On Evaluation and Computation of Novel
Short Weierstrass Elliptic Curves for
Random Number Generation in Kernel

Applications

A thesis submitted to Bharathidasan University in fulfillment of the

thesis requirement for the degree of

DOCTOR OF PHILOSOPHY
in
COMPUTER SCIENCE
by
Kunal Abhishek

[Ref. No. 5990/Ph.D.K3/Computer Science/Part Time/ July 2017]

Under the supervision of

Prof. (Dr.) E. George Dharma Prakash Raj

LTSS TF6T LIS M6V SN

Bharathidasan University
Tiruchirappalli — 620024, Tamilnadu, India

27 January, 2022






School of Computer Science, Engineering & Applications
Bharathidasan University
/7 Tiruchirappalli — 620024

Tamilnadu, India

Dr. E. George Dharma Prakash Raj
Associate Professor

CERTIFICATE

Certified that the work reported in this thesis entitled “On Evaluation
and Computation of Novel Short Weierstrass Elliptic Curves for Random
Number Generation in Kernel Applications” is based on the bonafide work
done by Mr. Kunal Abhishek under my guidance in the School of Computer
Science, Engineering & Applications, Bharathidasan University, Tiruchirappalli -
620 024, during the period 2017-2022 and has not been included in any other thesis

submitted previously for the award of any degree.

Tiruchirappalli - 620 024 [E. GEORGE DHARMA PRAKASH RAJ]
27 January, 2022 SUPERVISOR






Kunal Abhishek

Research Scholar

School of Computer Science, Engineering & Applications
Bharathidasan University

Tiruchirappalli — 620023

DECLARATION

Declared that the work presented in this thesis is based on the original work
done by me under the kind guidance of Dr. E. George Dharma Prakash Raj,
Associate Professor, School of Computer Science, Engineering & Applications,
Bharathidasan University, Tiruchirappalli - 620 024, during the period 2017-2022
and has not been included in any other thesis submitted previously for the award of

any degree.

Tiruchirappalli - 620 024 [KUNAL ABHISHEK]
27 January, 2022 RESEARCH SCHOLAR






Curiginal

Document Information

Analyzed document 01,Kunal Abhishek_PhD Thesis_INTRODUCTION AND SURVEY.pdf (D126350887)

Submitted 2022-01-28T03:59:00.0000000
Submitted by Dr.E.George Dharma Prakash Raj
Submitter email georgeprakashraj@yahoo.com
Similarity 9%

Analysis address georgeprakashraj.bdu@analysis.urkund.com

Sources included in the report

Bharathidasan University, Tiruchirappally / Kunal Rest Part of Thesis.pdf
SA Document Kunal Rest Part of Thesis.pdf (D125629229)

Submitted by: georgeprakashrajayahoo.com

Receiver: georgeprakashraj.bdu@analysis.urkund.com

Bharathidasan University, Tiruchirappally / Kunal Rest Part of Thesis.pdf
SA Document Kunal Rest Part of Thesis.pdf (D125630202)

Submitted by: georgeprakashrajayahoo.com

Receiver: georgeprakashraj.bdu@analysis.urkund.com

W URL: https://gabicast.com/zkz48rz/use-of-elliptic-curves-in-cryptography.html
Fetched: 2022-01-28T03:59:27.2370000

SA Final Thesis Manoj Ranjan Mishra Feb 2017.pdf
Document Final Thesis Manoj Ranjan Mishra Feb 2017.pdf (D30147404)

SA Elliptic Curves with Applications in Cryptography.pdf
Document Elliptic Curves with Applications in Cryptography.pdf (D53985275)

SA 2039373c.pdf
Document 2039373c.pdf (D18067019)

w URL: https://www.cse.iitk.ac.in/users/nitin/courses/WS2010-ref2.pdf
Fetched: 2019-10-19T20:21:43.3700000

1/28

oo
oo

oo
oo

oo
oo

oo
oo

oo
oo

oo
oo

12

24



Curiginal

Document Information

Analyzed document Kunal Rest Part of Thesis.pdf (D126352926)

Submitted 2022-01-28T04:38:00.0000000
Submitted by Dr.E.George Dharma Prakash Raj
Submitter email georgeprakashraj@yahoo.com
Similarity 7%

Analysis address georgeprakashraj.bdu@analysis.urkund.com

Sources included in the report

SA

SA

SA

SA

SA

SA

Bharathidasan University, Tiruchirappally / Introduction.pdf
Document Introduction.pdf (D125627662)

Submitted by: georgeprakashrajayahoo.com

Receiver: georgeprakashraj.bdu@analysis.urkund.com

Bharathidasan University, Tiruchirappally / Kunal Review of Literature.pdf
Document Kunal Review of Literature.pdf (D125628589)

Submitted by: georgeprakashrajayahoo.com

Receiver: georgeprakashraj.bdu@analysis.urkund.com

Bharathidasan University, Tiruchirappally / 01,Kunal Abhishek_PhD Thesis_INTRODUCTION
AND SURVEY.pdf

Document 01,Kunal Abhishek_PhD Thesis_INTRODUCTION AND SURVEY.pdf (D126350887)
Submitted by: georgeprakashrajayahoo.com

Receiver: georgeprakashraj.bdu@analysis.urkund.com

URL: https://sciendo.com/pdf/10.2478/cait-2021-0020
Fetched: 2022-01-28T04:40:03.0030000

Bharathidasan University, Tiruchirappally / KunalAbhishek_PhD Thesis_Final_27Jan2022.pdf
Document KunalAbhishek_PhD Thesis_Final_27Jan2022.pdf (D126270078)

Submitted by: bdulib@gmail.com

Receiver: bdulib.bdu@analysis.urkund.com

CPE-21-1177_Proof_hi.pdf
Document CPE-21-1177_Proof_hi.pdf (D112830945)

URL: https://yogyui.tistory.com/entry/R-%ED%9A%8C%EA%B7%80%EB%B6%84%EC%84%9D-
%EB%AA%AB%EB%8D%B8-%EC%84%B1%EB%8A%AS%ED%8C%O0%EB%8B%A8-RMSE-MAE-R-
square

Fetched: 2022-01-20T16:52:46.9470000

URL: https://amp.doubtnut.com/question-answer/a-sequence-b0blb2-is-defined-by-letting-b05-

and-bk4-bk-1-for-all-natural-number-k-show-that-bn5-4n-f-642543360/hindi
Fetched: 2022-01-15T16:24:43.4000000

2 Malik Asifa mythesis38.pdf
Document 2 Malik Asifa mythesis38.pdf (D40602364)

1/58

55 16

oo
oo 3

0E 22

oo
oo 3

oo
oo 4

oo
oo 2

oo
oo 3

oo
oo 1

oo
oo 2









Dedicated to my Master and Teachers..






Xiil

Contents
Preface xxi
Abstract xxiii
Acknowledgements XXVii
List of Publications XXxi
List of Figures xxxiii
List of Tables XXXV
List of Algorithms XXXVil
List of Symbols XXXiX
Acronyms xliii
1 Introduction 1
1.1 Publications from this chapter . . . . .. ... .......... 1

1.2 Scopeofthe Thesis . . . . ... ... ... .. ... .......
1.3 Objectivesof the Thesis . . . . . . ... ... ... .. ......

[, S \S]

1.4 Preliminaries . . . . . . . . . . o . e e e



Xiv

1.4.1  Short Weierstrass Equation of Elliptic Curve . . . . . .. 5
1.4.2  Elliptic Curve Discrete Logarithm Problem (ECDLP) . . . 5
1.43 Elliptic Curve GroupLaw . . . . ... ... ... .... 8
1.4.4  Point Counting on EllipticCurve . . . . . . .. ... ... 8
Hasse’s Theorem . . . . . .. ... ... .. ... .... 9
Shank’s Baby-Step-Giant-Step (BSGS) Algorithm 9
Naive Approach . . . . . ... ... ... ... ..... 9
Mestre’s Algorithm . . . . . . ... ..o 10
Schoof’s Algorithm . . . . . . ... ... ... ...... 10
Satoh’s Algorithm . . . . . ... ... ... ... ... 11
SEA (Schoof-Elkies-Atkin) Algorithm . . . . . . . . . .. 11
1.4.5 Random Number Generation . . . . . . ... ... .... 12
1.46 RNGRequirements . . . . .. .. ... .. ........ 13
1.4.7 Randomness for Kernel Applications . . . .. ... ... 14
1.5 Motivationof the Thesis . . . . . . . ... ... ... ...... 15
1.5.1 Motivation for New Trusted Elliptic Curves . . . . . . .. 15

1.5.2 Motivation for Computational Resource Estimation of
EllipticCurves . . . . . ... ... ... ... ... 16

1.5.3 Motivation for Designing new CSPRNG for Operating
System Kernels . . . . ... ... ............. 16
1.6 Organization of the Thesis . . . . ... ... ... ... ..... 16
Survey of Related Literature 19
2.1 Publications from this chapter . . . . . ... ... ... ... .. 20
2.2 Introduction . . . . . . ... 20
2.3 Computational Approaches of Elliptic Curves . . . . . . ... .. 22
2.3.1 Evolution of Elliptic Curves for Cryptography . . . . . . . 22

2.3.2  Chronology of Attacks on ECDLP and their Countermeasures 24



24
2.5
2.6
2.7

2.8

2.9

2.3.3 Approaches for Computation of Short Weierstrass Elliptic

Curves . . . . L
2.3.4  Evaluation of Deterministic Approach . . . . . . ... ..
2.3.5 Evaluation of Random Approach . . . . . ... ... ...
Selection Criteria of Short Weierstrass Elliptic Curves . . . . . . .
Verification Criteria of Standard Short Weierstrass Elliptic Curves
Approaches adopted by Agencies for Elliptic Curve Computation .
Review of Previous Elliptic Curves Computational Resource
Estimates . . . . . . . .. .. ...
2.7.1 Koblitz’s Approach to derive Estimates for searching

Elliptic Curve randomly over Fpn . . . . . . . . ... ..
2.7.2  Status of Elliptic Curve-based Cryptosystems in presence

of Quantum Computers . . . . . . . ... ... ... ...
Cryptographically Secure Random Number Generators for Kernel
Applications . . . . . ... L.
2.8.1 J/dev/(wrandom . . . . ... ... ... ... ... ...
282 Yarrow . ...
283 Fortuna . . ... ... ...

Summary . . ...

Problem Statements

3.1

Part I: Evaluation and Computation of Novel Short Weierstrass
EllipticCurves . . . . . . . . . . . . e
31.1 Problem 1. ... ..... .. ... ... .. ...,
312 Problem?2 . ... ... ... ... L
313 Problem3 . ... ... ... ... ... L.
3.1.4 Problem4 . ... ... ... ...
315 ProblemS. ... ... ... o

XV

26
27
32
36
39
41

43

43

45

46
46
47
47
48

51



XVvi

32

316 Problem6 . .. .. ... ... ... ... L. 54
Part II: Construction of a Novel CSPRNG Using Short Weierstrass

Elliptic Curves For Kernel Applications . . . . ... .. ... .. 55
32.1 Problem7 .. ... .. ... 55

Part I: Evaluation and Computation of Novel Short Weierstrass Elliptic

Curves 56

4 The Proposed Cryptographically Secure and Trusted Elliptic Curves

Over 256 bit and 384 bit Prime Fields 59
4.1 Publications from this chapter . . . . . ... ... ... ... .. 60
42 Introduction . . . . . . . . . ... 60
4.3 Discussion on Distrusted Standardized Elliptic Curves . . . . . . 62
4.4  Standard Elliptic Curves and Non-standard Elliptic Curves . . . . 64
4.5 Trusted Security Acceptance Criteria for Elliptic Curves for
Cryptography . . . . . . . . . . . . . 67
4.6 Evaluation of Standard Elliptic Curves from Trust Perspective . . 69
4.7 Cryptographically Secure Elliptic Curve Generation using the
Proposed Trusted Security Acceptance Criteria . . . . . . . . .. 70
477.1  Assumptions . . . . ... e 72
4.7.2  Standard Procedure for Elliptic Curve Generation including
Trusted Security Acceptance Criteria . . . . . . .. ... 74
4.7.3 Creation of Database of Trusted and Secure Elliptic Curves 76
4.8 Demonstration of Trusted Short Weierstrass Elliptic Curves . . . . 77
48.1 Resourcesused . . . ... .. .. ... ... 79
4.9 Security Analysis of the Proposed KG256r1 and KG384r1 Elliptic

CUrvVeS . . . . o e e 79



4.9.1 Analysis of the ECDLP and ECC Security of the Proposed

KG256r1 and KG384r1 Elliptic Curves . . . . ... ...

4.9.2 Analysis of Trusted Security of KG256r1 and KG384rl

EllipticCurves . . . . .. ... ... ... .. ......

Validation of Trusted Security criteria: T1 . . . . . . . ..

Validation of Trusted Security criteria: T2 . . . . . . . ..

Validation of Trusted Security criteria: T3 . . . . . . . ..

4.10 Results and Discussion . . . . . . .. .. .. ... .. ... ..

4.10.1 Comparison of the Proposed KG256rl and KG384rl

Elliptic Curves with Standard Elliptic Curves from ECDLP

and ECC Security Perspectives . . . . . . . .. ... ...

4.10.2 Comparison of Cryptographic Security of the Proposed
KG256r1 and KG384r1 with Standard Elliptic Curves

4.10.3 Performance of the Proposed Elliptic Curves . . . . . . .

411 Summary . . . . ... e

Xvil

79

84
84
84
84
86

86

The Proposed Computational Resource Estimation of Short Weierstrass

Elliptic Curves
5.1 Publications from this chapter . . . . . ... ... ... .....
52 Introduction . . . . . . ... ...
5.3 The Proposed Approach . . . . ... ... ... .........
5.3.1 Generation of cryptographically safe elliptic curve over
primefield . .. ... ... ... ... ...
5.3.2 Estimation of computational Resources for Computing
Random Elliptic Curves over Prime Fields . . . . . . . ..
Experimentation . . . .. ... ... ...........
Regression Analysis on Training Data Set . . . . . . . ..

5.4 Results and Discussion . . . . . . . . . ... ... ...



Xviii

5.5 Limitation of the Proposed Resource Estimate . . . . . . ... .. 121
5.6 Determination of CPU Processor from Computational Resources

Estimates . . . . . . . . . .. . 123

577 Summary . ... .. 124

Part II: Construction of a Novel CSPRNG Using Elliptic Curves For

Kernel Applications 126

6 Design and Implementation of The Proposed KCS-PRNG 129

6.1 Publications from this chapter . . . .. ... ... ... ... .. 129

6.2 Introduction . . . . . . ... ... 130

6.3 The Proposed Design of KCS-PRNG . . . . .. ... ... .... 132

6.3.1 Selection of Ellipticcurves . . . . . . ... ... ..... 132

6.3.2 Selection of a Clock-controlled LFSRs . . . . . ... .. 133

6.3.3 The Proposed Novel KCS-PRNG Architecture . . . . . . 135

6.3.4 Initialization of KCS-PRNG . . . . . ... ... ... .. 139

6.3.5 KCS-PRNG Bitstream Generation . . . . . .. ... ... 143

6.3.6  Assumptions . . . . . . ... 147

6.4 Security Analysis of the proposed KCS-PRNG . . . .. ... .. 148

6.4.1 Linear complexity analysis . . . . . .. ... ... .... 148

6.4.2 Correlationstest . . . .. ... ... ... ... 149

6.4.3  Period analysis (Validation of Requirement R1) . . . . . . 151

6.44 Keyspaceanalysis . . .. ... ... ... ... 151

6.5 Experimental Validation of the Proposed KCS-PRNG . . . . . . . 152

6.5.1 Experimental Validation of Requirement R1 . . . . . . . . 152

6.5.2 Validation of Requirements R2andR3 . . ... ... .. 155

6.5.3 Experimental Validation of RequirementR4 . . . . . . . . 156

Non-reproducibility test . . . . . ... ... ... .... 156



Xix
6.6 Details of Two Elliptic Curves used in the Proposed KCS-PRNG . 158
6.7 Performance Analysis of the Proposed KCS-PRNG . . . . . . .. 160

6.8 Comparison of proposed KCS-PRNG with recent Kernel

CSPRNGsand TRNG. . . . ... ... ... ... ........ 160

6.9 Recent PRNG based Attacks . . . . . ... ... ......... 164
6.10 Summary . . . . ... 164

7 Conclusion and Future Research 167
7.1 Research Contribution to the Society . . . . . .. ... ... ... 169
7.2 Future Directions . . . . . . . . . .. .. ... 170
7.2.1  Future Directions in ECC in Quantum Presence . . . . . . 170

7.2.2  Open Problems for Future Work . . . . ... ... .... 171
Bibliography 172

Appendix: Published Articles 188






Preface

Elliptic curve mathematics has been used in construction of cryptographic systems
for more than three decades. The discrete logarithm problem induced by an elliptic
curve is supposed to offer maximum security per bit key as compared to other
legacy primitives such as EIGamal, RSA etc. Moreover, elliptic curve poses fully
exponential complexity in solving its discrete logarithm which is popularly known
as elliptic curve disrete logarithm problem (ECDLP) and hence, elliptic curve
cryptography (ECC) is of interest to modern cryptographic system designers. For
strategic applications such as kernel application in particular, the elliptic curves
need to be randomly computed to avoid any (intentionally non-disclosed) properties
of its coefficients and prime which may get exploited by the attackers using
non-disclosed or even futuristic vulnerabilities. Therefore, random approach of
computation of elliptic curves is only considered as the the trusted computational
method in this thesis and subsequently, the estimates of computational resources to
compute elliptic curves over large prime fields randomly are proposed to use them
in cryptographic applications.

In addition, as a proof of concept, a novel method of designing
cryptographically secure pseudo random number generator using the proposed
elliptic curves and clock-controlled linear feedback shift registers (LFSRs) is
presented to achieve non-reproducibility of its generated bitstreams for the
operating system kernels in addition to other randomness properties. None of

the existent kernel Cryptographically Secure Pseudo Random Number Generators



xxil

(CSPRNGs) or other CSPRNGs provide non-reproducibility of its generated
bitstreams to the date as per literature.

Hence, this thesis covers two broad areas i.e., in the first part, it covers
the computational aspects of cryptographically secure Short Weierstrass elliptic
curves which are comprehensively discussed in Chapter 4 and Chapter 5 with the
proposals of two new elliptic curves whereas in the second part, a novel CSPRNG
called KCS-PRNG (CSPRNG for Kernel Applications) using the proposed elliptic
curves is presented in Chapter 6 of this thesis. However, Chapter 1 deals with the
preliminaries and motivation of the work presented in this thesis whereas Chapter
2 covers the discussion on the survey and related works that were carried out in the
Cryptography and Computer Science domains. Chapter 2 also lays the foundation
for formulation of seven important research problems with respect to the evaluation
and computation of novel Short Weierstrass elliptic curves for their implementation
in the proposed KCS-PRNG for kernel applications. These research problems
are covered in Chapter 3 of the thesis. Finally, the thesis concludes with future

directions in Chapter 7.

Tiruchirappalli

27 January, 2022 KUNAL ABHISHEK



Abstract

Elliptic curves were first introduced by H. W. Lenstra in elliptic curve factoring
algorithm in 1984. Latter in 1985, Victor S. Miller and Neal Koblitz independently
proposed the discrete points of elliptic curve group over a finite field in construction
of discrete log cryptosystems. Elliptic curves enable fast and secure public key
cryptosystems and exhibit algebraic structures to offer benefits like smaller key
sizes and higher cryptographic strength per bit as compared to RSA. The key
advantage of elliptic curve cryptosystems is that the discrete logarithm problem
induced by elliptic curve (ECDLP) does not have any known sub-exponential
algorithm which can break the ECDLP provided that the elliptic curve parameters
are chosen carefully. The elliptic curve cryptosystems are much difficult to break
albeit easy to implement and hence, they are the popular choices to design modern
cryptosystems.

This thesis covers seven research problems related to Short Weierstrass elliptic
curves in the first part and their applications in the random number generation
used in operating system kernel in the second part respectively. In the first part
of the thesis, six research problems with respect to evaluation, computation
and trusted security aspects of elliptic curves which are aimed for cryptography
are addressed. It is imperative to note that elliptic curves over large prime
fields only offer sufficient ECDLP hardness and appropriate symmetric security
levels for implementation of cryptosystems. However, the computation of elliptic

curves randomly over the desired large prime fields demands reasonably high
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computational resources and time. These computational resources are considered
in terms of (i) the number of CPU clock cycles and, (i1) the number of attempts or
searches made in the security parameter space of the elliptic curve. The estimates
of the number of CPU clock cycles helps in determining processor requirements
whereas the number of attempts or searches helps to decide the number of CPU
cores for speeding up the curve generation process. Hence, for the first time
in the literature, two novel statistical estimates of computational resources of
elliptic curves are proposed for computation of cryptographically safe elliptic curve
randomly over a given prime field size using a standard procedure. The proposed
computational resource estimates of elliptic curves help to provide the feasibility
of deriving new elliptic curves over very large prime field sizes which additionally
solves the problem of reasonably long co-existence of the existing elliptic curve
based cryptosystems in presence of the quantum adversaries possessing certain
number of the qubits. Apart from this, it is asserted in the thesis that strategic and
military grade cryptosystems require only those elliptic curves for cryptographic
implemention which are not only secure but also trusted. Hence, two popular
deterministic and random computational approaches of elliptic curves are evaluated
from computation, security and trust perspectives. The proposed study asserted that
the random approach is preferable over the deterministic approach for computation
of elliptic curves aimed for implementation in the cryptosystems for strategic or/and
military usage. Thus, asserting the essential trust requirements in the computation

of elliptic curve, a new security notion called trusted security acceptance criteria
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is proposed in the thesis to ensure that the computed elliptic curves are trusted for
implementation in cryptosystems. Subsequently, the problem of recommendation
of trusted elliptic curves over 256 bit and 384 bit prime field sizes is also solved
with the proposal of two new elliptic curves in this thesis which are named
as Kunal-George 256 bit first random elliptic curve, in short, KG256r1 and,
Kunal-George 384 bit first random elliptic curve, in short, KG384r1 respectively.

The second part of the thesis covers the seventh problem which deals with a
critical issue of non-reproducibility of the pseudorandom bitstreams generated by
a pseudo random number generator (PRNG) of an operating system kernel which
nullifies the scope of predicting any internal state of the PRNG. For the first time
in the literature, a concrete mechanism using cryptographically secure and trusted
elliptic curves is proposed to address non-reproducibility issue of pseudo random
bitstream generation. Subsequently, a novel CSPRNG called as Cryptographically
Secure Pseudo Random Number Generator for Kernel Applications (KCS-PRNG)
which generates non-reproducible bitstreams is proposed in the thesis.

Hence, the thesis evaluates the computational approaches and estimates
the computational resources of Short Weierstrass elliptic curves aimed for
cryptography respectively. The thesis contributes new criteria to derive trusted
elliptic curves over large prime field which are used in the novel design of the
proposed KCS-PRNG which is proven to be a viable CSPRNG candidate for

adoption in the operating system kernels.






XX Vil

Acknowledgements

“The Blind can’t be taught of the sun. First, give them vision.”

- Satyaprabu

First and foremost, I would like to offer my ever deepest gratitude to my Spiritual
Master His Holiness Baba JaiGuruDev for all His blessings and Love that He
bestowed on this lowly soul. I would like to show my ever deepest gratitude to my
Bhaiya Dr. K S Ganesh and Dr. Jayamala Indaje Madam for all the incomparable
Love and care they showered on me throughout and, during my stay with them
to write the research articles and complete the thesis on time. Their support and
affection are out of words to express here.

I extend my heartfelt gratitude to my Supervisor Prof. (Dr.) George Dharma
Prakash Raj for mentoring and guiding me in completing the Ph.D. work with its
current outcomes. His guidance and iterative revisions in drafting this thesis was
of great help to me. My special gratitude to him for his extraordinary care and
guidance, which made me complete this thesis in time. I always felt blessed being
with him.

It was a delight working with my Doctoral Committee Members Prof. (Dr.)
G Ravi and Prof. (Dr.) K Mani for their continuous monitoring, interactions and
their feedbacks during Doctoral Committee meetings to improve the quality of the
thesis work. They made me enthusiastic to deliver the best in my Ph.D. course. My
heartfelt gratitude to them.

I would like to sincerely thank Prof. (Dr.) G Gopinath, Former Head, Computer
Science Department and Prof. (Dr.) M Balamurugan, Head, Computer Science
Department for their general interaction and motivations given to me during my

Ph.D. course. I would also like to thank the Administrative Staffs of the University,



XXViii
especially Mrs. Sharda for her kind support whenever I visited her seeking some
administrative assistance.

I am indebted to Dr. P V Anandamohan, Former Technical Advisor, C-DAC
for his extraordinary discussions and guidance that helped to improve my inferior
drafts and shaping this thesis in the present form. His subject knowledge and
expertise have really helped me to improve the quality of the thesis.

I would like to extend my sincere thanks to Dr. P K Saxena, Chairman, Advisory
Board, Society for Electronic Transactions and Security (SETS), Chennai and
Former Director, SAG, DRDO for his technical comments to formulate the problem
statements covered specifically in Chapter 5 of the thesis.

The Ph.D. course was not possible for me without having encouragement from
Dr. S AV Satya Murty, Former Executive Director, SETS and Former Director,
IGCAR, Kalpakkam, Department of Atomic Energy, who motivated me to get
enrolled in the Ph.D. course with its current theme of work. My heartfelt gratitude
to him.

I would like to extend my special gratitude to Late Shri Ramasubbu Sir, Shri
SK Iyer Sir and his family for their parental like support during my stay in Chennai
and in Ph.D. course. Their consistent motivations, encouragements and parental
care were magical for me.

I would like to thank Dr. N Sarat Chandra Babu, Executive Director and SETS
for the opportunities given to me to pursue the Ph.D. course, conduct the research
and complete the thesis work.

I would like to extend my heartfelt gratitude to Dr. T R Reshmi, Scientist,
SETS who reviewed my research articles and thesis iteratively and offered great
suggestions to improve them. Her discussions, suggestions and encouragements
are admirable with a sense of gratitude.

I would like to extend my heartfelt gratitude to Mr. T Santhosh Kumar for his



XX1X
special help in experimentation part of the thesis. His kind support will always be
remembered. Thanks dude!

I hearty thank to the esteemed anonymous reviewers of my research articles
and thesis for their invaluable comments that improved technical presentation and
editorial quality of both the research papers and the thesis.

At this point of time, I remember and thank my previous mentors and guides
from Weapons and Electronic Systems Engineering Establishment (WESEE),
Indian Navy, New Delhi Commodore S Vombatkere, Commodore A Anand,
Commander (Retd.) Sashwat Raizada, Commander D K Singh and Commander
(Retd.) Surendra Sharma for introducing and nurturing me into Cryptography and
Cyber Security domains and made me to understand the strategic requirements
closely.

I would also like to thank Prof. (Dr.) Saurabh Sen Gupta (for his occasional
technical discussions on elliptic curve cryptography) and Dr. Arbindan for their
outstanding Ph.D. theses published on Internet, which inspired me to select proper
format and style to compile this thesis using Latex.

Last but not the least, I humbly express my deepest gratitude to my family
members including Parents, Father-in-law, Wife and Kids for their kind blessings,
well wishes and ever support. My heartfelt thanks to my sister Dr. Smita and
brother-in-law Shri. Dilip Kumar for their ever encouragements and love. My
special heartfelt gratitude to my wife Mrs. Barkha who took care of my kids Aditya
and Samaira well and tried her best to support me in completing my thesis work
on time. Aditya and Samaira are always a boon to me whom I remember with love

and smile “Z.

Tiruchirappalli

27 January, 2022 KUNAL ABHISHEK



XXX



List of Publications

International Journals (SCI/SCIE/ESCI indexed)

1. Kunal Abhishek and E. George Dharma Prakash Raj, Evaluation
of Computational Approaches of Short Weierstrass Elliptic Curves for
Cryptography, Cybernetics and Information Technologies (2021). (DOI:
10.2478/cait-2021-0045)

2. Kunal Abhishek and E. George Dharma Prakash Raj, Computation of
Trusted Short Weierstrass Elliptic Curves For Cryptography, Cybernetics and
Information Technologies (2021). (DOI: 10.2478/cait-2021-0020)

3. Kunal Abhishek and E. George Dharma Prakash Raj, Computational
Investment in Generation of Elliptic Curves Randomly over Large Prime
Fields, Concurrency and Computation Practice and Experience (2022).

(Status: Under Revision)

4. Kunal Abhishek and E. George Dharma Prakash Raj, On Random Number
Generation for Kernel Applications, Fundamenta Informaticae, IOS Press

(2022). (Status: Accepted - In press)
IEEE Magazine

5. Kunal Abhishek and E. George Dharma Prakash Raj, Operating System
Security: A Short Note, IEEE India Info. Vol. 14 No. 2 Apr - Jun 2019.

The publications based on the research and contributions of the thesis are

depicted as below:
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Chapter 1

Introduction

“I have grown to love secrecy. It seems to be the one thing that can
make modern life mysterious or marvelous to us. The commonest
thing is delightful if only one hides it.”

- Oscar Wilde

Cryptographic primitives take advantage of the computationally intractable
hard problems such as integer factorization problem, discrete logarithm problem
etc. Since 1985, soon after the introduction of elliptic curves in cryptography by
Neal Koblitz and Victor Miller, the discrete logarithm problem (DLP) offered by
the elliptic curves is considered to be one of the most popular and widely accepted
computationally intractable hard problem which has fully exponential complexity
in cryptanalysis provided the elliptic curve parameters are drawn carefully.

The chapter presents scope, objectives, preliminaries including building blocks

of the thesis and the main motivatations that inspired the work of the thesis.

1.1 Publications from this chapter

The Introduction in this Chapter has contributed the “Introduction” components of

the following journal papers published in the thesis.
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1. Kunal Abhishek and E. George Dharma Prakash Raj, Evaluation

of Computational Approaches of Short Weierstrass Elliptic Curves for
Cryptography, Cybernetics and Information Technologies (2021). (DOI:
10.2478/cait-2021-0045)

2. Kunal Abhishek and E. George Dharma Prakash Raj, Computation of
Trusted Short Weierstrass Elliptic Curves For Cryptography, Cybernetics and
Information Technologies (2021). (DOI: 10.2478/cait-2021-0020)

3. Kunal Abhishek and E. George Dharma Prakash Raj, Computational
Investment in Generation of Elliptic Curves Randomly over Large Prime
Fields, Concurrency and Computation Practice and Experience (2022).

(Status: Under Revision)

4. Kunal Abhishek and E. George Dharma Prakash Raj, On Random Number
Generation for Kernel Applications, Fundamenta Informaticae, IOS Press

(2022). (Status: Accepted - In press)

1.2 Scope of the Thesis

The scope of the thesis broadly includes evaluation of computational techniques
and computational resource estimation of Short Weierstrass form of elliptic
curves and derivation of trusted elliptic curves over large prime fields. The
trusted elliptic curves are aimed for implementation in construction of a novel
Cryptographically Secure Pseudo Random Number Generator for the operating
system Kernels such as Linux, Windows, Android, Mac/iOS/BSD.

The scope of the research outcomes of the thesis is pictorically shown in Figure

1.1.
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4 1.3. Objectives of the Thesis
1.3 Objectives of the Thesis

The objectives of the thesis are two-folded as given below:

1. To estimate the computational investment in terms of computing processor
i.e., number of CPU clock cycles and number of searches or attempts
made in the security parameter space of the elliptic curves, required
for computation of elliptic curves randomly over a large prime field.
Additionally, recommendation of two new elliptic curves over 256 bit and
384 bit prime fields which are cryptographically secure and trusted for use in

security applications.

2. The recommended elliptic curves will be used in construction of a novel
Cryptographically Secure Pseudo Random Number Generator (CSPRNG)
with non-reproducibility property of its generated bitstreams which will be a

viable candidate CSPRNG for the kernel applications.

The first objective is covered in the first part of the thesis whereas the second
objective is covered in the second part of the thesis.

The pictorial view of thesis objectives is shown in Figure 1.2.

Applied Cryptography Computer Application

Objective 2

Elliptic curve

Construction of a Novel CSPRNG using Trusted Elliptic Curves

Binary Field Prime Field Special Elliptic Curves for Kernel Applications (KCS-PRNG)

Objective 1

1
1
|
Evaluation of Computational Techniques of Cryptographically Secure Elliptic Curve over a Large :
Prime Field ! i
v 1

Estimation of Computational Resources (number of CPU clock cycles and number of attempts) :
for Computation of Cryptographically Secure Elliptic Curve over a Large Prime Field :

1
1
1

Recommendations of New Trusted Elliptic Cu!tﬁs over 256 bit and 384 bit Prime fieldsfor |
Cryptographic Applications

Figure 1.2: Objectives of the thesis
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1.4 Preliminaries

1.4.1 Short Weierstrass Equation of Elliptic Curve

A Short Weierstrass elliptic curve [E over a finite field IF, (where g = p™, where
p, a prime, is the characteristic of ]Fq) denoted by ]E(]Fp) is the set of all solutions
(x,) to an equation

IE:yZ:x3+ax—|—b (1.1)

where the coefficients a, b € [Fj and 4a3 + 27b% +£ 0, together with a special point
oo called the point at infinity which serves as the identity element of [E [1]. The

points (x,y) on [E(IF) form an abelian group.

1.4.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

Definition 1 (ECDLP): Given an elliptic curve IE defined over a finite field IF4, a
point P € E(IF;) of order n, and a point Q € (P), find the integer | € [0,n — 1]
such that

Q=1IP (1.2)

The integer [ is called the discrete logarithm of Q to the base P, denoted I = logpQ
[2].

The security of any elliptic curve cryptosystem lies in selection of those elliptic
curves whose discrete logarithm problem (ECDLP) is thought to be mathematically
infeasible to solve. Moreover, the order of an elliptic curve is expected to be
a prime to exhibit maximum ECDLP Security [3]. However, there are some
special curves whose orders have special properties on which fast algorithms like
Menezes, Okaoto and Vanstone (MOV) [4] and Frey-Ruck can be applied to solve
ECDLP with sub-exponential complexity [2, 5]. Examples of such special curves

are supersingular elliptic curves [4] (Definition 2) whose ECDLP can be reduced
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to some extension field IFZk where k is some integer called embedding degree
[6] (Definition 3 ) of the elliptic curve and the prime field anomalous curves
[7] (Definition 4) respectively. One can use Theorem 1 [4] to determine if an
elliptic curve of a certain order exists whereas Definition 2 and Definition 4 defines
supersingular curve and prime field anomalous curve respectively. One needs to
carefully consider elliptic curve with non-supersingularity, sufficient embedding
degree, non-anomalous and suitable class number for intractable ECDLP required

for cryptography.

