. However, the

TRNG compared in the thesis uses oscillator rings to extract randomness. In

contrast, the proposed KCS-PRNG uses ECDLP to provide provable security

to its generated bitstreams. The benefits of using ECDLP as hard problem are

discussed in Section 6.3.1. Further, the KCS-PRNG uses stronger SHA256 hash

function as compared to SHA160/MD5 hash functions used by /dev/(u)random

and Yarrow respectively. KCS-PRNG also competes with TRNG in light of

non-reproducibility of the generated bitstreams to meet the R4 requirement of RNG

as discussed in Section 6.3 and Section 6.5.3 for the first time in the literature.

Furthermore, it is observed that among all the kernel CSPRNGs, the KCS-PRNG

only provides details on most of the important results such as correlation value, per

bit entropy rate, linear complexity, period and key space of its generated bitstreams

obtained during the security analysis of the generator as discussed in Section

6.4. These results are considered as crucial criteria to measure the theoretical

security of the random bitstream generators which are unfortunately not available

in public domain to the best of the literature survey conducted in the thesis. The
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KCS-PRNG has impressive throughput of 2.5 Mbps, however, it is slower than

that of Fortuna as shown in Table 6.7. As discussed in Section 2.8.3, Fortuna

uses its pools which contain percomputed hard coded values, at different rate for

output bitstreams generation. However, KCS-PRNG does not maintain such pools

having precomputed hard coded values for security reasons. Finally, Figure 6.5

pictorically represents the metrics comparison chart of the proposed KCS-PRNG

with the popular CSPRNGs and a recent TRNG.

Figure 6.5: Metrics comparison of proposed KCS-PRNG with recent Kernel
CSPRNGs and TRNG
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6.9 Recent PRNG based Attacks

Klein [108], Vice President of security research at SafeBreach and a security

researcher at Israel’s Bar-Ilan University, discovered a weakness in the Linux

Kernel PRNG which allowed the hackers to use cross-layer attacks against the

Linux kernel. The Linux kernel PRNG allowed the hackers to get inference

about the internal state of the PRNG from one Open Systems Interconnection

(OSI) (network) layer and use this internal state to predict the random number

value in another OSI layer. This weakness in the PRNG also allowed hackers to

identify and track both the Linux and the Android devices. The attack is aimed to

downgrade E-mail security, hijack E-mails, hijack HTTP traffic, circumvent E-mail

anti-spam and blacklisting mechanisms, mount a local Denial of Service (DoS)

attack (blackhole hosts), poison reverse DNS resolutions and attack the machine’s

Network Time Protocol (NTP) client, responsible for the machine’s clock.

It is worth to note that both the Linux and Android based operating systems

use the /dev/(u)random random number generator which were exploited due to

predictability of their internal states in the above mentioned attack as the attackers

were able to predict entire random sequences generated by it. However, the

proposed KCS-PRNG does not allow such leakage of its internal states due to

non-reproducible random bit sequences generated by it. Hence KCS-PRNG can

encounter such attacks completely to serve the kernel applications unhindered.

6.10 Summary

A novel CSPRNG called KCS-PRNG is presented in this chapter which exhibits

qualities of a CSPRNG and TRNG for use in cryptography such as securing

kernel applications. The combination of clock-controlled LFSRs as a nonlinear

sequence generator and two non-standard and trusted elliptic curves is proven
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to be an excellent choice to design such a CSPRNG. The KCS-PRNG has

successfully validated through all the tests of NIST, Diehard and TestU01 test

suites. The NIST test also proved that KCS-PRNG exhibits impressive and the

highest proportion i.e., the pass rate of 0.9896 as compared to the existing PRNG

[6] with 0.9887 and TRNG [7] with 0.987 proportion values respectively. The

KCS-PRNG demonstrated to exhibit nearly an ideal 0.99999975 per bit entropy and

minimal serial correlation of 0.000034 in its generated bitstreams. The KCS-PRNG

also showed an impressive throughput of 2.5 Megabits per second. An extensive

security analysis of the KCS-PRNG proved that the proposed generator is resistant

to important attacks like Berlekamp-Massey attacks, brute force attacks, next-bit

tests, state compromise extension attacks and correlation attacks on the proposed

generator. In summary, the KCS-PRNG has been proven to exhibit: higher security

property (from RNG requirements R1 to R4), provably secure, very high per bit

entropy rate, minimal bitwise correlation, highly nonlinear with linear complexity

LC(x) bounded as 156706237 < LC(x) ≤ 156706238, very large period in the

range of [N1 × 2401, (N1 + N2)× 2401] per boot where N1 < N2 being the order

of two elliptic curves used, huge key space in the range of [2529, ∞) and impressive

throughput to generate uninterrupted cryptographically secure bitstreams. The

proposed design of the KCS-PRNG allows periodic change of elliptic curves in

the look-up table maintained by the generator to mitigate the gap of the security

property R4 i.e., ‘non-reproducibility’ requirement to a practical extent. The use

of elliptic curves from its look-up table makes the KCS-PRNG customizable than

the current kernel CSPRNGs like /dev/random, Yarrow and Fortuna whose designs

are based on stream cipher like ChaCha20 and block ciphers like Triple DES and

AES respectively. Hence, it is inferred that the proposed KCS-PRNG qualifies as a

competent CSPRNG for adoption in the kernel applications.
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Chapter 7
Conclusion and Future Research

The present thesis covered seven important research problems in the applied

cryptography domain with respect to Short Weierstrass form of elliptic curves

and their implementations in various computer applications of strategic nature

such as operating system kernels, in particular. Strategic applications accept only

those elliptic curves in its cryptosystem implementations which are transparently

computed for trust building as well as whose parameters i.e., the coefficients

and prime are rigorously verified for their cryptographic suitability. The thesis

first thoroughly evaluated the computational approaches of Short Weierstrass

elliptic curves from computation, security and trust persperctives and concluded

that the strategic or mission critical applications requires preferably the random

approach to compute elliptic curves for cryptosystem design in order to avoid

any special structures or pre-studied values which may be vulnerable to unknown

(intentionally non-disclosed) attacks. Subsequently, three new trusted security

acceptance criteria were proposed to derive the curve parameters which can

be trusted by its users. Two cryptographically secure Short Weierstrass elliptic

curves over 256 bit (called as KG256r1) and 384 bit (called as KG384r1) prime

field sizes were proposed which were randomly generated using explicit and

well-documented procedures and verified against their cryptographic security. A
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database of 500 such similar elliptic curves ove 256 bit prime field size having

nearly very high ρ-complexity of 127.8 bit and 191.6 bit each on an ideal 128

bit and 192 bit of symmetric security scales respectively is created for future

usage. Further, an important requirement of large prime field order elliptic curves is

felt for cryptographic purposes in order to keep existing elliptic curve cryptographic

systems alive in presence of quantum capable adversaries where the thesis proposed

desired computing resource estimates to compute such elliptic curves. These

computing resource estimates was measured in terms of the quantum of CPU clock

cycles and searches made in the security parameter space of the elliptic curves. A

range of computing estimates of elliptic curve over certain bit of prime field size in

terms of number of CPU clock cycels for processing power and number of attempts

or searches made is proposed in the thesis against the number of qubits required

to solve the ECDLP offered by the elliptic curves defined over that particular

field size. The proposed results help user to select a suitable prime field size of

the desired elliptic curve which can co-exist with appropriate number of available

qubits with quantum computers for a reasonably long period.

Furthermore, these elliptic curves are used in the design of the proposed

KCS-PRNG to enable non-reproducibility property of its generated pseudorandom

bitstreams for the first time in the literature. The existing CSPRNGs used by

operating system kernels do not exhibit the non-reproducibility property of their

generated pseudorandom bitstreams till date. Given the properties of the proposed

KCS-PRNG, it is inferred that the KCS-PRNG qualifies as a competent CSPRNG

for adoption in the kernel applications and can also be used in the implementation

of various cryptosystems in deriving their keys and supporting their encryption

schemes etc.
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7.1 Research Contribution to the Society

The major contributions of the research carried out in this thesis towards the society

are as follows:

• Indian Defence Agencies (IDAs) like triforces will be able to compute

cryptographically secure and trusted elliptic curves over large prime fields for

development of strategic cryptosystems discarding so claimed secure elliptic

curve recommended by the international agencies through their (possibly

sabotaged) standards.

• The proposed research provides a cost effective solution to counterfeit the

technology fallout of the ECC technology in presence of the quantum

adversaries to a reasonable extent. The proposed research enables the existing

ECC based cryptosystems safe to co-exist in presence of the quantum

adversaries by simply replacing the old elliptic curves with the new ones

which are defined over a reasonably larger prime field sizes.

• Apart from the Windows and Linux based personal computers and servers,

one of the most important and widely used applications for using the

proposed KCS-PRNG is the Android/Windows/iOS/MacOS based mobile

devices. The KCS-PRNG is proven to counter advanced attacks on operating

system kernel used by the mobile devices to prevent them from their data

compromise. The KCS-PRNG does not give any scope for leakage of its

internal states due to non-reproducibility of its generated pseudo random

bitstreams and hence ensures non-predictability of its generated bitstreams.

• Internet of Things (IoT) devices can use proposed trusted elliptic curves

KG256r1 and KG384r1 for digital signing and strong authentication

purposes.
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• The thesis contributions can also be used for strong and trusted authentication

services in automobile vehicles such as driverless cars using proposed elliptic

curves as well as in their control systems by updating new KCS-PRNG in

their operating system kernel for trusted security services.

• The thesis contributions will lead to stronger authentication mechanisms

using proposed elliptic curves for sophisticated medical robotic equipments.

• The thesis contributions will be highly useful in ubiquitous computing.

7.2 Future Directions

7.2.1 Future Directions in ECC in Quantum Presence

Elliptic curve cryptosystems are safe in forthcoming few years until the quantum

hardware with reasonable qubits is built which may use Shor’s algorithm [29] to

break ECDLP in polynomial time. Chen et. al. [38] recently observed that isogenies

of elliptic curves of supersingular class which have non-abelian structures seem

to be more challenging problem than ECDLP of Short Weierstrass elliptic curves

against quantum attacks. Though supersingular elliptic curves are not standardized

so far to the best of the authors’ knowledge, the next generation may prefer to

select supersingular elliptic curves instead of Short Weierstrass elliptic curves to

resist quantum attacks in particular.

<This space is intentionally left blank.>
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7.2.2 Open Problems for Future Work

The thesis presents the following three open problems for future research:

Problem 1

Estimation of computational resources in terms of the number of CPU clock

cycles and the number of searches to be made in the security parameter space

of elliptic curves over binary fields.

Problem 2

Standardization of the elliptic curves over 256 bit and 384 bit or even higher

prime field sizes using the proposed trusted security acceptance criterion in

addition to ECDLP security and ECC security criteria.