Theorem 1 There exists an elliptic curve of order N = q + 1 — t over IF; where
q = p"™, where p, a prime, is the characteristic of F and t is the trace of elliptic

curve lE(qu) if and only if one of the following condition holds:
1. t # 0 (mod p) and t* < 4q

2. mis odd and one of the following holds:
i.t=0.
ii. > =2gand p = 2.
iii. t* = 3q and p = 3.

3. m is even and one of the following holds:
i 1 = 4q.
ii. > =qgandp # 1 (mod 3).
iii. t =0and p £ 1 (mod 4).

Definition 2 (Supersingular Elliptic Curves): If#E(IF;) = q + 1 — t be the order

of elliptic curve E(IF;) then EE is said to be supersingular if p | t where t be the

trace of E.
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It is deduced from Theorem 1 that IE(IF; ) is supersingular iff t> =0,q,29,3q or
4q [1]. However, a randomly computed elliptic curve has the probability O(\/Lﬁ) of
being supersingular [6]. Supersingular elliptic curves are vulnerable to attack due to
Menezes, Okamoto and Vanstone (MOV) which solves discrete logarithm problem
(DLP) of supersingular curves to the DLP in a finite field with sub-exponential

complexity [7].

Definition 3 (Embedding Degree of Elliptic Curve): If E(IF ) be the elliptic curve
over IFy, then IE is said to have embedding degree k, a smallest positive integer, such

that n | (¢ — 1) where n be the base point order.

It is observed that if the embedding degree k of E(IF;) is low, say, k < 6 then
IE becomes a supersingular elliptic curve, if k = 6 then supersingular curve will be
in characteristic 3 only. It is also observed that ECC standards do not allow elliptic
curves with low embedding degrees. The ordinary elliptic curves certainly require
k > 6. Generally, k > 20 is sufficient to guarantee intractibility of the discrete

logarithm problem in lF;k. However, Boneh et. al. insisted to use k > (‘71601 ) for

intractibility of discrete logarithm problem [8].

Definition 4 (Prime Field Anomalous Curves): If IE(IE,) be the elliptic curve over
IF, then E is said to be prime field anomalous if #E(FF,) = p where #E(IF;) be
the order of E.

Prime field anomalous curves are trace one curves for which the ECDLP can be
solved in linear time [7, 9]. The prime field anomalous attack does not extend to

any other classes of elliptic curves but the one having trace one [7].

Definition 5 (Class Number): Let h(N) denotes the class number of the order N
of elliptic curve IE. Then h(N) is the minimum degree of a number field over which

the elliptic curve E admits a faithful lift.
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Large class number in Complex Multiplication (CM) theory is used to prevent
possible lifting of elliptic curve to the number field using complex multiplication
where ECDLP can be solved comfortably [10]. The CM-method is discussed in

detail in Section 2.3.4.

1.4.3 Elliptic Curve Group Law

Discrete points on the elliptic curves follow Group Laws [2, 11] which states
i. Identity: P+ 0O = 0O+ P =PVP € E
ii. Negatives: If P € E, then P+ (—P) = O and also, —O = O

iii. Point Addition and Point Doubling: Suppose (x1,y1), (x2,y2) and (x3,Yy3)
denote the coordinates of P, Q and P + Q respectively, then x3 and y3 are

given by,

X2 — X1

2
x3:(u) e

(1.3)
_ Y2—n _
Y3 = —y1+ <x2—x1) (x1 — x3)
If P= Qthen P+ Q = P + P = 2P and therefore x3 and y3 are given by,
<3x12 —i—a)
X3 = > —2x7
2 4 (1.4)
X1 +a
Y3 —y1+< 12 )(x1—x3)

1.4.4 Point Counting on Elliptic Curve

The order of an elliptic curve is defined by the number of points which forms the
elliptic curve group. Following are the popular point counting theorems/algorithms

on elliptic curves:
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Hasse’s Theorem

Hasse’s Theorem [2] is a fundamental theorem that provides a rough estimate of

the bounded order of elliptic curve.

Theorem 2 (Hasse) Let an elliptic curve [E be defined over a finite field with q
elements (IFy) (where g = p™, where p, a prime, is the characteristic of IFg), then
order of E(IFy) satisfies

IN—-q—-1/ <24 (1.5)

where N be the number of IF4-points on E.

The proof of Hasse’s theorem can be seen in [11].

Shank’s Baby-Step-Giant-Step (BSGS) Algorithm

It is a deterministic algorithm to find the order of a point on an elliptic curve which
requires approximately /N steps and around /N storage where N is the order
of the elliptic curve [11]. It is a fully exponential time algorithm that works on
any group [12]. The main drawback of this algorithm is that it has to store O(v/N)
group elements and cannot be parallelized in an efficient way [13]. Details of BSGS

can be seen in [14, 15].

Naive Approach

The naive way [16] of counting rational points on elliptic curves defined over small
P—1 xd+ax+b
" :

finite fields of odd characteristic p is to evaluate the sum p +1+ 31 P

The naive approach works well with small p and Cohen [17] suggested that this

approach is appropriate for p < 10000.
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Mestre’s Algorithm

Mestre’s algorithm is a simplification of certain group theoretical computations
in the Baby-Step-Giant-Step algorithm [15]. This algorithm can be viewed as

combination of the following Theorem 3 [15] and Theorem 4 [15].

Theorem 3 Let p > 457 be a prime and IE be an elliptic curve over IF, then either

E or its quadratic twist IE' admits an IF,-rational point of order at least 4. /4.

The proof can be found in [15].

Theorem 4 Let p > 229 be a prime and let IE be an elliptic curve over [y, then
either IE or its quadratic twist E' admits an IF,-rational point P with the property
that the only integer m € (p+1—2,/p,p +1+2,/p) for which mP = 0 is the

order of the group of points.

The proof can be seen in [15]. Theorem 3 and Theorem 4 overcomes the failure
of the Baby-Step-Giant-Step strategy when the value of m is more than one such
that mP = 0 for a number of points on the elliptic curve [E. By replacing [E by its
quadratic twist IE’, one can avoid multiple values for m for which mP = 0. More
details can be found in [15]. Mestre’s algorithm works in field characteristic 2 and

is based on a 2 — adic version of the Arithmetic-Geometric-Mean (AGM) [13].

Schoof’s Algorithm

Schoof [18] proposed the first polynomial time algorithm to compute cardinality
#lE(qu) of an elliptic curve using [ — adic approach. Schoof’s algorithm proceeds
with computing trace of the Frobenius Endomorphism ¢ modulo suficiently many
primes [ such that [T/ > B where B > 4,/4. The algorithm uses Chinese
Remainder Theorem (CRT) to compute cardinality of the elliptic curve [2]. The

observed time complexity of the algorithm is O(lo g3?‘+2q) with space complexity
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as O(log>q) where y is a constant such that multiplication of two m-bit integers can
be computed in O(m") time. It works well when elliptic curve is defined over small
prime sizes [2]. Schoof’s algorithm for computing order of the elliptic curve [E over
IF, where q = 2135 has running time estimated by Koblitz [12] as approximately

equal to 3 x 10

which is certainly not a practical choice to use elliptic curve in
public key cryptosystem. Later, Elkies and Atkin [19] improved this running time

complexity of Schoof’s Algorithm with a new algorithm named as SEA algorithm.

Satoh’s Algorithm

Satoh [18] proposed p-adic methods to find group order induced by an elliptic
curve. The algorithm proceeds with lifting the elliptic curve and the Frobenius
endomorphism to a p-adic ring. In the next step the trace of the Frobenius
Endomorphism ¢ modulo p™ with p™ > 4, /7 is recovered from the lifted data.
The time complexity of this algorithm is O(n?#*1) for a fixed p whereas the space
complexity is found to be O(#3). Satoh’s algorithm is useful in case of small value
of p only as the time complexity grows as O(p?log*p) [18] as well as in case of

small field characteristic greater than 5 [20].

SEA (Schoof-Elkies-Atkin) Algorithm

Elkies and Atkin improved Schoof’s algorithm to find elliptic curve group order by
reducing the time complexity to O(log?*24) and space complexity to O(log?q)
[18]. They used isogenies to improve the efficiency of Schoof’s algorithm [11].
Using [-adic algorithm, SEA algorithm takes O((logq)**€) bit operations where €
is a positive constant, to compute order of the elliptic curve with fast arithmetic and
consumes O((logq)?) memory [21]. SEA algorithm uses BSGS which demands

good resource in terms of space. Details on SEA algorithm can be seen in [16].
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1.4.5 Random Number Generation

A random number generator (RNG) is classified in two basic classes [22]: first,
a deterministic random number generator (DRNG) or a pseudorandom number
generator (PRNG) which needs a seed value as input and produces random looking
bitstreams using some deterministic algorithm. Second, a true random number
generator (TRNG) which uses physical and non-physical sources to generate true
randomness. It is imperative to note that unlike PRNG or DRNG, TRNG does
not need any seed value but uses non-deterministic effects or physical experiments
to generate the true random bits [22]. The significant differences between PRNG
and TRNG are that the PRNG generates random sequences at very fast rate which
has large period and properties of independence and equally likeliness whereas
TRNG is slow, having infinite period, costly in deployment and has the possibility
of manipulation. Unlike TRNG, PRNG has less development and deployment cost
(no need of dedicated hardware) but can produce reasonably good random looking
bitstreams. Figure 1.3 is shown to differentiate between TRNG and PRNG [23]:

Repeated
Rand Short Stream —’
Experiments ’l Frocess I » Heng Becom Deterministic Long Stream

' Process

Feedback

Figure 1.3: TRNG and PRNG

PRNGs have vital role in generating keys, initialization vectors (IVs), nonce,
session keys etc. for cryptographic applications. A PRNG is provably secure, if
its security can be reduced to a well-established conjectured hard problem. These
PRNGs are supposed to produce output bits which are reasonably random i.e. each

bit has probability of 0.5 of occurance making them completely unpredictable.
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1.4.6 RNG Requirements

Koc [22] and Schneier [24] collated the properties that various classes of RNG

exhibit and formulated the following requirements:

1. R1: A random sequence generated by a RNG should have good statistical

properties.

This requirement enables a RNG with a large period.

2. R2: A random sequence generated by a RNG should be unpredictable.

This requirement makes the prediction of the next bit infeasible in the stream,
given the complete knowledge of the algorithm or hardware which generates
the sequence and all of the previous bits in the stream. This gives the notion

of Backward Secrecy.

3. R3: A random sequence generated by a RNG should not allow to compute
previous internal state or values of the generator even if the internal state is

known. This gives the notion of Forward Secrecy.

4. R4 : A random sequence generated by a RNG should not be reliably

reproduced.

If the RNG is run twice with exactly the same input, it should produce two

completely unrelated random sequences.

From definition [24], a PRNG meets only R1 requirement whereas CSPRNG meets
R1, R2 and R3 requirements of RNG. However, a TRNG meets R2, R3 and R4
requirements of the RNG. In this thesis, the proposed KCS-PRNG is designed
in such a way that it meets the R1, R2 and R3 requirements along with the R4

requirement of RNG to a practical extent.
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1.4.7 Randomness for Kernel Applications

One of the most important kernel applications that requires high quality
randomness is Address Space Layout Randomization (ASLR) [25] which is
an efficient mitigation technique against remote code execution attacks by
randomizing the memory address of processes to disable memory exploitation.
The ASLR currently uses CSPRNG to randomize the logical elements contained
in the memory objects at the time of pre-linking (at the time of installation of
the application), per-boot (on every time the system boots), per-exec (when new
executable image is loaded in memory called pre-process randomization), per-fork
(every time a new process is created) and per-object (every time a new object is
created). Figure 1.4 [25] shows the Per-boot versus Per-exec randomization to point

out when randomization takes place in both the per-boot and per-exec processes.

g (Per boot \ (Per exec \
At boot rand() >{ 77
| exec) | DO VAT T
eec) \ 7770
\ 4

Addresses

Figure 1.4: Per-boot versus Per-exec randomization

Similarly, Figure 1.5 shows that mmap() system call allocates all the objects
side by side in the mmap_area area during the per-object randomization. The
rand() provides random bits of desired length to the objects as shown in Figure 1.5

[25].
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Figure 1.5: Per-object randomization

Another important kernel application is the Morris-Thompson scheme [3, 8]
which associates a n-bit random number with each password and concatenates and
then encrypts together before storing it in the password file. A CSPRNG is used

whenever a password is changed and a random number is required.

1.5 Motivation of the Thesis

1.5.1 Motivation for New Trusted Elliptic Curves

Non-standard elliptic curves are desirable for building critical strategic applications
such as kernel applications. There are many incidents reported which are discussed
in this thesis which proved that the standard elliptic curves are claimed to be
cryptographically secure but they seriously lack trust for use in cryptography.
Hence, new trusted elliptic curves are required whose parameters i.e., curve
coefficients and prime, are free from any intentionally vulnerable non-disclosed

properties.
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1.5.2 Motivation for Computational Resource Estimation of

Elliptic Curves

Computation of elliptic curves over large prime fields is a resource intensive
operation and their computation within stipulated time is a big challenge which
is often required in cryptographic interests. Thus, the motivation comes from the
possibility to see the feasibility of sufficient financial allocation to arrange the
computational resources (in terms of the CPU processor) required for generation

of large order elliptic curves within stipulated time.

1.5.3 Motivation for Designing new CSPRNG for Operating

System Kernels

The degree of security provided by ASLR technique depends on the predictability
of the random memory layout of a program in an operating system
kernel. Therefore, ‘non-reproducibility’ of the random sequences used in ASLR
is essential. The motivation of the thesis is to use trusted large order elliptic
curves in the design of a competent kernel CSPRNG such that it can generate

non-reproducible pseudo random bitstreams for kernel applications.

1.6 Organization of the Thesis

The thesis covers seven research problems in applied cryptography and computer
application domains. The thesis is overall organized in seven chapters as shown in

Table 1.1.
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Table 1.1: Organization of the Thesis

Chapter 1 - Introduction

Chapter 2 - Survey of Related Literature

Chapter 3 - Problem Statements

Part I Evaluation and Computation of Novel
Short Weierstrass Elliptic Curves

Chapter 4 - The Proposed Cryptographically
Secure and Trusted Elliptic Curves Over

256 bit and 384 bit Prime Fields

Chapter 5 - The Proposed Computational
Resource Estimation of Short Weierstrass

Elliptic Curves

Part II Construction of Novel CSPRNG

using elliptic curves for kernel applications

Chapter 6 - Design and Implementation of

The Proposed KCS-PRNG

Chapter 7 - Conclusion and Future Research
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Chapter

Survey of Related Literature

“It is possible to write endlessly on elliptic curves.”

- Serge Lang

The thesis evaluates Short Weiertrass elliptic curves from computational,
security and trust perspectives and demonstrates the trend in the computation of
elliptic curves in its standardization. The thesis argues that though standard elliptic
curves provide compatibility and interoperability across diverse applications, they
are not preferable in strategic applications due to the trust issues related with
the procedure of computing curve parameters. Hence, non-standard or custom
elliptic curves which are randomly generated in a closed environment are desired
for development of mission critical applications such as operating system kernel
applications, in particular. This chapter comprehensively surveys the deterministic
and random approaches of computation of the Short Weierstrass elliptic curves and
evaluates them for their implementation in kernel or strategic applications. This

chapter solves the first problem! of the thesis which is mentioned in Chapter 3.

'Evaluation of computational approaches and selection criteria of elliptic curves over prime
fields from computation, security and trust perspectives.
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2.1 Publications from this chapter

The survey and literature review of this chapter contributes the "Literature Survey

and Review" components of the following journal papers:

1. Kunal Abhishek and E. George Dharma Prakash Raj, Evaluation
of Computational Approaches of Short Weierstrass Elliptic Curves for
Cryptography, Cybernetics and Information Technologies (2021). (DOI:
10.2478/cait-2021-0045)

2. Kunal Abhishek and E. George Dharma Prakash Raj, Computation of
Trusted Short Weierstrass Elliptic Curves For Cryptography, Cybernetics and
Information Technologies (2021). (DOI: 10.2478/cait-2021-0020)

3. Kunal Abhishek and E. George Dharma Prakash Raj, Computational
Investment in Generation of Elliptic Curves Randomly over Large Prime
Fields, Concurrency and Computation Practice and Experience (2022).

(Status: Under Revision)

4. Kunal Abhishek and E. George Dharma Prakash Raj, On Random Number
Generation for Kernel Applications, Fundamenta Informaticae, IOS Press

(2022). (Status: Accepted - In press)

2.2 Introduction

Computation of elliptic curve requires a lot of mathematical research to
compute curve’s parameters over large prime field for its use in cryptography
[26]. There are several agencies like National Institute of Standards and Technology
(NIST), Standards for Efficient Cryptography Group (SECG), Brainpool and

others who have recommended standard elliptic curves over various prime field
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orders. However, it is important to note the rationale behind the approaches
adopted for selection of elliptic curve parameters from computational and
security perspectives. In this thesis, a comprehensive review on the computational
approaches and the selection criteria of elliptic curve parameters for use in
cryptography is presented. The scope of this survey and subsequently, of this
thesis, is limited to the Short Weierstrass form of elliptic curves which are used for
constructing most of the present cryptosystems such as Public Key Infrastructure
(PKI) [27], Secure Shell (SSH), Transport Layer Security (TLS), IPSec, JSON Web
Encryption (JWE) [28] etc.

This chapter encompasses authentic observations, theories and results
contributed by renowned researchers and scientists through their publications in
various reputed journals, conferences, workshops, text books and their valuable
comments or public statements on the subject during 1978 - 2021. The chapter also
includes the experiences and observations made during the research execution of
this thesis.

The key outcomes of the chapter are as follows:

* The chapter evaluates the approaches and selection criteria for computation
of cryptographically secure Short Weierstrass elliptic curves and discusses
the evolution of elliptic curve cryptography (ECC) with theoretical
advancements in cryptographic mathematics and their significant
impact on standardization of computational methods by various
agencies. Subsequently, the chronology of attacks on ECDLP and their
countermeasures is presented which is crucial in deciding the selection
criteria of cryptographically secure elliptic curves. Additionally, the
selection criteria and verification criteria of cryptographically secure Short

Weierstrass elliptic curves are discussed and a new cryptographically secure
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Short Weierstrass elliptic curve is computed using random approach for

demonstration purposes in this chapter.

The chapter demonstrates a trend in computational approaches of Short
Weierstrass elliptic curves in standards recommended by various agencies. A
comparative study of standard and non-standard elliptic curves from

computational, trust and security perspectives is also presented.

The chapter presents a review on the work of Koblitz [12] who
probabilistically estimated the number of searches required to successfully
generate suitable elliptic curve over the binary field which motivated this
thesis to work further on deriving such estimates for elliptic curves over the
prime fields. The status of ECC-based cryptosystems in presence of quantum
computers is also reviewed in the light of recent work of Roetteler et. al. [39,

40].

The chapter presents a factual study of three most popular kernel CSPRNGs

called /dev/(u)random, Yarrow and Fortuna respectively.

2.3 Computational Approaches of Elliptic Curves

2.3.1 Evolution of Elliptic Curves for Cryptography

Elliptic curves were extensively studied and reviewed for cryptography soon

after the proposals of Neal Koblitz and Victor Miller during 1985-1987. Since

then, numerous advancements in the theory of elliptic curve cryptography and its

cryptanalysis took place which are described in Table 2.1 with their significant

impacts on evolution of elliptic curve computational standards.
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Table 2.1: Evolution of Short Weierstrass Elliptic Curves for Cryptography

elliptic curves for standardization[34].

Year Event in Elliptic Curve Cryptography Impact on ECC Standardization

. Elliptic curves were proposed for use in ECC were extensively studied to
cryptography. develop cryptosystems.

Efficient point counting algorithm on elliptic
Uses complexity O(In°p) for point
1987 | curves by Schoof, Elkies and Atkin called
counting.
SEA algorithm was developed [18, 19].

1992 Elliptic Curve based Digital Signature Considered as a mature signature
Algorithm (ECDSA) was developed [4]. scheme in NIST standard.
Reduction of ECDLP of supersingular elliptic

Became selection criteria for safe

1993 | curves having trace zero to logarithm in a

elliptic curve in all standards.
finite field [4].

Led to realization that elliptic curves
Proposal of Shor algorithm [29] generalizes

will be unsafe once sufficient quantum
to solve ECDLP random quantum

1994 capability is built.So, new computa-
polynomial (RQP) time using quantum

tional standard is required for quantum
computers.
resistance.
It was proved that the condition N | (g% — 1)
is sufficient to realize the MOV algorithm
Became selection criteria for safe
1996 | under mild condition. Further, it was proved
elliptic curve in all standards.
that randomly generated curves have
k > log?q [30].

1997 Proposal of a linear algorithm to solve ECDLP | Became selection criteria for safe
of trace one [9, 31]. elliptic curve in all standards.
NIST recommendation of 15 elliptic

1999 Widely accepted standard later.
curves [32].

2000 | SECG recommendation of elliptic curves [33]. | Widely accepted standard later.

2005 Recommendation of Brainpool first set of International effort for elliptic curve

standardization.

Continued to next page..
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Table 2.1 — continued from previous page

Year Event in Elliptic Curve Cryptography Impact on ECC Standardization
Brainpool revised their specifications and

2010 | published. Request for Comment (RFC) 5639 | Standard established.
[35].
Review of existing elliptic curves generation
mechanisms by Tanja and Bernstein [36] who | Two new terms ECDLP security and

2014 coined two terms: ECDLP security and ECC ECC security became important verifi-
security. They observed that Short Weierstrass | cation criteria for curve selection with
form of elliptic curves are dominant in both side channel attack resistance.
the software and hardware implementations.

2014 NUMS-curve (Nothing Upon My Sleeves) Curves with better performance
were proposed under IETF standard [37]. proposed under IETF Standard.
NIST Call for next generation elliptic curves

2015 with new models and optimized parameters NIST wanted to replace its standard
resistant to side channel analysis was placed elliptic curves.
[37].
NIST report [38] on Post Quantum Crypto-

Isogenies of supersingular elliptic

graphy (PQC). Resistance of elliptic curve

2016 curves were discussed as resistant
cryptosystems was looked for quantum

to PQC instead of ECDLP.

computing.
Proposal of Quantum resources required to

2017- Roeteller et. al. suggested quantum
run Shor algorithm to solve ECDLP in

2021 resource estimates to break ECDLP.
polynomial time [39, 40].

Note: N=Curve order, g=prime power, k= embedding degree
2.3.2 Chronology of Attacks on ECDLP and their

Countermeasures

Elliptic curves are expected to have proper implementation of the countermeasures

to resist important attacks on its ECDLP. Table 2.2 [9] briefly depicts such
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countermeasures for important discrete logarithm (DLP) based attacks and pairing

based attacks which resulted in the evolution of cryptographically safe elliptic curve

selection criteria.

Table 2.2: Chronology of Attacks on ECDLP and their Countermeasures

Year Attack/Type Description Countermeasure
N must be a prime or
Pohlig-Hellman, Private key can be recovered using
1978 near prime with small
DLP attack Chinese Remainder Theorem [41].
cofactor, N > 2160 [2].
A parallelized Pollard-rho on
Pollard-rho,
1978 processors can solve ECDLP in n > 2160 (11, 42].
DLP attack
(Vrn)
Jor steps [2, 42].
Private key should be
Faster method than Pollard-rho when
Pollard’s Lambda, selected uniformly at
1978 ECDLP lies in subinterval [1, b]
DLP attack random within interval
of [1,n — 1], where b < 0.39n [11].
[1,n —1] [39].
ECDLP can be solved using Small prime fields should
Index-Calculus,
1979 multiplicative group IF; of the finite be avoided i.e., n > 2160
DLP attack
field IF, [11]. [11].
1985 Exhaustive Search, | Computes successive multiples of n should be
DLP attack base point till public key is achieved. sufficiently large [7].
Fully exponential deterministic
Shanks’ Baby step
algorithm to determine 7 on IE(TF;)
1985 | Giant step, n > 2160 [11).
which requires approximately /N
DLP attack
steps and around VN storage.
Continued to next page..
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Table 2.2 — continued from previous page

Year Attack/Type Description Countermeasure

ECDLP of E(IF), can be reduced to
nt(g"—1)16,18]

ordinary DLP on extension field [F*,
T V1< k<2021

Weil pairing and for some k > 1 where the number field
1993 | Tate pairing attacks, | sieve algorithm can be used to solve

Pairing based attack | ECDLP [1, 4].
p1tand

t2 #0,q,2q,3q or 4q [4].
MOV reduction attack [4].
(Non-supersingularity)

Multiple logarithm, | Multiple instances of ECDLP for
1997 n > 2160

DLP attack the same elliptic curve parameters.

Prime field
Trace of E(IF), = lie,
1998 | anomalous curve, N # q [4].
#E(F,) = p (7, 43].
Pairing based attack

Note: g=size of underlying field, p=prime characteristic, n=order of a point on IE, N=order of [E,

r=number of processors, k=embedding degree, t=trace of curve.

Once a suitable cryptographically secure elliptic curve is selected, the public
key cryptosystem can be developed using that elliptic curve to get performance
gain and competitive security with much smaller key size than the legacy RSA or

ElGamal based cryptosystems.

2.3.3 Approaches for Computation of Short Weierstrass Elliptic

Curves

Computation of Short Weierstrass elliptic curve over prime field involves rigorous
mathematical validation of its parameters to certify its suitability for cryptography.
These validations are meant to certify that the elliptic curve has the claimed order,

resists all known attacks on ECDLP and base point order has also the claimed order
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[2]. There are usually two approaches either of which can be used to compute
an elliptic curve over prime field: first, the deterministic approach and second,
the random approach. Though in both the deterministic and random approaches,
following conditions are critical for the elliptic curve to meet cryptographic

requirements [1, 2, 44] :

1. C1 : Resistance to Pohlig-Hellman and Pollard’s Rho attack i.e., n > 2L
where 7 is sufficiently large prime that divides order of the elliptic curve

group #IE(IF;). Here, L > 160, the length in bits.

2. C2: Resistance to Semaev—Smart—Satoh—Araki attack (Smart-ASS) [9, 43]
ie. L < |logoq| ensures 2 < g or #E(IF;) # gq. It avoids the attack on

prime-field-anomalous curves.

3. C3: n > 4,/q guarantees that IE(IF;) has a unique subgroup of order 7 as
#E(F;) < (/g + 1)% by Hasse’s theorem and so, n2 1 #E(IF,).

2.3.4 Evaluation of Deterministic Approach

Generating elliptic curves in the cryptographic context is an intricate task.
It involves consideration for standardization of elliptic curves to be used in
cryptographic applications for compatibility and interoperability purposes. The
standardization of elliptic curves further involves fixing of various criteria related
to selection of the curve parameters. In this section, the deterministic approach of
computation of Short Weierstrass elliptic curve is evaluated on the basis of their
computational method, computational complexity, security, trust and specific gains

of elliptic curves computed by the deterministic method.

* Computational method

Complex Multiplication (CM) is a popular deterministic approach to select

cryptographically safe elliptic curves over prime fields and widely accepted
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approach for standardization of elliptic curves. The CM method is called the

Atkin-Morain method when the elliptic curve is derived over prime field [45].

The CM method proceeds with fixing the prime p first and then constructs
an elliptic curve over the field IF,, [44]. The CM method gives a choice for
selecting primes of special forms. The CM method takes p as input and
determines the CM discriminant D. Then p is selected such that it meets
the conditions C1, C2 and C3. The CM method is efficient when p and the
elliptic curve order #IE(IF,) = p + 1 — t are chosen such that CM-field of [E

i.e., Q(y/t? — 4p) has small class number [1, 2].

A crucial step of CM method is to compute the roots of a special type of
class field polynomials called the Hilbert and Weber polynomials [46]. These

polynomials are uniquely determined by the CM discriminant D.

Equations (2.1), (2.2) [47] and equation (2.3) [48] constitute the basis of

computation of Short Weierstrass elliptic curves for use in cryptography.

Definition 6 (Twist) Given E : yz =x3+ax+bwitha,b € IFy, the twist of

[E by c is the elliptic curve given by
E.: yz = x% +ac’x + bc® 2.1)
where ¢ € TFy.

Theorem 5 If the order of an elliptic curve #E(FF,) = p +1 —t, then the
order of its twist is given as
(p+1—t) ifcissquareinlF,

E.(F,) = 2.2)
(p+1+t) if cisnon —squarein IF
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Algorithm 1 Elliptic curve generation over prime field using CM approach

Require: Nil
Ensure: Elliptic curve over a prime field E(IF,)

1.

o v

10.
1.

12.
13.
14.
15.

Choose p, a prime

2. Find smallest CM discriminant D from equation (2.3) along with trace t
3.
4. if one of the order of the curve is a prime or nearly a prime > Fix elliptic

Construct the orders of the two elliptic curves #IE(IF;) = p + 1+t

curve order

else Repeat step 1 to determine D and ¢
. end if
Construct the class polynomial Hp (x) > Class polynomial is
independent of p
Find a root jo of Hp(x)(mod p) > jo is the j-invariant of the desired
elliptic curve
Setk = jo/ (1728 — jo)(mod p) > so that the elliptic curve
E : y? = x> + 3kx + 2k
if#E # (p+1—1t)
Construct the twist E. > using a randomly selected non-square ¢ € IF)
following equations (2.1) and (2.2)
return [E.
else
return [E
end if

Theorem 6 (Atkin-Morain) Let p be an odd prime such that

4p = > + Ds? (2.3)

for some t,s € Z. Then there is an elliptic curve [E defined over IF) such

that #E(IFp) = p+1 —t.

Equation (2.3) observes that D be the integer which can be determined

from a given prime p called the CM discriminant of p. Algorithm 1 describes

a general CM method [17] for constructing an elliptic curve over a given

prime field.
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CM method adheres to “Performance over slightly sacrificed security”
principle for computation of Short Weierstrass elliptic curves. Fast elliptic
curve computation is possible in CM method due to elimination of the need
for a point counting algorithm and fixing of certain parameters like prime
p with special structures [49]. CM method allows much faster arithmetic
with elliptic curves as compared to random approach to achieve higher
performance of elliptic curve cryptosystems [2]. It provides smaller, faster
and easily implementable software code due to offline precalculations while
adopting deterministic computational approach [48]. Prime order elliptic
curves generated using CM method with 4 = —3 are backward compatible

with implementation supporting most of the standardized elliptic curves [S0].

Computational complexity

The bit complexity (B) of CM method depends on b and h where b=length
of field order p, h=class number, h.=cross over class number for which
the random approach and CM approach have the same runtime. When
h(D) < h¢(b) where D is the CM discriminant, then CM method is faster
than random approach [44]. CM method can generate a prime order elliptic

curve in time O((logN)*) [48].

Security

Deterministic approach is vulnerable due to non-disclosed attacks. The
standards developed by various agencies have deterministic way of
computing elliptic curves which are supposed to be (dis)trusted for
ultra security sensitive applications. Standards are sometimes purposely
designed in such a way that it can be manipulated by the agency who
recommended those standards [51]. Also, sufficient information about

the computational mechanisms of curve parameters have not been made
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publically available [6]. It is always a concern for researchers that the ECDLP
of deterministically computed elliptic curves can be solvable by using very
efficient sub-exponential or polytime algorithm using non-guessable very

high computing power unknown to outside world.

¢ Trust

The elliptic curve parameters which are selected deterministically are
sometimes distrusted due to lack of sufficient proofs of their computational
mechanisms [49]. Moreover, trust in the curve parameters is doubtful due
to possibility of intentional non-disclosed properties of the curve parameters.
There are some serious statements of distrust expressed by many reputed
scientists and researchers on NIST recommended elliptic curves which was
generated through deterministic approach. Some of such statements of

distrust are given as below:

— “I'no longer trust the constants. I believe the National Security Agency
(NSA) has manipulated them through their relationships with industry.”

- Bruce Schneier [52]

— “NIST should generate a new set of elliptic curves for use with ECDSA
in FIPS 186... The set of high-quality curves should be described
precisely in the standard, and should incorporate the latest knowledge

about elliptic curves.” - Edward Felten [50, 53]

— “However, in practice the NSA has had the resources and expertise to
dominate NIST, and NIST has rarely played a significant independent

role.” - Koblitz, Koblitz and Menezes [6]

— “We don’t know how Q = [d]|P was chosen, so we don’t know if the
algorithm designer [NIST] knows [the backdoor] d.” - Shumow and

Ferguson [54]
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— “Consider now the possibility that one in a million of all curves have
an exploitable structure that “they" know about, but we don’t.. Then
“they" simply generate a million random seeds until they find one that

generates one of “their" curves.” - Scott [S5]

— “NIST should ensure that there are no secret or undocumented
components or constants in its cryptographic standards whose origin

and effectiveness cannot be explained.” - Steve Lipner [50, 53]

— Many more..

* Specific gains of deterministic approach

CM method can only be adopted to construct ordinary elliptic curves with
low embedded degree k > 6 [6]. CM method is not efficient if there is
no restriction on the class number of the elliptic curve [7]. This method is
useful in deriving elliptic curves with small class numbers for which ECDLP
is hard and gives the same security level as given by the elliptic curves which

are generated randomly [2, 7].

2.3.5 Evaluation of Random Approach

Random approach allows to obtain elliptic curves which are ordinary and avoids
any special form or structure. This approach uses ‘early-abort strategy’ to obtain
desired elliptic curve [2]. A general observation is that elliptic curves generated
using random approach have not been given preference for standardization like
those elliptic curves which are generated using deterministic approaches. We
evaluate random approach for computation of elliptic curves in various contexts

as given below:
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* Computational method

In random approach, the elliptic curve generation algorithm computes
curve parameters keeping ECDLP security and procedural transparency in
consideration. The elliptic curve computation algorithm considers a list
of security criteria and prefers security of the crypto applications over
their performance during elliptic curve generation in general. Algorithm 2
describes a general random approach as preferred in [1, 2, 3, 4, 9, 17, 18,
19, 29, 36] to derive cryptographically safe elliptic curve over prime field.
Here the prime p is fixed and the coefficients a and b are kept varying till a
suitable elliptic curve [E with prime order N is obtained. Some validations to
meet the cryptographic requirements C1, C2 and C3 are also conducted. It
is observed that all the elliptic curve parameters such as p, a, b and Gy, are
randomly generated in order to avoid any special structure or known values

whose choices are ambiguous.

A sample Short Weierstrass elliptic curve is computed using random
approach as shown in Algorithm 2. The curve generation process using

random approach is comprehensively discussed in Algorithm 5 of this thesis.

Random approach adheres to the principle of ‘“security over performance”
for computation of elliptic curve parameters. Computing order of the elliptic
curve is a time-intensive task and hence, selecting elliptic curve using random
approach is a slower process as compared to the deterministic approach
where one starts with fixing the order of the elliptic curve. Point compression
and decompression also requires more computation in randomly generated

elliptic curves [49].
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Algorithm 2 Elliptic curve generation over prime field using random approach

Require: Randomness
Ensure: Elliptic curve over a prime field E(F,), Gy, N

I: Select randomly a prime p of desired size

Fix K = GF(p) > Generate a prime field K
Choose randomly coefficient a

Choose randomly coefficient b

Generate elliptic curve E(K) > Elliptic curve over [F),
if 42> +27b> #0 > Non-singularity check as stated in equation (1.1)
else go to step 3

end if

Compute cardinality or order N of [E(K)

e R>LEDD

—
e

if N is prime > Prime cardinality only to resist Pohlig-Hellman attack

—
—_—

: else go to step 3
. end if

: if [E is non-supersingular > Non-supersingularity check to resist MOV
attack

14: else go to step 3
15: end if
16: if N # p > Non-anomalous check as per criteria C2

—_ =
W N

17: else go to step 3
18: end if
19: Select randomly a base point Gy, on [E

20: Compute base point order n > Such that size of n > 160 bits as per
criteria C1 and n > 4,/p as per criteria C3

21: ifn # N > Check for cofactor as 1

22: else go to step 18

23: end if

24: Compute Twist [E, > Twist security of elliptic curve

25: if [E; is non-singular

26: Compute Cardinality N of [E.
27: else go to step 3

28: end if

29: if N/ is prime

30: else go to step 3

31: end if

32: if [E; is non-supersingular

33: else go to step 3

34: end if

35: return E(F,), Gy, N > Return elliptic curve parameters
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* Computational complexity

For random approach, the bit complexity () depends on the length of prime
(ro) only and falls in the range O(log>€koro) to O(log”koro) where € > 0

and kg is the cofactor [44].

* Security

Random approach does not allow any special structure of the curve
parameters in order to eliminate doubts on intentional non-disclosure of
backdoors [2]. Elliptic curves which are randomly computed have no hidden
goals which can be proved in determination of the curve parameters. It
ensures that the elliptic curve parameters are trusted and not suspected to
belong to a (not publicly known to be) vulnerable class. This approach is
favourable when long term security is desired with an ignorable sacrifice
of efficiency [6]. Elliptic curves can be frequently changed for security
reasons when computed randomly [49]. The only way to compromise elliptic
curve security in such case is to solve ECDLP rather than just attacking
particular classes of weak elliptic curves [49]. Hence, random approach is
specifically preferred to obtain elliptic curves for strategic or military grade

cryptosystems.

¢ Trust

Random approach ensures that no intentional construction with hidden
weakness in the elliptic curve parameters is present in order to prevent future
exploitation to recover user’s private key [2]. The trust in derivation of the
elliptic curve parameters are maintained due to the use of absolutely new
values drawn randomly each time. Moreover, there are no patent issues with
randomly selected new curve parameters and therefore, it requires minimum

financial investments in using cryptosystems based on such elliptic curves.
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Random approach protects against attacks in special classes of elliptic curves
which may be discovered in future [2]. But random values of elliptic curve
parameters are always arguable by others for their origination and random

number generation, if not explained adequately.

* Specific gains of random approach

Elliptic curves are computed with nearly the same probability to ensure that
curves are not special in any sense when they are computed randomly [2,
44]. The chances of E(IF,) being supersingular is O(p%l) which is rare in
random approach [6]. It is computationally difficult to derive elliptic curves

over large prime fields using random approach [49].

2.4 Selection Criteria of Short Weierstrass Elliptic
Curves

Elliptic curves requires certain mathematical validations before their acceptance
for implementation in cryptosystems. Table 2.3 shows important selection criteria
of Short Weierstrass elliptic curve parameters and their benefits to select elliptic
curves with desired properties.

Moreover, Table 2.3 lays the foundation of all the recommended Short
Weierstarss elliptic curves suggested by various agencies in their standards. These
mathematical validations suggest that the elliptic curve is cryptographically suitable
as the elliptic curve coefficients and the prime are selectively chosen such that the

discrete logarithm problem due to them are sufficiently hard.
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. erification riteria o tandar ort

Weierstrass Elliptic Curves

The elliptic curves often rely on the use of special primes or special forms
of elliptic curve to gain performance benefits. The special primes like Crandall
prime, Mersenne prime, Montogomery-friendly prime etc. as discussed in Table
2.3 are used in Short Weierstrass elliptic curves which attract various known
and non-disclosed attacks. Side channel attacks are one of the popularly known
techniques which work well on special structures of prime. They also take
advantage of weak implementation of the elliptic curve. Therefore, secure
implementation of the elliptic curve is essential to defend a particular curve from
side channel attacks. The verification criteria [36] of Short Weierstrass elliptic
curves ensure secure implementation of the elliptic curve and is depicted in Table
24.

Here, various elliptic curves and terminologies are given respective notations
for representation in Table 2.4. One may read Table 2.4 considering A=NIST
recommended elliptic curves, B=Brainpool recommended elliptic curves, C=SECG
recommended elliptic curves, D1=ANSSI recommended elliptic curve FRP256v1,
D=CM discriminant of elliptic curve, t=trace of elliptic curve, p=prime field order

2

of elliptic curve, n=base point order of elliptic curve, s is the largest square

2 4y . .
dividing > — 4p to affirm that ! Sz4p is square free negative integer.

<This space is intentionally left blank.>
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Table 2.4: Elliptic curve parameter verification criteria

Verification Supported by
Details
criterion the curve
safeField Prime of the forms 1 mod 4 and 3 mod 4 A, B, C,Dl1
Elliptic curve over prime field possessing
safeEquation either Short Weierstrass or Montgomery A, B, C, Dl
or Edward equation
safeBase Possessing prime order of base point A, B, C, D1
safeRho Rho value must be > 2100 A, B, C, D1
Safe against additive and multiplicative
transfers. Additive transfer protects from
safeTransfer Smart-ASS attack [9, 43] whereas A, B,C,Dl1
multiplicative transfer protects from
MOV attack
Absolute value of complex-multiplication
field discriminant |D| > 219
safeDiscriminant | where D = (t* — 4p)/s? A,B, DI
. ?—4
if (12 —4p)/s>modd =1 = D = Szp
otherwise D = 4(t> — 4p) /s* [36]
Allows only fully rigid and somewhat
safeRigid B,C
rigid curves
Same ECDLP security requirements
safeTwist C
for twist of the elliptic curve.
Elliptic curve is safe if all the above criteria
safeCurve NIL

are met
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Among all the Short Weierstrass elliptic curves, Brainpool recommended
curves qualify all the verification criteria except the twist security of its
recommended curves. However, SECG curves qualify all the verification
criteria except the safeDiscriminant criterion and thus, Brainpool and SECG
recommended curves could not qualify overall safeCurve validation. Moreover,
NIST and ANSSI recommended elliptic curves have also met almost all the
verification criteria except the safeRigid and safeTwist criteria as they did not
explain the generation of their curve parameters adequately and attracted criticisms
as discussed in Section 2.3.4.

There is no sufficient verification data of NUMS-curves [37, 50] and Russian
standardized elliptic curves [59] available in public domain and therefore, they are

not included in Table 2.4.

2.6 Approaches adopted by Agencies for Elliptic
Curve Computation

Many agencies have recommended elliptic curves over various security levels for
standardization. Table 2.5 depicts the popular standard elliptic curves in Short
Weierstrass form with their generation approaches year wise. Here, randomly
generated elliptic curves means those elliptic curves whose parameters like prime
p, field coefficients a,b and basepoint Gy, are randomly or pseudo-randomly (a
secure hash function is used to generate curve parameters from random value given
as input to the hash function to confirm that parameters are indeed computed pseudo
randomly) generated or otherwise, they are considered to be obtained from the

deterministic approach.
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It is obvious from Table 2.5 that CM method i.e., deterministic approach is
mostly adopted by the curve recommending agencies except the Brainpool. Clearly
the trend demonstrates that deterministic approach of elliptic curve computation is

preferred for standardization purposes mainly citing their performance benefits.

2.7 Review of Previous Elliptic Curves
Computational Resource Estimates

In this section, Koblitz’s work [12] is reviewed who approached the problem of
estimating the number of searches required for finding near prime order elliptic
curve randomly over [Fon probabilistically. A very brief on the past conclusions
made by many researchers on quantum computations attacking ECDLP is also
presented. Moreover, this section mainly focuses on the related work of Roetteler
et. al. [39, 40] who estimated the number of qubits needed to solve ECDLP over

certain prime field size using Shor’s algorithm.

2.7.1 Koblitz’s Approach to derive Estimates for searching

Elliptic Curve randomly over IFy»

Focusing on determining the order of elliptic curves of cryptographic interests,
Koblitz [12] estimated the probability of drawing a good elliptic curve in
characteristic 2 with nearly a prime order in terms of number of attempts. These
attempts were made primarily to compute the order of the elliptic curve using
Schoof’s algorithm repeatedly till an elliptic curve with suitable order is found.
This probability estimate with underlying assumptions which are detailed in [12],

are concluded from the experimental data gathered at Hewlett-Packard Laboratories
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[16]. The experiment was carried out to generate a large number of elliptic curves
over various fields of sizes used in real systems [16].
A quick recall on the probability estimate given by Koblitz [12] is as follows:

Let [E be defined over [Fy» and is given by the equation

E: yz +xy = x> + azx2 + ag 2.4

where 7 is the bit length of the binary field and whose order is a prime or almost
prime. Let it be called B-almost prime where B is some constant such that d|N
where d is a prime > N/B and by doing some variation in coefficients a, and
ag, B-almost primality of N = |IE| was assumed to be same as that of a random
even integer of the same order of magnitude (not a proven conjecture but it is
assumed). As N ~ g = 2", therefore, for fixed B and large g, the latter probability

is asymptotic to

B2 1 B
: ~— xlog (=) (2.5)
]; jlog(3;) 1 2

The equation (2.5) implies that, for a prime factor of N of length larger than
134-bit with B = 2n — 134, the number of probable trials to find E with |E|
divisible by a prime whose length is larger than 40 digits or 134 bits will be 5.
For example, if we select n = 160 then Schoof’s algorithm has to run 4 times
considering actual determination of order of the curve and order of the twist of
the curve simultaneously before a suitable elliptic curve over [Fp» is found. The
probability estimates suggested by Koblitz work well with those classes of elliptic
curves which are defined over [Fy» i.e. in characteristic 2. Two important questions

yet need to be answered:

a. Can we have such resource estimate (i.e. the number of searches or attempts
made) for computation of elliptic curves randomly in prime characteristic i.e.

those elliptic curves which are defined over large prime fields?
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b. Also, can we have resource estimate for processor to be used for computation

of elliptic curves randomly over large prime fields?

In this thesis, these questions are answered using statistical estimation approach in

Chapter 5.

2.7.2 Status of Elliptic Curve-based Cryptosystems in presence

of Quantum Computers

Peter Shor [29] hoped that the laws of quantum mechanics will be helpful in
building quantum computers. In 1994, the author simulated quantum mechanics on
a classical computer leading to construct a polynomial time algorithm for factoring.
Author showed that integer factorization and discrete logarithm problems (DLP) in
finite fields of prime order can be solved in random quantum polynomial (RQP)
time with a permissible small probability of (one-sided) error. This DLP computing
polynomial time algorithm generalizes to the cases of elliptic curves as well. A
good detail on Shor’s quantum algorithms to compute ECDLP can be seen in
[2]. In 2003, Proos et. al. [60] have shown implementation of Shor’s quantum
algorithm for computing discrete logarithm problem due to elliptic curve groups.
The authors constructed a table with resource estimate for the number of qubits and
time depending on the prime field size of the elliptic curve. In 2016, Wohlwend in
his report [61], conveyed that presence of quantum computers poses a serious threat
to ECC based cryptosystem since elliptic curves are basically abelian groups. The
author opined that since quantum computers are still in the evolving stage, ECC
will be prolonged to be a great choice in cryptographic applications for a reasonably
long time.

In 2017, Roetteler et. al. [39, 40] precisely estimated quantum resources for

quantum circuits required to compute ECDLP induced by an elliptic curve over
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an n-bit prime field using Shor’s algorithm. The authors proposed an estimate
that a quantum computer can solve ECDLP with at most 91 + 2 [log» (1) ] + 10
qubits using a quantum circuit of at most 44813 logr(n) + 409013 Toffoli gates
[39]. Their resource analysis was carried out by implementing Toffoli, CNOT, and
NOT gates circuits to implement the controlled addition of elliptic curve points
known as circuit generation time. The authors simulated large parts of quantum
circuits on a classical machine. Their results on resource estimation of qubits to
solve ECDLP help to plan and acquire practically available quantum resources to
target modern elliptic curve-based cryptosystems over certain prime fields sizes.
The authors concluded that attacking elliptic curve cryptography is an easier job
than attacking RSA by a quantum computer.

In light of this, one of the affordable ways to address the problem of using
elliptic curves in cryptography in presence of quantum computers is to scale up
the elliptic curve prime field size to a higher possible extent where quantum
attacks may not be feasible within reasonable time and with available number of
qubits. But generation of elliptic curves randomly over very large prime fields is a
cumbersome task which requires huge computational resources as well as time and
therefore, proper estimation and allocation of sufficient computational resources

are important.

2.8 Cryptographically Secure Random Number

Generators for Kernel Applications

2.8.1 /dev/(uw)random

Linux and Android kernels use /dev/random and /dev/urandom which are

considered as CSPRNG i.e. the PRNG with inputs (meeting the requirement R2)
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for randomness generation. The limitations of these CSPRNGs are that they do not
have enough entropy in the pool and they are not generating keys larger than the
hash function that they used internally [62]. /dev/random keeps awaiting for the
entropy pool to get sufficiently filled in, which results diminished performance of
the generator. /dev/random meets the RNG requirements R1, R2 and R3 but does
not meet the R4 requirement. Though /dev/urandom has provision for unblocked
fast supply of random sequences through unblocking pool of entropy, it faces
predictability issues [63]. /dev/urandom meets the requirements R1 and R3 but

does not meet the requirement R2 and R4.

2.8.2 Yarrow

Yarrow [64] is a PRNG with true random inputs used by MacOS/iOS/FreeBSD
kernels. This CSPRNG is too complex and under-specified in entropy handling
context and also slow to provide an initial seed [62]. It uses Triple DES block
cipher for pseudorandom bitstream generation. Like /dev/random, Yarrow meets

the requirements R1, R2 and R3 but does not meet the requirement R4.

2.8.3 Fortuna

Fortuna [65, 66] is a popular CSPRNG and a refinement over Yarrow, used by the
Windows kernel which uses its entropy effectively. It uses AES-like cipher for the
generator with 256-bit size of the block cipher key and a 128-bit counter. Fortuna
produces a very good throughput of 20 clock cycles per byte on CPU type PC [65]
and 7.2 Mbps throughput in software [66]. Fortuna implicitly accumulates entropy
through hash, partitions the incoming entropy into multiple entropy pools and uses
its pools at different rate for output generation in order to guarantee that at least one
pool will remain available for use [67]. Though Viega [62] observed that Fortuna

completely foregoes the entropy estimation and, Fortuna and Yarrow both do not
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exhibit information-theoretic security as well. Like Yarrow, Fortuna also meets
the requirements R1, R2 and R3 but does not meet ‘non-reproducibility’ i.e., the
requirement R4.

It is imperative to note that the present kernel CSPRNGs do no meet the
requirement of ‘non-reproducibility’ i.e., the requirement R4 which is a crucial
feature that helps to prevent the kernel better from exploitation as discussed in
Section 1.4.7. In this work, the proposed KCS-PRNG is designed in such a way
that all the four requirements (R1 to R4) of an ideal RNG are met to ensure better

prevention of the kernel from exploitation.

2.9 Summary

Short Weierstrass elliptic curves are widely used for cryptographic purposes. An
evolution chart of events is presented which has significant impact on introducing
elliptic curves for use in cryptography. A comprehensive list about important
attacks on ECDLP and their countermeasures is presented in this chapter which
became the basic selection criteria of elliptic curves for their consideration in
cryptography. Two popular approaches i.e., deterministic and random approaches
to compute cryptographically secure Short Weierstrass elliptic curves and rationale
behind them are evaluated in detail which favoured random approach for the
elliptic curve implementation in the kernel applications. This chapter also lays
the foundation for trusted elliptic curves which are discussed in Chpater 4 of
the thesis. The rationale behind selection criteria and verification criteria to
compute cryptographically suitable elliptic curve parameters are also discussed. A
trend of approaches for computation of elliptic curve parameters for cryptographic
purposes is demonstrated in this chapter which favoured deterministic approach in

standardization so far.
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Further, Koblitz’s estimate to determine the number of searches needed

probabilistically to randomly search a near prime order elliptic curve over [Fon
where 7 is the bit length of the binary field is reviewed in this chapter. This
thesis gets motivation from his work and presents novel statistical derivation of such
estimate over IF, where p is a large prime in Chapter 5. Additionally, the processor
estimate in terms of the number of CPU clock cycles required to randomly obtain
a prime order elliptic curve is also presented as one the research outcomes of this
thesis in Chapter 5.

Hence, it is inferred that this comprehensive evaluation and analysis of
computational approaches of cryptographically safe elliptic curves will be helpful
to those who wish to compute Short Weierstrass elliptic curves for cryptosystems
design, in particular, in the design of kernel CSPRNGs with desired properties of
the underlying elliptic curves.

Further, in the last section of this chapter, three popular kernel CSPRNGs
namely /dev/(u)random, Yarrow and Fortuna were reviewed and it was observed
that all of them meet the randomness requirements R1, R2 and R3 but they
do not meet the randomness requirements R4 which is very crucial for strategic
applications such as kernel applications. This thesis covers this critical issue based
on the observations made in the survey conducted and resolves it in Chapter 6. The

next chapter enlists various problem statements which are observed in this chapter.
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Chapter 3

Problem Statements

“A problem well stated is a problem half solved.”

- John Dewey

In this chapter, seven research problems are discussed in context of Short
Weierstrass elliptic curves and the random number generation in operating system
kernels. Based on the survey carried out in Chapter 2, these seven problem

statements are ellaborated in two parts of this chapter.

3.1 Part I: Evaluation and Computation of Novel
Short Weierstrass Elliptic Curves

Elliptic curves over large prime fields are considered to provide provable security to
the cryptographic schemes. Six important problems are encountered in computation
of cryptographically secure elliptic curves over prime field which are stated as

below:
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3.1.1 Problem1

Evaluation of computational approaches and selection criteria of elliptic

curves over prime fields from computation, security and trust perspectives.

A comprehensive evaluation of standard computational approaches and selection
criteria of cryptographically secure elliptic curves over the prime fields is presented
in Chapter 2 of the thesis. Chapter 2 of the thesis also recommends the preferable
computational approach and selection criteria of desired elliptic curves for their

implementation in critical cryptosystems of strategic nature.

3.1.2 Problem 2

Computation of cryptographically secure as well as trusted elliptic curves

over the prime fields.

Chapter 4 discusses about the trust issue of the present standard elliptic curves
recommended by various international bodies like NIST, Brainpool, SECG etc.
in detail. Chapter 4 also introduces a new security notion called the trusted
security of elliptic curves and proposes three trusted security acceptance criteria to
ensure elimination of any possible computational manipulation of the elliptic curve

parameters.

3.1.3 Problem3

Recommendation of new elliptic curves over large prime field sizes whose

method of generation is trusted and cryptographically strong.
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Chapter 4 recommends two new elliptic curves over 256 bit and 384 bit prime field
sizes which are cryptographically secure as well as trusted for implementation in

crucial cryptographic applications such as in kernel applications.

3.1.4 Problem4

Computation of cryptographically secure elliptic curve over large prime field is
an intricate and resource intensive task. This leads to two critical problems with
respect to estimation of computational resources requirement for randomly deriving
elliptic curves over large prime fields which are stated in Problem 4 and Problem 5

respectively.

To provide an estimate of computational resources in terms of computing
processor i.e., number of the CPU clock cycles to compute cryptographically
safe elliptic curve randomly over desired prime field size for cryptographic

purposes.

Chapter 5 addresses Problem 4 and provides precise statistical estimate of
CPU processor in terms of CPU clock cycles required for computation of

cryptographically secure elliptic curves randomly over large prime fields.

3.1.5 Problem 5

To provide an estimate of computational resources in terms of number of
attempts or searches to be made in the security parameter space of the elliptic

curve to compute cryptographically safe elliptic curve randomly over desired

prime field size for cryptographic purposes within stipulated time.
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Chapter 5 addresses Problem 5 and provides precise statistical estimate of number
of searches or attempts required for computation of cryptographically secure

elliptic curves randomly over large prime fields.

3.1.6 Problem 6

In addition, an important question comes into light that how the present elliptic
curve cryptography-based applications will be able to co-exist with future quantum
computers having certain number of qubits. It was shown by Roetteler et. al.
[39, 40] that a quantum computer with certain number of qubits can break ECDLP
imposed by the elliptic curves over a certain prime field size. Hence, there is a need
felt for recommendation of the reasonable amount of CPU processor and stipulated
timelines respectively required for computation of cryptographically secure elliptic
curve over desired prime field size which can co-exist in presence of the quantum

adversaries.

To estimate computational investment for cryptographically secure elliptic
curves over very large prime fields in order to verify feasibility and to prepare
existing ECC-based cryptosystem to be kept resilient to quantum attacks using

available number of qubits.

Chapter 5 also addresses Problem 6 and provides a tabular comparison of
requirements of the elliptic curve field sizes which will be resilient against certain
number of qubits under quantum attack.

We address above mentioned six problems in Part I of this thesis which are

covered across Chapter 2 and Chapters 4 - 5.
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. art 11: Construction of a Nove sing
Short Weierstrass Elliptic Curves For Kernel
Applications

The operating system kernel is the lowest level software interacting with
the hardware and user programs. The kernel needs software based random
number generator (RNG) which can essentially generate statistically validated,
unpredictable as well as non-reproducible bitstreams for its critical kernel
operations such as Address Space Layout Randomization (ASLR), safe storage
of users’ passwords and cryptographic key generation, etc. As software based
RNG are based on deterministic algorithms, therefore, non-reproducibility property
of the generated bitstreams has not been so far possible for sensitive kernel

applications in a computer.

3.2.1 Problem 7

A new competitive candidate CSPRNG for kernel or cryptographic usage
is highly desirable which could exhibit statistical properties of randomness and

unpredictability along with the non-reproducibility property of randomness.

Chapter 6 gives the proposal of new CSPRNG for kernel applications called as
KCS-PRNG which is proven to be a viable CSPRNG candidate for adoption in the
operating sysem kernels in the thesis.

We address the seventh problem in Chapter 6 in Part II of this thesis.






Part I

Evaluation and Computation of
Novel Short Weierstrass Elliptic

Curves

57






59

Chapter I

The Proposed Cryptographically
Secure and Trusted Elliptic Curves

Over 256 bit and 384 bit Prime Fields

“Consider now the possibility that one in a million of all curves
have an exploitable structure that “they” know about, but we don't..
Then “they" simply generate a million random seeds until they find one
that generates one of “their” curves. Then they get us to use them.”

- Michael Scott

In this chapter, a new security notion called trusted security of elliptic curve
is proposed. Addtionally, two new Short Weierstrass elliptic curves over 256 bit
and 384 bit prime field sizes are recommended for cryptographic purposes as the

solutions to Problem 2! and Problem 3% as mentioned in Chapter 3.

IComputation of cryptographically secure as well as trusted elliptic curves over the prime fields.
2Recommendation of new elliptic curves over large prime field sizes whose method of generation
is trusted and cryptographically strong.
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4.1 Publications from this chapter

The research outcomes of this chapter contributes the following publications:

1. Kunal Abhishek and E. George Dharma Prakash Raj, Evaluation
of Computational Approaches of Short Weierstrass Elliptic Curves for
Cryptography, Cybernetics and Information Technologies (2021). (DOI:
10.2478/cait-2021-0045)

2. Kunal Abhishek and E. George Dharma Prakash Raj, Computation of
Trusted Short Weierstrass Elliptic Curves For Cryptography, Cybernetics and
Information Technologies (2021). (DOI: 10.2478/cait-2021-0020)

4.2 Introduction

Short Weierstrass elliptic curves are considered to be as secure for cryptography
as the underlying hardness of their elliptic curve discrete logarithm problem i.e.,
ECDLP which is defined as finding a scalar k knowing any two points P and Q
on elliptic curve E holding the relation Q = kP. This is known as the ECDLP
security of the selected elliptic curve when used for cryptography [36]. The most
efficient publicly known method to solve ECDLP or break the ECDLP security is
the Pollard’s Rho algorithm which takes approximately 0.886 x /7 point additions
where 7n is the base point order [36, 51]. One must select an elliptic curve
which is ECDLP secure for cryptographic applications. Another notion of security
for selecting suitable elliptic curves for cryptography is known as elliptic curve
cryptography security i.e., ECC security in short, the term coined by Bernstein
and Lange [36] which ensures prevention from any information leakage from the
implementation flaws of the elliptic curve. Most of the popular standards today

such as National Institute of Standards and Technology (NIST) [32], Brainpool
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[35], Standards for Efficient Cryptography 2 (SEC2) [33], IEEE P1363 [68] etc.

recommended those elliptic curves which are ECDLP secure and attain some sort of
ECC security (for only some standard curves [36]). It is worthwhile to note that an
ECC based cryptosystem can be compromised by either compromising the ECDLP
security or the ECC security. All the present day standards have recommended
Short Weierstrass elliptic curves keeping either or both of these security notions
into consideration. This chapter introduces a critical security notion which we call
as “trusted security” of elliptic curves which ensures that the selected elliptic curve
is free from any manipulation from its computation perspective and can be trusted
for use in cryptographic applications. The trusted security notion of computation of
elliptic curves minimizes the risks involved in generation of safe curve parameters
deterministically where they are vulnerable to (intentionally) non-disclosed attacks
with (intentionally) non-disclosed properties of the curve parameters. In such cases,
the ECDLP can be solvable by using very efficient sub-exponential or polynomial
time algorithm using non-guessable high computing power.

The key outcomes of this chapter are as follows:

* Introduction of a new security notion called as “trusted security acceptance
criteria” as an important security evaluation criterion along with the ECDLP
security and ECC security criteria for computation of Short Weierstrass
elliptic curves aimed for cryptography. The chapter also includes evaluation

of standard Short Weierstrass elliptic curves from trust perspective.

* Argument that trust in generation method of elliptic curves can be achieved
only through computation of the curve parameters randomly without
considering any of their pre-studied values such as —3 or Mersenne primes
etc. The randomly selected elliptic curve parameters can be derived using
any good quality user trusted random number generator (RNG) along with

competitive performance of the elliptic curve.
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* Demonstration of two new elliptic curves defined over 256 bit and 384
bit prime field sizes respectively for cryptography which are secure from
ECDLP security, ECC security as well as trusted security perspectives and
evaluation of these proposed elliptic curves with respect to cryptographic

key pair generation, signing and verification from performance perspective.

4.3 Discussion on Distrusted Standardized Elliptic
Curves

It is important to select those elliptic curves which are cryptographically secure
and trusted for constructing cryptographic systems. Transport layer security
(TLS), secure shell (SSH) and Internet Protocol Security (IPSec) [28], public
key infrastructure (PKI) [27] etc. are some of the popular applications which
require safe elliptic curves in their cryptosystem design. Most of such commercial
applications use standard elliptic curves over prime field of 256 bit sizes for
sufficient security and interoperability purposes. However, Bernstein et. al. [51]
has recently pointed out some mechanisms such that a new elliptic curve can
be proposed to sabotage the public standards. They demonstrated convincing
methods by which they were able to implant vulnerability in the elliptic curves
known as BADASS curves by utilizing the gain of many bits of freedom [51]
which satisfies the public standards and can be put forward for standardization to
fool the users. This essentially proves that an attacker can exploit unknown (his
known) vulnerability to sabotage existing public standards and justify his selection
of elliptic curve parameters citing performance gain and his own way of getting
randomness i.e. verifiably random etc. which is used in the generation of the
vulnerable curve parameters. Bernstein et. al. [S1] comprehensively demonstrated

how a wrong or non-trustable elliptic curve can be derived using the procedure
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led by the public standards and their recommended public criteria. They showed
that plausible variations in the Brainpool curve generation procedure and Microsoft
curve generation procedure respectively can be used to sabotage public standard.
Further, the Agence nationale de la securite des systemes d’information (ANSSI)
standard recommended FRP256V1 elliptic curve which has low twist security of
order 279 which means that there are 279 elliptic curve additions required to
mount the twist attack to get user’s secret key [51]. Also, there is no reasonably
sufficient documentation available for this curve. Furthermore, Bernstein et. al.
demonstrated computation of the BADAS5-R-256 curve which meets the public
security criteria for ECDLP security and ECC security but still being a manipulated
curve. Finally, it is understood that computation of an elliptic curve can be
manipulated by any deterministic method of computation of the curve parameters
and variety of reasons can be cited with selection of the curve parameters adhering
to some public standard of proposer’s convenience. Summarizing, the problems

pertained with the trust factor consists of one or more issue(s) from the following:

* No sufficient explanation on the RNG used for seed or randomness

generation.

* Intentional variation in standard elliptic curve generation procedure

recommended by the curve proposing agencies by themselves.

* Intentional hiding of information about the curve parameters even providing
detailed documentations on curve generation process of standard elliptic

curves.

» Sabotaged standards.

* Root problem of the lack of trust is the deterministic approach adopted by all

the agencies in standardizing their proposed elliptic curves.
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With the above prevalent issues, an obvious question arises that ‘“because you
can explain, does not mean that you will explain everything”. This question
is answered by introducing a set of three important security evaluation criteria in
the thesis called “trusted security acceptance criteria” for computation of suitable
elliptic curves for cryptography which can be additionally invoked along with the
ECDLP security and ECC security criteria to mitigate the trust issues in curve
generation process to a great extent. Before proceeding further, it is important
to get an insight into the usability of standard and non-standard i.e., self-derived
elliptic curves to know their purpose and benefits of using them under appropriate

circumstances. Following section gives a new insight for the same.

4.4 Standard Elliptic Curves and Non-standard
Elliptic Curves

Elliptic curves are standardized to enable compatibility and interoperability across
diverse applications. Moreover, non-standard elliptic curves are mostly used by
strategic or military applications and sometime non-military but other critical
infrastructures applications such as Command and Control systems of nuclear
reactors etc. These applications do not really believe in Kerckhoffs’s principle [69]
which says “A cryptographic system should be secure even if everything about the
system, except the key, is public knowledge.”. Unlike Kerckhoff’s principle, the
strategic applications do believe that not only the keys but the algorithm should
also be kept private to protect critical information infrastructure better. In such
cases, they compute elliptic curves preferably using random approach instead
of deterministic approach. The thesis contributes a new insight to observe some
remarkable differences between the standard and non-standard elliptic curves from

computation, trust and security perspectives as portrayed in Table 4.1.
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Table 4.1: Comparison of Standard Elliptic Curves with Non-standard Elliptic

Curves

Standard Elliptic Curve

Non-standard Elliptic Curve

Prefers deterministic approach of
computation to get performance
benefits in elliptic curve arithmetic.
This helps in standardization of

elliptic curves by global acceptance.

Prefers random approach of comp-
utation for long term security so that
any special kind of curve is avoided
which may lead to vulnerability to an

unanticipated attack.

Adheres to Kerckhoffs’s principle

of security and fixes elliptic curves
for compatibility and interoperability
among diverse applications across

the globe.

Adheres mostly to strategic principle
of security which says that keys and

algorithm both need to be kept secret.

Standard elliptic curves are subject to
public exposure and often attract
cryptanalysis as more people use it.
Hence, there is always a high chance

of collision with the secret key [70].

Negligible chance of collision with the
secret key that’s why random approach

is preferred.

Distrust comes with presence of
special structures of the curve

parameters.

Trusted new values of curve parameters
known to designer only. Prefers random
approach to compute elliptic curve

parameters.

Standard elliptic curves are globally

accepted and trusted.

Not published and mostly not supported
by the standards. Hence, trusted by their

proposers or/and in closed group only.

Continued to next page..
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Table 4.1 — continued from previous page

Standard Elliptic Curve

Non-standard Elliptic Curve

Compatible across applications and

interoperable due to standardization.

Not compatible. Applications need to

be made interoperable explicitly.

Better approach in case where
elliptic curve needs to be computed

over large prime fields.

Better approach in case where elliptic
curve needs to be transparently comp-
uted without any special structures

known to others.

Curve parameters and compression

techniques have patent issues.

No patent issues.

Already published and analyzed
thoroughly. Non-deniable chances

of hiding backdoors.

Derivation procedure of curve para-
meters are known to the proposers only
and hence, negligible chances of back-
doors. High degree of trust observed by
the proposers of non-standard elliptic

Curves.

Standard elliptic curves are fixed
to maintain compatibility among

applications.

Non-standard elliptic curves have edge
over the standard ones as they can be

replaced frequently for added security.

More prone to get attacked by
sophisticated advancements in

mathematics and discoveries.

In case of randomly selected curve
parameters, curve is safe until sub-
exponential algorithm is known to

break it in particular [3].
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. usted Security Acceptance Criteria for Elliptic
Curves for Cryptography

Standard elliptic curves followed deterministic approach in computation of their
coefficients and primes. Most of them used pre-studied values whose credibility
and trustworthiness are doubted [S1, 71, 72, 73] due to origination of the curve
parameters and lack of proof for the randomness used in the curve generation
process such as use of computationally convenient primes like powers of two
etc. Hence, there is a need to introduce additional security acceptability criteria
to invoke trust in the computation of elliptic curve parameters for use and in
standardization. In this chapter, a set of three new security evaluation criteria of
cryptographically safe elliptic curve called the “trusted security acceptance criteria”

for elliptic curves used for cryptography is introduced which are as follows:

1. T1: User trusted random number generator (RNG) to provide

(pseudo)randomness.

A RNG should be selected preferably by its user for assuring that user
is fully aware of the technicality of the RNG and hence he/she trusts
it completely. Apart from the trust aspect, the RNG should adhere to
the following properties as indicated by Koc [22] and Schneier [24] and

discussed in Section 1.4.6:

* The bitstream generated by a pseudo random number generator (PRNG)
or cryptographically secure PRNG (CSPRNG) should be statistically

sound i.e., it has a large period.

* The bitstream generated should be unpredictable i.e., the RNG should

be forward secure as well as backward secure.
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The curve parameters should be chosen randomly in a trustworthy way to
avoid any uneasy explanation about the generation of the curve constants and
hence, the requirement of user trusted and strong RNG is critical in trust

building.