Problem 3

Research and Development of concrete mechanism to obtain initial entropy

for the proposed KCS-PRNG.
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1. Introduction 

Computation of elliptic curve requires extensive mathematical research to compute 

curve’s parameters over large prime field for its use in cryptography [1]. There are 

several agencies like National Institute of Standards and Technology (NIST), 

Standards for Efficient Cryptography Group (SECG), Brainpool, etc., who have 

recommended standard elliptic curves over various prime field orders. However, it is 

important to note the rationale behind the approaches adopted for selection of elliptic 

curve parameters from computational, security and trust perspectives. The scope of 

this article is limited to the Short Weierstrass form of elliptic curves which are used 

for constructing most of the present cryptosystems such as Public Key Infrastructure 

(PKI) [2], Secure SHell (SSH), Transport Layer Security (TLS), IPSec, JSON Web 

Encryption (JWE) [3], etc.  

The key contributions of this paper enlist: 

1. A comprehensive survey for evaluation of the computational approaches of 

cryptographically secure elliptic curves is presented. 

2. Evolution of Elliptic Curve Cryptography (ECC) with theoretical 

advancements in cryptographic mathematics and their significant impact on 

standardization of computational methods is presented. 
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3. Chronology of attacks on Elliptic Curve Discrete Logarithm Problem 

(ECDLP) and their countermeasures is presented.  

4. Selection criteria of cryptographically secure elliptic curves are discussed. 

5. A trend in computational approaches of elliptic curves in standards 

recommended by various agencies is demonstrated.  

6. Standard and non-standard elliptic curves are compared from computational, 

trust and security perspectives to add a new insight into their usability.  

Rest of the paper is organized as follows: Section 2 gives preliminaries on 

elliptic curves in Short Weierstrass form and ECDLP. Section 3 describes evolution 

of ECC with time and theoretical advancements in applied mathematics to establish 

present computational standards and selection criteria of elliptic curve. Section 4 

focuses on evaluation of two popular approaches to compute cryptographically secure 

elliptic curves. Section 5 demonstrates the trend of approaches for computation of 

elliptic curve parameters adopted by various agencies in their proposed standards. 

Section 6 differentiates between standard and non-standard elliptic curves in various 

contexts. Finally, Section 7 concludes the paper with future directions. 

2. Preliminaries 

2.1. Elliptic curve in short weierstrass form 

Let the finite field 𝔽q has characteristic greater than 3. An elliptic curve 𝔼 over 𝔽q is 

the set of all solutions (x, y) to an equation 

(1)   𝔼: y2 = x3 + ax +b,  
where the coefficients a, b ∈ 𝔽q and 4a3 + 27b2 ≠ 0, together with a special point ∞ 

called the point at infinity which serves as the identity element of 𝔼 which is known 

to be an abelian group [4]. 

2.2.  The elliptic curve discrete logarithm problem 

Definition 1 (ECDLP). Given an elliptic curve 𝔼 defined over a finite field 𝔽q, a 

point P ∈ 𝔼(𝔽q) of order n, and a point Q ∈ 〈P〉, determine the integer l ∈ ⦋0, n – 1⦌ 
such that 

(2)   Q = l P. 
The integer l is called the discrete logarithm of Q to the base P, denoted as 

l=logpQ [5]. 

The definitions: Definition 2 [6], Definition 3 [7], Definition 4 [8] and 

Definition 5 [9] define supersingular curve, embedding degree, prime field 

anomalous curve and class number of elliptic curves respectively which need to be 

carefully considered for selection of elliptic curves with intractable ECDLP for 

cryptography. 

Definition 2 (Supersingular Elliptic Curves). If #𝔼(𝔽q)=q+1 – t denote the 

order of elliptic curve then 𝔼(𝔽q) is said to be supersingular if p divides t where p 

be the characteristic of 𝔽q and t be the trace of 𝔼. 

𝔼(𝔽q) is supersingular provided the trace (t) of the curve, t2=0; q; 2q; 3q or 4q 

[6]. Supersingular elliptic curves are vulnerable to attack due to Menezes, Okamoto 

and Vanstone (MOV) which solves Discrete Logarithm Problem (DLP) of 
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supersingular curves to the DLP in a finite field with sub-exponential complexity  

[6, 10]. 

Definition 3 (Embedding Degree of Elliptic Curve). If 𝔼(𝔽q) be the elliptic 

curve over 𝔽q then 𝔼 is said to have embedding degree k, a smallest positive integer, 

such that n | (qk – 1) where n be the base point order. 

It is also observed that ECC standards do not allow elliptic curves with low 

embedding degrees. 

Definition 4 (Prime Field Anomalous Curves). An elliptic curve 𝔼 defined 

over a prime field 𝔽p is said to be prime field anomalous if #𝔼(𝔽p)=p, i.e., the curve 

has trace 1.  

Prime field anomalous curves are trace one curves for which the ECDLP can be 

solved in linear time [10]. The prime field anomalous attack does not extend to any 

other classes of elliptic curves but the one having trace one [8]. 

Definition 5 (Class Number). Let h(N) denotes the class number of the order 

N of elliptic curve 𝔼. Then h(N) is the minimum degree of a number field over which 

the elliptic curve 𝔼 admits a faithful lift. 

3. Evolution of elliptic curves for cryptography 

Table 1. Evolution of Short Weierstrass elliptic curves for cryptography 
Year Event Impact on ECC Standardization 
1985 Elliptic curves were proposed for use in cryptography ECC were extensively studied to develop 

cryptosystems 
1987 Efficient point counting algorithm on elliptic curves by Schoof, 

Elkies and Atkin called SEA Algorithm was developed [17-18] 
Uses complexity O(ln5p) for point 
counting 

1992 Elliptic Curve based Digital Signature Algorithm (ECDSA) was 
developed [19] 

Considered as a mature signature scheme 
in NIST standard 

1993 Reduction of ECDLP of supersingular elliptic curves having trace 
zero to logarithm in a finite field [6] 

Became selection criteria for safe elliptic 
curve in all standards 

1994 Proposal of Shor algorithm [20] generalizes to solve ECDLP 
Random Quantum Polynomial (RQP) time using quantum 
computers 

Led to realization that elliptic curves will 
be unsafe once sufficient quantum 
capability is built. So, new computational 
standard required for quantum resistance 

1996 It was proved that the condition N|(qk – 1) is sufficient to realize 
the MOV algorithm under mild condition. Further, it was proved 
that randomly generated curves have k>log2q [21] 

Became selection criteria for safe elliptic 
curve in all standards 

1997 Proposal of a linear algorithm to solve ECDLP of trace one  
[10, 22] 

Became selection criteria for safe elliptic 
curve in all standards 

1999 NIST recommendation of 15 elliptic curves [23] Widely accepted standard later 
2000 SECG recommendation of elliptic curves [24] Widely accepted standard later 
2005 Recommendation of Brainpool first set of elliptic curves for 

standardization [25] 
International effort for elliptic curve 
standardization 

2010 Brainpool revised their specifications and published Request for 
Comment (RFC) 5639 [26] 

Standard established 
 

2014 Review of existing elliptic curves generation mechanisms by 
B e r n s t e i n  and L a n g e  [27] who coined two terms: 
ECDLP security and ECC security. They observed that Short 
Weierstrass form of elliptic curves are dominant in both the 
software and hardware implementations 

Two new terms: ECDLP security and 
ECC security became important 
verification criteria for curve selection 
with side channel attack resistance 

2014 NUMS-curve (Nothing Upon My Sleeves) were proposed under 
IETF standard [28] 

Curves with better performance proposed 
under IETF Standard 

2015 NIST Call for next generation elliptic curves with new models and 
optimized parameters resistant to side channel analysis was placed 
[28] 

NIST wanted to replace its standard 
elliptic curves 

2016 NIST report [29] on Post Quantum Cryptography (PQC). 
Resistance of elliptic curve cryptosystems was looked for 
quantum computing 

Isogenies of supersingular elliptic curves 
were discussed as resistant to PQC 
instead of ECDLP 

2017- 
2020 

Proposal of Quantum resources required to run Shor algorithm to 
solve ECDLP in polynomial time [30] 

Roeteller et. al. suggested quantum 
resource estimates to break ECDLP 

Note: N=Order of elliptic curve, q=prime power, k=embedding degree. 
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Table 2. Chronology of attacks on ECDLP and their countermeasures 
Attack Description type Countermeasure type  
Pohlig-
Hellman, DLP 
attack 

Private key can be recovered using Chinese Remainder 
Theorem [31] 

N must be a prime or near prime with 
small cofactor, N≥2160 [5] 

Pollard-rho, 
DLP attack 

A parallelized Pollard-rho on r processors can solve ECDLP 
in √(𝜋𝑛)/√(2𝑟)  steps [5, 32] 

n≥2160 [13, 32] 

Pollard’s 
Lambda,  
DLP attack 

Faster method than Pollard-rho when ECDLP lies in 
subinterval [1, b] of [1, n – 1], where b<0.39n [13] 

Private key should be selected 
uniformly at random within interval 
[1, n – 1] [30] 

Index-Calculus, 
DLP attack 

ECDLP can be solved using multiplicative group 𝔽q* of the 
finite field 𝔽q [13] 

Small prime fields should be 
avoided, i.e., n≥2160  [13] 

Exhaustive 
Search, 
DLP attack 

Computes successive multiples of base point till public key 
is achieved 

n should be sufficiently large [8] 

Shanks’ Baby 
step 
Giant step, 
DLP attack 

Fully exponential deterministic algorithm to determine n on 
𝔼(𝔽q) which requires approximately √𝑁 steps and around 
√𝑁 storage 

n≥2160  [13] 

Weil pairing 
and 
Tate pairing 
attacks, 
Pairing based 
attack 

ECDLP of 𝔼(𝔽q) can be reduced to ordinary DLP on 
extension field 𝔽*qk for some k≥1 where the number field 
sieve algorithm can be used to solve ECDLP [4, 6]. 
MOV reduction attack [6] 

n ∤ (qk – 1) ∀k ≥ 20 [7, 18]  
and ∀k ≥ (q –1)/100 [5] 
 
p ∤ t and t2≠0, 2q, 3q or 4q [6] (Non-
supersingularity) 

Multiple 
logarithm, 
DLP attack 

Multiple instances of ECDLP for the same elliptic curve 
parameters 

n≥2160  

Prime field 
anomalous 
curve, 
Pairing based 
attack 

Trace of 𝔼(𝔽p)=1, i.e., # 𝔼(𝔽p)=p [8, 12] N≠p [5] 

Note: q=size of underlying field, p=prime characteristic, n=order of a point on 𝔼, N=order of 𝔼, 
r=number of processors,  k=embedding degree, t=trace of curve. 