2. T2: No pre-studied values of the curve coefficients and prime.

The well-known constants are accepted by everyone without hesitation but
their non-exposed property may be used for construction of vulnerable
elliptic curves. BADAS55-VPR-224 is such an example which used cos(1)
constant [51]. The elliptic curve coefficients a, b must not use any pre-studied
values to avoid the scope of manipulation. Moreover, the prime field order
p can only have special structure if it is randomly selected with suitable size

(normally > 224) bits for fast reduction on the elliptic curve.

3. T3: Reproducibility of new elliptic curves of nearly the same cryptographic

strength and suitability using the same method and apparatus.

One must get new elliptic curves of nearly the same cryptographic strength
using the same method and apparatus. The Pollard’s rho values of the elliptic
curves and their respective twisted curves are considered as the measurement
of their cryptographic strengths which is the number of elliptic curve point
additions to solve the ECDLP. Generally, 0.886 x /7 elliptic curve point
additions are required to break the ECDLP where # is the order of the base

point [36, 51].

<This space is intentionally left blank.>
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4.6 Evaluation of Standard Elliptic Curves from
Trust Perspective

Standard Short Weierstrass elliptic curves claimed to have followed rigorous
ECDLP security validations and sometime ECC security validations together to
arrive at the curve parameters for recommendation. They claimed that they used
seeds which were randomly generated and some of them adhered to verifiably
random way of obtaining the curve parameters. Table 4.2 evaluates standard elliptic

curves from trust perspectives for use in cryptography:

Table 4.2: Evaluation of standard Short Weierstrass elliptic curves from trust
perspectives

L. Trusted Security
Elliptic curve Remarks
(T1,T2,T3)

Deterministic approach with pre-studied coefficients
NIST P224r1 None .
and prime [32]

Deterministic approach with pre-studied coefficients
NIST P256r1 None .
and prime [32]

Deterministic approach with pre-studied coefficients
NIST P384r1 None .
and prime [32]

Special structure of prime p (Mersenne prime)

secp224rl None . . .
and insufficient documentation [33]
Special structure of prime p (Mersenne prime
secp256rl None P . . P P'( P )
and insufficient documentation [33]
Special structure of prime p (Mersenne prime)
secp384rl None . . .
and insufficient documentation [33]
Special structure of prime p (Mersenne prime)
secp521rl None ) . .
and insufficient documentation [33]
ANSSI N Pre-studied value of coefficient a and insufficient
one
FRP256v1 documentation [51, 74]
. None of the Brainpool curves are generated by
Brainpool T2

their own stipulated procedure [51, 35]

Deterministic approach with pre-studied
NUMS curves None

coefficients and prime.[51, 3]

It is imperative to note from Table 4.2 that, there is an ardent need for new
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elliptic curves which are cryptographically secure as well as trusted. Following
section will focus on the generation details of trusted Short Weierstrass elliptic

curves to be used for cryptography.

4.7 Cryptographically Secure Elliptic Curve
Generation using the Proposed Trusted Security
Acceptance Criteria

Short Weierstrass elliptic curves can only exhibit prime order [S0] which does not
loose any bit of security of ECDLP [3]. However, elliptic curves of cryptographic
interests must get validated against their ECDLP security, ECC security as well as
trusted security. It is now observed from previous sections that random approach of
computing safe elliptic curves is the only way to achieve all of these three security
notions. A standard procedure is shown as the flow chart in Figure 4.1 to get bird’s

eye view of generation of the trusted Short Weierstrass elliptic curves intended for

cryptography.

<This space is intentionally left blank.>
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Figure 4.1: Flow chart of generation of cryptographically secure and trusted Short
Weierstrass elliptic curve

An entropy harvester which is used to obtain sufficient number of true random
bits from various physical noise sources like device randomness, disk randomness,
Human Interface Device (HID) (key board, mouse, etc.), interrupt randomness, etc.
is used to seed a user trusted (means user is aware of the technicality of the RNG
and associated security risks completely) PRNG/CSPRNG as depicted in Figure
4.1. The user trusted PRNG supplies desired number of (pseudo)random bits to
generate suitable p,a and b. An elliptic curve [E is constructed over prime field IF,
(where p 1s fixed in this case, but one can choose other way also to generate suitable
elliptic curves by fixing the curve order N randomly etc.) with coefficients 4 and
b. Now E is subjected to ECDLP security validation failing which will re-generate
the coefficients a and b until it gets suitable curve coefficients for [E to be ECDLP
secure. A base point Gy, is also selected randomly over elliptic curve [E and
gets verified for its prime order for acceptability. Once E is validated for ECDLP

security, it is subjected to security validation from ECC security perspective which
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expects [E to have its twist IE’ also to be as secure as [E is. In case of the fact
that ECC security validation does not pass, one needs to re-generate the prime p
and subsequently coefficients a and b to get ECDLP security and ECC security
validated successfully. Finally, the ECDLP secure and ECC secure elliptic curve
E is verified with the proposed trusted security acceptance criteria (indicated in
yellow decision box in Figure 4.1 failing which the process is re-initiated with
deriving prime p and coefficients a and b as fresh until one gets an acceptable E.
Lastly, E and G are returned as the output. The elliptic curve generation procedure

is detailed in Algorithm 3.

4.7.1 Assumptions

Following assumptions are made while computing the curve parameters using
Algorithm 3:

i. User trusted cryptographically strong RNG is available to provide randomness
required in computation of secure elliptic curve.

ii. Sufficient entropy is available in the system. Generally, more than 2000 bits of
entropy is expected to be available with the system to seed the RNG sufficiently to
uninterruptedly generate elliptic curves up to over 384 bit prime field sizes. Also,
the operating system is not used for the first time after installation as sufficient
entropy will not be available with the machine.

ii1. Compilers, CPU Processors, SAGE and other participating modules in the curve

parameter generation are trusted.

<This space is intentionally left blank.>
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Algorithm 3 Generation of cryptographically safe and trusted Short Weierstrass
elliptic curve

Require: Prime field size (I ) in bits and randomness from user trusted RNG

Ensure: Trusted cryptographically safe elliptic curve E over prime field IF), with

base point Gy y

Input prime field size [ in bits

Obtain seed S as true random bits of desired length from entropy harvester

Set seed S for user trusted RNG

Select randomly prime p such that p = 3 mod 4 > for fast arithmetic on E

Choose randomly the coefficient a of [E

Choose randomly the coefficient b of E

Construct the elliptic curve [E with curve parameters p, a and b

Enforce ECDLP security validation:

if discriminant = 4a® + 27b%> # 0 AND curve order N is prime AND E is

non-anomalous case AND [E is not supersingular curve then

10: continue

11: Else go to step 5

12: end if

13: Generate randomly the base point Gy, on E

14: if base point order 7 is prime then

15: continue

16: Else go to step 13

17: end if

18: if cofactor is 1 AND Pollard’s rho value < 219 AND embedding degree k >
% then

19: continue

20: Else go to step 5

21: end if

22: Enforce ECC security validation: © If [E is twist secure i.e., all validations
in step 8 applied to the twist IE’

23: if twist discriminant of [E = 443 4 27b* # 0 AND order of [E’ i.e. N is prime
AND [’ is non-anomalous case AND IE’ is not supersingular curve then

24: continue

25: Else go to step 4

26: end if

27: Generate randomly the base point G ,, on [E’

28: if base point order 1’ is prime AND cofactor of IE' is 1 then

29: continue

30: Else go to step 4

31: end if

32: if cofactor is 1 AND Pollard’s rho value of IE’ < 2190 AND embedding degree
of E'ie. k' > (1\110_01) then

33: continue

34: Else go to step 4

35: end if
continued to next page..
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Algorithm 3 Generation of trusted.. (continued from previous page)

36: Enforce trusted security validation:

37: if RNG is trusted then > Proposed validation criterion T1

38: continue

39: Else go to step 2

40: end if

41: if coefficients a and b have no pre-studied value then > Proposed validation
criterion 12

42: continue

43: Else go to step 2

44: end if

45: if elliptic curves with similar cryptographic strength can be generated with the
same method and apparatus then > Proposed validation criterion T3

46: continue

47: Else go to step 2

48: end if

49: return E : p,a,b and Gy

4.7.2 Standard Procedure for Elliptic Curve Generation

including Trusted Security Acceptance Criteria

The standard procedure shown in Algorithm 3 along with the proposed trusted
security acceptance criteria as discussed in Figure 4.1 with detailed security
validations of elliptic curve from ECDLP security, ECC security and trusted
security perspectives.

The elliptic curve field size (I) in bits is taken as the input in step 1 in Algorithm
3. A seed S is extracted from the entropy harvester in step 2. The /dev/random
is used as the PRNG which takes true random bits through a hardware based
RNG (HRNGQG) that extracts entropy directly. The /dev/random PRNG is available
with Linux Fedora kernel version 4.13.9 for obtaining randomness in desired bit
lengths. The HRNG uses various noise sources like input randomness, device
randomness, disk randomness, HID (key board, mouse etc.), interrupt randomness
to provide random bits as the seed S to /dev/random in step 3. S is used to initialize

/dev/random to provide randomness to the curve generation process as and when
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required. As the curve generation program needs a user trusted secure RNG,
it is left to the user to select his/her trusted RNG for fulfilling the randomness
requirements. Here the focus is to recommend users to use their own trusted
RNGs to avoid any possible manipulation in curve computation and here, the
demonstration is made to show how a trusted Short Weierstrass elliptic curve can
be generated for cryptography. In step 4, the prime p of user desired / bit length
is randomly selected and subsequently, checked that it should hold the form of
p = 3 mod 4 for fast reduction i.e., fast elliptic curve arithmetic on [E. It is
noted that p is first chosen randomly and then verified for this form to avoid any
pre-studied value. The curve coefficients a and b are then chosen randomly in
step 5 and step 6 respectively using different seeds i.e., a and b have independent
initializations. Now, an elliptic curve E is constructed with p, 4 and b in step 7.
The ECDLP security validations are enforced in steps 8 to steps 22 which
includes validations of non-singularity, prime curve order, non-anomalous property,
non-supersingularity in step 9 whereas the random selection of base point in step
13 with prime base point order in step 14. The elliptic curve is validated for
having small cofactor as 1, high Pollard’s rho and high embedding degree in 18
respectively. The non-singularity of elliptic curve confirms that curve is smooth
and indeed an elliptic curve [19, 75, 76]. Prime order elliptic curve with order N

2160 [2]. Non-anomalous case

is resistant to Pohlig-Hellman attack when N >
of elliptic curve i.e., when curve order N # p, confirms that curve is resistant
to pairing based attacks [2]. Non-supersingularity of elliptic curve prevents the
ECDLP from the Menezes, Okamoto and Vanstone (MOV) reduction attack with
sub-exponential complexity which takes place when the conditions that p divides
trace f or/and 2 = 0, p, 2p, 3p or 4p are met [4, 7]. The cofactor value determines

the cryptographic security and gives maximum security when selected as 1 [2, 7].

The Pollard’s rho value of elliptic curve determines the number of elliptic curve



4.7. Cryptographically Secure Elliptic Curve Generation using the Proposed
76
Trusted Security Acceptance Criteria

point additions to find a collision. This check is very important as a parallelized
Pollard-rho on 7 processors can solve ECDLP in steps [2, 42]. The embedding
degree of elliptic curve k > 20 is considered sufficient to guarantee intractability
of the discrete logarithm problem in the extension field [6].

The ECC security validations are enforced in step 9 of Algorithm 3 in which it
looks for the twist of the selected elliptic curve to be secure against all the ECDLP
security validations as described above. The twist security of elliptic curve prevents
from any implementation flaws or information leakage about the user’s secret key
[36].

The trusted security validations are carried out in step 36 to ensure the method
of generation of elliptic curve is trusted in terms of the randomness used in the
curve generation process and that the curve parameters are drawn randomly. Step
37 confirms that the RNG used for randomness is trusted by the user and the curve
parameters have no pre-studied or known values. It also ensures that the procedure
described in Algorithm 3 can be used to obtain Short Weierstrass elliptic curves of
nearly the same cryptographic strength each time on its execution which is shown
in step 45. Finally, a trusted and secure elliptic curve [E : p,a, b and base point G is

returned as the outcome in step 49.

4.7.3 Creation of Database of Trusted and Secure Elliptic

Curves

A database of 500 elliptic curves over 256 bit prime field were created using the
proposed method as discussed in Section 4.7.2. It took around six months time
using computational resources and programing tools as mentioned in Section 4.8.1
in the creation of the database. All the elliptic curves have undergone thorough
security analysis for their cryptographic security which is discussed in Section

4.9 with Pollard’s Rho value in the range of 127.0 to 127.8 on an ideal 128



4.8. Demonstration of Trusted Short Weierstrass Elliptic Curves 77

point scale. The database is kept growing by adding more such elliptic curves
in order to supply cryptographically secure and trusted curves for generation of
non-reproducible pseudorandom bitstreams by the proposed KCS-PRNG which is

comprehensively discussed in Chapter 6 of the thesis.

4.8 Demonstration of Trusted Short Weierstrass
Elliptic Curves

Algorithm 3 is used to derive and propose two trusted Short Weierstrass elliptic
curves KG256r1 and KG384rl defined over 256 bit and 384 bit respectively for
demonstration. The details of the proposed KG256r]1 and KG384r1 are shown in
Table 4.3 and Table 4.4 respectively. These elliptic curves have undergone security
analysis in Section 4.9 to ensure that the elliptic curves generated using Algorithm
3 have nearly the same cryptographic strength in terms of Pollard’s rho complexity
and other criteria like big discriminant, embedding degree, trace etc. while being
compliant with the three security notions i.e. ECDLP security, ECC security and

trusted security.

<This space is intentionally left blank.>
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Table 4.3: The proposed KG256r1 elliptic curve

KG256r1

p

105659876450476807015340827963890761976980048986351025
435035631207814085532543

577801306981151765834884991713447710888985073378732385
90400955371129685138826

1024519508410737479493167964958969379607021154869753637
98323596797327090813462

105659876450476807015340827963890761976544313325663770
762399235394744121359871

(53851663331146464978109980746124159858219863711514859
54586014078688791960064,
884401665317899467231260835467506331798660390928837647
84041611065547926159080)

1 (smallest cofactor)

Table 4.4: The proposed KG384r1 elliptic curve

KG384r1

3085049365668014934007996642175611388879720170590096638184

0288086888802411176587972020735012523469267564505420764051

2689376848857934359417998845213258254140716666751951067196

901653139051892648485257788827989185822359193013251735562

28267991444108104519406497967498656605314105752925343839767

45724330749097582395451638354661270280127278365677483939

3085049365668014934007996642175611388879720170590096638184

1438754683900390077617323565554872996073979103765917522731

(26382167469722729078686791539259191084630652622205406190302
146794523414127451183423914120811487055055064792875345576,
2026280513166061521958958664622807850154518183419964215

1194102089344927295889857293563989127020260020122002404045204)

1 (smallest cofactor)
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4.8.1 Resources used

The curve generation programme is written in Python language using Python
version 2 and Python version 3.6 compilers ran on a desktop server having
2*Intel(R) Xeon(R) E5-2620v4 processor with 32 CPU cores, 2.1 GHz clock
frequency and 128 GB DDR4 memory. The desktop server is equipped with Linux
Fedora operating system (kernel version 4.13.9) and SAGE version 8.1 is used for

number theory arithmetic support for the curve generation program.

4.9 Security Analysis of the Proposed KG256r1 and

KG384r1 Elliptic Curves

4.9.1 Analysis of the ECDLP and ECC Security of the Proposed

KG256r1 and KG384r1 Elliptic Curves

SafeCurves verification script [36] is used to verify ECDLP security and ECC
security of the elliptic curve parameters. Algorithm 4 describes the SafeCurves
verification script which was used to verify the KG256r1 and KG384rl elliptic
curves against its ECDLP and ECC security.

It is obvious that ECDLP security is a crucial security requirement for
qualifying any elliptic curve for cryptography. However, SafeCurves [36] proposed
ECC security as another security notion for evaluating elliptic curves to ensure that
the ECC implementations do not reveal or leak information about user’s secret key.
For Short Weierstrass elliptic curves, a twist secure elliptic curve can prevent ECC
implementation flaws such as invalid-curve attacks and twist attacks. The elliptic
curve [E’ is twist secure if its twist IE is secure which means that all the ECDLP

security validations are also successfully compliant by E'.
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Algorithm 4 Verification of the proposed elliptic curve parameters for
cryptographic security

Require: Elliptic curve parameters p,a,b, N, Gx,y
Ensure: Safe/Weak Elliptic Curve
1: if shape of elliptic curve is Short Weierstrass then

2 continue
3 Else return “Not Short Weierstrass elliptic curve”
4: end if
5: if p is prime then
6 continue
7: Else return “Weak elliptic curve”
8: end if
9: if discriminant < —21%0 then
10: continue
11: Else return “Weak elliptic curve”
12: end if
13: if base point order is prime then
14: continue
15: Else return “Weak elliptic curve”
16: end if
17: if GCD (Curve order, base point order)=1 then
18: continue
19: Else return “Weak elliptic curve”
20: end if
21: if base point is on curve then
22: continue
23: Else return “Incorrect base point”
24: end if
25: if co-factoris 1 or 2 or 4 then
26: continue
27: Else return “Weak elliptic curve”
28: end if
29: if p +1 — t is a multiple of base point order 7 then
30: continue
31: Else return “Weak elliptic curve”
32: end if
33: if embedding degree of curve > (1\1]0_01) then
34: continue
35: Else return “Weak elliptic curve”
36: end if

continued to next page..
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Algorithm 4 Verification of the proposed elliptic.. (continued from previous page)

37: if elliptic curve is MOV safe then

38: continue

39: Else return “Weak elliptic curve”
40: end if

41: if base point order of twist ! = p then
42: continue

43: Else return “Weak elliptic curve”
44: end if

45: if twist equation is elliptic then

46: continue

47: Else return “Weak elliptic curve”
48: end if

49: if twist shape is Short Weierstrass then
50: continue

51: Else return “Weak elliptic curve”
52: end if

53: if co-factor of twist is 1 or 2 or 4 then
54: continue

55: Else return “Weak elliptic curve”
56: end if

57: if GCD (base point order of twist, p) = 1 then
58: continue

59: Else return “Weak elliptic curve”
60: end if

61: if Pollard’s rho value of elliptic curve > 219 then
62: continue

63: Else return “Weak elliptic curve”
64: end if

65: if rigidity is True then

66: continue

67: Else return “Weak elliptic curve”
68: end if

69: if twist rho value > 21%° then

70: continue

71: Else return “Weak elliptic curve”
72: end if

73: if Joint Rho > 2!% then

74: continue

75: Else return “Weak elliptic curve”
76: end if

77: Otherwise, return “Cryptographically safe elliptic curve”
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Both the KG256r1 and KG384rl elliptic curves qualified all the ECDLP

and ECC security verifications executed in Algorithm 4. The field orders p
and curve orders N of both the elliptic curves were verified deterministically
for being a prime number using Pocklington’s theorem. Any special
structure of prime or pre-studied value is avoided in order to prevent
from any vulnerability. For example, NIST P-224 prime ie., p =
2224 1 2% 4+ 1 was used by BADAS55-VPR-224 and standard ANSSI prime
0xF1FD178COB3ADS58F10126DESCE42435B3961 ADBCABC8CA6DESFCF3
53D86E9CO03 was used by BADAS5-R-256 curve respectively to demonstrate
vulnerable curves to the community [S1]. Moreover, the discriminants, embedding
degrees, cofactor values and Pollard’s rho values of both the proposed curves and
their respective twist curves are verified successfully possessing more than their
expected threshold values. These curves are also verified to confirm that they are
not a case of anomalous and supersingular ones as discussed in Section 4.7.2 and
thus, they are suitable for cryptography. Table 4.5 and Table 4.6 shows these values
possessed by both the KG256r1 and KG384r1 elliptic curves.

<This space is intentionally left blank.>
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4.9.2 Analysis of Trusted Security of KG256r1 and KG384r1

Elliptic Curves
Validation of Trusted Security criteria: T1

In this thesis, the /dev/random PRNG is trusted and used for curve generation
procedure due to the fact that it has faced a lot of successful cryptanalysis [62, 63,
77] and sustained long with the Linux kernel since 1994 [63]. Moreover, the latest
versions (version 4.8 or later) of /dev/random have overcome [78] the criticism of
having possible entropy attacks [51]. Also, Linux Fedora kernel version 4.13.9 is
used and /dev/random is selected as the PRNG (sometimes /dev/random is referred
as true random number generator (TRNG) because it has the direct interface with
the HRNG). The actual point is made here that choose your trusted RNG and own

the risk associated with your selection.

Validation of Trusted Security criteria: T2

To validate the T2 criterion, no pre-studied values of the curve coefficients a and b
are used as they have been chosen randomly and independently. The prime numbers
p in both the proposed curves KG256r1 and KG384rl1 are selected randomly first
and then chosen with a form of p = 3 mod 4 for performance tuning and there
is no evidence of these primes p and coefficients a and b reported in past as the

pre-studied ones.

Validation of Trusted Security criteria: T3

To validate the T3 criterion, we conducted an experiment by taking three trials of
executing Algorithm 3 under the same operational environment with same method
and apparatus to retrieve three independent elliptic curves of the same field lengths.

Subsequently, it is examined if they exhibit nearly the same cryptographic strength
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measured in terms of Pollard’s rho value for the curves and their respective twists

as discussed in Section 4.7.2. Table 4.7 shows the results obtained from this
experiment which proves the successful validation of T3 criterion by the proposed

KG256r1 and KG384r1 elliptic curves.

Table 4.7: Validation of Trusted Security criteria: T'3

Pollard’s rho value /
Trial# Elliptic curve parameters E : p,a,b
Twist rho value

p: 87052253706622316800662279631344302713612
816742118516445715106163825624186987

a: 17461513680488110202189680065467433355982
187313809984308530183605390654503146

b: 47423645344793070876962443040716664351751 Rho: 2127:6
66931536995811081067226406616322940 Twist Rho: 2127:6
Gryt (345624448642634477922898816667823681
99808912751831663386444135083641970670103,
44973717098200324632781286735408077067
884851416905001940895476727480258436423)

p: 83857931886285555818472058950522827195247211
639379970952195176566538052148959
a:152220314103590540280417930887083748851745810
07053672026416069700422500171995

b: 757236637128308681589266033304884863127887549 Rho: 2127:6
15163584116380630010872983931491 Twist Rho: 21276
Gryt (7999114561329985086166092260187304650431
4421039422310330231620709939495217575,
7404893030059505468635576438059973071448
4651315014966555 673263252180995491420)

Continued to next page..
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Table 4.7 — continued from previous page

Pollard’s rho value /
Trial# Elliptic curve parameters E : p,a,b
Twist rho value

p: 115455173683647336766695198555386616062185957400
074700902465398650769617153383

a: 89247089594531861167221907824679361896477781827
771349654639873760799894221702

b: 47456080838438598020722203116343582455579601993 | Rho: 21278
324094611207713288744264819618 Twist Rho: 21278
Gyy (873809728619089429266018928122097140385344
82432156502027178728221855540030831,
1090102247036102758077769996625873990104156

05756892207650 540783549332069147687 )

4.10 Results and Discussion

The proposed elliptic curves KG256r]1 and KG384rl are compared with other
similar standard Short Weierstrass elliptic curves like NIST, SEC2, Brainpool,
FRP256v1 and NUMS curves from ECDLP security, ECC security and trusted

security perspectives in this section.

4.10.1 Comparison of the Proposed KG256r1 and KG384rl
Elliptic Curves with Standard Elliptic Curves from

ECDLP and ECC Security Perspectives

It is imperative to note from Table 4.8 that none of the standard elliptic curves have
passed all the SafeCurves verification criteria [36] of ECDLP security and ECC
security. However, Brainpool recommended elliptic curves have deviated in their

own stipulated procedure of generation [S1] and hence can not be trusted easily.
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Also, their verifiably random generation method is under question as such thing can

be intentionally implanted to manipulate the standard as demonstrated by Bernstein

et. al. through BADASS curves [S1].

Table 4.8: Comparison of ECDLP Security and ECC Security of the proposed

elliptic curves

Verification Supported by
Details
criteria elliptic curve
Prime of the forms 1 mod 4 and A, B, C, D1, KG256r1,
safeField
3 mod 4 KG384rl
Elliptic curve over prime field
A, B, C, D1, KG256r1,
safeEquation possessing either Short Weierstrass or
KG384rl
Montgomery or Edward equation
A, B, C, D1, KG256r1,
safeBase Possessing prime order of base point
KG384rl1
A, B, C, D1, KG256rl,
safeRho Rho value must be > 2100
KG384r1
Resistant to Smart-ASS attack
A, B, C, D1, KG256r1,
safeTransfer (additive transfer) and MOV attack
KG384rl
(multiplicative transfer)
Absolute value of complex-
A, B, D1, KG256r1,
safeDiscriminant | multiplication field discriminant
KG384rl1
|D| > 2100
Allows only fully rigid and somewhat | B, C, KG256r1,
safeRigid
rigid curves KG384r1
Above security requirements for twist
safeTwist C, KG256r1, KG384r1
of the curve as well
Elliptic curve is safe if all the above
safeCurve KG256r1, KG384rl
criteria are met

Note: A = NIST recommended elliptic curves, B = Brainpool recommended elliptic curves, C =

SEC2 elliptic curves, D1 = ANSSI recommended elliptic curve FRP256v1
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4.10.2 Comparison of Cryptographic Security of the Proposed

KG256r1 and KG384r1 with Standard Elliptic Curves

The proposed elliptic curves KG256r1 and KG384r1 are compared with standard
Short Weierstrass elliptic curves from overall security of ECDLP, ECC and trust

perspectives in Table 4.9 and shown in Figure 4.10.2.

Trusted Security

1 - I I I I I I I I I I I I ECDLP Securi ity

NISTP256r1, NIST SEC2Prime Brainpool ANSSI FRP256v1 NUMS curve KG256r1, KG384r1
P384rl

Figure 4.2: Bar chart for comparative security evaluation of the proposed elliptic
curves with standard elliptic curves

It is observed from Table 4.9 that only the proposed KG256r1 and KG384rl
elliptic curves are secure from ECDLP, ECC and trust perspectives whereas

standard elliptic curves have met the ECDLP security validations only.

4.10.3 Performance of the Proposed Elliptic Curves

The proposed KG256r1 and KG384rl elliptic curves are demonstrated with
cryptographic operations such as key pair generation, signing and verification
on desktop machine having x86_64 with Intel(R) Core(TM) 15-10400 CPU
with 2.90GHz processor, 16GB DDR4 memory using GNU/Linux version
5.4.0-58-generic and Python Version 3.8.5 software library. Table 4.10 shows
the performance metrics of the proposed elliptic curves in various cryptographic

implementations. The values indicated are the average outcomes of 10000 trials.
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4.11 Summary

Three new trusted security acceptance criteria T'1 - T'3 are proposed in this chapter
to compute cryptographically safe elliptic curves over the prime fields. These
trusted security acceptance criteria or simply, the trusted security criteria are
invoked along with the ECDLP security and ECC security in order to minimize
the scope of manipulation in the curve parameters due to some (intentionally)
non-disclosed property or methods exhibited by their proposers and sabotaged
standards. It is shown that only randomly drawn curve parameters possess the
essential trust factor where a user trusted strong RNG plays a crucial role.
The choice of selection of RNG is left with the users who will own the risks
associated with their chosen RNG to generate the seed and randomness for curve
parameters generation requirements. Two new elliptic curves called KG256rl
and KG384rl are also introduced after validating the newly proposed trusted
security acceptance criteria along with the ECDLP and ECC security validations.
Furthermore, it is experimentally proved that if elliptic curves are generated
keeping these three security notions into consideration then they would have
nearly the same cryptographic strength in terms of Pollard’s rho complexity and
trustworthiness or suitability. Hence, it is inferred that one must verify trusted
security acceptance criteria for randomly generated elliptic curves in addition to
ECDLP and ECC security validations for secure implementation of elliptic curve
based cryptosystems.

The proposed argument of trusted security and demonstrated KG256r1 and
KG384rl elliptic curves gives the feasibility of future standardization of such
randomly generated elliptic curves for trusted cryptographic implementations.

The next chapter discusses the computational resource estimates to compute
elliptic curves over large prime fields to solve the Problems 4 - 6 as mentioned in

Chapter 3.
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Chapter

The Proposed Computational Resource
Estimation of Short Weierstrass Elliptic

Curves

“Science is telling us that we can do phenomenal things if we put
our minds and our resources to it.”

- Anthony Fauci

This chapter presents statistical estimates of computational resources required
for elliptic curves randomly over prime fields of large sizes. This chapter solves the

Problems 4!, Problem 52 and Problem 6> as mentioned in Chapter 3.

ITo provide an estimate of computational resources in terms of computing processor i.e., number
of the CPU clock cycles to compute cryptographically safe elliptic curve randomly over desired
prime field size for cryptographic purposes.

2To provide an estimate of computational resources in terms of number of attempts or searches
to be made in the security parameter space of the elliptic curve to compute cryptographically safe
elliptic curve randomly over desired prime field size for cryptographic purposes within stipulated
time.

3To estimate computational investment for cryptographically secure elliptic curves over very
large prime fields in order to verify feasibility and to prepare existing ECC-based cryptosystem to
be kept resilient to quantum attacks using available number of qubits.
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5.1 Publications from this chapter

The thesis contributes the following journal paper from this chapter.

1. Kunal Abhishek and E. George Dharma Prakash Raj, Computational
Investment in Generation of Elliptic Curves Randomly over Large Prime
Fields, Concurrency and Computation Practice and Experience (2022).

(Status: Under Revision)

5.2 Introduction

Elliptic curves are studied extensively in literature for their applications in
cryptography. The security of elliptic curve-based system depends upon the number
of discrete points exhibited by the elliptic curve group [79]. Therefore, the size of
the field i.e., prime p needs to be of maximum bit length to offer large number of
discrete points in the elliptic curve group. The number of discrete points exhibited
by elliptic curve group is known as order or cardinality (which is the set of all
discrete points) of the elliptic curve. Here, a prime order or prime cardinality
elliptic curve means an elliptic curve IE over a finite field IF, with |E(FF,)|= a
prime. But computing elliptic curve over a large prime field in reasonable time
requires huge computational resources in terms of the processor and the number of
searches. The reason is that, apart from other cryptographic validations of elliptic
curve parameters, the searches are made extensively to find a prime order elliptic
curve and the order of elliptic curves are validated through factorization method
[16] which is a time and resource intensive task. Hence, challenges lie with
organizations in planning computational resources needed for computing elliptic
curves over desired large prime fields within stipulated time. Here, the estimates
of the number of CPU clock cycles helps in determining processor requirements

whereas the number of attempts or searches helps to decide the number of CPU
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cores for speeding up the curve generation process. There is no such research

being carried out in literature to estimate the computational resources needed
for computation of elliptic curves over given large prime fields. Interestingly,
Koblitz [12] estimated the probability to draw a suitable random elliptic curve in
characteristic 2 in terms of the number of searches for computing a near prime
order elliptic curve using Schoof’s algorithm. In light of this, one of the goals of
this thesis is to derive new computational resource estimates for obtaining suitable
prime order elliptic curves randomly over large prime fields.

In particular, the contributions of this chapter are as follows:

* The statistical estimates of computational resources needed to randomly
obtain cryptographically suitable prime order elliptic curve over a given
prime field size are proposed. These estimates can be predicted from two
novel regression equations derived in this chapter. The first regression
equation estimates computational resource in terms of the number of CPU
clock cycles whereas the second regression equation estimates the number of
attempts or searches to be made in the security parameter space of elliptic

curve.

¢ This work is motivated from Koblitz’s estimate [12] to determine the number
of searches needed probabilistically to randomly search a near prime order
elliptic curve over [Fp» where 7 is the bit length of the binary field. In this
chapter, a statistical derivation of such estimate is proposed over [F), where p
is a large prime. Additionally, the processor estimate in terms of the number
of CPU clock cycles required to randomly obtain a prime order elliptic curve

is also proposed in this thesis.

e This chapter present computational resource estimates of computing

cryptographically suitable elliptic curves randomly over prime fields of sizes
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384, 512, 521 and 1024 bits. A table of computing resource estimates with

respect to the elliptic curve prime field sizes is also presented which is used
for deciding the prime field size over which an elliptic curve will be resilient
to quantum attacks with certain number of qubits as estimated by Roetteler

et. al. [39, 40].

5.3 The Proposed Approach

The thesis adopts statistical estimation approach to determine computational
resource estimates in terms of the number of CPU clock cycles i.e. processor
requirements as well as the number of attempts to be made in the security parameter
space to randomly generate elliptic curves over large prime fields. The number
of searches is crucial for time management in order to obtain cryptographically
suitable elliptic curve. Once the number of searches is known, the number of CPU
processor cores can easily be decided across which curve searching routine can
independently and parallelly run using early-abort strategy. This multiprocessing
approach gives controlled speed up in the curve searching process. Hence the
number of searches is considered as another important computational resource for
estimation purposes in this chapter. A standard procedure as described in Algorithm
5 is followed to generate cryptographically suitable elliptic curves randomly
using a trusted RNG as discussed in Section 4.9.2. Further, this section includes
the proposed statistical approach for estimation of computational resources for

computing elliptic curves randomly over the prime fields.

<This space is intentionally left blank.>
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5.3.1 Generation of cryptographically safe elliptic curve over

prime field

In this chapter, a novel statistical estimate of computational resources is proposed
for computing cryptographically safe elliptic curve randomly over a given prime
field size using a standard procedure. This standard procedure taken from various
sources [1,2,3,4,9,17, 18, 19, 28, 36] as mentioned in Algorithm 5 which is also
detailed in Algorithm 3 in Chapter 4 with trusted security validations. Algorithm 5
is followed to randomly generate cryptographically safe elliptic curve over desired
prime field size. Algorithm 5 follows with fixing a prime p and varying the field
elements a and b of Weierstrass equation of the elliptic curve along with varying the
order N till a suitable elliptic curve E is found with N as a prime along with other
cryptographic validations. This elliptic curve generation procedure is considered as
the standard procedure because every parameter related to the elliptic curve like p,
a, b and Gy are randomly generated and they do not have any special structure or
pre-studied values. This standard procedure is represented by Y.

In the first step at line 1, the number of CPU clock cycle (CC) which is initially
set to 0, starts recording the number of CPU clock cycles throughout the execution

of Algorithm 5. The number of CPU clock cycles is determined by the relationship

CC=CT xCF S.D

where CT is the CPU time and CF is the CPU clock frequency [80]. In step
2 and step 3 of Algorithm 5, a prime p is selected randomly of desired length
in bits. The prime p is then transformed into field k at line 4 of Algorithm 5.
By selecting elliptic curve |E randomly over IF), we mean that coefficients of
E(a,b) are chosen randomly in the field IF, [16] and are given at lines 5 and

6 in Algorithm 5. An elliptic curve [E(a,b) over field k is generated at line 7.
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Algorithm 5 Standard Procedure ¥: Generation of cryptographically safe random
elliptic curve over a given prime field size

Require: Size of prime Field p in bits, number of searches made as searchCount set to zero,
number of CPU clock cycles as CC set to zero

Ensure: A cryptographically safe randomly generated elliptic curve [E over prime field p, base

point, curve order, number of searches and number of CPU clock cycles

Start and record CC

Select prime field size in bit

Select randomly a prime p on selected size

Fix k = GF(p) > Generate the field

Select randomly coefficient a > Field element

Select randomly coefficient b > Field element

Generate elliptic curve [E (k) > Elliptic curve over F,

if 4a% +27b% £ 0 > Non-singularity check

else go to step 5

: end if

: Compute order N of E

. searchCount™™ > Record number of searches made in the cardinality space of the elliptic

curve

13: if N is prime > Prime cardinality only

14: else go to step 5

15: end if

16: if [E is non-supersingular

17: else goto step 5

18: end if

19:if N#p > Non-anomalous check

20: else go to step 5

21: end if

22: Select randomly a base point Gy, on [E

23: Compute base point order n

24: ifn #N > Cofactor check

25: else go to step 18

26: end if

27: Compute Twist IE’

28: if E’ is non-singular

29: Compute Cardinality N’ of IE/

30: else go to step 5

31: end if

32: if N’ is prime

33: else go to step 5

34: end if

35: if [E is non-supersingular

36: else go to step 5

37: end if

38: Stop recording CC > As desired elliptic curve is computed by now, stop counting the number
of CPU clock cycles

39: return E, G, N, searchCount, CC

AR Al >

—
D = O 0
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Algorithm 5 checks at line 8 if the elliptic curve [E has non-zero discriminant

i.e. 4a® +27b* # 0 to ensure that cubic curve is indeed an elliptic curve [11,
19, 75, 76]. We need prime order elliptic curves to resist Pohlig-Hellman and
Pollard’s rho attacks [2]. Finding the number of discrete points i.e., the order
of the elliptic curve over large prime field for strongest possible system requires
a lot of effort as far as computational investment i.e. computational resources
are concerned [16]. Algorithm 5 runs SEA algorithm at line 11 to determine
the order or cardinality of elliptic curve. This step requires O((logq)*€) bit
operations where € is a positive constant and consumes O((logg)?) memory as
given in Section 1.4.4. The number of searches is then counted in step 12. Line
13 checks if the order N is a prime number for ECDLP security [1, 3] which is
the most computationally expensive operation. Algorithm 5 uses Multi Polynomial
Quadratic Seive (MPQS) method using Gaussian elimination to verify if the order
is prime at line 13. MPQS factorization method under plausible assumptions
factorizes a number, say N here, in time O(exp(c X (InNInlnN)2)) where ¢ ~ 1
[81]. At line 16, only non-supersingular elliptic curve is accepted to retain fully
exponential complexity for ECDLP hardness [2, 4, 16, 51]. Menezes et al. [4]
showed that supersingular elliptic curves have Trace of Frobenius equal to zero
due to which ECDLP can be reduced to the discrete logarithm problem in a finite
field to a problem with sub-exponential complexity. Elliptic curve to be computed
should not be of anomalous kind where MOV attack is feasible. The anomalous
condition [2, 7, 16, 43, 82] is added at line 19 in Algorithm 5. At line 22, a base
point Gx,y is chosen randomly on [E [44]. By random, we mean here that a random
element xo < p € IF, is chosen and we check if xg + axg + b is a square root
in IF, otherwise we search for another random X till we get a suitable one [44].
The bit-complexity for selecting random base point on [E over IF,, and verifying

base point order both are O(log*p) [17]. The base point order 7 is determined
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using Lagrange’s theorem at line 23. The base point order is checked to be same

as the order of the curve at line 24 so that cofactor value should be 1 for enhanced
cryptographic security of the elliptic curve though it is permissible as 2 or 4 as
well. At lines 28, 32, 35, we followed Lange et. al. [36] to impose all ECDLP
security requirements of IE on its twist IE’. Now the value of CC is noted at line
38 and finally, desired elliptic curve [E, base point G and order N along with the
number of CPU clock cycles and the number of searches are returned as output of

Algorithm 5 at line 39.

5.3.2 Estimation of computational Resources for Computing

Random Elliptic Curves over Prime Fields

The Algorithm 6 is proposed to construct two new linear regression equations
which are derived independently to estimate the number of CPU clock cycles ()
and the number of searches or attempts (w) respectively. A comparison table is
also presented as one of the outcomes which helps in deciding prime field size of
elliptic curve which will be resilient to quantum attacks using certain number of
qubits.

In step 1 of Algorithm 6, a new experiment is conducted to create a large real
time training data set (®) consisting of the number of CPU clock cycles (77) and
the number of searches or attempts (w) made in successful generation of 2400
elliptic curves over different prime fields sizes, recorded as its elements. Similarly,
a test data set () is also created with the number of CPU clock cycles and the
number of attempts made in successful generation of 1170 elliptic curves over 21
different prime fields sizes, recorded as its elements. In step 2 of Algorithm 6,
statistical modeling using regression is performed on @ to infer about the estimates
of computational resources # and w required for computation of elliptic curves over

desired prime fields sizes. Here,  and w are the estimates derived as the average
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Algorithm 6 Estimating computational resources to compute random elliptic curve
[E over given large prime field IF,

Require: A standard procedure ¥ (Algorithm 5), 40 primes p1, pa, ..., pao of various bit lengths
in the range [18,252] bits with an interval of 6 bits, 18 primes p41, pa2, - .., psg of different bit
lengths in the range [14,218] bits with an interval of 12 bits and 3 primes ps9, peo, Pe1 Of bit
lengths 254,266 and 278 bits respectively

Ensure: Computational resources, statistical test results, verification result of resource estimates
and comparison table

1: [Conduct new experiment]

1.1 Create Training Data Set @ = [],;x, where m = number of rows = 40 and # = number
of columns =3

1.2 Create Test Data Set ©@ = [],XS where r = number of rows = 18 and s = number of
columns =3

1.3 loop Input p; with i = 1,2,...,,40 where p; = 18-bit prime, pp = 24-bit prime, ...
pao = 252-bit prime:

>

1.3.1 loop 60 times:
1.3.1.1 Run ¥ with input as p;
1.3.1.2 Record the number of CPU clock cycles %
1.3.1.3 Record the number of searches w
1.3.2 end loop
1.3.3 Compute average (77), average (w)
1.3.4 Set ® = [p;, average (1), average (w)]
1.35 it™
1.4 end loop
1.5 loop Input p; with i = 41,42, ...,58 where ps; = 134-bit prime, psp = 146-bit prime,
..., p5g = 218-bit prime:
1.5.1 loop 60 times:
1.5.1.1 Run ¥ with input as p;
1.5.1.2 Record the number of CPU clock cycles 1
1.5.1.3 Record the number of searches w
1.5.2 end loop
1.5.3 Compute average (), average (w)
1.5.4 Set® = [p;, average (1), average (w)]
1.55 it"
1.6 end loop
1.7 loop Input p; with i = 59, 60,61 where psg = 254-bit prime, pgy = 266-bit prime,
P61 = 278-bit prime:
1.7.1 loop 30 times:
1.7.1.1 Run Y with input as p;
1.7.1.2 Record the number of CPU clock cycles 1
1.7.1.3 Record the number of searches w
1.7.2 end loop
1.7.3 Compute average (), average (w)
1.7.4 Set® = [p;, average (17), average (w)]
1.7.5 it "
1.8 end loop

continued to next page..
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Algorithm 6 Estimating computational resources.. (continued from previous page)

2: [Statistical modeling]

2.1 Regression analysis and derivation of desired regression equations for 77 and w with best
fit based on ©

3: [Estimation of desired computational resources from @]
3.1 return Processor estimate 7 for a given p
3.2 return Estimate of searches w for a given p

4: [Test the statistical model]

4.1 return Statistical test results, the tuple (R?, Rzudjusted, r,p — value)

4.2 Verify predicted estimates with the estimates obtained from ©

4.3 return TRUE if predicted estimates from ® < actual estimates from ® or FALSE
otherwise

5: [Comparison]

5.1 Create comparison table with p of [E as its first column, qubits required to solve ECDLP
as its second column and resource estimates # and w required to compute IE as its third
column

5.2 return comparison table

number of CPU clock cycles and the average number of searches respectively from
60 observations for each prime field case. In step 3, computational resources based
on O is estimated in terms of 1 and w for a given prime p, are returned. In step
4, the coefficient of determination R?, Rzadjusted’ correlation coefficient 7 and p —
value of the test statistics are checked. The R? value is calculated by squaring the
Pearson correlation coefficient that reveals the percentage of variance explained in
each of the two correlated variables by the other variable [84]. High Rzudjusted
value indicates a model with small test error [85]. High r value shows the strength
of association between the two variables whereas suitable p — value denotes the
statistical significance of the test. The predicted resource estimates derived from the
models based on ® are compared with the resource estimates obtained from ©. It
is verified if the upper bound of the predicted computational resource estimates are
close to the actual computational resource estimates from ® under 99% confidence
interval. In step 5, a comparison table is returned with the prime field size p,

the number of qubits required to solve ECDLP and the computational resource
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estimates 77 and w required to compute the elliptic curve over IF),.

As indicated in step 1 of Algorithm 6, an experiment is conducted to create a
new data set of elliptic curves for training purposes and another data set for testing
purposes followed by regression analysis on training data set to obtain the models
for desired estimates of computational resources. The detailed experimentation and

regression analysis are explained in the following subsections.

Experimentation

In this section, The assumptions and the controls which are used in the
experimentation are discussed. Further, the section discusses the computational
environment used in the experimentation as well as the methodology by which a

large data set is created for modeling and inferencing purposes in this thesis.

i. Assumptions and Control in Experiment

* Algorithm 5 is fixed for experimentation.

* Resource requirements for operating system routines are not considered.

* Communication overheads are not considered.

» X is a non-stochastic controlled variable in this experiment.

ii. Experimentation Environment

An experimentation set up is organized with a Desktop Server having Intel Xeon
ES5-2620 v4 at 2.1 GHz clock frequency with 32 processor cores with 2 threads per
core and 128 GB DDR4 RAM. The SAGE version 8.1 package for elliptic curve
generation program on Linux Fedora kernel version 4.13.9 is used. Python versions

2 and 3.6 compilers are used for generating the data sets for experimentation.
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MINITAB version 19 and R software were used for statistical calculations pictorial

output representations.

iii. Data Set Creation

Algorithm 5 is used to generate elliptic curves over given prime fields sizes.
The computational resource estimates 77 and w are recorded during elliptic curve
generation process till a suitable elliptic curve of prime order is found.

A new data set of elliptic curves over desired prime field sizes was created for
modeling purposes. The size of the data set was carefully selected for accuracy of
the proposed models. Since the Central Limit Theorem (CLT) proves that even if
the population is non-normally distributed, the sampling distribution of the mean
will most likely approximate a nice, normal, bell-shaped distribution as long as
sample contains at least 30 cases [84]. Therefore, it is reasonable to have at least
10 cases for each of the 30 predictor variables in the model [84] which means
the data set should hold at least 30 x 10 = 300 observations in the sample for
inferencing. Hence, keeping data size in view, a new sufficiently large data set
consisting of 7 and w as its elements is created from 40 x 60 = 2400 elliptic
curves computed under the experimental environment as mentioned in Section 5.3.2
to satisfy the sample size criteria as given in [84]. The elliptic curves are defined
over 40 prime fields sizes in the range of [18,252] prime field bit lengths with an
interval of 6 bits. Each data element in the data set is the arithmetic mean of 60
distinct observations over each prime field size (see Algorithm 6). This data set is
considered as training data set (called ®) to construct the regression model with
best fit. Similarly, a test data set (called ©®) with n and w as its elements, is also
created from (18 x 60) + (3 x 30) = 1170 elliptic curves defined over 21 different
prime fields sizes in the range of [14, 218] bit lengths for interpolation cases and

254,266 and 278 bit lengths for extrapolation cases with an interval of 12 bits
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each. 18 data elements (interpolation cases) in © is arithmetic mean of 60 distinct

observations for each prime field size whereas 3 data elements (extrapolation cases)
in O is arithmetic mean of 30 distinct observations for each prime field size. The
test data set is created for comparison with predicted values observed from the
regression model based on ®. The maximum prime field size for ® is limited
to 252-bits and that of © as 218 bits for interpolation cases only. However, 3
extrapolation values i.e. 254, 266 and 278 bits to © are added separately to further
verify the accuracy of the derived model based on ©.

Table 5.1 shows ® with prime field size as input in the first column (ignoring
case# column), total number of CPU clock cycles recorded in second column and
number of attempts made by the machine in successful generation of the elliptic
curve in the third column with a total of 40 entries. Similarly, Table 5.2 shows @)
with the same attributes as in Table 5.1 in its three columns (ignoring case# column)
but having only 21 entries.

Here, the prime field size is considered as X as the Predictor Variable whereas
the number of CPU clock cycles (Y) and the number of attempts (Z) made for
elliptic curve computation are considered as Regression Variables for two separate
models respectively. The data values in ® and © were recorded from experiments
under controlled environment as discussed in Section 5.3.2.

The number of CPU clock cycles and the number of searches made in the
security parameter space of elliptic curve to find a prime order elliptic curve
depends on the prime field over which elliptic curve is defined. The asymptotic
complexity in bit operations for computing the order of elliptic curve using SEA
algorithm is O((logq)**€) where € is a positive constant [21]. Further as stated
earlier in Section 5.3.1, MPQS method is used to check the order of the elliptic
curve N to be a prime with asymptotic complexity O(exp(c x (InNInlnN )%))

where ¢ ~ 1. Algorithm 5 repeats computing a new elliptic curve randomly until a
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Table 5.1: Training Data Set (®)

Casett Prime Field Size | Number of CPU | Number of Searches
in bits (X) clock Cycles (Y) | made (Z)

1 18 1.7852E+11 712
2 24 1.926E+11 865

3 30 2.52581E+11 1196
4 36 1.05707E+13 1504
5 42 5.50157E+11 1627
6 48 1.06851E+12 1873
7 54 2.45426E+12 2001
8 60 3.98226E+12 3166
9 66 1.69909E+13 2943
10 72 2.54716E+13 3456
11 78 3.38216E+13 4164
12 84 3.9335E+13 3827
13 90 6.41849E+13 5642
14 96 8.00742E+13 5536
15 102 1.07634E+14 6654
16 108 1.46966E+14 7389
17 114 2.44204E+14 10860
18 120 2.07239E+14 7845
19 126 2.76189E+14 8428
20 132 6.13986E+14 13714
21 138 6.26786E+14 12135
22 144 8.27762E+14 14344
23 150 9.05017E+14 14013
24 156 1.0066E+15 13661
25 162 1.4215E+15 15117
26 168 2.07947E+15 19891
27 174 2.08301E+15 17982
28 180 2.24864E+15 17267
29 186 2.40415E+15 16479
30 192 4.36018E+15 25488
31 198 5.6743E+15 26916
32 204 5.34167E+15 23379
33 210 5.89211E+15 23242
34 216 6.15421E+15 22411
35 222 9.71521E+15 28740
36 228 1.07283E+16 29068
37 234 1.15439E+16 28272
38 240 1.40148E+16 31181
39 246 1.94564E+16 39541
40 252 1.84172E+16 34062
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Table 5.2: Test Data Set (®)

Casedt Prime Field Size | Number of CPU | Number of Searches
in bits (X) clock Cycles (Y) | made (Z)

1 14 1.56532E+11 538
2 26 2.0379E+11 967
3 38 3.42903E+11 1333
4 50 1.13694E+12 1789
5 62 3.50459E+12 2896
6 74 2.64485E+13 3782
7 86 3.16236E+13 3203
8 98 7.39033E+13 4838
9 110 1.75149E+14 8428
10 122 2.40678E+14 9134
11 134 6.5509E+14 14068
12 146 6.03467E+14 9853
13 158 1.32985E+15 15955
14 170 2.01196E+15 18813
15 182 2.56179E+15 18957
16 194 4.35943E+15 22208
17 206 5.27928E+15 22354
18 218 8.28908E+15 28787
19 254 1.13898E+16 18547
20 266 2.22417E+16 28769
21 278 2.63487E+16 28464

prime order curve is found resulting high cost of CPU clock cycles as observed in

Table 5.1 and Table 5.2.

Regression Analysis on Training Data Set

The Scatterplot of Predictor versus Response is the first step for regression analysis
[86]. Hence, the Scatterplots of X vs. Y and X vs. Z to verify relationship between
X and Y as well as between X and Z are plotted to verify if any unusual points
or outliers are present in the data set ®. The desired Scatterplots are presented in
Figure 5.1(a) and Figure 5.1(b) respectively.

It is evident from Figure 5.1 that X and Y as well as X and Z have non-linear
relationship and no such far outliers are visible and therefore, a polynomial
regression model i.e. second order or quadratic model qualifies to be a fit case

[85].
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i. Model selection with best fit for estimation of the number of CPU clock cycles
(1) and number of searches made (w)
The two regression equations for 7 and w respectively are derived with best fits

from © under the following assumptions:

1. €; is a random variable and is assumed to have normal distribution, N ~
(0,0%) and Cov(e;, €))Vi # j(i,j = 1,..,40). So, our expectation is

E(e;) = 0 and variance V (¢;) = o>

2. E(Y;) = E(Bo+ B1X; + B2 X? + €))
= o+ P1X + 2 X7 +0
= Bo+ P1X + P2 X7 and,
V(Y;) = E(Bo + B1X; + BaX? +€;)
= V(e;) = o>

r . jid jid
3. For statistical inferences, we assume €; ~ N(0,02) and, Y; ~ N(Bo +

,lei + ‘Blez, 0'2).
Now ¢; YN (0,02) leads to consequences like Y; 9N (Bo + B1Xi +
/BZXZ.Z,UZ).

The polynomial regression (quadratic) models for Figure 5.1 i.e. for estimation
of the number of CPU clock cycles and number of searches made can be

constructed as

Y = ,5() + ,51X1' + ,BZXIZ +€; (5.2)

where regression coefficient By is known as Intercept, B is called linear effect
parameter and S, is called quadratic effect parameter. €; is the error which is
normally observed as independent and identically distributed (iid) random variable

with N(0,02). As desired, E(Y) = Bo + B1X; + B2X? and Var(Y) = 0% in
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our case. It is also noted that parameters B, B1, B2 and variance ¢ are unknown

whereas €; is unobserved. Here, the goal is to determine or estimate these unknown
parameters while minimizing the error €;.

Let us first determine how the variables X and Y as well as X and Z are
associated with each other by computing Pearson correlation coefficient r which
is given by the formula

Y (zx, 2y)

where r = Pearson correlation coefficient, z, = (X — ]4) /o = z score for variable
X, zy = (Y — u)/0 = z score for variable Y, u = population mean, ¢ = standard
deviation, N = number of pairs of X and Y scores and observing their Scatterplots
of correlation coefficients as shown in Figure 5.2(a) and Figure 5.2(b) respectively.

The value of correlation coefficient r is determined between X and Y as 0.789
from (5.3) in the confidence interval (0.569,0.904) which shows strong association
between both the variables. Similarly, » value between X and Z is determined from
(5.3) as 0.965 in the confidence interval (0.920,0.985) which shows very strong
association between both the variables. Further, suitable polynomial regression
models for estimating CPU clock cycles and number of searches can be obtained
with best fit using Ordinary Least Squares (OLS) method in which parameter
estimates are chosen to minimize a quantity called the Residual Sum of Squares
(RSS) [86]. The quality of the fitted line is assessed by two methods: The
“lack of fit” determined by the Residual Standard Deviation/Error (RSD/RSE)
and the “measure of fit" determined by the Coefficient of Determination R? [85].
Furthermore, Rg djusted is computed to assure that all the correct variables only are
included in the model and no noise variables are present [84]. R? and Ridju sted
statistics together gives adequately the superiority of the improved alternative
model. The derivation of polynomial regression (quadratic) model is given in

Algorithm 7 which is used to obtain both the models 77 and w.
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Algorithm 7 Finding Polynomial Regression (Quadratic) Model and Test Statistics
Require: (x;,y;) where x; € X andy; € Y wherei = 1,2, - -+, n from training

data set © and n = 40
Ensure: Regression coefficients B, B1, B2 and p-value, R?, Rzadjusted

1: [Estimation of Bg, 1 and B2]
1.1 Compute Residual Sum of Squares(RSS):

RSS=e+e3+el+ ...+ €

where € is the residual or error and n is the number of observations

n
:>RSS:Z(yi—ﬁo—51Xxi—ﬁzxxiz)z
i=1

1.2 Use Least Square approach to compute Bo, B1 and B2 such that RSS
is minimum. Take partial derivative of RSS w.rt. Bo, B1 and By and

equating them to zero:

n

d(RSS) 0= _9 Z(yi — Bo — B1 X x; — B2 X x?)

9P i=1
= 0= 21 (5~ o Puxxi— o x x?)

which implies

Y yi=nBo+Br Y xi+B ) x? (5.4)
i—1 i=1

i=1

n n n n
Y xyi=PBo) xi+p1 Y xF+ P2 ) xS’ (5.5)
i=1 i—1 i=1 i=1

n n n n
) x%y;i = Bo ) X2+ B Y. X7 + B2 Y. Xt (5.6)
i=1 i=1 i=1

i=1
1.3 Compute B, B1 and B using (5.4), (5.5) and (5.6)

continued to next page..
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Algorithm 7 Finding Polynomial Regression.. (continued from previous page)

2: [Assessing statistical significance of the test]
2.1 Statistical Significance of the Test
2.1.1 Formulate Hy : B1, 82 = 0and Hy : B1, 2 # 0
2.1.2 Compute p — value at « = 0.01
3: [Assessing accuracy of the model]

3.1 Compute coefficient of determination R?

RSS
2 _q_ Y
RE=1-7g3
which implies
i1 (vi— )
where = % X Y1y
3.2 Compute Rzadjusted
RSS/(n—d—1)

2 — 1 _
R adjusted 1 TSS/(Tl—l)

where d is the number of variables

3.3 Compute RSD
RSD =

1 > X RSS 5.7

n_

4: [Results]

return B, 1. B2 and p — value, R?, R?qgjysted

In step 1 of Algorithm 7, the value of RSS is first calculated with a goal to

minimize it. Then OLS approach is followed so that RSS will be minimum [87].
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In step 2, the statistical significance of the test is accessed. The R? and Rzad]-ustgd

values are obtained in step 3 to analyze the model that fits best with @ to determine

7 and w in computing a suitable random elliptic curve randomly. Thus, accuracy

2
adjuste

of the model is obtained by observing R?, R ; and RSD values in step 3
of Algorithm 7. Thus, accuracy of the model is obtained by observing R? and
Rzad]-ustgd values in step 3 of Algorithm 7. Finally, the parameters Bg, 81, B2,
p — value, R? and R2adjusted is returned in step 4 as the output of Algorithm
7. The “goodness of fit" is verified for which the models’ statistics for 7 and w
are summarized in Table 5.3 and Table 5.4 respectively. Table 5.3 and Table 5.4
presents the p — value and the degree of freedom which denotes the statistical
significance of the models (linear and polynomial quadratic) for # and w and the

approximate number of observations in the data set ® for determining statistical

significance respectively [84].

2

Linear model without the quadratic term has smaller R2, R adjuste

4 and higher
RSD values [85]. Therefore, the statistical properties of the coefficients’ estimates
R?, Rﬁ djusted and RSD are improved by adding the quadratic term in the regression
equations. These values are shown in Table 5.3 and Table 5.4 for # and w
respectively. The Model Statistics for 7 and w are then compared based on these
statistical properties of the coefficients of the equations. We observed in both the
Table 5.3 and Table 5.4 that quadratic model has better R?, Rﬁ djusted and minimal

RSD values than that of linear model and hence, quadratic model is preferred over

the linear model.

a. Model Selelction for i
It is evident from Table 5.3 that polynomial quadratic model is the best fit with
higher R? value and therefore, it is chosen over the alternative linear model. The

resulting fitted line for desired quadratic model is shown in Figure 5.3(a).
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The best fitted model for 77 can be constructed with prime field size (X) and

number of CPU clock cycles (Y) as inputs to Algorithm 7. The output of Algorithm

7 is the desired model for 7 which is represented as

Y =3.99E + 15— 1.16E + 14 x X + 6.43E + 11 x X? (5.8)

where Bo = 3.99E 415, 1 = —1.16E + 14 and B, = 6.43E + 11.

2
adjuste

Here, p — value, R%ZandR ; values of the model are computed as < 0.005,

91.71% and 91.26% respectively as shown in Table 5.3.

b. Model Selelction for w
It is evident from Table 5.4 that R? values of quadratic model is higher than the
corresponding linear model, therefore a quadratic model is selected for estimating
w. The fitted line for the desired quadratic model is shown in Fig. 5.3(b).

The best fitted model for w can be constructed with prime field size (X) and
number of searches or attempts made (Z) as inputs to Algorithm 7. The desired

model of w is the output of Algorithm 7 which is represented as

Z = —151 +21.86 x X +0.4719 x X (5.9)

where Bg = —151, B1 = 21.86 and B, = 0.4719.
Here, p — value, R? and Ri djusted values of the model are computed as < 0.005,

96.70% and 96.53% respectively as shown in Table 5.4.
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5.4 Results and Discussion

The desired computational resource estimates are derived by equations (5.8) and
(5.9) which are novel in light of Koblitz’s estimates as discussed in Section 2.7.1.
Koblitz gave probabilistic resource estimate of number of searches made over [Fy»
where the experimentation was carried out at Hewlett Packards Lab [16] to derive
a large number of elliptic curves. However, resources in terms of processor were
not estimated by the author. In contrast with Koblitz’s estimates, proposed resource
estimates include processor estimates in terms of the number of CPU clock cycles
along with the number of searches made in the security parameter space of the
elliptic curve. The proposed resource estimates are based on experiments that were
carried out to create a large data set with elliptic curves over IF,, and modeled with
regression technique.

Further, the proposed regression models (5.8) and (5.9) are able to precisely
predict the computational resources required for random generation of an elliptic
curve over a given prime field size. The presented model is also verified with the
test data set and found to be within the upper bound of the resource prediction
interval. The Prediction Plots for computational resources are shown in Figure
5.4(a) and Figure 5.4(b). The blue fitted line in Figure 5.4(a) shows the predicted
value of Y for its corresponding X value whereas the red dashed line shows 99%
prediction interval. Similarly, the blue fitted line in Figure 5.4(b) shows the
predicted value of Z for its corresponding X value whereas the red dashed line
shows 99% prediction interval.

The results of computational resource estimates (Ypredicteds Zpredicted)
determined by (5.8) and (5.9) with the experimental estimates (Yyctyars Zactual)
observed from © (as given in Table 5.2) collated with three extrapolated X-values
are compared and shown in Table 5.5. It is observed from Table 5.5 that the

proposed regression models (5.8) and (5.9) has precisely predicted the number
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5.4. Results and Discussion

Table 5.5: Resource prediction for interpolation and extrapolation cases

Ypred icted

Zpredicted

(99% Prediction | © rediction (99% Prediction | ©reiction

X Yoctual Interval matched? Zactual | Interval matched?
(Yes/ (Yes/

Upper Bound) No) Upper Bound) No)

from (5.8) from (5.9)
Interpolation
14 1.56532E+11 | 7.07955E+15 Yes 538 6346.2 Yes
26 | 2.0379E+11 5.85252E+15 Yes 967 6639.1 Yes
38 | 3.42903E+11 | 4.85648E+15 Yes 1333 7128.9 Yes
50 1.13694E+12 | 4.08310E+15 Yes 1789 7804.5 Yes
62 | 3.50459E+12 | 3.52376E+15 Yes 2896 8654.4 Yes
74 | 2.64485E+13 | 3.17019E+15 Yes 3782 9667.6 Yes
86 | 3.16236E+13 | 3.01496E+15 Yes 3203 10834 Yes
98 | 7.39033E+13 | 3.05184E+15 Yes 4838 12146 Yes
110 | 1.75149E+14 | 3.27592E+15 Yes 8428 13597 Yes
122 | 2.40678E+14 | 3.68367E+15 Yes 9134 15181 Yes
134 | 6.5509E+14 | 4.27293E+15 Yes 14068 | 16897 Yes
146 | 6.03467E+14 | 5.04294E+15 Yes 9853 18742 Yes
158 | 1.32985E+15 | 5.99423E+15 Yes 15955 | 20719 Yes
170 | 2.01196E+15 | 4.12875E+15 Yes 18813 | 22828 Yes
182 | 2.56179E+15 | 8.44978E+15 Yes 18957 | 25076 Yes
194 | 4.35943E+15 | 9.96199E+15 Yes 22208 | 27467 Yes
206 | 5.27928E+15 | 1.16714E+16 Yes 22354 | 30010 Yes
218 | 8.28908E+15 | 1.35853E+16 Yes 28787 | 32715 Yes
Extrapolation
254 | 1.13898E+16 | 2.06370E+16 Yes 18547 | 41910 Yes
266 | 2.22417E+16 | 2.34516E+16 Yes 28769 | 45372 Yes
278 | 2.63487E+16 | 2.65094E+16 Yes 28464 | 49046 Yes

of CPU clock cycles (77) and number of searches made (w) for various prime fields
sizes in both the interpolation and extrapolation cases. A use case of our resource
estimates in Table 5.6 is presented that helps to decide suitable prime field size of
elliptic curve which will be resilient to quantum attacks using certain number of
qubits. For example, Roetteler er. al. [39, 40] proposed these qubits estimates
required to break ECDLP over prime fields sizes of 192, 224, 256, 384, 512, 521
and 1024 bits as shown in Table 5.6. Now, since a quantum computer with 3500
qubits can solve ECDLP over 384 bit prime field as shown in Table 5.6, therefore,
the resilient prime field size of safe elliptic curves can be decided as 512 bit that

requires 4636 qubits which is far from attacker’s reach. Accordingly, computational

resources to generate elliptic curve with 521 bit can be estimated from (5.8) and
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(5.9) as shown in Table 5.6.

Table 5.6: Estimate of computational investment for elliptic curves whose
discrete logarithm problem (ECDLP) is intractable against quantum attacks

Prime Field Size | Qubits to solve Proposed Computational Resources under 99 %
p (n-bit) of E ECDLP (39, 40] | prediction interval (upper bound)
Number of CPU clock cycles | Number of Searches
192 1754 9.69644E+15 27058.2
224 2042 1.46215E+16 34131.7
256 2330 2.10894E+16 42472.7
384 3484 6.43080E+16 91060.4
512 4636 1.34915E+17 163520
521 4719 1.40878E+17 169470
1024 9246 6.79685E+17 676720

5.5 Limitation of the Proposed Resource Estimate

It is noted that the predicted computational resources lie on a growing parabolic
path as shown in Figure 5.5 which asserts that prediction of both # and w
in extrapolation cases up to 1024 bit prime field size would be precise for
consideration. Moreover, as the proposed approach is to randomly choose elliptic
curves from its security parameter space, there is an undeniable possibility that the
predicted resource estimates in both interpolation and extrapolation cases may not
be appropriate. For example, one may get an ideal elliptic curve over a given prime
field size within the first or within few attempts itself in the best case scenario
causing the predicted estimates appeared to be entirely inappropriate. But such
events are extremely unlikely and rare to happen. However, it is always a good

idea to consider not less than an average case (keeping in view the large prime field
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size) to decide such computational resources needed for generation of elliptic curve

randomly.

5.6 Determination of CPU Processor from
Computational Resources Estimates

Let us assume ¢ be the number of CPU cores, P be the CPU processor’s capacity
in Giga Hertz (GHz), x be the number of CPU clock cycles and t be the time in
seconds, then processor’s capacity is determined as the rate of CPU clock cycles
i.e.,

X X
P:?:PXC:?:t:

5.10
Pxc ( )

Now, from Table 5.6, for 512 bit prime field size, the value of x = 1.34915E + 17.
As there is a very slow upgradation in the CPU processor capabilities since 2006
which is normally in the range of 3 GHz to 3.6 GHz, let us consider that we have
single CPU processor of 3 GHz processing power only. From Equation (5.6), it

can be calculated that
; _ 134915E 17 x 1077
- 3xc

(5.11)

Here, Equation (5.6) suggests that number of CPU cores will decide the stipulated
time for a successful derivation of an elliptic curve over a prime field size (in this
particular case, it is 512 bit) using a single core processor of 3 GHz processing
power. Now, to set up a trade-off between the appropriate requirement of CPU
cores and time to successfully derive the elliptic curve, it is needed to consider the
number of searches or attempts made for the same. It is obvious from Table 5.6
that 512 bit prime field size will require around 163520 searches or attempts in the
security parameter of the elliptic curve. Let us assume that 1000 cores machine with

3 GHz processing power with each core is available and they will be assigned with
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163520
1000

~ 164 searches to each one of them, then, the approximate time requried for

successful generation of a suitable elliptic curve will be

_ 1.34915E+17 x 10~°

~ 44971.67 ~ 125 H A2
3 % 1000 = t 971.67 Seconds 5 Hours (5.12)

Here, it should be noted that searching the suitable elliptic curve requires a prime
order elliptic curve that are validated through factorization method which is time
intensive task. Therefore, each core should be loaded with minimum possible
number of searches while implementing more number of CPU processing cores

to the machine.

5.7 Summary

Computing new elliptic curves randomly over large prime fields for cryptographic
purposes has been one of the biggest challenges observed in strategic interest
because of huge computational resource requirements in terms of processor and
targeted time line for curve computation. The thesis in this chapter approached
such problem statistically using realistic data and practical assumptions and
controls in the experiments as well as in analysis. Two large data sets with
2400 and 1170 elliptic curves were created for modeling and testing purposes
respectively. Subsequently, computational resources i.e. the number of CPU clock
cycles (Y) and number of searches (Z) are proposed from two novel equations
Y = 3.99E + 15— 1.16E + 14 x X + 643E + 11 x X? and Z = —151 +
21.86 x X + 0.4719 x X? respectively where X is the prime field size in bits.
These equations were derived under 99% confidence interval along with certain
statistical assumptions. Convincing statistical results about these equations were
reported with the “goodness of fit" measured as R? value (called the coefficient of

determination) which equals 91.71% and 96.70% in each case respectively, the



5.7. Summary 125

correlation coefficient (r) values between X,Y and between X, Z equals 0.789

and 0.965 respectively, p — value for both equations were found to be < 0.005
with 39 degree of freedom for each equation respectively. The predicted resource
estimates from the proposed equations were verified with real time test data both
in interpolation and some extrapolation cases which confirms accuracy of the
proposed regression models. In the light of Koblitz’s work [12], novel statistical
resource estimates for computing the number of searches as well as the number
of CPU clock cycles (processor’s estimate) to obtain a prime order elliptic curve
defined over prime field are proposed. We further presented computational resource
estimates of elliptic curves over prime fields sizes of 384, 512, 521 and 1024 bits
against the quantum estimates suggested by Roetteler et. al. [39, 40] to break
the ECDLP. The advantage of the proposed work is that it suggests computational
investments to compute new elliptic curves over chosen large prime field size
which will be resilient to practical number of qubits under attack and therefore, the
existing elliptic curve based cryptosystems may be kept alive. The contributions of
this chapter in the thesis will help organizations to decide and allocate appropriate
computational resources to randomly compute new elliptic curves over large prime
fields within stipulated time. Moreover, the training data set can further be enlarged
with more number of elliptic curves over different large prime fields to enhance the
accuracy of the proposed models. This work can also be extended to find new
computational resources to randomly obtain elliptic curves over the binary fields
using appropriate procedure.