Table 3. Elliptic curve parameters selection criteria 
Elliptic  
curve  
parameter 

Criteria Benefit(s) 

Prime p 1. Crandall prime 2α –
γ where γ<210 [33, 34] 
2.Montgomery-
friendly prime  
2α(2β–γ) –1 where  
α, β, γ ≥ 0  
3. p≡3 mod 4 
 
 
4. Mersenne prime 
p=2k – 1 
5. p= random value 
6. Length of p≥221 
bits [27] 

1. For best possible performance by limiting carry propagation during multiply-
reduce and γ is small [34] 
2. Accelerates Montgomery arithmetic [33] 
3. Such primes can compute modular square root in constant time countering 
constant time attack using Side channels [33]. The point compression method 
allows representing one point (x, y) of 𝔼 only its abscissa x and one bit 
discriminating between the two possible values ±y. However, recovering y 
requires computing a square root in 𝔽p. This is easier when p≡3 mod 4 since 
in this case, c(p+1)/2 is a square root of c if c is a square [9] 
4. Mersenne primes are special primes of unique form which enables fast 
arithmetic [33] 
Minimizes time for modular multiplication [35] 
5. No pre-studied value or special structure vulnerable to cryptanalysis 
6. To counter brute-force attack 

Coefficient 
a 

1. a= –3 
 
 
2. a= random value 

1. For efficiency reasons. Practically all curves have low-degree isogenies to 
curves with a= –3, so this choice does not affect security. P1363 allows 
y2=x3+ax+b without the requirement a=–3 [9] 
2. No pre-studied value or special structure 

Coefficient 
b 

1. Should not be 
square in 𝔽p  [9] 
2. b=random value 

1. To avoid compressed representations of elliptic curve points as (0, 0) and  
(0, x) would be identical as x=√b with least significant bit as 0 [26] 
2. No pre-studied value or special structure 

Elliptic 
curve 
order N 

1. N should be prime 
[13, 18] 
2. N should be 
composite 

1. Prime order curve selected to resist Pohlig-Hellman and Pollard’s Rho 
attacks [5, 9]. Small subgroup attacks are avoided [9, 13] 
2. Prime group order curves do not have points with y=0 [36]. Special points 
of the form (x, 0) exist if the curve has an even order [9] 

Base point 
order n 

n should be prime to 
avoid Weil and Tete 
pairing attacks [5,  9] 

n≥2160  and n ∤ (qk – 1) where k is the embedding degree of elliptic curve 

Cofactor h Preferably 1 For optimal bit security, h=1 though 1≤h≤ 4 for performance gain [5, 9, 36] 
Base point  
Gx, y 

Randomly chosen base 
point [4] 

Prime order of base point gives maximum elliptic  
curve group size 
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Elliptic curves have been extensively studied and reviewed for cryptography 

soon after the proposals of Neal Koblitz and Victor Miller during 1985-1987. ECC 

has evolved with time and theoretical advancements in cryptographic mathematics, 

which subsequently has significant impacts on evolution of elliptic curve 

computational standards, which is discussed in Table 1. Moreover, elliptic curves are 

expected to be resistant to cryptographic attacks that can be ensured through the 

implementation of appropriate countermeasures. Table 2 [8] briefly depicts such 

countermeasures for important discrete logarithm (DLP) based attacks and pairing 

based attacks which resulted in the evolution of cryptographically safe elliptic curve 

selection criteria. Table 3 shows important selection criteria for elliptic curve 

parameters and their benefits to select elliptic curves with desired properties. 

4. Evaluation of computational approaches 

Elliptic curves need to qualify certain mathematical validations in order to certify that 

the elliptic curve has the claimed order, resists all known attacks on ECDLP and base 

point order has also the claimed order [5]. There are usually two approaches either of 

which can be used to compute an elliptic curve over prime field: first, the 

deterministic approach and second, the random approach. However, in both – the 

deterministic and random approaches, following conditions are critical for the elliptic 

curve to meet cryptographic requirements [4, 5, 11]: 

C1: Resistance to Pohlig-Hellman and Pollard’s Rho attack, i.e., n>2L where n 

is sufficiently large prime that divides order of the elliptic curve group #𝔼(𝔽q). Here, 

L≥160, the length in bits. 

C2: Resistance to Semaev-Smart-Satoh-Araki attack (Smart-ASS) [10, 12], i.e., 

L≤⌊log2q⌋ ensures 2L≤q or #𝔼(𝔽q)≠q. It avoids the attack on prime field anomalous 

curves. 

C3: n>4√𝑞 guarantees that 𝔼(𝔽q) has a unique subgroup of order n as 

#𝔼(𝔽q)≤( √𝑞 + 1)2 by Hasse’s theorem [5, 13 ] and so, n2 ∤ #𝔼(𝔽q). 

4.1. Evaluation of deterministic approach 

In this section, we evaluate the deterministic approach of computation of elliptic 

curves with respect to computational method, computational complexity, security, 

trust and specific gains for cryptography. 

4.1.1. Computational method 

Complex Multiplication (CM) is a widely accepted deterministic computational 

approach for standardization of elliptic curves. The CM method proceeds with fixing 

the prime field order p first and then constructs an elliptic curve over the field 𝔽p 

[11]. It gives a choice for selecting primes of special forms, accepts the order of the 

elliptic curve field p as input, and determines the CM discriminant D. The field order 

p is selected such that it meets the conditions C1, C2 and C3. The CM method is 

efficient when the finite field size p and the field order #𝔼(𝔽q)=p+1 – t are chosen 

such that CM-field of 𝔼, i.e., ℚ(√(𝑡2 − 4𝑝)) has small class number [4, 5]. A crucial 

step of CM method is to compute the roots of a special type of class field polynomials 
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called the Hilbert and Weber polynomials [14]. These polynomials are uniquely 

determined by D. Equations (3) and (4) [15], and (5) [16] constitute the basis of 

computation of Short Weierstrass elliptic curves using CM method. 

Definition 6 (Twist). Given 𝔼: y2=x3+ax+b with a, b ∈ 𝔽p the twist of 𝔼 by c 

is the elliptic curve given by 

(3)   𝔼c: y2=x3+ax+b, 
where c ∈ 𝔽p. 

Theorem 1. If the order of an elliptic curve is #𝔼(𝔽p)=p+1 – t, then the order 

of its twist is given as 

(4)    𝔼c(𝔽p*) =   (p+1– t) if c is square in 𝔽p, 
                                 (p+1+t) if c is non-square in 𝔽p. 

Theorem 2 (Atkin-Morain). Let p be an odd prime such that  

(5)   4p=t2+Ds2, 

for some t, s ∈ ℤ. Then, there is 𝔼(𝔽p) such that #𝔼(𝔽p)=p+1–t [16]. 

The CM method is called the Atkin-Morain method when the elliptic curve is 

derived over prime field [37]. Equation (5) observes that D is the integer which can 

be determined from a given prime p called the CM discriminant of p. Algorithm 1 

describes a general CM method [38] for constructing an elliptic curve over a given 

prime field. 

Algorithm 1. Elliptic curve generation over prime field using CM approach 

Input: Nil 

Output: Elliptic curve over a prime field 𝔼(𝔽p) 

Step 1. Choose elliptic curve field order p, a prime 

Step 2. Find smallest CM discriminant D from equation (5) along with trace t  
Step 3. Construct the orders of the two elliptic curve 𝔼(𝔽q)=p+1±t 
Step 4. if one of the curve orders is a prime or nearly a prime 

Step 5. Fix elliptic curve order 

Step 6. else Repeat Step 1 to determine D and t 
Step 7. end if 

Step 8. Construct the class polynomial HD(x) //Class polynomial is independent 

of p 

Step 9. Find a root j0 of HD(x)(mod p)  // j0 is the j-invariant of the desired 

elliptic curve 

Step 10. Set k=j0/(1728 - j0)(mod p)    // such that 𝔼: y2=x3+3kx+2k 

Step 11. if #𝔼≠p+1 – t  
Step 12. Construct the twist 𝔼c    //using a randomly selected non-square c ∈ 𝔽p 

following equations (3) and (4) 

Step 13. return 𝔼c 
Step 14. else  

Step 15. return 𝔼 
Step 16. end if 

4.1.2. Computational complexity 

The bit complexity (β) of CM method depends on b and h where b= length of field 

order p, h= class number, hc= cross over class number for which the random approach 
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and CM approach have the same runtime. When h(D)<hc(b) where D is the CM 

discriminant, then CM method is faster than random approach [11]. CM method can 

generate a prime order elliptic curve in time Õ((logN)4) [38]. 

4.1.3. Security 

Deterministic approach is vulnerable to non-disclosed attacks. B e r n s t e i n  et. al. 

[39] showed that standards can be sometimes purposely designed in such a way that 

it can be manipulated by the agency who recommended those standards. Also, 

sufficient information about the computational mechanisms of curve parameters has 

not been made publicly available [7]. It is always a concern for researchers that the 

ECDLP of deterministically computed elliptic curves can be solvable by using very 

efficient sub-exponential or polynomial time algorithm using non-guessable very 

high computing power unknown to outside world. 

4.1.4. Trust 

The elliptic curve parameters which are selected deterministically are sometimes 

distrusted due to lack of sufficient proofs of their computational mechanisms [40]. 

Moreover, trust in the curve parameters is doubtful due to possibility of intentional 

non-disclosed properties of the curve parameters. There are some serious statements 

of distrust expressed by many reputed scientists and researchers on NIST 

recommended elliptic curves which was generated through deterministic approach. 

Some of such statements of distrust are given as below:  

 “I no longer trust the constants. I believe the National Security Agency 

(NSA) has manipulated them through their relationships with industry.” – B r u c e  

S c h n e i e r  (see [41]). 

 “NIST should generate a new set of elliptic curves for use with ECDSA in 

FIPS 186... The set of high-quality curves should be described precisely in the 

standard, and should incorporate the latest knowledge about elliptic curves.” – 

E d w a r d  F e l t e n  (see [42, 43]).  

 “NIST should ensure that there are no secret or undocumented components 

or constants in its cryptographic standards whose origin and effectiveness cannot be 

explained.” – S t e v e  L i p n e r  (see [42, 43]).  

 “However, in practice the NSA has had the resources and expertise to 

dominate NIST, and NIST has rarely played a significant independent role.” – 

K o b l i t z , K o b l i t z  and M e n e z e s  [7].  

 “We don’t know how Q = [d]P was chosen, so we don’t know if the 

algorithm designer [NIST] knows [the backdoor] d.” – S h u m o w  and F e r g u s o n  

(see [44]).  

 “Consider now the possibility that one in a million of all curves have an 

exploitable structure that “they" know about, but we don’t. Then “they" simply 

generate a million random seeds until they find one that generates one of “their" 

curves.” – S c o t t  [45].  

 Many more. 
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4.1.5. Specific gains of deterministic approach 

CM method adheres to “Performance over slightly sacrificed security” principle for 

computation of elliptic curves. Fast elliptic curve computation is possible in CM 

method due to elimination of the need for a point counting algorithm and fixing of 

certain parameters like prime p with special structures [40]. CM method allows much 

faster arithmetic with elliptic curves as compared to random approach to achieve 

higher performance of elliptic curve cryptosystems [5]. It provides smaller, faster and 

easily implementable software code due to offline precalculations while adopting 

deterministic computational approach [46]. Prime order elliptic curves generated 

using CM method with a= –3 are backward compatible with implementation 

supporting most of the standardized elliptic curves [42]. CM method can only be 

adopted to construct ordinary elliptic curves with low embedded degree k>6 [7]. CM 

method is not efficient if there is no restriction on the class number of the elliptic 

curve [8]. This method is useful in deriving elliptic curves with small class numbers 

for which ECDLP is hard and gives the same security level as given by the elliptic 

curves which are generated randomly [5, 8]. 

4.2. Evaluation of random approach 

Random approach allows obtaining elliptic curves, which are ordinary, and avoids 

any special form or structure. This approach uses ‘early-abort strategy’ to obtain 

desired elliptic curve [5]. A general observation is that elliptic curves generated using 

random approach have not been given preference for standardization. We evaluate 

random approach from computational method, computational complexity, security, 

trust and specific gains perspectives in this section. 

4.2.1. Computational method 

In random approach, the elliptic curve generation algorithm computes curve 

parameters keeping ECDLP security and procedural transparency in consideration. 

Algorithm 2 describes a general random approach as preferred in [3-6, 11, 17, 18, 27, 

33, 38] to derive cryptographically safe elliptic curve over prime field.  

Algorithm 2. Elliptic curve generation over prime field using random approach 

Input: Randomness 

Output: Elliptic curve 𝔼(𝔽p), base point Gx, y, curve order N 

Step 1. Select randomly a prime p of desired size 

Step 2.  Fix K=GF(p)          // Generate Field K of order p 

Step 3.  Choose randomly coefficient a 

Step 4.  Choose randomly coefficient b 

Step 5.  Generate 𝔼(K)         // Elliptic curve over 𝔽p 

Step 6.  if 4a3+27b2≠0   // Non-singularity check 

Step 7.  else go to Step 3 

Step 8.  end if 

Step 9.  Compute order N of 𝔼 

Step 10. if N is prime  // To resist Pohlig-Hellman attack 

Step 11. else go to Step 3 

Step 12. end if 
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Step 13. if 𝔼 is supersingular  // To resist MOV attack 

Step 14. else go to Step 3 

Step 15. end if 

Step 16. if N≠p  // Non-anomalous check 

Step 17. else go to Step 3 

Step 18. end if 

Step 19. Select randomly a base point Gx, y on 𝔼 

Step 20. Compute base point order n     // n≥160 bits and n>4√𝑝 

Step 21. if n≠N    // Check for cofactor as 1 

Step 22. else go to Step 19 

Step 23. end if 

Step 24. Compute Twist 𝔼c    // For twist security of elliptic curve 

Step 25. Compute order N ′ of 𝔼c 

Step 26. if 𝔼c  is non-singular & N ′ is prime & 𝔼c  is non-supersingular  // All 

criteria to be met for 𝔼c 

Step 27. else go to Step 3 

Step 28. end if 

Step 29. return 𝔼(𝔽p), Gx, y, N  // Return elliptic curve parameters 

Here, the prime field p is fixed and coefficients a and b are kept varying until a 

suitable elliptic curve 𝔼 with prime order N is obtained. Some validations to meet the 

cryptographic requirements C1, C2 and C3 are also kept. We observe that all the 

elliptic curve parameters such as p, a, b and Gx, y are randomly generated in order to 

avoid any special structure or known values whose choices are ambiguous. 

4.2.2. Computational complexity 

For random approach, the bit complexity (β) only depends on length of prime (r0) 

and falls in the range O(log5+ϵk0r0) to O(log7k0r0) where ϵ>0 and k0 is the cofactor 

[11]. 

4.2.3. Security 

Random approach does not allow any special structure of curve parameters in order 

to eliminate doubts on intentional non-disclosure of backdoors [5]. Elliptic curves, 

which are randomly computed, have no hidden goals that can be proved in 

determination of the curve parameters. This ensures that the elliptic curve parameters 

are trusted and not suspected to belong to a (not publicly known to be) vulnerable 

class. This approach is favourable when long-term security is desired with an 

ignorable sacrifice of efficiency [7]. Elliptic curves can be frequently changed for 

security reasons when computed randomly [40]. The only way to compromise elliptic 

curve security in such case is to solve ECDLP rather than just attacking particular 

classes of weak elliptic curves. Hence, random approach is specifically preferred to 

obtain elliptic curves for implementation in strategic or military grade cryptosystems. 

4.2.4. Trust 

Random approach ensures that no intentional construction with hidden weakness in 

the elliptic curve parameters is present in order to prevent future exploitation to 
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recover user’s private key [5]. The trust in derivation of the elliptic curve parameters 

is maintained due to the use of absolutely new values drawn randomly each time. 

Moreover, there are no patent issues with randomly selected new curve parameters. 

Random approach protects against attacks in special classes of elliptic curves, which 

may be vulnerable in future [5]. However, random values of elliptic curve parameters 

are always arguable by others for their emanation and random number generation, in 

case they are not explained adequately. 

4.2.5. Specific gains of random approach 

Random approach adheres to the principle of “security over performance” for 

computation of elliptic curve parameters. Computing order of the elliptic curve is a 

time-intensive task and hence, selecting elliptic curve using random approach is a 

slower process as compared to the deterministic approach where one starts with fixing 

the order of the elliptic curve. Point compression and decompression also require 

more computation in randomly generated elliptic curves [40]. Elliptic curves are 

computed with nearly the same probability to ensure that curves are not special in 

any sense when they are computed randomly [5, 11].  

5. Approaches adopted by agencies for elliptic curve computation 

Many agencies have recommended elliptic curves over various security levels for 

standardization. Table 4 depicts the popular standard elliptic curves in Short 

Weierstrass form with their computational approaches. Here, randomly generated 

elliptic curves means those elliptic curves whose parameters like field order p, field 

coefficients a, b and basepoint Gx,y are randomly or pseudo-randomly (a secure hash 

function is used to generate curve parameters from random value given as input to 

the hash function to confirm that parameters are indeed computed pseudo randomly) 

generated or otherwise, they are considered to be obtained from the deterministic 

approach. Clearly, from Table 4, the trend demonstrates that the CM method, i.e., the 

deterministic approach is the preferred computational approach for standardization 

of elliptic curves. 

Table 4. Computational approach adopted for Short Weierstrass elliptic curve computation 
Name of elliptic curve Agency Year Security level in 

bits 

Approach 

NIST [23] National Security Agency (NSA) 2001 112, 128, 192, 

256 

Deterministic 

Brainpool [25, 26] European Consortium of Companies and 

Government 

2005 128, 192, 256 Pseudo-

random 

ANSSI FRP256v1 [39]  ANSSI 2011 128 Random 

SECG [24] Certicom 2000 112, 128, 192, 

256 

Deterministic 

NUMS-Curves [28, 42] Microsoft Research 2014 128, 192, 256 Deterministic 

Russian Standardized 

Curves [47] 

GOST R 34.10-2001 

GOST R 34.10-2012 

GOST R 34.11-2012 

Russian National Cryptographic Standards 2001,  

2012 

128, 256 Deterministic 
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6. Standard and non-standard elliptic curves 

Elliptic curves are standardized to enable compatibility and interoperability across 

diverse applications. Moreover, non-standard elliptic curves are mostly used by 

strategic applications such as military applications or non-military but other critical 

infrastructure applications such as nuclear reactors’ command and control systems 

etc. These applications do not really believe in Kerckhoffs’s principle [48] of 

security, which says “A cryptographic system should be secure even if everything 

about the system, except the key, is public knowledge”. Unlike Kerckhoff’s principle, 

the strategic applications do believe that not only the keys but the algorithm too 

should also be kept private to protect critical information infrastructure better. In such 

cases, they compute elliptic curves preferably using random approach instead of 

deterministic approach. Table 5 compares between the standard and non-standard 

elliptic curves from computation, trust and security perspectives to help the readers 

about their usability concerns.  

Table 5. Standard elliptic curves versus non-standard elliptic curves 
Standard elliptic curve Non-standard elliptic curve 
Prefers deterministic approach of computation to 
get performance benefits in elliptic curve 
arithmetic. This helps in standardization of 
elliptic curves by global acceptance 

Prefers random approach of computation for long 
term security so that any special kind of curve is 
avoided which may lead to vulnerability to an 
unanticipated attack 

Adheres to Kerckhoffs’s principle of security and 
fixes elliptic curves for compatibility and 
interoperability among diverse applications 
across the globe 

Adheres mostly to strategic principle of security 
which says that keys and algorithm both needs to 
be kept secret 

Standard elliptic curves are subject to public 
exposure and often attract cryptanalysis as more 
people use it. Hence, there is always a high 
chance of collision with the secret key [49] 

Negligible chance of collision with the secret key 
that’s why random approach is preferred 

Distrust comes with presence of special 
structures of the curve parameters 

Trusted new values of curve parameters known to 
designer only. Prefers random approach to compute 
elliptic curve parameters 

Standard elliptic curves are globally accepted and 
trusted 

Not published and mostly not supported by the 
standards. Hence, trusted by their proposers or/and 
in closed group only 

Compatible across applications and interoperable 
due to standardization 

Not compatible. Applications need to be made 
interoperable explicitly 

Better approach in case where elliptic curve 
needs to be computed over large prime fields 

Better approach in case where elliptic curve needs 
to be transparently computed without any special 
structures known to others [50] 

Curve parameters and compression techniques 
have patent issues 

No patent issues 

Already published and analysed thoroughly. Non 
deniable chances of hiding backdoors 

Derivation procedure of curve parameters are 
known to the proposers only and hence, negligible 
chances of backdoors. High degree of trust 
observed by the proposers of non-standard elliptic 
curves 

Standard elliptic curves are fixed to maintain 
compatibility among applications 

Non-standard elliptic curves have edge over the 
standard ones as they can be replaced frequently for 
added security 

More prone to get attacked by sophisticated 
advancements in mathematics and discoveries 

In case of randomly selected curve parameters, 
curve is safe until sub-exponential algorithm is 
known to break it in particular [33] 

7. Conclusion and future directions 

Short Weierstrass elliptic curves are widely used for cryptographic purposes. An 

evolution chart of events is presented which has significant impact on introducing 
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elliptic curves for use in cryptography. We discuss about important attacks on 

ECDLP and their countermeasures, which became the basic selection criteria of 

elliptic curves for their consideration in cryptography. This paper also discuss 

rationale behind the selection criteria used to compute cryptographically suitable 

elliptic curve parameters. Two popular approaches, i.e., deterministic and random 

approaches to compute cryptographically secure Short Weierstrass elliptic curves and 

rationale behind them are evaluated in detail. A trend of approaches for computation 

of elliptic curve parameters for cryptographic purposes is also demonstrated which 

favours deterministic approach in standardization so far. We also differentiate 

between standard and non-standard elliptic curves with respect to their computational 

approaches, trust and security and bring out the desirable facts to choose either of 

them on need basis. Hence, it is inferred that this comprehensive evaluation and 

analysis of computational approaches of cryptographically safe elliptic curves will be 

helpful to those who wish to compute Short Weierstrass elliptic curves for design of 

cryptosystems with desired properties of the elliptic curves. 

Standardization of elliptic curves, which are computed using random approach 

will be, preferred in future citing the trust requirements of strategic applications. 
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Abstract: Short Weierstrass elliptic curves with underlying hard Elliptic Curve 

Discrete Logarithm Problem (ECDLP) are widely used in cryptographic 

applications. A notion of security called Elliptic Curve Cryptography (ECC) security 

is also suggested in literature to safeguard the elliptic curve cryptosystems from their 

implementation flaws. In this paper, a new security notion called the “trusted 

security” is introduced for computational method of elliptic curves for cryptography. 