The next chapter deals with the construction of a novel kernel CSPRNG which
uses cryptographically secure and trusted elliptic curves over large prime field
whose requirements of computational resources are discussed in this chapter and

whose method of computation is already discussed in Chapter 4 of the thesis.
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Part 11

Construction of a Novel CSPRNG
Using Elliptic Curves For Kernel

Applications
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Chapter

Design and Implementation of The

Proposed KCS-PRNG

“Random Numbers should not be generated with a method chosen

at random”

- Donald Knuth

In this part of the thesis, a novel CSPRNG for kernel applications is designed
and implemented whose generated bitstreams are statistically random looking and
unpredictable with non-reproducibility property. This chapter in the second part of

the thesis solves the Problem 7' as mentioned in Chapter 3.

6.1 Publications from this chapter

The thesis contributes the following publications from this chapter.

'A new competitive candidate CSPRNG for kernel or cryptographic usage is highly desirable
which could exhibit statistical properties of randomness and unpredictability along with the
non-reproducibility property of randomness.
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1. Kunal Abhishek and E. George Dharma Prakash Raj, On Random Number

Generation for Kernel Applications, Fundamenta Informaticae, IOS Press

(2022). (Status: Accepted - In press)

2. Kunal Abhishek and E. George Dharma Prakash Raj, Operating System
Security: A Short Note, IEEE India Info. Vol. 14 No. 2 Apr - Jun 2019.

6.2 Introduction

The design goals of RNG heavily depend on its target applications. A simple
application like stochastic simulations or Monte Carlo integrations may require
RNG to generate nothing more than a random looking bitstream [22]. However,
a sensitive application of RNG like an operating system kernel on top of which
entire critical systems run, certainly requires RNG to generate high quality pseudo
random bitstreams which are also provably secure, unpredictable and must be
non-reproducible which only a True Random Number Generator (TRNG) can
provide in principal.

Moreover, a kernel uses a RNG to create ASLR offsets [25], generate salts
to securely store users passwords [88] and generate random keys to implement
various cryptographic primitives like encryption, authentication etc. The ASLR
is one of the most important techniques used by the kernel (in special cases
termed as Kernel-ASLR or KASLR) which randomizes the process layout to
protect the locations of the targeted functions such as stack, heap, executable,
dynamic linker/loader etc. [25]. The ASLR not only demands statistically
qualified high quality pseudorandom number generator but also requires the output
bitstream to be provably secure and unpredictable. Hence, a CSPRNG (or
simply a PRNG with regular entropy inputs for unpredictability) is a preferred

type of RNG for kernel applications. There are many good CSPRNGs which
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are implemented in various operating systems and are used by their kernels.
Fortuna, Yarrow and /dev/(u)random are the popular CSPRNGs which are currently
implemented by Windows, MacOs/iOS/FreeBSD and Linux/Android operating
systems respectively [67, 89]. In this thesis, a new CSPRNG which exhibits
‘non-reproducibility’ property of a TRNG is proposed taking security of the above
kernel applications into consideration.

In particular, the key contributions of this chapter are:

* A novel CSPRNG design comprises of two non-standard and verified secure
elliptic curves and nine LFSRs uniquely configured in a clock-controlled
fashion to attain exponential linear complexity is used to construct the

proposed KCS-PRNG.

* A novel architecture of the KCS-PRNG is proposed to mitigate the gap of

‘non-reproducibility’ property.

* Two new non-standard and verified elliptic curves are used in this chapter (as
described in Chapter 5) to mitigate the gap of ‘non-reproducibility’ property
of the generated pseudorandom bitstreams by the proposed KCS-PRNG.
Both elliptic curves are generated randomly over 256-bit prime fields to
ensure cryptographic and implementation security and randomly retrieved

from a newly created database of such elliptic curves.

» Extensive security analysis of the proposed KCS-PRNG carried out to ensure

theoretical security.

* Experimental validation and demonstration of statistical qualities of

randomness using NIST, Diehard, TestUO1 test suites.

* Experimental validation and demonstration of ‘non-reproducibility’ property

of the proposed KCS-PRNG.
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* The proposed KCS-PRNG is compared with present kernel CSPRNGs like

Fortuna, Yarrow and dev/random and an existing PRNG [90]. The proposed
KCS-PRNG is also compared with an existing TRNG [91] in context of

non-reproducibility of the generated random bitstreams.

6.3 The Proposed Design of KCS-PRNG

Generation of high quality cryptographically secure pseudorandom bitstreams is
an intricate task which needs efficient design of the generator taking statistical
properties of randomness (R1), unpredictability (R2, R3) and non-reproducibility
(R4) of the output bitstreams into consideration (refer Section 1.4.6). For
this reason, the proposed KCS-PRNG binds two modules in its design: first,
a combination of two cryptographically safe elliptic curves and a nonlinear
Sequence Generator consisting of nine clock-controlled LFESRs in alternating step
configuration.

Following are the design decisions and assumptions of the proposed

KCS-PRNG:

6.3.1 Selection of Elliptic curves

The main motivation of using elliptic curves in the proposed KCS-PRNG instead of
stream ciphers/block ciphers like ChaCha20 and Triple DES or AES respectively
as used by /dev/(u)random [62], Yarrow [64] and Fortuna [66] respectively is that
one can choose different points on the selected elliptic curve to generate completely
unrelated bitstreams under identical start conditions using the novel configuration
used in the proposed design of KCS-PRNG. Moreover, the combination of elliptic
curve and LFSR has been proven to exhibit enhanced randomness properties [12].

Two elliptic curves are used in KCS-PRNG for added complexity where each
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elliptic curve provides nearly 2128 key space. Moreover, the advantages of keeping

elliptic curves with the clock-controlled LFSRs is two-fold: first, the elliptic curves
are used for mitigating the gap of ‘non-reproducibility’ property (R4). Second,
elliptic curves are used to generate bitstreams which are non-invertible due to
underlying hard ECDLP and hence, they make the proposed KCS-PRNG provably
secure as well as forward secure to resist backtracking attacks. However, the
choice of elliptic curves is considered to be a randomly generated one rather
than the standard elliptic curves with fixed coefficients as being recommended by
agencies like NIST [32], Brainpool [34] etc. The random derivation of elliptic
curve parameters ensures trust and transparency in the implementation of elliptic
curves [51]. Two elliptic curves selected for use in the KCS-PRNG are presented
in Section 6.6 of this chapter whose computational details are described in Chapter

5 of this thesis.

6.3.2 Selection of a Clock-controlled LFSRs

The proposed KCS-PRNG is targeted for integration in the operating system
kernel and therefore, it is implemented in software. However, implementation
of LFSR in software is slower than its hardware implementation [24, 93].
To address this performance issue, the Galois scheme is selected for optimal
performance gain by the LFSRs in software without compromising the LFSR
period and its cryptographic properties [24]. The chosen Galois configuration
also saves excess operations as all the XOR operations are performed as a
single operation [24]. A nonlinear Sequence Generator consisting of nine LFSRs
Li,Lp,L3,Ly,Ls5,Lg,L7,Lg and Lg with corresponding primitive polynomial
degrees 29, 31, 37, 41, 43, 47, 53, 59 and 61 respectively is selected. The primitive

polynomials for these LFSRs feedback functions are
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Lz:x31+x27+x23+x19+x15+x11+x7+x3+1’

Ly =¥ + 232 4+ 2% 4+ 48 28 4B 4% 4 12 41,
L4:x41+x36+x31+x26+x20+x15+x10+x5+1,
L5=x43+x37+x31—|—x25+x20+x15-|—x10+x5+1,
Lo = ¥ + a4+ 2% + 2% + a2 + 27 42l 427 41,
L7:x53+x46+x40+x33+x26+x19+x13+x7+1,
Lg:x59+x52+x44+x36+x29+x22+x14+x7+1,

Lg:x61+x53—|—x45+x38+x30+x23—|—x15—|—x7+1.

These primitive polynomials used by the nine LFSRs have uniformly distributed
feedback coefficients selected from Rajski et. al. [94]. These nine LFSRs
Li,Ly, -, Lo are further divided into three groups called Sequence Generator
1 (5Gy1), Sequence Generator 2 (SGy) and Sequence Generator 3 (5G3). SGq
has three LFSRs L1, L, and L3 whose output streams x1, X and x3 are combined

nonlinearly using nonlinear function

Y1t f(x1,x2,%3) = X100 © X243 © X3X1 (6.1)

The resulting sequence y; has period (251 — 1)(2L2 —1)(253 — 1) and linear
complexity (L1Ly + LyL3 + LiL3). Similarly, from equation (6.1), the linear
complexities of the sequences v, and y3 generated from SG, and SG3 are (L4Ls +
LsLe¢ + Lg¢Lyg) and (LyLg 4+ LgLg + LoLy) respectively. It may be noted that the
initial state bits of all LFSRs together are 219:1 L; =401 bits.

5G1, SGp and SGj are configured in alternating step scheme to provide high
linear complexity and large period to the Sequence Generator [95]. SGj is
considered as the Controller of the Sequence Generator in the alternating step

mode. It is known that the linear complexity LC(x) of the overall alternating step



6.3. The Proposed Design of KCS-PRNG 135

generator is bounded as follows [95]:

(LCy 4+ LC3)#C 71 < LC(x) < (LCy 4 LG3)HC (6.2)

where LCq,LC; and LCj3 are the linear complexities of SG1,5G, and SGj
respectively. The Alternating Step Sequence Generator used in the proposed

KCS-PRNG is depicted in Figure 6.1 and described in Algorithm 8 [95].

6.3.3 The Proposed Novel KCS-PRNG Architecture

The proposed KCS-PRNG architecture is shown in Figure 6.2. The KCS-PRNG
uses a Field Converter, Elliptic curve Point Multiplication and a Selector in addition

to the Sequence Generator and two elliptic curves in its design.

Algorithm 8 Alternating Step Sequence Generator using Clock-controlled LFSRs

Require: Sequence Generators SG1, SGp and SGs, output bit length n
Ensure: 7-bit sequence

1. Loop n-times:
2. SGj is clocked
2.1. if output of SGy is 1

2.1.1 SGy is clocked > SGs is not clocked but its previous output bit
is repeated. In case of the first clock cycle, previous output bit of SG3 is
taken as 0.
2.2. else
2.2.1. SGsis clocked > SGj is not clocked but its previous output bit
is repeated. In case of the first clock cycle, previous output bit of SGy is
taken as 0.
2.3. end if

3. return SG, & SG3 > Output of Sequence Generator in alternating step

4. end Loop
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Algorithm 9 Selection of 2 Elliptic curves
Require: Look-up Table 7 (EC,, EC,_ID_Status) where n is number of elliptic

r
Ensucll;e\:le; Elliptic curves EC;, EC, from 7 where r,s € [1,n] andr # s
1. Count n > Elliptic curves with EC,_ID_Status =0V nin T
2. ifn>2
2.1. Fetch EC,, ECs from 7T where EC,_ID_Status = 0 and

EC,_ID Status =0

2.2. Set EC,_ID_Status +— 1,
ECs_ID_Status +— 1

2.3. Update T
2.4. return EC,, EC,
3. else
3.1. Set EC,,_ID_Status =0V nin7 © nis the number of elliptic curves
inT
3.2. Gotostep 1
4. end if

The two elliptic curves are selected using the procedure as shown in Algorithm
9. A look-up table 7 with tuples (EC, EC_ID_Status) is created by retrieving
elliptic curves from the database as discussed in Section 4.7.3 where EC is the
elliptic curve and EC_ID_Status is the flag value to mark O for ‘un-used curve’
and 1 for the ‘used curve’. T consists of 500 elliptic curves initially which are
randomly generated and are cryptographically secure non-standard curves. All
elliptic curves in 7 are initially marked with EC_ID_Status = 0. On each
reboot of the proposed KCS-PRNG, it picks up two elliptic curves from 7 using
Algorithm 9 and sets the corresponding EC_ID_Status = 1 of both the used
elliptic curves in 7. The advantage of 7 is that even if the same seed (entropy)
is supplied to the proposed KCS-PRNG on reboot of the generator, two new
elliptic curves with EC_ID_Status = 0 will be selected from 7. The change

of elliptic curves on each reboot of the KCS-PRNG changes the final output
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by altering masking value between the output bits of the elliptic curves and the

Sequence Generator. Hence, entirely unrelated bitstream are obtained as the output
of the proposed generator even using exactly the same seed as input. When all
elliptic curves in 7 are used then EC_ID_Status flags are reset to 0 for all
elliptic curves in 7 in order to maintain unblocked supply of elliptic curves to the
KCS-PRNG. More elliptic curves can be inserted into 7 to consistently mitigate
the requirement of ‘non-reproducibility’ property R4 of the KCS-PRNG. Here, the
mitigating factor of the the RNG requirement R4 is directly proportional to the
number of un-used elliptic curves available in 7. This idea makes the proposed

KCS-PRNG to mitigate the RNG requirement R4 to a practical extent.

6.3.4 Initialization of KCS-PRNG

The proposed KCS-PRNG uses two phases of pseudorandom bitstreams
generation. In the first phase, the Sequence Generator is initialized whereas in the
second phase, the desired length of pseudorandom bitstreams are generated using
the Sequence Generator and the elliptic curves. The initialization phase involves
two stages which includes, first, loading the key and initialization vector (IV) in to
the generator and second, diffusing the key-1V pair across the entire states of the
Sequence Generator [96] as described in the Algorithm 10 and as shown in Figure
6.3 and Figure 6.4 .

Algorithm 10 takes 574-bit of entropy bits which are harvested from various
physical non-deterministic noise sources and generates 401-bit of key and 173-bit
of Initialization Vector (IV). The key is first parallelly loaded in to SG1, SG, and
SGs of the Sequence Generator as shown in step 1. It is ensured that all the most
significant bits (MSBs) of L1, L, and L3 will be set to 1 in step 2 and step 3. The
Sequence Generator is then clocked 128 times so that the key is diffused across the

entire states of all the nine LFSRs L1, Ly, - - - , Lg and a new state of the Sequence
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Key (401-bit)

!

Sequence Generator

X
128 Clock cycles —‘

Figure 6.3: Initialization Stage 1: Loading and diffusion of the key

Generator is obtained in step 4 as shown in Figure 6.3. In steps 5, 6 and 7, a
173-bit 1V is loaded in to Lq, Ly and L3 of SGy in bitwise fashion by XORing
with the corresponding usual feedback bit of the LFSR and the output bit of the
Sequence Generator to feedback the LFSRs through MSBs as shown in Figure 6.4.
In step 8, the Sequence Generator is once again clocked 128 times to diffuse the
IV completely among the LFSRs in SGy and gets entirely new states of all the nine
LFSRs. It is ensured that the MSBs of all the nine LFSRs Ly, Ly, - - - , Lg are set to

1 as shown in steps 9 and 10. Step 11 returns the initialized Sequence Generator.

<This space is intentionally left blank.>
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Algorithm 10 Initialization of Sequence Generator

Require: 401-bit entropy for Key and 173-bit entropy for Initialization Vector (IV)

Ensure:
1.

Initialized Sequence Generator

Initialize SG1, SG; and SG3 with 401-bit Key > Stage 1: Loading
LFSRs from the input Key

if MSB of any LFSR is 0

. Ensure MSB of LFSR as 1

3. end if

Clock Sequence Generator 128 times > Stage 2: Diffusion of key into all
LFSRs states in the Sequence Generator

5. Loop 173 times:

Clock SGq with feedback = Feedback bit & IV bit & output bit of
Sequence Generator > Stage 1: Loading 173-bit IV to SGq

end Loop

8. Clock Sequence Generator 128 times > Stage 2: Diffusion of IV into all

9.1.
10.
11.

LFSRs states in SGq

if MSB of the Sequence Generator is 0
Ensure MSB of the Sequence Generator as 1
end if

return Initialized Sequence Generator
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6.3.5 KCS-PRNG Bitstream Generation

The Sequence Generator generates two sequences z1 and z of 256-bit length each
of which is used by the field converter as the inputs. The field converter transforms
z1 and z; into integers and then transforms them into the field elements P, and P,
of the two elliptic curves. These field elements or the secrets P, and P, are given
as inputs to the two elliptic curve point multiplication functions as described in
Algorithm 11. The secrets P;, and Py, are multiplied with their corresponding base
points Gy and G which yields a new point on their respective elliptic curves. The
x-coordinates of the two points obtained are only assigned to as the two integers

Py, and Py, after transformation from the field elements. A selector is used to

1

switch between the outputs of the two elliptic curves point multiplication functions

to double the size of key space offered by the proposed KCS-PRNG.

Algorithm 11 Elliptic curve point multiplication

Require: Secrets P, and Py, for 2 elliptic curves
Ensure: Points P, and Py, of 2 elliptic curves in integer form

1. Py, <— Gy X Py > Gy is the base point selected on first elliptic curve
and Py, is the x-coordinate of P,

2. Py, <— Integer(P,,) > Integer() is transformation function from field
to integer

3. Py, «— Gy x Py, > Gy is the base point selected on second elliptic
curve and P, is the x-coordinate of Py,

4. Py, <— Integer(Py,) > Integer() is transformation function from field
to integer

5. return Py , Py,

Algorithm 12 describes the cryptographically secure pseudorandom bitstream
generation scheme of the proposed KCS-PRNG. In step 1, two elliptic curves with
hard ECDLP are selected from 7. In step 2, the Sequence Generator is initialized
with 401-bit key and 173-bit IV as discussed in Algorithm 10. The Sequence

Generator is used to generate 256-bit sequence z1 by clocking 256 times in step



144 6.3. The Proposed Design of KCS-PRNG

3. In step 4, zq is converted into the field element of the first elliptic curve and

considered as the secret Py,. Step 5 involves generation of P, by using elliptic
curve point multiplication function taking the secret Py, as input. Similarly, steps
6, 7 and 8 are used to generate the integer P, from the second elliptic curve
point multiplication function. The Sequence Generator continuously generates
n-bit length sequences as bounded by Ug—& times loop in step 12. The proposed
KCS-PRNG uses a selector in step 13 to iteratively select among P, and Pp,. In
step 15, the Sequence Generator is clocked 256 times to generate 256-bit sequence
s. The integers P, or Py, is masked with s to produce 256-bit output by the
KCS-PRNG. If n < 256, then 1-bit output of the Sequence Generator is masked
with 1-bit of P, or Py, (as decided by the selector in step 13) traversing from its
Least Significant Bit (LSB) to MSB and result is returned. Once MSB of the Py,
or Py, is used, the masking of the output of the Sequence Generator starts from the
LSB of the P, or Py, once again in rotating fashion. The KCS-PRNG is reseeded

on every 100000 bit of output to maintain backward secrecy as shown in step 22.

<This space is intentionally left blank.>
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Algorithm 12 The proposed KCS-PRNG bitstream generation

Require: Desired length of bitstream n, (574 X r)-bit entropy for key and IV

where 7 = [ 150655 | = number of (re)seeding required for KCS-PRNG

Ensure: 7-bit cryptographically secure pseudorandom bitstream

1:

2:

10:

11:

Run Algorithm 9 to select two elliptic curves from 7

Run Algorithm 10 with input of 401-bit key and 173-bit IV to initialize the
Sequence Generator

Run Algorithm 8 to generate 256-bit sequence z1

Transform z; into field element Py, of first elliptic curve using field converter
Run Algorithm 11 with P, as input to generate the integer Py,

Run Algorithm 8 to generate 256-bit sequence z,

: Transform z; in to field element P,, of second elliptic curve using field

converter

Run Algorithm 11 with P, as input to generate the integer Py,
Set countSel =1

Set bitCount =1

Sett =1 wheret = 1 to U;—J

: Loop |55 | times:

continued to next page..
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Algorithm 12 The proposed KCS-PRNG.. (continued from previous page)

13: if countSel ==t x 256 > Use Selector to select between the two elliptic

curves
13.1. if t is even
13.1.1. Setel = Py,
13.1.2. else
13.1.3. Setel = Py,
13.2. end if
13.3. countSel =0
13.4. ++7F
14: Clock Sequence Generator 256 times to generate 256-bit sequence s
15.1 if n < 256

15.2 return X @ it" position of el from LSB (i = 0) to MSB (i = 255) where
X is 1-bit output from Sequence Generator and i = 0 to 255 > Output of

KCS-PRNG
15.3 else
15.4 returnel & s > Output of KCS-PRNG

15: end if

16: end if

17: ittt

continued to next page..
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Algorithm 12 The proposed KCS-PRNG.. (continued from previous page)

18: if i == 255
18.1. i =0
19: end if

20: countSel™ T
21: bitCount™*

22: if bitCount == j x 100000 where j = 1 to r
22.1. n =n — (j x 100000)
222, T
22.3. Gotostep2 > Reseed the KCS-PRNG on every 100000 bits of output

23: end if

24: end Loop

6.3.6 Assumptions

Following assumptions are made in the proposed design of KCS-PRNG:

KCS-PRNG always maintains 574-bit initial entropy.

* KCS-PRNG expects high per-bit entropy = 1 for initialization. The
generation details of entropy used in KCS-PRNG is outside the scope of this

thesis and planned as a topic of future research.

* The key and IV are parts of the seed and hence, they are immediately

shredded after use and is non-recoverable.

* The (Re)keying and (Re)IVing are done using different TRNGs or entropy

harvesters using various different physical noise sources.



148 6.4. Security Analysis of the proposed KCS-PRNG
e Elliptic curves used in KCS-PRNG are randomly generated,

cryptographically safe and trustworthy.

* Look-up Table 7 has authorized access only.

6.4 Security Analysis of the proposed KCS-PRNG

6.4.1 Linear complexity analysis

Let linear complexities of the Sequence Generators SG1, SG, and SGz be LCq, LCy

and LCj3 respectively and following equation (6.1), are given by

LCy = L1Ly + LpL3z + L1L3z = 3119
LCy, = LyLs+ LsLe + LyLg = 5711 (6.3)
LC3; = LyLg+ LgLg + LyLg = 9959
where L1, Ly, - - - , Lg are the lengths of the LFSRs.
Moreover, while SGq is clocked regularly, SG, and SGs are connected in
alternating step configuration. Thus, following equation (6.2), the overall linear

complexity (LC) of the scheme is given by

(5711 4 9959)23119-1 < L.C(x) < (5711 + 9959)2%3119 6

— 15670°%%7 < LC(x) < 156706238
It is imperative to note that the Sequence Generator of the proposed KCS-PRNG
exhibits exponentially large linear complexity as demonstrated in equation (6.4)

and therefore, the proposed generator is resistant to the Berlekamp-Massey attack

[95].
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6.4.2 Correlations test

Two correlation tests of random bitstreams generated by the proposed KCS-PRNG
are conducted to verify non-correlation in the bitstream. The first test conducted
was Serial or Autocorrelation test (sstring — AutoCor test) which measures the
correlation between the bits with the lag d [97]. In this test, a n-bit string is
generated by the KCS-PRNG at the first level and the test statistic is computed
such that it has the binomial distribution with the parameters being approximately
standard normal for large n — d. The restriction imposed were ¥ + s < 32 and
1 < d < 4] where r be the number of MSBs which are eliminated from the
output before applying the test, s be the MSBs chosen from each generated random
number and N be second-level number of replications [97, 98]. The second test
conducted was the Hamming Correlation test (sstring — HammingCorr) [98] in
which the bit sequences generated by the proposed KCS-PRNG were verified for
exhibiting uniform bits distribution without correlation. Both the Autocorrelation
test and the Hamming Correlation test were conducted during TestUO1 testing of
the proposed generator. The proposed KCS-PRNG passed both the tests. Further,
ENT tool [99] was used to measure bitwise correlation in the random bitstream
file of 1GB size generated by the proposed KCS-PRNG which was estimated to be
0.000034. The obtained correlation is very close to the ideal correlation value of 0.0
and thus, concludes that the proposed design of the KCS-PRNG has no correlation

issues and their results are shown in Table 6.1.

<This space is intentionally left blank.>
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Table 6.1: Correlation test of the proposed KCS-PRNG.

sstring-AutoCor test

N=1, n=1048513, r=0, s=32, d=1

Normal statistic 0.41
p-value of test 0.34
Number of bits used 1048544

Result

Passed the test

sstring-AutoCor test

N=1, n=1048514, r=0, s=32, d=2

Normal statistic 0.80
p-value of test 0.21
Number of bits used 1048544

Result

Passed the test

sstring-HammingCorr test

N=1, n=32768, r=0, s=32, L.=32

Normal statistic -0.56
p-value of test 0.71
Number of bits used 1048576

Result

Passed the test

sstring-HammingCorr test

N=1, n=16384, r=0, s=32, L=64

Normal statistic 0.45
p-value of test 0.33
Number of bits used 1048576

Result

Passed the test

sstring-HammingCorr test

N=1, n=8192, r=0, s=32, L=128

Normal statistic 1.57
p-value of test 0.06
Number of bits used 1048576

Result

Passed the test
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6.4.3 Period analysis (Validation of Requirement R1)

The Sequence Generator used in the KCS-PRNG comprises of nine LFSRs whose
lengths L1, Lp,-- -, Lo are coprime to each other. Hence, the period (P) of the

Sequence Generator is given by
P=JJ("-1) (6.5)
which is approximately 2401,

6.4.4 Key space analysis

It is evident from equation (6.5) that the Sequence Generator in KCS-PRNG has a
period of 2401 and thus, provides 2%91 key space in case the generator gets seeded
once and no reseeding happens. Moreover, the KCS-PRNG also uses two elliptic
curves which provides 2128 and 2%°¢ key space for n < 256 and 1 > 256 bits of
output respectively to impose a successful Pollard’s rho attack to solve the ECDLP.

Hence the key space offered by the proposed KCS-PRNG is given by

. (2401 % 2128)1’ — 25297 lf(n < 256) (6 6)
(2401 % 2256)1’ — 2657r lf(n > 256)

where r be the number of (re)seeding the KCS-PRNG and n be the number of
output bits of the proposed KCS-PRNG.
It is imperative to note that the key space offered by the proposed KCS-PRNG

depends on the number of times the KCS-PRNG (re)seeds itself in single boot and

2529,

therefore, exhibits virtually infinite key space in the range K € | c0) which

2128

is quite higher than the safe key space threshold of as recommended by [90,

100]. Therefore, the proposed KCS-PRNG comfortably resists brute force attacks.
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6.5 Experimental Validation of the Proposed

KCS-PRNG

6.5.1 Experimental Validation of Requirement R1

i. NIST statistical test results
NIST test suite consists of 15 statistical tests to certify statistical strength of
randomness of the RNG. An output bitstream of 1GB file size is generated
by the proposed KCS-PRNG and subjected to the NIST tests using NIST
statistical test suite SP 800-22 version 2.1.2 [101]. The input block size was
set to be 1000000 bits and 1000 bitstreams. The significance level a was
selected as 99% to conduct the test. The proposed KCS-PRNG passed all the
NIST statistical tests and the details of test results obtained are depicted in

Table 6.2.

The p-value measures randomness and supposed to be greater than 0.01 i.e.,
the confidence level to conclude that the sequence is uniformly distributed
whereas the proportion i.e., the minimum pass rate for the test should fall in
the range [0.98056, 0.99943] having the confidence interval a=0.01 and 1000
bitstreams [91]. As indicated in Table 6.2, the proposed KCS-PRNG not only
qualifies the pass rate threshold of 0.98056 but also reports better pass rate
of 0.9896 as compared to the pass rates of 0.987 and 0.9887 reported by the
TRNG [91] and the PRNG [90] respectively.

<This space is intentionally left blank.>
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Table 6.2: NIST test results of the proposed KCS-PRNG output bitstreams of
1GB file size with the input of 1000000-bit block size and 1000 bitstreams.

il.

Statistical Test p-value Proportion | Result
Frequency 0.737915 | 0.991 Pass
Block Frequency 0.591409 | 0.988 Pass
CumulativeSums* 0.680755 | 0.993 Pass
Runs 0.281232 | 0.992 Pass
Longest Run 0.526105 | 0.996 Pass
Rank 0.036113 | 0.996 Pass
FFT 0.103138 | 0.990 Pass
NonOverlappingTemplate* | 0.794391 | 0.990 Pass
Overlapping 0.779188 | 0.987 Pass
Universal 0.773405 | 0.991 Pass
Approx Entropy 0.653773 | 0.989 Pass
RandomExcursions* 0.489508 | 0.983 Pass
RandomExcursionsVariant* | 0.163362 | 0.985 Pass
Serial* 0.680755 | 0.988 Pass
Linear Complexity 0.682823 | 0.985 Pass

*Only the result of first test instance is indicated here from the original results due to limitation of space.

Diehard test results [102]

Diehard version 3.31.1 tests conduct a series of statistical tests and determine

the p-values of the output bitstreams. The p-values indicate deviation of bit

prediction from ideally expected probability of half. The expected p-value of

a test should be in the range [0.025, 0.975] [103]. The proposed KCS-PRNG

passed all the diehard tests as shown in Table 6.3.
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Table 6.3: Diehard test results of the proposed KCS-PRNG output bitstreams of
1GB file size.

test-name ntup tsamples psamples p-value Assessment
diehard-birthdays 0 100 100 0.27561288 Passed
diehard-operm5 0 1000000 100 0.13184067 Passed
diehard-rank-32x32 0 40000 100 0.44295780 Passed
diehard-rank-6x8 0 100000 100 0.88076181 Passed
diehard-bitstream 0 2097152 100 0.42947798 Passed
diehard-opso 0 2097152 100 0.12604767 Passed
diehard-oqso 0 2097152 100 0.94641900 Passed
diehard-dna 0 2097152 100 0.24390543 Passed
diehard-count-1s-str 0 256000 100 0.62287409 Passed
diehard-count-1s-byt 0 256000 100 0.91047395 Passed
diehard-parking-lot 0 12000 100 0.79390338 Passed
diehard-2dsphere 2 8000 100 0.17731451 Passed
diehard-3dsphere 3 4000 100 0.45129204 Passed
diehard-squeeze 0 100000 100 0.53561994 Passed
diehard-sums 0 100 100 0.94209561 Passed
diehard-runs* 0 100000 100 0.14811353 Passed
diehard-craps* 0 200000 100 0.92115680 Passed
marsaglia-tsang-gcd* 0 10000000 100 0.53120802 Passed
sts-monobit 1 100000 100 0.64501072 Passed
sts-runs 2 100000 100 0.94961272 Passed
sts-serial* 1 100000 100 0.62077367 Passed
rgb-bitdist* 1 100000 100 0.95378266 Passed
rgb-minimum-distance* 2 10000 1000 0.87517368 Passed
rgb-permutations® 2 100000 100 0.75286377 Passed
rgb-lagged-sum* 0 1000000 100 0.00308570 Passed
rgb-kstest-test 0 10000 1000 0.03414230 Passed
dab-bytedistrib 0 51200000 1 0.17158919 Passed
dab-dct 256 50000 1 0.07312246 Passed
dab-filltree* 32 15000000 1 0.61801753 Passed
dab-filltree2* 0 5000000 1 0.69361846 Passed
dab-monobit2 12 65000000 1 0.42742922 Passed

*Only the result of first test instance is indicated here from the original results due to limitation of space.
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iii. TestUO1 test results [97]

TestUO1 is believed to impose the toughest tests to evaluate the statistical
quality of random bitstreams [90]. The binary bitstream of 1GB file size
generated by the proposed KCS-PRNG is subjected to the Rabbit and
Alphabit test batteries of TestUO1. The Rabbit and the Alphabit, by default,
selected 1048576 bits (229 bits) for SmallCrush (a fast statistical test battery)
evaluation and applied 38 and 17 statistical tests respectively to the proposed
KCS-PRNG output bitstream. The output bitstreams of KCS-PRNG are
found to have p-values within the acceptable range of [0.001, 0.999] [103]
which proved that the proposed KCS-PRNG exhibits long period, good

structure and non-linearity.

6.5.2 Validation of Requirements R2 and R3

1.

ii.

Next bit test

This test states that if a sequence of m-bits is generated by a generator,
there should not be any feasible method which can predict the (m 4+ 1)th
bit with the probability significantly higher than half [104, 105]. This
test is associated with predictability of the successive bits generated by the

KCS-PRNG.

Since the KCS-PRNG is reseeded with fresh additional entropy of 574 bits
(401 bits of key and 173 bits of V), therefore, it maintains backward security

[65].

Test for state compromise extension attacks
This test states that if some state of a generator is leaked at a given time
to an attacker, it would not be possible to recover unknown PRNG outputs

from that known state [106]. Fundamentally, the state compromise extension
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imposes two kinds of attack: first, a backtracking attack to learn previous

outputs of the generator knowing some internal state of the generator at a
particular time and second, the permanent compromise attack which enables
all the future and past states of the generator vulnerable with the knowledge

of some state at a given time [106].

Since the proposed KCS-PRNG is forward secure and provably secure due to
underlying ECDLP intractability, therefore, it is resistant to the backtracking
attack.  Furthermore, as discussed in the next bit test, the proposed
KCS-PRNG is (re)seeded on every 100000 bits of output generation,
therefore, it exhibits backward secrecy and thus, resists the permanent

compromise attack as well.

iii. Entropy Estimation (Experimental Validation of Requirement R2, R3)
Entropy is the measurement of unpredictability or uncertainty. For an ideal
TRNG, the expected entropy is 1 per bit which means that each bit i.e., ‘0’
or ‘1’ have equal proportion 0.5 in the file containing random bitstream [91].
The proposed KCS-PRNG is subjected to ENT tool [99] for estimation of
the entropy of the KCS-PRNG generated 1GB file of random bitstream. The
observed value of the entropy of output bitstream generated by the proposed
KCS-PRNG is found to be 0.99999975 per bit which asserts that the design

of KCS-PRNG maintains nearly an ideal unpredictability.