We propose three additional “trusted security acceptance criteria” which need to be 

met by the elliptic curves aimed for cryptography. Further, two cryptographically 

secure elliptic curves over 256 bit and 384 bit prime fields are demonstrated which 

are secure from ECDLP, ECC as well as trust perspectives. The proposed elliptic 

curves are successfully subjected to thorough security analysis and performance 

evaluation with respect to key generation and signing/verification and hence, proven 

for their cryptographic suitability and great feasibility for acceptance by the 

community.  

Keywords: Short Weierstrass elliptic curves, prime field, cryptography, ECDLP 

Security, ECC Security, Trusted Security. 

1. Introduction 

Short Weierstrass elliptic curves are considered to be as secure for cryptography as 

the underlying hardness of their Elliptic Curve Discrete Logarithm Problem, i.e., 

(ECDLP) which is defined as finding a scalar k knowing any two points P and Q on 

elliptic curve 𝔼 holding the relation Q = kP. This is known as the ECDLP security of 

the selected elliptic curve when used for cryptography [1]. The most efficient publicly 

known method to solve ECDLP or break the ECDLP security is the Pollard’s rho 

algorithm which takes approximately 0.886√𝑛 point additions where n is the base 

point order [1-2]. One must select an elliptic curve which is ECDLP secure for 

cryptographic applications. Another notion of security for selecting suitable elliptic 

curves for cryptography is known as elliptic curve cryptography security, i.e., ECC 
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security in short, the term coined by B e r n s t e i n  and L a n g e  [1] which ensures 

prevention from any information leakage from the implementation flaws of the 

elliptic curve. 

Most of the popular standards today such as National Institute of Standards and 

Technology (NIST) [3], Brainpool [4], Standards for Efficient Cryptography 2 

(SEC2) [5], IEEE P1363 [6], etc., recommended those elliptic curves which are 

ECDLP secure and attain some sort of ECC security (for only some standard curves 

[1]). It is worthwhile to note that an ECC based cryptosystem can be compromised 

by either compromising the ECDLP security or the ECC security. All the present day 

standards have recommended Short Weierstrass elliptic curves keeping either or both 

of these security notions into consideration. This paper introduces a critical security 

notion which we call as “trusted security” of elliptic curves which ensures that the 

selected elliptic curve is free from any manipulation from its computation perspective 

and can be trusted for use in cryptographic applications. The trusted security notion 

of computation of elliptic curves minimizes the risks involved in generation of safe 

curve parameters deterministically where they are vulnerable to (intentionally) non-

disclosed attacks with (intentionally) non-disclosed properties of the curve 

parameters. In such cases, the ECDLP can be solvable by using very efficient sub-

exponential or polynomial time algorithm using non-guessable high computing 

power. 

The key contributions of this paper are as follows: 

1. Introduction of a new security notion called as “trusted security acceptance 

criteria” as an important security evaluation criterion along with the ECDLP security 

and ECC security criteria for computation of Short Weierstrass elliptic curves aimed 

for cryptography.  

2. Evaluation of standard Short Weierstrass elliptic curves from trust 

perspective. 

3. Argument that trust in generation method of elliptic curves can be achieved 

only through computation of the curve parameters randomly without considering any 

of their pre-studied values such as 𝑎 = –3 or p as Mersenne primes, etc. The randomly 

selected elliptic curve parameters can be derived using any good quality user trusted 

Random Number Generator (RNG) along with competitive curve performance. 

4. Demonstration of two new elliptic curves called as Kunal-George 256 bit first 

random elliptic curve (KG256r1) and Kunal-George 384 bit first random elliptic 

curve (KG384r1) defined over 256 bit and 384 bit prime field sizes respectively for 

cryptography which are secure from ECDLP security, ECC security as well as trusted 

security perspectives. 

5. Evaluation of the proposed elliptic curves KG256r1 and KG384r1 with 

respect to cryptographic key pair generation, signing and verification from 

performance perspective. 

Organization of the paper is as follows. 

Section 2 deals with the background and problem statements of the presented 

work. Section 3 introduces the proposed “trusted security acceptance criteria” for 

cryptographically safe elliptic curve computation. Section 4 evaluates standard Short 

Weierstrass elliptic curves from trusted security acceptance criteria perspective. 
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Section 5 describes the generation procedure including the proposed trusted security 

acceptance criteria to derive new elliptic curves KG256r1 and KG384r1 for 

evaluation and demonstration. Section 5 also holds the discussion on importance of 

trusted security acceptance criteria of elliptic curves to minimize the risk of 

manipulating the curve parameters intended for cryptographic purposes. Section 6 

presents demonstration of the proposed trusted Short Weierstrass elliptic curves for 

cryptography. Section 7 gives the security analysis of the proposed elliptic curves. 

Section 8 discusses results obtained in the presented work and demonstration of the 

performance metrics of the proposed elliptic curves. Finally, Section 9 concludes the 

paper and gives future directions.  

2. Background and problem statements 

An elliptic curve in Short Weierstrass form consists of three parameters: a prime 

number p which is the order of the underlying field over which the elliptic curve is 

defined and two field coefficients 𝑎 and b. The formal definition of a Short 

Weierstrass elliptic curve and its twisted curve are as follows: 

Definition 1 [7]. A Short Weierstrass elliptic curve 𝔼(𝔽𝑝) of prime field order 

p is the set of all solutions (𝑥, 𝑦) to the equation 

(1)     𝔼: 𝑦 2 = 𝑥 3 + 𝑎𝑥 + 𝑏, 
where 𝑎, 𝑏 are the coefficients in 𝔽𝑝 with field characteristic greater than 3. The 

elliptic curve 𝔼 also includes a special point 𝕆 called the point at infinity. 𝔼 has non-

singularity condition, i.e., its discriminant △𝔼 = 4𝑎 3 + 27𝑏 2 ≠ 0. 

The field order p determines the security level offered by the elliptic curve. 

Hence, it is important to select p as big as possible. Generally, p ≥ 256 bits in size 

gives accepted security level while p of 256 bit length is considered as widely 

accepted prime field size of the elliptic curve for interoperability purposes. 

Definition 2 [8]. If 𝔼: 𝑦 2 = 𝑥 3 + 𝑎𝑥 + 𝑏  be an elliptic curve with 𝑎, b ∈ 𝔽𝑝  the 

twist of 𝔼 by c ∈ 𝔽𝑝 is defined as 
(2) 𝔼΄: 𝑦 2 = 𝑥 3 + 𝑎c 2𝑥 + 𝑏c 3. 

It is important to select those elliptic curves which are cryptographically secure 

and trusted for constructing cryptographic systems. Transport Layer Security (TLS), 

Secure SHell (SSH) and Internet Protocol Security (IPSec) [9], Public Key 

Infrastructure (PKI) [10], etc., are some of the popular applications which require 

safe elliptic curves in their cryptosystem design. Most of such commercial 

applications use standard elliptic curves over prime field of 256 bit sizes for sufficient 

security and interoperability purposes. However, B e r n s t e i n  et al. [2] have 

recently pointed out some mechanisms such that a new elliptic curve can be proposed 

to sabotage public standards. They demonstrated convincing methods by which they 

were able to implant vulnerability in the elliptic curves known as BADA55 curves by 

utilizing the gain of many bits of freedom [2] which satisfies the public standards and 

can be put forward for standardization to fool the users. This essentially proves that 

an attacker can exploit unknown (known to him) vulnerability to sabotage existing 

public standards and justify his selection of elliptic curve parameters citing 

performance gain and his own way of getting randomness, i.e., verifiably random, 
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etc., which is used in the generation of the vulnerable curve parameters. B e r n s t e i n  

et al. [2] comprehensively demonstrated how a wrong or non-trustable elliptic curve 

can be derived using the procedure led by the public standards and their 

recommended public criteria. They showed that plausible variations in the Brainpool 

curve generation procedure and Microsoft curve generation procedure respectively 

can be used to sabotage public standard. Further, the Agence Nationale de la Securite 

des Systemes d’Information (ANSSI) standard recommended FRP256V1 elliptic 

curve which has low twist security of order 279 which means that there are 279 elliptic 

curve additions required to mount the twist attack to get user’s secret key [2]. Also, 

there is no reasonably sufficient documentation available for this curve. Furthermore, 

B e r n s t e i n  et. al. [2] demonstrated computation of the BADA55-R-256 curve 

which meets the public security criteria for ECDLP security and ECC security but 

still is a manipulated curve. Finally, we understand that computation of an elliptic 

curve can be manipulated by any deterministic method of computation of the curve 

parameters and variety of reasons can be cited with selection of the curve parameters 

adhering to some public standard of proposer’s convenience.  

Summarizing, the problems pertained with the trust consists of one or more 

issue(s) from the following: 

 No sufficient explanation on the RNG used for seed or randomness 

generation.  

 Intentional variation in standard elliptic curve generation procedure 

recommended by the curve proposing agencies by themselves. 

 Intentional hiding of information about the curve parameters even providing 

detailed documentations on curve generation process of standard elliptic curves. 

 Sabotaged standards.  

 Root problem of the lack of trust is the deterministic approach adopted by all 

the agencies in standardizing their proposed elliptic curves. 

With the above prevalent issues, an obvious question arises that “because you 

can explain, does not mean that you will explain everything”. We answer this 

question by introducing a set of three important security evaluation criteria called 

“trusted security acceptance criteria” for computation of suitable elliptic curves for 

cryptography which can be additionally invoked along with the ECDLP security and 

ECC security criteria to mitigate the trust issues in curve generation process to a great 

extent.  

3. Trusted security acceptance criteria for elliptic curves for 

cryptography 

Standard elliptic curves followed deterministic approach in computation of their 

coefficients and primes. Most of them used pre-studied values whose credibility and 

trustworthiness are doubted [2, 11-13] due to origination of the curve parameters and 

lack of proof for the randomness used in the curve generation process such as use of 

computationally convenient primes like powers of two, etc. Hence, there is a need to 

introduce additional security acceptability criteria to invoke trust in the computation 

of elliptic curve parameters for use and in standardization. In this paper, a set of three 
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new security evaluation criteria of cryptographically safe elliptic curve called the 

“trusted security acceptance criteria” for elliptic curve used for cryptography is 

introduced which is as follows: 
a. T1: User trusted Random Number Generator (RNG) to provide 

(pseudo)randomness. 

A RNG should be selected preferably by its user for assuring that user is fully 

aware of the technicality of the RNG and hence he/she trusts it completely. Apart 

from the trust aspect, the RNG should adhere to the following properties as indicated 

by K o c  [14] and S c h n e i e r  [15]: 

 The bitstream generated by a PseudoRandom Number Generator (PRNG) 

or Cryptographically Secure PRNG (CSPRNG) should be statistically sound, i.e., it 

has a large period. 

 The bitstream generated should be unpredictable, i.e., the RNG should be 

forward secure as well as backward secure. 

The curve parameters should be chosen randomly in a trustworthy way to avoid 

any uneasy explanation about the generation of the curve constants and hence, the 

requirement of user trusted and strong RNG is critical in trust building. 

b. T2: No pre-studied values of the curve coefficients and prime. 

The well-known constants are accepted by everyone without hesitation but their 

non-exposed property may be used for construction of vulnerable elliptic curves. 

BADA55-VPR-224 is such an example which used cos(1) constant [2]. The elliptic 

curve coefficients 𝑎, 𝑏 must not use any pre-studied values to avoid the scope of 

manipulation. Moreover, the prime field order p can only have special structure if it 

is randomly selected with suitable size (normally ≥224) bits for fast reduction on the 

elliptic curve. 

c. T3: Reproducibility of new elliptic curves of nearly the same cryptographic 

strength and suitability using the same method and apparatus. 

One must get new elliptic curves of nearly the same cryptographic strength using 

the same method and apparatus. We consider Pollard’s rho values of the elliptic 

curves and their respective twisted curves as the measurement of their cryptographic 

strengths which is the number of elliptic curve point additions to solve the ECDLP. 

Generally, 0.886√𝑛 elliptic curve point additions are required to break the ECDLP 

where n is the order of the base point [1-2]. 

4. Evaluation of standard elliptic curves from trust perspective 

Standard Short Weierstrass elliptic curves claimed to have followed rigorous ECDLP 

security validations and sometime ECC security validations together to arrive at the 

curve parameters for recommendation. They claimed that they used seeds which were 

randomly generated and some of them adhered to verifiably random way of obtaining 

the curve parameters. Table 1 evaluates standard elliptic curves from trust 

perspectives for use in cryptography. 
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Table 1. Evaluation of the standard Short Weierstrass elliptic curves from trust perspective 

Elliptic curve 
Trusted Security  

(T1, T2, T3) 
Remarks 

NIST P224r1 None 
Deterministic approach with pre-studied coefficients  

and prime [3] 

NIST P256r1 None 
Deterministic approach with pre-studied coefficients  

and prime [3] 

NIST P384r1 None 
Deterministic approach with pre-studied coefficients  

and prime [3] 

secp224r1 None 
Special structure of prime p (Mersenne prime) and  

insufficient documentation [5] 

secp256r1 None Special structure of prime p (Mersenne prime) and  

insufficient documentation [5] 

secp384r1 None Special structure of prime p (Mersenne prime) and  

insufficient documentation [5] 

secp521r1 None Special structure of prime p (Mersenne prime) and  

insufficient documentation [5] 

ANSSI 

FRP256v1  

curve 

None 
Pre-studied value of coefficient a and insufficient  

documentation [2, 16] 

Brainpool T2 
None of the Brainpool curves are generated by their  

own stipulated procedure [2, 4] 

NUMS curves None 
Deterministic approach with pre-studied coefficients 

and prime [2, 17] 

It is imperative to note from Table 1 that, there is an ardent need for new elliptic 

curves which are cryptographically secure as well as trusted. Following section will 

focus on the generation details of trusted Short Weierstrass elliptic curves to be used 

for cryptography. 

5. Cryptographically secure elliptic curve generation using the proposed 

trusted security acceptance criteria 

Short Weierstrass elliptic curves have a unique property that it can only exhibit prime 

order [18] in order to get maximum security of ECDLP without compromising any 

bit of security [19]. However, elliptic curves of cryptographic interest must get 

validated against their ECDLP security, ECC security as well as trusted security. It is 

now observed from previous sections that random approach of computing safe elliptic 

curves is the only way to achieve all of these three security notions. A standard 

procedure is shown as the flow chart in Fig. 1 for a bird’s eye view of generation of 

the trusted Short Weierstrass elliptic curves intended for cryptography. 
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Fig. 1. Flow chart of generation of cryptographically secure and trusted  

Short Weierstrass elliptic curve 

An entropy harvester which is used to obtain sufficient number of true random 

bits from various physical noise sources like device randomness, disk randomness, 

Human Interface Device (HID) (key board, mouse, etc.), interrupt randomness, etc., 

is used to seed a user trusted (means user is aware of the technicality of the RNG and 

associated security risks completely) PRNG/CSPRNG as depicted in Fig. 1. The user 

trusted PRNG supplies desired number of (pseudo)random bits to generate suitable 

p, 𝑎 and b. An elliptic curve 𝔼 is constructed over prime field p (which is fixed in 

our case, but one can choose other way also to generate suitable elliptic curves by 

fixing the curve order N randomly, etc.) with coefficients 𝑎 and b. Now 𝔼 is subjected 

to ECDLP security validation failing which it will regenerate the coefficients 𝑎 and 

b until it gets suitable curve coefficients for 𝔼 to be ECDLP secure. A base point G is 

also selected randomly over elliptic curve 𝔼 and gets verified for its prime order for 

acceptability. Once 𝔼 is validated for ECDLP security, it is subjected to security 

validation from ECC security perspective which expects 𝔼 to have its twist 𝔼’ also to 

be as secure as 𝔼 is. In case of the fact that ECC security validation does not pass, 

one needs to regenerate the prime p and subsequently coefficients 𝑎 and b to get 

ECDLP security and ECC security successfully validated. Finally, the ECDLP secure 

and ECC secure 𝔼 is verified with the proposed trusted security acceptance criteria 

(indicated in yellow decision box in Fig. 1) failing which the process is re-initiated 

with deriving prime p and coefficients 𝑎 and b as fresh until one gets an acceptable 

𝔼. Lastly, 𝔼 and G are returned as the output. The elliptic curve generation procedure 

is detailed in Algorithm 1. 

5.1. Assumptions 

Following assumptions were made considered while computing the curve parameters 

using Algorithm 1: 

i. User trusted cryptographically strong RNG is available to provide 

randomness required in computation of secure elliptic curve.  
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ii. Sufficient entropy is available in the system. Generally, more than 2000 bits 

of entropy is expected to be available with the system to seed the RNG sufficiently 

to uninterruptedly generate elliptic curves up to over 384 bit prime field sizes. Also, 

the operating system is not used for the first time after installation as sufficient 

entropy will not be available with the machine. 

iii. Compilers, CPU Processors, SAGE and other participating modules in the 

curve parameter generation are trusted. 

5.2. Standard elliptic curve generation procedure including trusted security 

acceptance criteria 

Algorithm 1 shows the standard procedure along with the proposed trusted security 

acceptance criteria as discussed in Fig. 1 with detailed security validations of elliptic 

curve from ECDLP security, ECC security and trusted security perspectives. 

Algorithm 1. Generation of trusted cryptographically safe Short Weierstrass 

elliptic curve 

Input: Prime field size (l) in bits and randomness from user trusted RNG 

Output: Trusted cryptographically safe elliptic curve 𝔼 over prime field p with 

base point Gx, y 
Step 1. Input prime field size l in bits 

Step 2. Obtain seed S as true random bits of desired length from entropy 

harvester 

Step 3. Set seed S for user trusted RNG 

Step 4. Select randomly prime p such that p ≡ 3 mod 4 // for fast arithmetic 

on 𝔼 

Step 5. Choose randomly the coefficient 𝑎 of 𝔼 

Step 6. Choose randomly the coefficient b of 𝔼 

Step 7. Construct the elliptic curve 𝔼 with curve parameters p, 𝑎 and b 

Step 8. Enforce ECDLP security validation: 

Step 8.1. If discriminant △𝔼 = 4𝑎 3 + 27𝑏 2 ≠ 0 // 𝔼 must be non-singular 

Step 8.2. Else go to Step 5 

Step 8.3. If curve order N is prime 

Step 8.4. Else go to Step 5 

Step 8.5. If 𝔼 is non-anomalous case // N ≠ p 

Step 8.6. Else go to Step 5 

Step 8.7. If 𝔼 is not supersingular curve 

Step 8.8. Else go to Step 5 

Step 8.9. Generate randomly the base point Gx, y  on 𝔼 

Step 8.10. Validate if base point order n is prime 

Step 8.11. Else go to Step 8.9 

Step 8.12. If cofactor is 1 

Step 8.13. Else go to Step 5 

Step 8.14. If Pollard’s rho value < 2100 

Step 8.15. Else go to Step 5 

Step 8.16. If embedding degree k ≥ (N – 1)/100 // guarantees intractability 

of DLP 
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Step 8.17. Else go to Step 5 

Step 9. Enforce ECC security validation: (If 𝔼 is twist secure, i.e., all validations 

in Step 8 applied to 𝔼΄) 
Step 9.1. If twist discriminant △𝔼΄ of 𝔼 = 4𝑎 3 + 27𝑏 2 ≠ 0  

Step 9.2. Else go to Step 4 

Step 9.3. If order of 𝔼΄, N is prime 

Step 9.4. Else go to Step 4 

Step 9.5. If 𝔼΄ is non-anomalous case 

Step 9.6. Else go to Step 4 

Step 9.7. If 𝔼΄ is not supersingular curve 

Step 9.8. Else go to Step 4 

Step 9.9. Generate randomly the base point G΄x, y  on 𝔼΄ 
Step 9.10. Validate if base point order n΄ is prime 

Step 9.11. Else go to Step 9.9 

Step 9.12. If cofactor of 𝔼΄ is 1 

Step 9.13. Else go to Step 4 

Step 9.14. If Pollard’s rho value of 𝔼΄ < 2100 

Step 9.15. Else go to Step 4 

Step 9.16. If embedding degree k ΄ ≥ (N ΄– 1)/100  
Step 9.17. Else go to Step 4 

Step 10. Enforce trusted security validation 

Step 10.1. Validate if RNG is trusted // Proposed validation criterion T1 

Step 10.2. Else go to Step 2 

Step 10.3. Validate if coefficients a and b have no pre-studied value // 

Proposed validation criterion T2 

Step 10.4. Else go to Step 2 

Step 10.5. Validate if elliptic curves with similar cryptographic strength can 

be generated with the same method and apparatus // Proposed validation criterion T3 

Step 10.6. Else go to Step 2 

Step 11. Return 𝔼: {p, 𝑎, b} and Gx, y 

Algorithm 1 takes elliptic curve field size (l) in bits as the input in Step 1. A 

seed S is extracted from the entropy harvester in Step 2. In our case, we used 

/dev/random as the PRNG which takes true random bits through a Hardware based 

RNG (HRNG) that extracts entropy directly. We used /dev/random PRNG available 

with Linux Fedora kernel Version 4.13.9 for obtaining randomness in desired bit 

lengths. The HRNG uses various noise sources like input randomness, device 

randomness, disk randomness, HID (key board, mouse, etc.), interrupt randomness 

to provide random bits as the seed S to /dev/random in Step 3. S is used to initialize 

/dev/random to provide randomness to the curve generation process as and when 

required. As the curve generation program needs a user trusted secure RNG, we leave 

it to the user to select his/her trusted RNG for fulfilling the randomness requirements. 

Here our focus is to recommend users to use their own trusted RNGs to avoid any 

possible manipulation in curve computation and we demonstrate how a trusted Short 

Weierstrass elliptic curve can be generated for cryptography. In Step 4, the prime p 

of user desired l bit length is randomly selected and subsequently, checked that it 
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should hold the form of p ≡ 3 mod 4 for fast reduction, i.e., fast elliptic curve 

arithmetic on 𝔼. It is noted that p is first chosen randomly and then verified for this 

form to avoid any pre-studied value. The curve coefficients 𝑎 and b are then chosen 

randomly in Step 5 and Step 6 respectively using different seeds, i.e., 𝑎 and b have 

independent initializations. Now, an elliptic curve 𝔼 is constructed with p, 𝑎  and b 

in Step 7.  