6.5.3 Experimental Validation of Requirement R4
Non-reproducibility test

The non-reproducibility test is conducted to validate if the RNG requirement
R4 is met by the proposed KCS-PRNG. This test is conducted by running the

generator twice with exactly the same input and verifying if the output sequences
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are completely unrelated. Authors [91] have referred the non-reproducibility test as

the restart test and they validated the first 20 bit output sequences of the generator

six times under identical start conditions.

Table 6.4 shows that the proposed

KCS-PRNG has passed the non-reproducibility test six times by producing six

completely unrelated 32 bits using the same inputs to the proposed generator.

Table 6.4: Non-reproducibility test of the proposed KCS-PRNG under identical

start conditions.

Key Input (401-bit entropy)

1905119BCDC809077DB45D
1B3921DB5C06D11 C56CT7FE
B4F8EE935A2FB16B055281816
DFC551AC73C3BBF76EE26B13
OB8F5E68

IV Input (173-bit entropy)

190B6B491CDD9E97E6AB
26552990F5481183DEF9AESS

Check

First run of KCS-PRNG

32-bit Output

01010100111011111110001110100100

Check

Second run of KCS-PRNG

32-bit Output

00010010000100001111001111111110

Check

Third run of KCS-PRNG

32-bit Output

11000101110001101011100101111101

Check

Fourth run of KCS-PRNG

32-bit Output

01101010010110101011000010110101

Check

Fifth run of KCS-PRNG

32-bit Output

10110001000111011001101100011011

Check

Sixth run of KCS-PRNG

32-bit Output

01001100110010111100010011100110

Moreover, the KCS-PRNG uses two different elliptic curves on

each boot

and therefore, the output bitstream would be entirely unrelated even generated

under identical start conditions.

Hence, it is inferred that the proposed
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KCS-PRNG generates non-reproducible pseudorandom bitstreams, provided it

maintains minimum number of un-used elliptic curves (i.e., t + 1 where t > 1
is the number of (re)boots made by the KCS-PRNG such that the generator gets at
least two un-used elliptic curve on each (re)boot) in the look-up table consisting of

elliptic curves.

6.6 Details of Two Elliptic Curves used in the

Proposed KCS-PRNG

Elliptic curves over 256-bit prime fields whose ECDLPs are found to be hard and
secure from ECC and trusted security perspectives, are selected for use in the
proposed KCS-PRNG. The elliptic curves are generated randomly over the 256-bit
prime field size in order to build the trust as indicated in Chapter 4 and Chapter
5 of this thesis. The verification details against the criteria as suggested in [36]
of the two elliptic curves selected for experimentation purposes in this work are
summarized in Chapter 4 of this thesis. There are 256 elliptic curves randomly
retrieved from the database of elliptic curves which was created as discussed in
Section 4.7.3 to construct the look-up table 7 consisting of elliptic curves defined
over 256 bit prime field only. Two elliptic curves are then randomly picked up from
T which we name as KG256r2 and KG256r3 for demonstration purpose with the
proposed KCS-PRNG in this chapter. The look-up table 7 is already discussed in
Section 6.3.3.

<This space is intentionally left blank.>
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Table 6.5: First elliptic curve (KG256r2) used in the proposed KCS-PRNG

Elliptic curve

Value
parameter/Validation
Equation Model Short Weierstrass
1079509164487988591757265201276956417019056
Prime field p

5024041326675402975646301340635661 1

Coefficient a

37288718339379050173383988587093867748801744
3500794637387049768833559724285251

Coefficient b

91650467184519528527195669822400897623288163
942118409928885486392870684003490

Co-factor h

1

Base Point Gy y

(28831630929998164044751948148304794518209
551125899507703388281731108281937385, 894203
08754698971577304928393115879486892623443
011694348881823094559544462040)

Table 6.6: Second elliptic curve (KG256r3) used in the proposed KCS-PRNG

Elliptic curve

Value
parameter/Validation
Equation Model Short Weierstrass
10974685584427577354895445753642658065143
Prime field p

6369726592499974288558315649948115511

Coefficient a

80787537287691934109632692617445837542461
294823874289048908982586661103746054

Coefficient b

88391368415133822638584996602724908717473
533081637647356906579631633934583732

Co-factor h

1

Base Point Gy y

(818187913518001917867298577272592592457045
7398618324110725357065069006812355, 7267398
24138688932221586625748634204798379752280001
95672530949347375399560002)
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6.7 Performance Analysis of the Proposed

KCS-PRNG

The proposed KCS-PRNG was run on Intel® Core™ i7-7700 CPU @ 3.60GHz
processor. The source code of the KCS-PRNG is developed in C++ and extensively
used CryptoPP version 8.2.1 library. The KCS-PRNG software program was run
on Ubuntu version 16.04.1 with kernel version 4.15.0-96-generic. The KCS-PRNG
program was (re)seeded on every 100000 bits output in generation of 1GB file
of cryptographically secure pseudorandom bitstream. It gave an impressive
throughput of 2.5 Mbps in software which asserts its high throughput-oriented
design. The proposed KCS-PRNG for kernel applications offers a better security
by meeting all the RNG requirements from R1 to R4 as compared to the existing
PRNG [90] and kernel CSPRNGs like/dev/random [62, 63], Yarrow [64], and
Fortuna [65, 66].

6.8 Comparison of proposed KCS-PRNG with

recent Kernel CSPRNGs and TRNG

The proposed KCS-PRNG is designed to meet all the requirements of a RNG as
discussed in Section 1.4.6. The features of the proposed KCS-PRNG are compared
with the popular CSPRNGs used by the current operating system kernels and a
recently well acknowledged TRNG [91] in Table 6.7. The reason behind the
comparison of KCS-PRNG with TRNG is that, it meets the RNG requirement R4
which a TRNG only meets. Table 6.7 also consolidates interesting comparison

results of KCS-PRNG with an existing TRNG based on Oscillator-Rings [91].
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The KCS-PRNG is compared with popular kernel CSPRNGs namely

/dev/(u)random used by Linux and Android kernels, Yarrow used by
MacOS/iOS/FreeBSD kernel and Fortuna used by Windows kernel respectively
on the basis of various criteria related to cryptographic security, randomness tests
and throughput to conclude their suitability for strategic applicatons such as kernel
applications.

The kernel CSPRNGs use design which are based on non-invertible functions
which are supposed to be cryptographically hard. Such CSPRNGs are considered
to be provably secure for use. /dev/(u)random, Yarrow and Fortuna are the
kernel CSPRNGs which uses ChaCha 20 (a secure stream cipher), 3DES and
AES128 in counter mode (secure block ciphers) respectively which are the
non-invertible functions supposed to be cryptographically hard. However, the
TRNG compared in the thesis uses oscillator rings to extract randomness. In
contrast, the proposed KCS-PRNG uses ECDLP to provide provable security
to its generated bitstreams. The benefits of using ECDLP as hard problem are
discussed in Section 6.3.1. Further, the KCS-PRNG uses stronger SHA256 hash
function as compared to SHA160/MDS5 hash functions used by /dev/(u)random
and Yarrow respectively. KCS-PRNG also competes with TRNG in light of
non-reproducibility of the generated bitstreams to meet the R4 requirement of RNG
as discussed in Section 6.3 and Section 6.5.3 for the first time in the literature.
Furthermore, it is observed that among all the kernel CSPRNGs, the KCS-PRNG
only provides details on most of the important results such as correlation value, per
bit entropy rate, linear complexity, period and key space of its generated bitstreams
obtained during the security analysis of the generator as discussed in Section
6.4. These results are considered as crucial criteria to measure the theoretical
security of the random bitstream generators which are unfortunately not available

in public domain to the best of the literature survey conducted in the thesis. The
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KCS-PRNG has impressive throughput of 2.5 Mbps, however, it is slower than
that of Fortuna as shown in Table 6.7. As discussed in Section 2.8.3, Fortuna
uses its pools which contain percomputed hard coded values, at different rate for
output bitstreams generation. However, KCS-PRNG does not maintain such pools
having precomputed hard coded values for security reasons. Finally, Figure 6.5

pictorically represents the metrics comparison chart of the proposed KCS-PRNG

with the popular CSPRNGs and a recent TRNG.
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Klein [108], Vice President of security research at SafeBreach and a security
researcher at Israel’s Bar-Ilan University, discovered a weakness in the Linux
Kernel PRNG which allowed the hackers to use cross-layer attacks against the
Linux kernel. The Linux kernel PRNG allowed the hackers to get inference
about the internal state of the PRNG from one Open Systems Interconnection
(OSI) (network) layer and use this internal state to predict the random number
value in another OSI layer. This weakness in the PRNG also allowed hackers to
identify and track both the Linux and the Android devices. The attack is aimed to
downgrade E-mail security, hijack E-mails, hijack HTTP traffic, circumvent E-mail
anti-spam and blacklisting mechanisms, mount a local Denial of Service (DoS)
attack (blackhole hosts), poison reverse DNS resolutions and attack the machine’s
Network Time Protocol (NTP) client, responsible for the machine’s clock.

It is worth to note that both the Linux and Android based operating systems
use the /dev/(u)random random number generator which were exploited due to
predictability of their internal states in the above mentioned attack as the attackers
were able to predict entire random sequences generated by it. However, the
proposed KCS-PRNG does not allow such leakage of its internal states due to
non-reproducible random bit sequences generated by it. Hence KCS-PRNG can

encounter such attacks completely to serve the kernel applications unhindered.

6.10 Summary

A novel CSPRNG called KCS-PRNG is presented in this chapter which exhibits
qualities of a CSPRNG and TRNG for use in cryptography such as securing
kernel applications. The combination of clock-controlled LFSRs as a nonlinear

sequence generator and two non-standard and trusted elliptic curves is proven
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to be an excellent choice to design such a CSPRNG. The KCS-PRNG has

successfully validated through all the tests of NIST, Diehard and TestUO1 test
suites. The NIST test also proved that KCS-PRNG exhibits impressive and the
highest proportion i.e., the pass rate of 0.9896 as compared to the existing PRNG
[6] with 0.9887 and TRNG [7] with 0.987 proportion values respectively. The
KCS-PRNG demonstrated to exhibit nearly an ideal 0.99999975 per bit entropy and
minimal serial correlation of 0.000034 in its generated bitstreams. The KCS-PRNG
also showed an impressive throughput of 2.5 Megabits per second. An extensive
security analysis of the KCS-PRNG proved that the proposed generator is resistant
to important attacks like Berlekamp-Massey attacks, brute force attacks, next-bit
tests, state compromise extension attacks and correlation attacks on the proposed
generator. In summary, the KCS-PRNG has been proven to exhibit: higher security
property (from RNG requirements R1 to R4), provably secure, very high per bit
entropy rate, minimal bitwise correlation, highly nonlinear with linear complexity
LC(x) bounded as 156709%%7 < LC(x) < 15670238, very large period in the
range of [N; x 2401 (Nj + Nj) x 2401] per boot where N7 < Nj being the order
of two elliptic curves used, huge key space in the range of [2°%, c0) and impressive
throughput to generate uninterrupted cryptographically secure bitstreams. The
proposed design of the KCS-PRNG allows periodic change of elliptic curves in
the look-up table maintained by the generator to mitigate the gap of the security
property R4 i.e., ‘non-reproducibility’ requirement to a practical extent. The use
of elliptic curves from its look-up table makes the KCS-PRNG customizable than
the current kernel CSPRNGs like /dev/random, Yarrow and Fortuna whose designs
are based on stream cipher like ChaCha20 and block ciphers like Triple DES and
AES respectively. Hence, it is inferred that the proposed KCS-PRNG qualifies as a

competent CSPRNG for adoption in the kernel applications.
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Chapter 7

Conclusion and Future Research

The present thesis covered seven important research problems in the applied
cryptography domain with respect to Short Weierstrass form of elliptic curves
and their implementations in various computer applications of strategic nature
such as operating system kernels, in particular. Strategic applications accept only
those elliptic curves in its cryptosystem implementations which are transparently
computed for trust building as well as whose parameters i.e., the coefficients
and prime are rigorously verified for their cryptographic suitability. The thesis
first thoroughly evaluated the computational approaches of Short Weierstrass
elliptic curves from computation, security and trust persperctives and concluded
that the strategic or mission critical applications requires preferably the random
approach to compute elliptic curves for cryptosystem design in order to avoid
any special structures or pre-studied values which may be vulnerable to unknown
(intentionally non-disclosed) attacks. Subsequently, three new trusted security
acceptance criteria were proposed to derive the curve parameters which can
be trusted by its users. Two cryptographically secure Short Weierstrass elliptic
curves over 256 bit (called as KG256r1) and 384 bit (called as KG384rl) prime
field sizes were proposed which were randomly generated using explicit and

well-documented procedures and verified against their cryptographic security. A
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database of 500 such similar elliptic curves ove 256 bit prime field size having

nearly very high p-complexity of 127.8 bit and 191.6 bit each on an ideal 128
bit and 192 bit of symmetric security scales respectively is created for future
usage. Further, an important requirement of large prime field order elliptic curves is
felt for cryptographic purposes in order to keep existing elliptic curve cryptographic
systems alive in presence of quantum capable adversaries where the thesis proposed
desired computing resource estimates to compute such elliptic curves. These
computing resource estimates was measured in terms of the quantum of CPU clock
cycles and searches made in the security parameter space of the elliptic curves. A
range of computing estimates of elliptic curve over certain bit of prime field size in
terms of number of CPU clock cycels for processing power and number of attempts
or searches made is proposed in the thesis against the number of qubits required
to solve the ECDLP offered by the elliptic curves defined over that particular
field size. The proposed results help user to select a suitable prime field size of
the desired elliptic curve which can co-exist with appropriate number of available
qubits with quantum computers for a reasonably long period.

Furthermore, these elliptic curves are used in the design of the proposed
KCS-PRNG to enable non-reproducibility property of its generated pseudorandom
bitstreams for the first time in the literature. The existing CSPRNGs used by
operating system kernels do not exhibit the non-reproducibility property of their
generated pseudorandom bitstreams till date. Given the properties of the proposed
KCS-PRNG, it is inferred that the KCS-PRNG qualifies as a competent CSPRNG
for adoption in the kernel applications and can also be used in the implementation
of various cryptosystems in deriving their keys and supporting their encryption

schemes etc.
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7.1 Research Contribution to the Society

The major contributions of the research carried out in this thesis towards the society

are as follows:

* Indian Defence Agencies (IDAs) like triforces will be able to compute
cryptographically secure and trusted elliptic curves over large prime fields for
development of strategic cryptosystems discarding so claimed secure elliptic
curve recommended by the international agencies through their (possibly

sabotaged) standards.

* The proposed research provides a cost effective solution to counterfeit the
technology fallout of the ECC technology in presence of the quantum
adversaries to a reasonable extent. The proposed research enables the existing
ECC based cryptosystems safe to co-exist in presence of the quantum
adversaries by simply replacing the old elliptic curves with the new ones

which are defined over a reasonably larger prime field sizes.

* Apart from the Windows and Linux based personal computers and servers,
one of the most important and widely used applications for using the
proposed KCS-PRNG is the Android/Windows/iOS/MacOS based mobile
devices. The KCS-PRNG is proven to counter advanced attacks on operating
system kernel used by the mobile devices to prevent them from their data
compromise. The KCS-PRNG does not give any scope for leakage of its
internal states due to non-reproducibility of its generated pseudo random

bitstreams and hence ensures non-predictability of its generated bitstreams.

* Internet of Things (IoT) devices can use proposed trusted elliptic curves
KG256r1 and KG384rl1 for digital signing and strong authentication

purposes.
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* The thesis contributions can also be used for strong and trusted authentication
services in automobile vehicles such as driverless cars using proposed elliptic
curves as well as in their control systems by updating new KCS-PRNG in

their operating system kernel for trusted security services.

* The thesis contributions will lead to stronger authentication mechanisms

using proposed elliptic curves for sophisticated medical robotic equipments.

* The thesis contributions will be highly useful in ubiquitous computing.

7.2 Future Directions

7.2.1 Future Directions in ECC in Quantum Presence

Elliptic curve cryptosystems are safe in forthcoming few years until the quantum
hardware with reasonable qubits is built which may use Shor’s algorithm [29] to
break ECDLP in polynomial time. Chen et. al. [38] recently observed that isogenies
of elliptic curves of supersingular class which have non-abelian structures seem
to be more challenging problem than ECDLP of Short Weierstrass elliptic curves
against quantum attacks. Though supersingular elliptic curves are not standardized
so far to the best of the authors’ knowledge, the next generation may prefer to
select supersingular elliptic curves instead of Short Weierstrass elliptic curves to

resist quantum attacks in particular.

<This space is intentionally left blank.>
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7.2.2 Open Problems for Future Work

The thesis presents the following three open problems for future research:

Problem 1

Estimation of computational resources in terms of the number of CPU clock
cycles and the number of searches to be made in the security parameter space

of elliptic curves over binary fields.

Problem 2

Standardization of the elliptic curves over 256 bit and 384 bit or even higher
prime field sizes using the proposed trusted security acceptance criterion in

addition to ECDLP security and ECC security criteria.

Problem 3

Research and Development of concrete mechanism to obtain initial entropy

for the proposed KCS-PRNG.
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Abstract: The survey presents the evolution of Short Weierstrass elliptic curves after
their introduction in cryptography. Subsequently, this evolution resulted in the
establishment of present elliptic curve computational standards. We discuss the
chronology of attacks on Elliptic Curve Discrete Logarithm Problem (ECDLP) and
investigate their countermeasures to highlight the evolved selection criteria of
cryptographically safe elliptic curves. Further, two popular deterministic and
random approaches for selection of Short Weierstrass elliptic curve for cryptography
are evaluated from computational, security and trust perspectives and a trend in
existent computational standards is demonstrated. Finally, standard and non-
standard elliptic curves are analysed to add a new insight into their usability. There
is no such survey conducted in past to the best of our knowledge.
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ECDLP, security.

1. Introduction

Computation of elliptic curve requires extensive mathematical research to compute
curve’s parameters over large prime field for its use in cryptography [1]. There are
several agencies like National Institute of Standards and Technology (NIST),
Standards for Efficient Cryptography Group (SECG), Brainpool, etc., who have
recommended standard elliptic curves over various prime field orders. However, it is
important to note the rationale behind the approaches adopted for selection of elliptic
curve parameters from computational, security and trust perspectives. The scope of
this article is limited to the Short Weierstrass form of elliptic curves which are used
for constructing most of the present cryptosystems such as Public Key Infrastructure
(PKI) [2], Secure SHell (SSH), Transport Layer Security (TLS), IPSec, JSON Web
Encryption (JWE) [3], etc.

The key contributions of this paper enlist:

1. A comprehensive survey for evaluation of the computational approaches of
cryptographically secure elliptic curves is presented.

2. Evolution of Elliptic Curve Cryptography (ECC) with theoretical
advancements in cryptographic mathematics and their significant impact on
standardization of computational methods is presented.
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3. Chronology of attacks on Elliptic Curve Discrete Logarithm Problem
(ECDLP) and their countermeasures is presented.

4. Selection criteria of cryptographically secure elliptic curves are discussed.

5. A trend in computational approaches of elliptic curves in standards
recommended by various agencies is demonstrated.

6. Standard and non-standard elliptic curves are compared from computational,
trust and security perspectives to add a new insight into their usability.

Rest of the paper is organized as follows: Section 2 gives preliminaries on
elliptic curves in Short Weierstrass form and ECDLP. Section 3 describes evolution
of ECC with time and theoretical advancements in applied mathematics to establish
present computational standards and selection criteria of elliptic curve. Section 4
focuses on evaluation of two popular approaches to compute cryptographically secure
elliptic curves. Section 5 demonstrates the trend of approaches for computation of
elliptic curve parameters adopted by various agencies in their proposed standards.
Section 6 differentiates between standard and non-standard elliptic curves in various
contexts. Finally, Section 7 concludes the paper with future directions.

2. Preliminaries

2.1. Elliptic curve in short weierstrass form

Let the finite field F, has characteristic greater than 3. An elliptic curve E over F,is
the set of all solutions (x, y) to an equation

1) E:)2=x+ax+b,

where the coefficients a, b € F,and 4a3 4+ 27 b2 # 0, together with a special point co
called the point at infinity which serves as the identity element of E which is known
to be an abelian group [4].

2.2. The elliptic curve discrete logarithm problem

Definition 1 (ECDLP). Given an elliptic curve E defined over a finite field F,, a
point P € E(F,) of order n, and a point Q € (P), determine the integer /€ [0, n- 1]
such that 7 7
) Q=1P.

The integer /is called the discrete logarithm of @ to the base P, denoted as
=log,Q [5].

The definitions: Definition 2 [6], Definition 3 [7], Definition 4 [8] and
Definition 5 [9] define supersingular curve, embedding degree, prime field
anomalous curve and class number of elliptic curves respectively which need to be
carefully considered for selection of elliptic curves with intractable ECDLP for
cryptography.

Definition 2 (Supersingular Elliptic Curves). If #E(FF,)=g+1 - ¢t denote the
order of elliptic curve then E(F,) is said to be supersingular if p divides ¢ where p
be the characteristic of [F, and ¢be the trace of E.

E(F,) is supersingular provided the trace () of the curve, £=0; g; 2q; 3gor 4q
[6]. Supersingular elliptic curves are vulnerable to attack due to Menezes, Okamoto
and Vanstone (MOV) which solves Discrete Logarithm Problem (DLP) of
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supersingular curves to the DLP in a finite field with sub-exponential complexity
[6, 10].
Definition 3 (Embedding Degree of Elliptic Curve). If E(F,) be the elliptic
curve over FF, then E is said to have embedding degree k, a smallest positive integer,
such that | (gk- 1) where n be the base point order.

It is also observed that ECC standards do not

embedding degrees.
Definition 4 (Prime Field Anomalous Curves). An elliptic curve E defined
over a prime field FF, is said to be prime field anomalous if #E(F,)=p, i.e., the curve
has trace 1.
Prime field anomalous curves are trace one curves for which the ECDLP can be
solved in linear time [10]. The prime field anomalous attack does not extend to any
other classes of elliptic curves but the one having trace one [8].

Definition 5 (Class Number). Let A(N) denotes the class number of the order
Nof elliptic curve E. Then A(N) is the minimum degree of a number field over which
the elliptic curve E admits a faithful lift.

allow elliptic curves with low

3. Evolution of elliptic curves for cryptography

Table

1. Evolution of Short Weierstrass elliptic curves for crypto

graphy

Year

Event

Impact on ECC Standardization

1985

Elliptic curves were proposed for use in cryptography

ECC were extensively studied to develop
cryptosystems

1987

Efficient point counting algorithm on elliptic curves by Schoof,
Elkies and Atkin called SEA Algorithm was developed [17-18]

Uses complexity O(InSp) for
counting

point

1992

Elliptic Curve based Digital Signature Algorithm (ECDSA) was
developed [19]

Considered as a mature signature scheme
in NIST standard

1993

Reduction of ECDLP of supersingular elliptic curves having trace
zero to logarithm in a finite field [6]

Became selection criteria for safe elliptic
curve in all standards

1994

Proposal of Shor algorithm [20] generalizes to solve ECDLP
Random Quantum Polynomial (RQP) time using quantum
computers

Led to realization that elliptic curves will
be wunsafe once sufficient quantum
capability is built. So, new computational
standard required for quantum resistance

1996

It was proved that the condition N (g* - 1) is sufficient to realize
the MOV algorithm under mild condition. Further, it was proved
that randomly generated curves have &>log2q [21]

Became selection criteria for safe elliptic
curve in all standards

1997

Proposal of a linear algorithm to solve ECDLP of trace one
[10, 22]

Became selection criteria for safe elliptic
curve in all standards

1999

NIST recommendation of 15 elliptic curves [23]

Widely accepted standard later

2000

SECG recommendation of elliptic curves [24]

Widely accepted standard later

2005

Recommendation of Brainpool first set of elliptic curves for
standardization [25]

International effort for elliptic curve
standardization

2010

Brainpool revised their specifications and published Request for
Comment (RFC) 5639 [26]

Standard established

2014

Review of existing elliptic curves generation mechanisms by
Bernstein and Lange [27] who coined two terms:
ECDLP security and ECC security. They observed that Short
Weierstrass form of elliptic curves are dominant in both the
software and hardware implementations

Two new terms: ECDLP security and
ECC  security became important
verification criteria for curve selection
with side channel attack resistance

2014

NUMS-curve (Nothing Upon My Sleeves) were proposed under
IETF standard [28]

Curves with better performance proposed
under IETF Standard

2015

NIST Call for next generation elliptic curves with new models and
optimized parameters resistant to side channel analysis was placed
28]

NIST wanted to replace its standard
elliptic curves

2016

NIST report [29] on Post Quantum Cryptography (PQC).
Resistance of elliptic curve cryptosystems was looked for
quantum computing

Isogenies of supersingular elliptic curves
were discussed as resistant to PQC
instead of ECDLP

2017-
2020

Proposal of Quantum resources required to run Shor algorithm to
solve ECDLP in polynomial time [30]

Roeteller et. al. suggested quantum
resource estimates to break ECDLP

Note: N=Order of elliptic curve, g=prime power, k~=embedding degree.
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Table 2. Chronology of attacks on ECDLP and their countermeasures

Attack Description type Countermeasure type

Pohlig- Private key can be recovered using Chinese Remainder| VN must be a prime or near prime with
Hellman, DLP |Theorem [31] small cofactor, N>2160 [5]

attack

Pollard-rho, A parallelized Pollard-rho on rprocessors can solve ECDLP|n>2160 [13, 32]

DLP attack in\/(mn) //(2r) steps [5, 32]

Pollard’s Faster method than Pollard-rho when ECDLP lies in|Private key should be selected
Lambda, subinterval [1, 5] of [1, n- 1], where »<0.39n1[13] uniformly at random within interval
DLP attack [1, n-1][30]

Index-Calculus, [ECDLP can be solved using multiplicative group Fq* of the{Small prime fields should be
DLP attack finite field F,[13] avoided, i.e., n=>2160 [13]
Exhaustive Computes successive multiples of base point till public key |z should be sufficiently large [8]
Search, is achieved

DLP attack

Shanks’ Baby  [Fully exponential deterministic algorithm to determine non|{n>2160 [13]

step E(F,) which requires approximately /N steps and around

Giant step, N storage

DLP attack

Weil pairing ECDLP of E(F,) can be reduced to ordinary DLP on|nt (g%-1) Vk=>20 [7, 18]

and extension field [F*4 for some £>1 where the number field|and V4> (¢g-1)/100 [5]

Tate pairing sieve algorithm can be used to solve ECDLP [4, 6].

attacks, MOV reduction attack [6] pttand £+0,2g,3gor4g[6] (Non-
Pairing based supersingularity)

attack

Multiple Multiple instances of ECDLP for the same elliptic curve|n>2160

logarithm, parameters

DLP attack

Prime field Trace of E(Fp)=1, i.e., # E(Fp)=p|[8, 12] N£p[5]

anomalous

curve,

Pairing based

attack

Note: g=size of underlying field, p=prime characteristic, n=order of a point on E, A=order of E,

r:numg;r of processors, k=embedding degree, ¢=trace of curve.

Table 3. Elliptic curve parameters selection criteria

Elliptic
curve Criteria Benefit(s)
parameter
Prime p  |1. Crandall prime 2« -|1. For best possible performance by limiting carry propagation during multiply-
ywhere y<210[33, 34]|reduce and yis small [34]
2.Montgomery- 2. Accelerates Montgomery arithmetic [33]
friendly prime 3. Such primes can compute modular square root in constant time countering
29(2B-p) -1 where constant time attack using Side channels [33]. The point compression method
apBy=0 allows representing one point (x, y) of E only its abscissa x and one bit
3. p=3 mod 4 discriminating between the two possible values +y. However, recovering y|
requires computing a square root in F,. This is easier when p=3 mod 4 since
in this case, c(p+1)/2 is a square root of cif cis a square [9]
4. Mersenne prime|4. Mersenne primes are special primes of unique form which enables fast
p=2¢-1 arithmetic [33]
5. p=random value  [Minimizes time for modular multiplication [35]
6. Length of p>221|5. No pre-studied value or special structure vulnerable to cryptanalysis
bits [27] 6. To counter brute-force attack
Coefficient [1. a= -3 1. For efficiency reasons. Practically all curves have low-degree isogenies to
a curves with a= -3, so this choice does not affect security. P1363 allows
y2=x34+ax+ b without the requirement a=-3 [9]
2. a=random value  |2. No pre-studied value or special structure
Coefficient|1. Should not be|l. To avoid compressed representations of elliptic curve points as (0, 0) and
b square in F, [9] (0, x) would be identical as x=+/b with least significant bit as 0 [26]
2. b=random value 2. No pre-studied value or special structure
Elliptic 1. Nshould be prime |1. Prime order curve selected to resist Pohlig-Hellman and Pollard’s Rho
curve [13, 18] attacks [5, 9]. Small subgroup attacks are avoided [9, 13]
order N |2. N should be|2. Prime group order curves do not have points with y=0 [36]. Special points
composite of the form (x, 0) exist if the curve has an even order [9]
Base point |22 should be prime to|nz>2160 and nt (g*- 1) where kis the embedding degree of elliptic curve
order n avoid Weil and Tete
pairing attacks [5, 9]
Cofactor A |Preferably 1 For optimal bit security, #=1 though 1< /A< 4 for performance gain [5, 9, 36]
Base point [Randomly chosen base|Prime order of base point gives maximum elliptic
Gy point [4] curve group size
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Elliptic curves have been extensively studied and reviewed for cryptography
soon after the proposals of Neal Koblitz and Victor Miller during 1985-1987. ECC
has evolved with time and theoretical advancements in cryptographic mathematics,
which subsequently has significant impacts on evolution of elliptic curve
computational standards, which is discussed in Table 1. Moreover, elliptic curves are
expected to be resistant to cryptographic attacks that can be ensured through the
implementation of appropriate countermeasures. Table 2 [8] briefly depicts such
countermeasures for important discrete logarithm (DLP) based attacks and pairing
based attacks which resulted in the evolution of cryptographically safe elliptic curve
selection criteria. Table 3 shows important selection criteria for elliptic curve
parameters and their benefits to select elliptic curves with desired properties.

4. Evaluation of computational approaches

Elliptic curves need to qualify certain mathematical validations in order to certify that
the elliptic curve has the claimed order, resists all known attacks on ECDLP and base
point order has also the claimed order [5]. There are usually two approaches either of
which can be used to compute an elliptic curve over prime field: first, the
deterministic approach and second, the random approach. However, in both — the
deterministic and random approaches, following conditions are critical for the elliptic
curve to meet cryptographic requirements [4, 5, 11]:

C1: Resistance to Pohlig-Hellman and Pollard’s Rho attack, i.e., n>2L where n
is sufficiently large prime that divides order of the elliptic curve group #E(F,). Here,
£>160, the length in bits.

C2: Resistance to Semaev-Smart-Satoh-Araki attack (Smart-ASS) [10, 12], i.e.,
L<|log.q| ensures 2.<gor #E(F,)#q. It avoids the attack on prime field anomalous
curves.

C3: n>4\/5 guarantees that E(FF;) has a unique subgroup of order n as

#E(Fy<( \/E + 1)2 by Hasse’s theorem [5, 13 ] and so, m2 t #E(F).

4.1. Evaluation of deterministic approach

In this section, we evaluate the deterministic approach of computation of elliptic
curves with respect to computational method, computational complexity, security,
trust and specific gains for cryptography.

4.1.1. Computational method

Complex Multiplication (CM) is a widely accepted deterministic computational
approach for standardization of elliptic curves. The CM method proceeds with fixing
the prime field order p first and then constructs an elliptic curve over the field F,
[11]. It gives a choice for selecting primes of special forms, accepts the order of the
elliptic curve field p as input, and determines the CM discriminant D. The field order
p is selected such that it meets the conditions C1, C2 and C3. The CM method is
efficient when the finite field size p and the field order #E(F,)=p+1 - tare chosen

such that CM-field of E, i.e., Q(,/ (t% — 4p)) has small class number [4, 5]. A crucial
step of CM method is to compute the roots of a special type of class field polynomials
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called the Hilbert and Weber polynomials [14]. These polynomials are uniquely
determined by D. Equations (3) and (4) [15], and (5) [16] constitute the basis of
computation of Short Weierstrass elliptic curves using CM method.

Definition 6 (Twist). Given [E: y2=x3+ax+ b with a, b € IF, the twist of E by ¢
is the elliptic curve given by
3) E: y2=x3+ax+b,
where c€ F,.

Theorem 1. If the order of an elliptic curve is #E(F,)=p+1 - ¢, then the order
of its twist is given as
4 E(F,*) = (p+1-¢) if cissquarein Fp,

(p+1+9) if cis non-square in Fp.

Theorem 2 (Atkin-Morain). Let p be an odd prime such that
(5) 4p=t+Ds?,
for some ¢ s € Z. Then, there is E(IF,) such that #E(F,)=p+1-¢[16].

The CM method is called the Atkin-Morain method when the elliptic curve is
derived over prime field [37]. Equation (5) observes that D is the integer which can
be determined from a given prime p called the CM discriminant of p. Algorithm 1
describes a general CM method [38] for constructing an elliptic curve over a given
prime field.

Algorithm 1. Elliptic curve generation over prime field using CM approach

Input: Nil

Output: Elliptic curve over a prime field E(IF,)

Step 1. Choose elliptic curve field order p, a prime

Step 2. Find smallest CM discriminant D from equation (5) along with trace ¢

Step 3. Construct the orders of the two elliptic curve E(F,)=p+1+¢

Step 4. if one of the curve orders is a prime or nearly a prime

Step 5. Fix elliptic curve order

Step 6. else Repeat Step 1 to determine Dand ¢

Step 7. end if

Step 8. Construct the class polynomial Hp(x) //Class polynomial is independent
of p

Step 9. Find a root j, of Hp(x)(mod p) /I jyis the j-invariant of the desired
elliptic curve

Step 10. Set k=/o/(1728 - jo)(mod p) // such that E: y2=x34+3 kx+2k

Step 11. if #E#p+1 - ¢

Step 12. Construct the twist E. //using a randomly selected non-square c€ F,
following equations (3) and (4)

Step 13. return E.

Step 14. else

Step 15. return E

Step 16. end if

4.1.2. Computational complexity

The bit complexity (5) of CM method depends on & and & where b= length of field
order p, A= class number, A= cross over class number for which the random approach
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and CM approach have the same runtime. When A(D)<h{b) where D is the CM
discriminant, then CM method is faster than random approach [11]. CM method can
generate a prime order elliptic curve in time O((logNV)%) [38].

4.1.3. Security

Deterministic approach is vulnerable to non-disclosed attacks. Bernstein et. al.
[39] showed that standards can be sometimes purposely designed in such a way that
it can be manipulated by the agency who recommended those standards. Also,
sufficient information about the computational mechanisms of curve parameters has
not been made publicly available [7]. It is always a concern for researchers that the
ECDLP of deterministically computed elliptic curves can be solvable by using very
efficient sub-exponential or polynomial time algorithm using non-guessable very
high computing power unknown to outside world.