The ECDLP security validations are enforced in Step 8 which includes non-

singularity in Step 8.1, prime curve order in Step 8.3, non-anomalous property in  

Step 8.5, non-supersingularity in Step 8.7, random selection of base point in Step 8.8 

with prime base point order in Step 8.9, small cofactor as 1 in Step 8.11, high 

Pollard’s rho in Step 8.14 and high embedding degree in Step 8.16 respectively. Non-

singularity of elliptic curve confirms that curve is smooth and indeed an elliptic curve 

[20-22]. Prime order elliptic curve with order N is resistant to Pohlig-Hellman attack 

when N ≥ 2160 [23]. Non-anomalous case of elliptic curve, i.e., when curve order  
N ≠ p, confirms that curve is resistant to pairing based attacks [23]. Non-

supersingularity of elliptic curve prevents the ECDLP from the Menezes, Okamoto 

and Vanstone (MOV) reduction attack with sub-exponential complexity which takes 

place when the conditions that p divides trace t  or/and t 2 = 0, p, 2p, 3p or 4p are 
met [24-25]. The cofactor value determines the cryptographic security and gives 

maximum security when selected as 1 [23, 25]. The Pollard’s rho value of elliptic 

curve determines the number of elliptic curve point additions to find a collision. This 

check is very important as a parallelized Pollard-rho on 𝑟 processors can solve 

ECDLP in (√𝜋𝑛)/ √2𝑟 steps [23, 26]. The embedding degree of elliptic curve  

k ≥ 20 is considered sufficient to guarantee intractability of the discrete logarithm 

problem in the extension field [7]. 

The ECC security validations are enforced in Step 9 of Algorithm 1 in which it 

looks for the twist of the selected elliptic curve to be secure against all the ECDLP 

security validations as described above. The twist security of elliptic curve prevents 

from any implementation flaws or information leakage about the user’s secret  

key [1]. 

The trusted security validations are carried out in Step 10 to ensure the method 

of generation of elliptic curve is trusted in terms of the randomness used in the curve 

generation process and the curve parameters are drawn randomly. It also ensures that 

the procedure described in Algorithm 1 can be used to obtain Short Weierstrass 

elliptic curves of nearly the same cryptographic strength each time on its execution.  

Finally, a trusted and secure elliptic curve 𝔼: {p, 𝑎, b} and base point Gx, y is 

returned in Step 11.  

6. Demonstration of trusted Short Weierstrass elliptic curves 

We used Algorithm 1 to derive two trusted Short Weierstrass elliptic curves KG256r1 

and KG384r1 defined over 256 bit and 384 bit respectively for demonstration. The 

details of the proposed KG256r1 and KG384r1 is shown in Table 2 and Table 3, 

respectively. These elliptic curves have undergone security analysis in Section 7 to 

ensure that the elliptic curves generated using Algorithm 1 have nearly the same 
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cryptographic strength in terms of Pollard’s rho complexity and other criteria like big 

discriminant, embedding degree, trace, etc., while being compliant with the three 

security notions, i.e., ECDLP security, ECC security and trusted security.  

Table 2. The proposed KG256r1 elliptic curve 

KG256r1 

p 105659876450476807015340827963890761976980048986351025435035631207814085532543 

𝑎 57780130698115176583488499171344771088898507337873238590400955371129685138826 

b 102451950841073747949316796495896937960702115486975363798323596797327090813462 

N 105659876450476807015340827963890761976544313325663770762399235394744121359871 

G 
(5385166333114646497810998074612415985821986371151485954586014078688791960064, 

88440166531789946723126083546750633179866039092883764784041611065547926159080) 

h 1 (smallest cofactor) 

Table 3. The proposed KG384r1 elliptic curve 

KG384r1 

p 308504936566801493400799664217561138887972017059009663818402880868888024111765

87972020735012523469267564505420764051 

𝑎 268937684885793435941799884521325825414071666675195106719690165313905189264848

5257788827989185822359193013251735562 

b 282679914441081045194064979674986566053141057529253438397674572433074909758239

5451638354661270280127278365677483939 

N 308504936566801493400799664217561138887972017059009663818414387546839003900776

17323565554872996073979103765917522731 

G (263821674697227290786867915392591910846306526222054061903021467945234141274511

83423914120811487055055064792875345576, 

202628051316606152195895866462280785015451818341996421511941020893449272958898

57293563989127020260020122002404045204) 

h 1 (smallest cofactor) 

Resources used. The curve generation programme was written in Python language 

using Python Version 2 and Python Version 3.6 compilers and ran on a desktop server 

having 2*Intel® Xeon® E5-2620v4 processor with 32 CPU cores and 2.1 GHz clock 

frequency and 128 GB DDR4 memory. The desktop server was equipped with Linux 

Fedora operating system (kernel Version 4.13.9) and SAGE Version 8.1 was used for 

number theory arithmetic support for the curve generation program.  

7. Security analysis of the proposed KG256r1 and KG384r1 elliptic 

curves 

7.1. Analysis of the ECDLP and ECC security of the proposed KG256r1 and 

KG384r1 elliptic curves 

We used SafeCurves verification script [1] to verify ECDLP security and ECC 

security of the elliptic curve parameters. Algorithm 2 describes the SafeCurves 

verification script which was used to verify the KG256r1 and KG384r1 elliptic curves 

against its ECDLP and ECC security. 
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Algorithm 2. Verification of the proposed elliptic curve parameters for 

cryptographic security 

Input: Elliptic curve parameters p, 𝑎, b, N, Gx, y  

Output: Safe/Weak Elliptic Curve  

Step 1. Verify if shape of elliptic curve is Short Weierstrass 

Step 2. Else return “Not Short Weierstrass elliptic curve” 

Step 3. Verify if p is prime 

Step 4. Else return “Weak elliptic curve” 

Step 5. Verify if discriminant < –2100 

Step 6. Else return “Weak elliptic curve” 

Step 7. Verify if base point order is prime  

Step 8. Else return “Weak elliptic curve” 

Step 9. Verify if GCD (Curve order, base point order)=1 

Step 10. Else return “Weak elliptic curve” 

Step 11. Verify if base point is on curve 

Step 12. Else return “Incorrect base point” 

Step 13. Verify if co-factor is 1 or 2 or 4 

Step 14. Else return “Weak elliptic curve” 

Step 15. Verify if p+1–t is a multiple of base point order n 

Step 16. Else return “Weak elliptic curve” 

Step 17. Verify if embedding degree of curve ≥ (N –1)/100 

Step 18. Else return “Weak elliptic curve” 

Step 19. Verify if elliptic curve is MOV safe 

Step 20. Else return “Weak elliptic curve” 

Step 21. Verify if base point order of twist != p 

Step 22. Else return “Weak elliptic curve” 

Step 23. Verify if twist equation is elliptic 

Step 24. Else return “Weak elliptic curve” 

Step 25. Verify if twist shape is Short Weierstrass 

Step 26. Else return “Weak elliptic curve” 

Step 27. Verify co-factor of twist is 1 or 2 or 4 

Step 28. Else return “Weak elliptic curve” 

Step 29. Verify if GCD (base point order of twist, p) = 1 
Step 30. Else return “Weak elliptic curve” 

Step 31. Verify if Pollard’s rho value of elliptic curve ≥ 2100 
Step 32. Else return “Weak elliptic curve” 

Step 33. Verify if rigidity is True 

Step 34. Else return “Weak elliptic curve” 

Step 35. Verify if twist rho value ≥ 2100 

Step 36. Else return “Weak elliptic curve” 

Step 37. Verify if Joint Rho ≥ 2100 

Step 38. Else return “Weak elliptic curve” 

Step 39. Otherwise, return “Cryptographically safe elliptic curve” 
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It is obvious that ECDLP security is a critical security requirement for qualifying 

any elliptic curve for cryptography. However, SafeCurves [1] proposed ECC security 

as another security notion for evaluating elliptic curves to ensure that the ECC 

implementations do not reveal or leak information about user’s secret key. For Short 

Weierstrass elliptic curves, a twist secure elliptic curve can prevent ECC 

implementation flaws [1]. The elliptic curve 𝔼 is twist secure if its twist 𝔼΄ is secure 

which means that all the ECDLP security validations are also successfully compliant 

by 𝔼΄ [1].  

Both KG256r1 and KG384r1 elliptic curves qualified all the ECDLP and ECC 

security verifications executed in Algorithm 2. The field orders p and curve orders N 

of both elliptic curves were verified deterministically for being a prime number using 

Pocklington’s theorem [1]. We avoided any special structure of prime or pre-studied 

value to prevent from any vulnerability. For example, NIST P-224 prime, i.e.,  

p = 2224 – 296 +1 was used by BADA55-VPR-224 and standard ANSSI prime  
0xF1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C03 

was used by BADA55-R-256 curve, respectively, to demonstrate vulnerable curves 

to the community [2]. Moreover, the discriminants, embedding degrees, cofactor 

values and Pollard’s rho values of both curves and their respective twist curves were 

verified successfully possessing more than their expected threshold values. These 

curves were also verified to confirm that they are not a case of anomalous and 

supersingular ones as discussed in Section 5.2 and thus, they are suitable for 

cryptography. Table 4 and Table 5 shows these values possessed by both KG256r1 

and KG384r1 elliptic curves. 

7.2. Analysis of trusted security of KG256r1 and KG384r1 elliptic curves  

7.2.1. Validation of Trusted Security Criteria T1 

We trust and used /dev/random PRNG for curve generation procedure due to the fact 

that it has faced a lot of successful cryptanalysis [27-29] and sustained long with the 

Linux kernel since 1994 [28]. Moreover, the latest versions (Version 4.8 or later) of 

/dev/random have overcome [30] the criticism of having possible entropy attacks [2]. 

We used Linux Fedora kernel Version 4.13.9 and selected /dev/random as the PRNG 

(sometimes /dev/random is referred as True Random Number Generator (TRNG) 

because it has the direct interface with the HRNG). We are actually making a point 

here that choose your trusted RNG and own the risk associated with your selection.  

7.2.2. Validation of Trusted Security Criteria T2 

To validate the T2 criterion, no pre-studied values of the curve coefficients 𝑎 and b 

are used as they have been chosen randomly and independently. The prime numbers 

p in both proposed curves KG256r1 and KG384r1 are selected randomly first and 

then chosen with a form of p ≡ 3 mod 4 for performance tuning and there is no 

evidence of these primes p and coefficients 𝑎 and b reported in past as the pre-studied 

ones. 
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Table 4. Verification result of the ECDLP security of the proposed elliptic curves 

Elliptic 

curve 

𝔼 

Offered  
secu-

rity 

level 

Rho  
comp-

lexity 

(ρ-value) 

Embedding 

degree (k) 
Trace (t) 

Discriminant 

(D) 
Curve order 

(N) 

Co-

factor 

(h) 

Non- 

anoma- 
lous? 

Non-

supersin- 
gular? 

KG256r1 128 127.8 

1056598764504

7680701534082
7963890761976

5443133256637

7076239923539
474412135987 

4357356

6068725
4672636

3958130

6996417
2673 

–2327739398073 

48890850436587
53644854204373

02456081553631

25035103075438
982165243 

105659876450

476807015340

827963890761
976544313325

663770762399

235394744121
359871  

(N > 2256) 

1 Yes Yes 

KG384r1 192 191.6 

3085049365668

0149340079966

4217561138887
9720170590096

6381841438754

6839003900776
1732356555487

2996073979103

76591752273 

–115066 

7795097

9789010
2935154

4819860

4726047
1153926

0496758

679 

–1220779382520 

44953003302331

47726211104554
02982992783892

89312797446442

90302463031293
45660706643594

39115013756521

231163 

308504936566

801493400799

664217561138

887972017059
009663818414

387546839003

900776173235
655548729960

739791037659

17522731 
(N > 2384) 

1 Yes Yes 

 
Table 5. Verification result of the ECC security of the proposed elliptic curves 

Twist of  

elliptic 

curve 𝔼’ 

Offered 
security 

level 

in bits 

Rho 

complexity 
(ρ΄-value) 

Embedding degree (k΄) 
Curve order 

(N΄) 

Co-

factor 

(h΄) 

Non- 
ano-

ma- 

lous? 

Non- 
super- 

singu- 

lar? 

KG256r1 128 127.8 

44024948521032002923
05867831828781749058

99102695992833781966

7792536835404384 

1056598764504768070153

4082796389076197741578

4647038280107672027020
884049705217 

(N΄ > 2256) 

1 Yes Yes 

KG384r1 192 191.6 

30850493656680149340

07996642175611388879
72017059009663818391

37419093704432275558

62047591515205086455
6025244924005372 

3085049365668014934007
9966421756113888797201

7059009663818391374190

9370443227555862047591
5152050864556025244924

005373 

(N΄ > 2384) 

1 Yes Yes 

7.2.3. Validation of Trusted Security Criteria T3 

To validate the T3 criterion, we conducted an experiment by taking three trials of 

executing Algorithm 1 under the same operational environment with same method 

and apparatus to retrieve three independent elliptic curves of the same prime lengths. 

Subsequently, we examined if they exhibit nearly the same cryptographic strength 

measured in terms of Pollard’s rho value for the curves and their respective twists as 

discussed in Section 5.2. Table 6 shows the results obtained from this experiment 

which proves the successful validation of T3 criterion by the proposed KG256r1 and 

KG384r1 elliptic curves. 
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Table 6. Validation of Trusted Security criteria of three new elliptic curves: T3 

Trial 

number 
Elliptic curve parameters 

Pollard’s rho 

value/Twist 

rho value 

1 

p: 87052253706622316800662279631344302713612816742118516 

445715106163825624186987 

Rho: 2127.6 

 

Twist rho: 

2127.6 

 

𝑎: 1746151368048811020218968006546743335598218731380998430 

8530183605390654503146 

b: 474236453447930708769624430407166643517516693153699581 

1081067226406616322940 

Gx,y: (3456244486426344779228988166678236819980891275183166 

3386444135083641970670103,  

4497371709820032463278128673540807706788485141690500194089

5476727480258436423) 

2 

p: 83857931886285555818472058950522827195247211639379970 

952195176566538052148959 

Rho: 2127.6 

 

Twist rho: 

2127.6 

 

𝑎: 152220314103590540280417930887083748851745810070536720 

26416069700422500171995 

b: 757236637128308681589266033304884863127887549151635841 

16380630010872983931491 

Gx,y: (79991145613299850861660922601873046504314421039422310 

330231620709939495217575, 

7404893030059505468635576438059973071448465131501496655567

3263252180995491420) 

3 

p: 115455173683647336766695198555386616062185957400074700 

902465398650769617153383 

Rho: 2127.8 

 

Twist rho: 

2127.8 

𝑎: 8924708959453186116722190782467936189647778182777134965 

4639873760799894221702 

b: 474560808384385980207222031163435824555796019933240946 

11207713288744264819618 

Gx,y: (8738097286190894292660189281220971403853448243215 

6502027178728221855540030831, 

1090102247036102758077769996625873990104156057568922076505

40783549332069147687) 

8. Results and discussion 

The proposed elliptic curves KG256r1 and KG384r1 are compared with other similar 

standard Short Weierstrass elliptic curves like NIST, SEC2, Brainpool, FRP256v1 

and NUMS curves from ECDLP security, ECC security and trusted security 

perspectives in this section. 

8.1. Comparison of the proposed KG256r1 and KG384r1 elliptic curves with standard 

elliptic curves from ECDLP and ECC security perspectives 

It is imperative to note from Table 7 that none of the standard elliptic curves have 

passed all the SafeCurves verification criteria [1] of ECDLP security and ECC 

security. However, Brainpool recommended elliptic curves have deviated in their 

own stipulated procedure of generation [2] and hence cannot be trusted easily. Also, 

their verifiably random generation method is under question as such thing can be 
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intentionally implanted to manipulate the standard as demonstrated by Bernstein et. 

al. through BADA55 curves [2]. 

Table 7. Comparison of ECDLP Security and ECC Security of the standard elliptic curves and the 

proposed elliptic curves [1] 

Verification 

criterion 
Details Supported by the curve 

SafeField Prime of the forms 1 mod 4 and 3 mod 4 A, B, C, D1, KG256r1, KG384r1 

safeEquation 

Elliptic curve over prime field possessing 

either Short Weierstrass or Montgomery or 

Edward equation 

A, B, C, D1, KG256r1, KG384r1 

safeBase Possessing prime order of base point A, B, C, D1, KG256r1, KG384r1 

safeRho Rho value must be ≥ 2100 A, B, C, D1, KG256r1, KG384r1 

safeTransfer 

Resistant to Smart-ASS attack (additive 

transfer) and MOV attack (multiplicative 

transfer)  

A, B, C, D1, KG256r1, 

KG384r1 

safeDiscriminant 
Absolute value of complex-multiplication 

field discriminant |D | > 2100 
A, B, D1, KG256r1, KG384r1 

safeRigid 
Allows only fully rigid and somewhat rigid 

curves 
B, C, KG256r1, KG384r1 

safeTwist 
Above security requirements for twist of the 

curve as well 
C, KG256r1, KG384r1 

safeCurve 
Elliptic curve is safe if all the above criteria 

are met 
KG256r1, KG384r1 

Note: A = NIST recommended elliptic curves, B = Brainpool recommended elliptic curves, C = SEC2 

elliptic curves, D1 = ANSSI recommended elliptic curve FRP256v1. 

8.2. Comparison of cryptographic security of the proposed KG256r1 and KG384r1 

with standard elliptic curves 

Table 8. Comparative security evaluation of the proposed elliptic curves with the standard elliptic curves 

Elliptic curve 
ECDLP 

security 

ECC 

security 

Trusted 

security 

(T1, T2, T3) 

Remarks 

NIST P224r1 Yes No No 
No RNG description. Pre-studied value of coefficient 𝑎 and 

special structure of prime p in Mersenne form. Weak twist 
security [3] 

NIST P256r1 Yes No No 
No RNG description. Pre-studied value of coefficient 𝑎 and 

special structure of prime p in Mersenne form. Weak twist 
security [3] 

NIST P384r1 Yes No No 
No RNG description. Pre-studied value of coefficient 𝑎 and 

special structure of prime p in Mersenne form. Weak twist 
security [3] 

SEC2 prime 

curves 
Yes No No 

Special structure of prime p (Mersenne prime) and insufficient 
documentation [5] 

Brainpool 

curves 
Yes No No 

None of the Brainpool curves are generated by their own 

stipulated procedure [2] 

ANSSI 
FRP256v1 

curve 

Yes No No 
Pre-studied value of coefficient a and insufficient 
documentation [2] 

NUMS curve Yes No No 
Deterministic approach with pre-studied coefficients and prime 

[18] 

KG256r1 Yes Yes Yes 
Randomly generated curve parameters with no pre-studied 

value. User trusted RNG to minimize the risk of manipulation 

KG384r1 Yes Yes Yes 
Randomly generated curve parameters with no pre-studied 
value. User trusted RNG to minimize the risk of manipulation 
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The proposed elliptic curves KG256r1 and KG384r1 are compared with 

standard Short Weierstrass elliptic curves from overall security of ECDLP, ECC and 

trust perspectives in Table 8. 

We observe from Table 8 that only the proposed KG256r1 and KG384r1 elliptic 

curves are secure from ECDLP, ECC and trust perspectives and standard elliptic 

curves have met the ECDLP security validations only. 

8.3. Performance of the proposed elliptic curves 

The proposed KG256r1 and KG384r1 elliptic curves demonstrated with 

cryptographic operations like key pair generation, signing and verification on desktop 

machine having x86_64 with Intel(R) Core(TM) i5-10400 CPU with 2.90GHz 

processor, 16GB DDR4 memory using GNU/Linux version 5.4.0-58-generic and 

Python Version 3.8.5 software library. Table 9 shows the performance metrics of the 

proposed elliptic curves in cryptographic implementations such as key pair 

generation, signing and verification. The values indicated are the average of 10,000 

trials’ outcomes. 

Table 9. Performance of the proposed elliptic curves in cryptographic implementations 

Proposed 

elliptic 

curve 

Key pair generation Signing  Verification  

Time 

elapsed 

(in s)  

Number of  

CPU clock  

cycles used 

Time 

elapsed 

(in s) 

Number of  

CPU clock 

cycles used 

Time 

elapsed  

(in s) 

Number of  

CPU clock 

cycles used 

KG256r1 0.021468 62,260,026 0.0215207 62,410,198 0.0426380 123,650,476 

KG384r1 0.035866 104,012,382 0.035838 103,931,139 0.106852 309,871,025 

9. Conclusion and future directions 

Three new trusted security acceptance criteria T1, T2, T3 are proposed to compute 

cryptographically safe elliptic curves over the prime fields. These trusted security 

acceptance criteria or simply, the trusted security criteria are invoked along with the 

ECDLP security and ECC security in order to minimize the scope of manipulation in 

the curve parameters due to some (intentionally) non-disclosed property or methods 

exhibited by their proposers and sabotaged standards. We also discussed in detail that 

only the randomly drawn curve parameters will have the trust factor where a user 

trusted strong RNG plays a critical role. The choice of selection of RNG is left with 

the users who will own the risks associated with his chosen RNG to generate the seed 

and randomness for curve parameters generation requirements. We also computed 

two new elliptic curves called KG256r1 and KG384r1 after validating them through 

the newly proposed trusted security acceptance criteria along with the ECDLP and 

ECC security validations. Furthermore, we experimentally proved that if elliptic 

curves are generated keeping these three security notions into consideration then they 

would have nearly the same cryptographic strength in terms of Pollard’s rho 
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complexity and trustworthiness or suitability. Hence, it is inferred that one must 

verify trusted security acceptance criteria for randomly generated elliptic curves in 

addition to ECDLP and ECC security validations for secure implementation of 

elliptic curve based cryptosystems. 

The proposed argument of trusted security and demonstrated KG256r1 and 

KG384r1 elliptic curves gives the feasibility of future standardization of such 

randomly generated elliptic curves for trusted cryptographic implementations. 
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