4.1.4. Trust

The elliptic curve parameters which are selected deterministically are sometimes
distrusted due to lack of sufficient proofs of their computational mechanisms [40].
Moreover, trust in the curve parameters is doubtful due to possibility of intentional
non-disclosed properties of the curve parameters. There are some serious statements
of distrust expressed by many reputed scientists and researchers on NIST
recommended elliptic curves which was generated through deterministic approach.
Some of such statements of distrust are given as below:

e “I no longer trust the constants. I believe the National Security Agency
(NSA) has manipulated them through their relationships with industry.” — Bruce
Schneier (see [41]).

e “NIST should generate a new set of elliptic curves for use with ECDSA in
FIPS 186... The set of high-quality curves should be described precisely in the
standard, and should incorporate the latest knowledge about elliptic curves.” —
Edward Felten (see[42, 43]).

e “NIST should ensure that there are no secret or undocumented components
or constants in its cryptographic standards whose origin and effectiveness cannot be
explained.” —Steve Lipner (see [42, 43]).

e “However, in practice the NSA has had the resources and expertise to
dominate NIST, and NIST has rarely played a significant independent role.” —
Koblitz, Koblitz and Menezes [7].

e “We don’t know how @ = [d|P was chosen, so we don’t know if the
algorithm designer [NIST] knows [the backdoor] ”-Shumow and Ferguson
(see [44]).

e “Consider now the possibility that one in a million of all curves have an
exploitable structure that “they" know about, but we don’t. Then “they" simply
generate a million random seeds until they find one that generates one of “their"
curves.”—Scott [45].

e Many more.
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4.1.5. Specific gains of deterministic approach

CM method adheres to “Performance over slightly sacrificed security” principle for
computation of elliptic curves. Fast elliptic curve computation is possible in CM
method due to elimination of the need for a point counting algorithm and fixing of
certain parameters like prime p with special structures [40]. CM method allows much
faster arithmetic with elliptic curves as compared to random approach to achieve
higher performance of elliptic curve cryptosystems [5]. It provides smaller, faster and
easily implementable software code due to offline precalculations while adopting
deterministic computational approach [46]. Prime order elliptic curves generated
using CM method with a= -3 are backward compatible with implementation
supporting most of the standardized elliptic curves [42]. CM method can only be
adopted to construct ordinary elliptic curves with low embedded degree &>6 [7]. CM
method is not efficient if there is no restriction on the class number of the elliptic
curve [8]. This method is useful in deriving elliptic curves with small class numbers
for which ECDLP is hard and gives the same security level as given by the elliptic
curves which are generated randomly [5, 8].

4.2. Evaluation of random approach

Random approach allows obtaining elliptic curves, which are ordinary, and avoids
any special form or structure. This approach uses ‘early-abort strategy’ to obtain
desired elliptic curve [5]. A general observation is that elliptic curves generated using
random approach have not been given preference for standardization. We evaluate
random approach from computational method, computational complexity, security,
trust and specific gains perspectives in this section.

4.2.1. Computational method

In random approach, the elliptic curve generation algorithm computes curve
parameters keeping ECDLP security and procedural transparency in consideration.
Algorithm 2 describes a general random approach as preferred in [3-6, 11, 17, 18, 27,
33, 38] to derive cryptographically safe elliptic curve over prime field.

Algorithm 2. Elliptic curve generation over prime field using random approach

Input: Randomness

Output: Elliptic curve E(F,), base point G, ,, curve order N

Step 1. Select randomly a prime p of desired size

Step 2. Fix &=GF(p) /I Generate Field Kof order p

Step 3. Choose randomly coefficient a

Step 4. Choose randomly coefficient b

Step 5. Generate E(K) {// Elliptic curve over F,

Step 6. if 4a3+27h2#0 // Non-singularity check

Step 7. else go to Step 3

Step 8. end if

Step 9. Compute order Nof E

Step 10. if MVis prime // To resist Pohlig-Hellman attack

Step 11. else go to Step 3

Step 12. end if
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Step 13. if E is supersingular // To resist MOV attack

Step 14. else go to Step 3

Step 15. end if

Step 16. if N#p // Non-anomalous check

Step 17. else go to Step 3

Step 18. end if

Step 19. Select randomly a base point G, ,on E

Step 20. Compute base point order n  // n=160 bits and n>4\/5

Step 21. if n=N [/ Check for cofactor as 1

Step 22. else go to Step 19

Step 23. end if

Step 24. Compute Twist E. // For twist security of elliptic curve

Step 25. Compute order V' of E.

Step 26. if E. is non-singular & N' is prime & E. is non-supersingular // All
criteria to be met for E.

Step 27. else go to Step 3

Step 28. end if

Step 29. return E(IF,), Gy ,, N // Return elliptic curve parameters

Here, the prime field pis fixed and coefficients a and b are kept varying until a
suitable elliptic curve E with prime order NVis obtained. Some validations to meet the
cryptographic requirements C1, C2 and C3 are also kept. We observe that all the
elliptic curve parameters such as p, a, b and Gy , are randomly generated in order to
avoid any special structure or known values whose choices are ambiguous.

4.2.2. Computational complexity

For random approach, the bit complexity (£) only depends on length of prime (rp)
and falls in the range O(log5+ckory) to O(log” korv) where >0 and k is the cofactor
[11].

4.2.3. Security

Random approach does not allow any special structure of curve parameters in order
to eliminate doubts on intentional non-disclosure of backdoors [5]. Elliptic curves,
which are randomly computed, have no hidden goals that can be proved in
determination of the curve parameters. This ensures that the elliptic curve parameters
are trusted and not suspected to belong to a (not publicly known to be) vulnerable
class. This approach is favourable when long-term security is desired with an
ignorable sacrifice of efficiency [7]. Elliptic curves can be frequently changed for
security reasons when computed randomly [40]. The only way to compromise elliptic
curve security in such case is to solve ECDLP rather than just attacking particular
classes of weak elliptic curves. Hence, random approach is specifically preferred to
obtain elliptic curves for implementation in strategic or military grade cryptosystems.

4.2.4. Trust

Random approach ensures that no intentional construction with hidden weakness in
the elliptic curve parameters is present in order to prevent future exploitation to
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recover user’s private key [5]. The trust in derivation of the elliptic curve parameters
is maintained due to the use of absolutely new values drawn randomly each time.
Moreover, there are no patent issues with randomly selected new curve parameters.
Random approach protects against attacks in special classes of elliptic curves, which
may be vulnerable in future [5]. However, random values of elliptic curve parameters
are always arguable by others for their emanation and random number generation, in
case they are not explained adequately.

4.2.5. Specific gains of random approach

Random approach adheres to the principle of “security over performance” for
computation of elliptic curve parameters. Computing order of the elliptic curve is a
time-intensive task and hence, selecting elliptic curve using random approach is a
slower process as compared to the deterministic approach where one starts with fixing
the order of the elliptic curve. Point compression and decompression also require
more computation in randomly generated elliptic curves [40]. Elliptic curves are
computed with nearly the same probability to ensure that curves are not special in
any sense when they are computed randomly [5, 11].

5. Approaches adopted by agencies for elliptic curve computation

Many agencies have recommended elliptic curves over various security levels for
standardization. Table 4 depicts the popular standard elliptic curves in Short
Weierstrass form with their computational approaches. Here, randomly generated
elliptic curves means those elliptic curves whose parameters like field order p, field
coefficients a, » and basepoint G, are randomly or pseudo-randomly (a secure hash
function is used to generate curve parameters from random value given as input to
the hash function to confirm that parameters are indeed computed pseudo randomly)
generated or otherwise, they are considered to be obtained from the deterministic
approach. Clearly, from Table 4, the trend demonstrates that the CM method, i.e., the
deterministic approach is the preferred computational approach for standardization
of elliptic curves.

Table 4. Computational approach adopted for Short Weierstrass elliptic curve computation

Name of elliptic curve Agency Year |Security level in|Approach
bits

NIST [23] National Security Agency (NSA) 2001|112, 128, 192,|Deterministic
256

Brainpool [25, 26] European Consortium of Companies and|{2005 128, 192, 256 Pseudo-

Government random

ANSSI FRP256v1 [39] ANSSI 2011 (128 Random

SECG [24] Certicom 2000 (112, 128, 192,|Deterministic
256

NUMS-Curves [28, 42] Microsoft Research 2014 128, 192, 256 Deterministic

Russian Standardized Russian National Cryptographic Standards |2001,{128, 256 Deterministic

Curves [47] 2012

GOST R 34.10-2001

GOST R 34.10-2012

GOST R 34.11-2012
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6. Standard and non-standard elliptic curves

Elliptic curves are standardized to enable compatibility and interoperability across
diverse applications. Moreover, non-standard elliptic curves are mostly used by
strategic applications such as military applications or non-military but other critical
infrastructure applications such as nuclear reactors’ command and control systems
etc. These applications do not really believe in Kerckhoffs’s principle [48] of
security, which says “A cryptographic system should be secure even if everything
about the system, except the key, is public knowledge”. Unlike Kerckhoff’s principle,
the strategic applications do believe that not only the keys but the algorithm too
should also be kept private to protect critical information infrastructure better. In such
cases, they compute elliptic curves preferably using random approach instead of
deterministic approach. Table 5 compares between the standard and non-standard
elliptic curves from computation, trust and security perspectives to help the readers
about their usability concerns.

Table 5. Standard elliptic curves versus non-standard elliptic curves

Standard elliptic curve Non-standard elliptic curve

Prefers deterministic approach of computation to|Prefers random approach of computation for Tong

get performance benefits in elliptic curve|term security so that any special kind of curve is

arithmetic. This helps in standardization of|avoided which may lead to vulnerability to an

elliptic curves by global acceptance unanticipated attack

Adheres to Kerckhoffs’s principle of security and|Adheres mostly to strategic principle of security

fixes elliptic curves for compatibility  and|which says that keys and algorithm both needs to

interoperability among diverse applications|be kept secret

across the globe

Standard elliptic curves are subject to public|Negligible chance of collision with the secret key

exposure and often attract cryptanalysis as more|that’s why random approach is preferred

people use it. Hence, there is always a high

chance of collision with the secret key [49]

Distrust comes with presence of special|[Trusted new values of curve parameters known to

structures of the curve parameters designer only. Prefers random approach to compute

elliptic curve parameters

Standard elliptic curves are globally accepted and{Not published and mostly not supported by the

trusted standards. Hence, trusted by their proposers or/and

in closed group only

Compatible across applications and interoperable[Not compatible. Api)llcatlons need to be made

due to standardization interoperable explicitly

Better a[t))proach in case where elliptic curve|Better approach in case where elliptic curve needs

needs to be computed over large prime fields to be transparently computed without any special

structures known fo others [50]

Curve parameters and compression techniques|No patent issues

have patent issues

Alread?/ published and anaI%sed thoroughly. Non[Derivation procedure of curve parameters are

deniable chances of hiding backdoors known to the Bro osers only and hence, negligible
chances of backdoors. High degree of trust

observed by the proposers of hon-standard elliptic

curves
Standard elliptic curves are fixed to maintain|Non-standard elliptic curves have edge over the
compatibility among applications standard ones as they can be replaced frequently for
added security

More prone to get attacked by sophisticated|In case of randomly selected curve parameters,
advancements in mathematics and discoveries  |curve is safe until 'sub-exponential algorithm is
known to break it in particular [33]

7. Conclusion and future directions

Short Weierstrass elliptic curves are widely used for cryptographic purposes. An
evolution chart of events is presented which has significant impact on introducing
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elliptic curves for use in cryptography. We discuss about important attacks on
ECDLP and their countermeasures, which became the basic selection criteria of
elliptic curves for their consideration in cryptography. This paper also discuss
rationale behind the selection criteria used to compute cryptographically suitable
elliptic curve parameters. Two popular approaches, i.e., deterministic and random
approaches to compute cryptographically secure Short Weierstrass elliptic curves and
rationale behind them are evaluated in detail. A trend of approaches for computation
of elliptic curve parameters for cryptographic purposes is also demonstrated which
favours deterministic approach in standardization so far. We also differentiate
between standard and non-standard elliptic curves with respect to their computational
approaches, trust and security and bring out the desirable facts to choose either of
them on need basis. Hence, it is inferred that this comprehensive evaluation and
analysis of computational approaches of cryptographically safe elliptic curves will be
helpful to those who wish to compute Short Weierstrass elliptic curves for design of
cryptosystems with desired properties of the elliptic curves.

Standardization of elliptic curves, which are computed using random approach
will be, preferred in future citing the trust requirements of strategic applications.
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Abstract: Short Weierstrass elliptic curves with underlying hard Elliptic Curve
Discrete Logarithm Problem (ECDLP) are widely used in cryptographic
applications. A notion of security called Elliptic Curve Cryptography (ECC) security
is also suggested in literature to safeguard the elliptic curve cryptosystems from their
implementation flaws. In this paper, a new security notion called the “trusted
security” is introduced for computational method of elliptic curves for cryptography.
We propose three additional “trusted security acceptance criteria” which need to be
met by the elliptic curves aimed for cryptography. Further, two cryptographically
secure elliptic curves over 256 bit and 384 bit prime fields are demonstrated which
are secure from ECDLP, ECC as well as trust perspectives. The proposed elliptic
curves are successfully subjected to thorough security analysis and performance
evaluation with respect to key generation and signing/verification and hence, proven
for their cryptographic suitability and great feasibility for acceptance by the
community.

Keywords: Short Weierstrass elliptic curves, prime field, cryptography, ECDLP
Security, ECC Security, Trusted Security.

1. Introduction

Short Weierstrass elliptic curves are considered to be as secure for cryptography as
the underlying hardness of their Elliptic Curve Discrete Logarithm Problem, i.e.,
(ECDLP) which is defined as finding a scalar & knowing any two points Pand @ on
elliptic curve E holding the relation ¢ = kP. This is known as the ECDLP security of
the selected elliptic curve when used for cryptography [1]. The most efficient publicly
known method to solve ECDLP or break the ECDLP security is the Pollard’s rho
algorithm which takes approximately 0.886+/n point additions where 7 is the base
point order [1-2]. One must select an elliptic curve which is ECDLP secure for
cryptographic applications. Another notion of security for selecting suitable elliptic
curves for cryptography is known as elliptic curve cryptography security, i.e., ECC
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security in short, the term coined by Bernstein and Lange [1] which ensures
prevention from any information leakage from the implementation flaws of the
elliptic curve.

Most of the popular standards today such as National Institute of Standards and
Technology (NIST) [3], Brainpool [4], Standards for Efficient Cryptography 2
(SEC2) [5], IEEE P1363 [6], etc., recommended those elliptic curves which are
ECDLP secure and attain some sort of ECC security (for only some standard curves
[1]). It is worthwhile to note that an ECC based cryptosystem can be compromised
by either compromising the ECDLP security or the ECC security. All the present day
standards have recommended Short Weierstrass elliptic curves keeping either or both
of these security notions into consideration. This paper introduces a critical security
notion which we call as “trusted security” of elliptic curves which ensures that the
selected elliptic curve is free from any manipulation from its computation perspective
and can be trusted for use in cryptographic applications. The trusted security notion
of computation of elliptic curves minimizes the risks involved in generation of safe
curve parameters deterministically where they are vulnerable to (intentionally) non-
disclosed attacks with (intentionally) non-disclosed properties of the curve
parameters. In such cases, the ECDLP can be solvable by using very efficient sub-
exponential or polynomial time algorithm using non-guessable high computing
power.

The key contributions of this paper are as follows:

1. Introduction of a new security notion called as “trusted security acceptance
criteria” as an important security evaluation criterion along with the ECDLP security
and ECC security criteria for computation of Short Weierstrass elliptic curves aimed
for cryptography.

2. Evaluation of standard Short Weierstrass elliptic curves from trust
perspective.

3. Argument that trust in generation method of elliptic curves can be achieved
only through computation of the curve parameters randomly without considering any
of their pre-studied values such as = -3 or pas Mersenne primes, etc. The randomly
selected elliptic curve parameters can be derived using any good quality user trusted
Random Number Generator (RNG) along with competitive curve performance.

4. Demonstration of two new elliptic curves called as Kunal-George 256 bit first
random elliptic curve (KG256r1) and Kunal-George 384 bit first random elliptic
curve (KG384rl) defined over 256 bit and 384 bit prime field sizes respectively for
cryptography which are secure from ECDLP security, ECC security as well as trusted
security perspectives.

5. Evaluation of the proposed elliptic curves KG256r1 and KG384rl with
respect to cryptographic key pair generation, signing and verification from
performance perspective.

Organization of the paper is as follows.

Section 2 deals with the background and problem statements of the presented
work. Section 3 introduces the proposed “trusted security acceptance criteria” for
cryptographically safe elliptic curve computation. Section 4 evaluates standard Short
Weierstrass elliptic curves from trusted security acceptance criteria perspective.
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Section 5 describes the generation procedure including the proposed trusted security
acceptance criteria to derive new elliptic curves KG256rl and KG384rl for
evaluation and demonstration. Section 5 also holds the discussion on importance of
trusted security acceptance criteria of elliptic curves to minimize the risk of
manipulating the curve parameters intended for cryptographic purposes. Section 6
presents demonstration of the proposed trusted Short Weierstrass elliptic curves for
cryptography. Section 7 gives the security analysis of the proposed elliptic curves.
Section 8 discusses results obtained in the presented work and demonstration of the
performance metrics of the proposed elliptic curves. Finally, Section 9 concludes the
paper and gives future directions.

2. Background and problem statements

An elliptic curve in Short Weierstrass form consists of three parameters: a prime
number p which is the order of the underlying field over which the elliptic curve is
defined and two field coefficients & and b. The formal definition of a Short
Weierstrass elliptic curve and its twisted curve are as follows:

Definition 1 [7]. A Short Weierstrass elliptic curve E(F,) of prime field order
pis the set of all solutions (x, y) to the equation
D E:yi=x3+ar+ 4
where @, 4 are the coefficients in [F,with field characteristic greater than 3. The
elliptic curve E also includes a special point @ called the point at infinity. [E has non-
singularity condition, i.e., its discriminant Ag = 43 + 27462+ 0.

The field order p determines the security level offered by the elliptic curve.
Hence, it is important to select p as big as possible. Generally, p > 256 bits in size
gives accepted security level while p of 256 bit length is considered as widely
accepted prime field size of the elliptic curve for interoperability purposes.

Definition 2 [8]. If E: 2 = x3 4+ ax+ 4 be an elliptic curve with 2, b€ F, the
twist of E by c€ F, is defined as
(2) E: y2=x3+ ac?x+ bc3.

It is important to select those elliptic curves which are cryptographically secure
and trusted for constructing cryptographic systems. Transport Layer Security (TLS),
Secure SHell (SSH) and Internet Protocol Security (IPSec) [9], Public Key
Infrastructure (PKI) [10], etc., are some of the popular applications which require
safe elliptic curves in their cryptosystem design. Most of such commercial
applications use standard elliptic curves over prime field of 256 bit sizes for sufficient
security and interoperability purposes. However, Bernstein et al. [2] have
recently pointed out some mechanisms such that a new elliptic curve can be proposed
to sabotage public standards. They demonstrated convincing methods by which they
were able to implant vulnerability in the elliptic curves known as BADAS5 curves by
utilizing the gain of many bits of freedom [2] which satisfies the public standards and
can be put forward for standardization to fool the users. This essentially proves that
an attacker can exploit unknown (known to him) vulnerability to sabotage existing
public standards and justify his selection of elliptic curve parameters citing
performance gain and his own way of getting randomness, i.e., verifiably random,
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etc., which is used in the generation of the vulnerable curve parameters. Bernstein
et al. [2] comprehensively demonstrated how a wrong or non-trustable elliptic curve
can be derived using the procedure led by the public standards and their
recommended public criteria. They showed that plausible variations in the Brainpool
curve generation procedure and Microsoft curve generation procedure respectively
can be used to sabotage public standard. Further, the Agence Nationale de la Securite
des Systemes d’Information (ANSSI) standard recommended FRP256V1 elliptic
curve which has low twist security of order 27° which means that there are 27° elliptic
curve additions required to mount the twist attack to get user’s secret key [2]. Also,
there is no reasonably sufficient documentation available for this curve. Furthermore,
Bernstein et. al. [2] demonstrated computation of the BADA55-R-256 curve
which meets the public security criteria for ECDLP security and ECC security but
still is a manipulated curve. Finally, we understand that computation of an elliptic
curve can be manipulated by any deterministic method of computation of the curve
parameters and variety of reasons can be cited with selection of the curve parameters
adhering to some public standard of proposer’s convenience.

Summarizing, the problems pertained with the trust consists of one or more
issue(s) from the following:

e No sufficient explanation on the RNG used for seed or randomness
generation.

o Intentional variation in standard elliptic curve generation procedure
recommended by the curve proposing agencies by themselves.

¢ Intentional hiding of information about the curve parameters even providing
detailed documentations on curve generation process of standard elliptic curves.

e Sabotaged standards.

¢ Root problem of the lack of trust is the deterministic approach adopted by all
the agencies in standardizing their proposed elliptic curves.

With the above prevalent issues, an obvious question arises that “because you
can explain, does not mean that you will explain everything”. We answer this
guestion by introducing a set of three important security evaluation criteria called
“trusted security acceptance criteria” for computation of suitable elliptic curves for
cryptography which can be additionally invoked along with the ECDLP security and
ECC security criteria to mitigate the trust issues in curve generation process to a great
extent.

3. Trusted security acceptance criteria for elliptic curves for
cryptography

Standard elliptic curves followed deterministic approach in computation of their
coefficients and primes. Most of them used pre-studied values whose credibility and
trustworthiness are doubted [2, 11-13] due to origination of the curve parameters and
lack of proof for the randomness used in the curve generation process such as use of
computationally convenient primes like powers of two, etc. Hence, there is a need to
introduce additional security acceptability criteria to invoke trust in the computation
of elliptic curve parameters for use and in standardization. In this paper, a set of three
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new security evaluation criteria of cryptographically safe elliptic curve called the
“trusted security acceptance criteria” for elliptic curve used for cryptography is
introduced which is as follows:

a. T1: User trusted Random Number Generator (RNG) to provide
(pseudo)randomness.

A RNG should be selected preferably by its user for assuring that user is fully
aware of the technicality of the RNG and hence he/she trusts it completely. Apart
from the trust aspect, the RNG should adhere to the following properties as indicated
by Koc [14]andSchneier [15]:

. The bitstream generated by a PseudoRandom Number Generator (PRNG)
or Cryptographically Secure PRNG (CSPRNG) should be statistically sound, i.e., it
has a large period.

) The bitstream generated should be unpredictable, i.e., the RNG should be
forward secure as well as backward secure.

The curve parameters should be chosen randomly in a trustworthy way to avoid
any uneasy explanation about the generation of the curve constants and hence, the
requirement of user trusted and strong RNG is critical in trust building.

b. T2: No pre-studied values of the curve coefficients and prime.

The well-known constants are accepted by everyone without hesitation but their
non-exposed property may be used for construction of vulnerable elliptic curves.
BADAS5-VPR-224 is such an example which used cos(1) constant [2]. The elliptic
curve coefficients z 4 must not use any pre-studied values to avoid the scope of
manipulation. Moreover, the prime field order p can only have special structure if it
is randomly selected with suitable size (normally >224) bits for fast reduction on the
elliptic curve.

c. T3: Reproducibility of new elliptic curves of nearly the same cryptographic
strength and suitability using the same method and apparatus.

One must get new elliptic curves of nearly the same cryptographic strength using
the same method and apparatus. We consider Pollard’s tho values of the elliptic
curves and their respective twisted curves as the measurement of their cryptographic
strengths which is the number of elliptic curve point additions to solve the ECDLP.
Generally, 0.886+/n elliptic curve point additions are required to break the ECDLP
where nis the order of the base point [1-2].

4. Evaluation of standard elliptic curves from trust perspective

Standard Short Weierstrass elliptic curves claimed to have followed rigorous ECDLP
security validations and sometime ECC security validations together to arrive at the
curve parameters for recommendation. They claimed that they used seeds which were
randomly generated and some of them adhered to verifiably random way of obtaining
the curve parameters. Table 1 evaluates standard elliptic curves from trust
perspectives for use in cryptography.
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Table 1. Evaluation of the standard Short Weierstrass elliptic curves from trust perspective

_ Trusted Security

Elliptic curve (T1, T2, T3) Remarks

NIST P224r1 None Detern_unlstlc approach with pre-studied coefficients
and prime [3]

NIST P256r1 None Detern_unlstlc approach with pre-studied coefficients
and prime [3]

NIST P384r1 None Deterministic approach with pre-studied coefficients
and prime [3]

secp224r1 None _Speugl _structure of prime p (Mersenne prime) and
insufficient documentation [5]

secp256r1 None Special structure of prime p (Mersenne prime) and
insufficient documentation [5]

secp384rl None _Specw_tl _structure of prime p (Mersenne prime) and
insufficient documentation [5]

secp521r1 None Special structure of prime p (Mersenne prime) and
insufficient documentation [5]

ANSSI Pre-studied value of coefficient a and insufficient

FRP256v1 None .
documentation [2, 16]

curve

. None of the Brainpool curves are generated by their

Brainpool T2 own stipulated procedure [2, 4]

NUMS curves None Deterministic approach with pre-studied coefficients
and prime [2, 17]

It is imperative to note from Table 1 that, there is an ardent need for new elliptic
curves which are cryptographically secure as well as trusted. Following section will
focus on the generation details of trusted Short Weierstrass elliptic curves to be used
for cryptography.

5. Cryptographically secure elliptic curve generation using the proposed
trusted security acceptance criteria

Short Weierstrass elliptic curves have a unique property that it can only exhibit prime
order [18] in order to get maximum security of ECDLP without compromising any
bit of security [19]. However, elliptic curves of cryptographic interest must get
validated against their ECDLP security, ECC security as well as trusted security. It is
now observed from previous sections that random approach of computing safe elliptic
curves is the only way to achieve all of these three security notions. A standard
procedure is shown as the flow chart in Fig. 1 for a bird’s eye view of generation of
the trusted Short Weierstrass elliptic curves intended for cryptography.
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Fig. 1. Flow chart of generation of cryptographically secure and trusted
Short Weierstrass elliptic curve

An entropy harvester which is used to obtain sufficient number of true random
bits from various physical noise sources like device randomness, disk randomness,
Human Interface Device (HID) (key board, mouse, etc.), interrupt randomness, etc.,
is used to seed a user trusted (means user is aware of the technicality of the RNG and
associated security risks completely) PRNG/CSPRNG as depicted in Fig. 1. The user
trusted PRNG supplies desired number of (pseudo)random bits to generate suitable
p, aand b. An elliptic curve E is constructed over prime field p (which is fixed in
our case, but one can choose other way also to generate suitable elliptic curves by
fixing the curve order Nrandomly, etc.) with coefficients zand 5. Now E is subjected
to ECDLP security validation failing which it will regenerate the coefficients « and
buntil it gets suitable curve coefficients for E to be ECDLP secure. A base point Gis
also selected randomly over elliptic curve E and gets verified for its prime order for
acceptability. Once E is validated for ECDLP security, it is subjected to security
validation from ECC security perspective which expects E to have its twist E” also to
be as secure as E is. In case of the fact that ECC security validation does not pass,
one needs to regenerate the prime p and subsequently coefficients « and b to get
ECDLP security and ECC security successfully validated. Finally, the ECDLP secure
and ECC secure E is verified with the proposed trusted security acceptance criteria
(indicated in yellow decision box in Fig. 1) failing which the process is re-initiated
with deriving prime p and coefficients z and b as fresh until one gets an acceptable
E. Lastly, E and Gare returned as the output. The elliptic curve generation procedure
is detailed in Algorithm 1.

5.1. Assumptions

Following assumptions were made considered while computing the curve parameters
using Algorithm 1:

i. User trusted cryptographically strong RNG is available to provide
randomness required in computation of secure elliptic curve.
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ii. Sufficient entropy is available in the system. Generally, more than 2000 bits
of entropy is expected to be available with the system to seed the RNG sufficiently
to uninterruptedly generate elliptic curves up to over 384 bit prime field sizes. Also,
the operating system is not used for the first time after installation as sufficient
entropy will not be available with the machine.

iii.Compilers, CPU Processors, SAGE and other participating modules in the
curve parameter generation are trusted.

5.2. Standard elliptic curve generation procedure including trusted security
acceptance criteria

Algorithm 1 shows the standard procedure along with the proposed trusted security
acceptance criteria as discussed in Fig. 1 with detailed security validations of elliptic
curve from ECDLP security, ECC security and trusted security perspectives.

Algorithm 1. Generation of trusted cryptographically safe Short Weierstrass
elliptic curve

Input: Prime field size (1) in bits and randomness from user trusted RNG

Output: Trusted cryptographically safe elliptic curve E over prime field p with
base point Gy ,

Step 1. Input prime field size 1 in bits

Step 2. Obtain seed S as true random bits of desired length from entropy
harvester

Step 3. Set seed Sfor user trusted RNG

Step 4. Select randomly prime p such that p = 3 mod 4 // for fast arithmetic
onE

Step 5. Choose randomly the coefficient zof E

Step 6. Choose randomly the coefficient 4 of E

Step 7. Construct the elliptic curve E with curve parameters p, zand b

Step 8. Enforce ECDLP security validation:

Step 8.1. If discriminant Ag = 4a3 + 2742 # 0 // E must be non-singular

Step 8.2. Else goto Step 5

Step 8.3. If curve order Nis prime

Step 8.4. Else goto Step 5

Step 8.5. If E is non-anomalous case // N+ p

Step 8.6. Else go to Step 5

Step 8.7. If E is not supersingular curve

Step 8.8. Else go to Step 5

Step 8.9. Generate randomly the base point G, on E

Step 8.10. Validate if base point order nis prime

Step 8.11. Else go to Step 8.9

Step 8.12. If cofactoris 1

Step 8.13. Else go to Step 5

Step 8.14. If Pollard’s rho value < 2100

Step 8.15. Else go to Step 5

Step 8.16. If embedding degree 4> (N -1)/100 // guarantees intractability
of DLP
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Step 8.17. Else go to Step 5

Step 9. Enforce ECC security validation: (If E is twist secure, i.e., all validations

in Step 8 applied to E”)

Step 9.1. If twist discriminant Ag of E =443+ 276%+0

Step 9.2. Else go to Step 4

Step 9.3. If order of E’, Nis prime

Step 9.4. Else go to Step 4

Step 9.5. If E is non-anomalous case

Step 9.6. Else go to Step 4

Step 9.7. If E" is not supersingular curve

Step 9.8. Else go to Step 4

Step 9.9. Generate randomly the base point G, on E’

Step 9.10. Validate if base point order n’ is prime

Step 9.11. Else go to Step 9.9

Step 9.12. If cofactor of E" is 1

Step 9.13. Else go to Step 4

Step 9.14. If Pollard’s rho value of E" < 2100

Step 9.15. Else go to Step 4

Step 9.16. If embedding degree k" > (N'-1)/100

Step 9.17. Else go to Step 4

Step 10. Enforce trusted security validation

Step 10.1. Validate if RNG is trusted // Proposed validation criterion T1

Step 10.2. Else go to Step 2

Step 10.3. Validate if coefficients a and b have no pre-studied value //
Proposed validation criterion T2

Step 10.4. Else go to Step 2

Step 10.5. Validate if elliptic curves with similar cryptographic strength can
be generated with the same method and apparatus // Proposed validation criterion T3

Step 10.6. Else go to Step 2

Step 11. Return E: {p, @, b} and Gy,

Algorithm 1 takes elliptic curve field size (1) in bits as the input in Step 1. A
seed S is extracted from the entropy harvester in Step 2. In our case, we used
/dev/random as the PRNG which takes true random bits through a Hardware based
RNG (HRNG) that extracts entropy directly. We used /dev/random PRNG available
with Linux Fedora kernel Version 4.13.9 for obtaining randomness in desired bit
lengths. The HRNG uses various noise sources like input randomness, device
randomness, disk randomness, HID (key board, mouse, etc.), interrupt randomness
to provide random bits as the seed Sto /dev/random in Step 3. S'is used to initialize
/dev/random to provide randomness to the curve generation process as and when
required. As the curve generation program needs a user trusted secure RNG, we leave
it to the user to select his/her trusted RNG for fulfilling the randomness requirements.
Here our focus is to recommend users to use their own trusted RNGs to avoid any
possible manipulation in curve computation and we demonstrate how a trusted Short
Weierstrass elliptic curve can be generated for cryptography. In Step 4, the prime p
of user desired 1 bit length is randomly selected and subsequently, checked that it
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should hold the form of p = 3 mod 4 for fast reduction, i.e., fast elliptic curve
arithmetic on E. It is noted that p is first chosen randomly and then verified for this
form to avoid any pre-studied value. The curve coefficients zand b are then chosen
randomly in Step 5 and Step 6 respectively using different seeds, i.e., @ and b have
independent initializations. Now, an elliptic curve E is constructed with p, @ and b
in Step 7.

The ECDLP security validations are enforced in Step 8 which includes non-
singularity in Step 8.1, prime curve order in Step 8.3, non-anomalous property in
Step 8.5, non-supersingularity in Step 8.7, random selection of base point in Step 8.8
with prime base point order in Step 8.9, small cofactor as 1 in Step 8.11, high
Pollard’s rho in Step 8.14 and high embedding degree in Step 8.16 respectively. Non-
singularity of elliptic curve confirms that curve is smooth and indeed an elliptic curve
[20-22]. Prime order elliptic curve with order NVis resistant to Pohlig-Hellman attack
when N > 2160 [23]. Non-anomalous case of elliptic curve, i.e., when curve order
N # p, confirms that curve is resistant to pairing based attacks [23]. Non-
supersingularity of elliptic curve prevents the ECDLP from the Menezes, Okamoto
and Vanstone (MOV) reduction attack with sub-exponential complexity which takes
place when the conditions that p divides trace ¢ or/fand t2 =0, p, 2p, 3por 4p are
met [24-25]. The cofactor value determines the cryptographic security and gives
maximum security when selected as 1 [23, 25]. The Pollard’s rho value of elliptic
curve determines the number of elliptic curve point additions to find a collision. This
check is very important as a parallelized Pollard-rho on 7 processors can solve
ECDLP in (vVmn)/v2r steps [23, 26]. The embedding degree of elliptic curve
k= 20 is considered sufficient to guarantee intractability of the discrete logarithm
problem in the extension field [7].

The ECC security validations are enforced in Step 9 of Algorithm 1 in which it
looks for the twist of the selected elliptic curve to be secure against all the ECDLP
security validations as described above. The twist security of elliptic curve prevents
from any implementation flaws or information leakage about the user’s secret
key [1].

The trusted security validations are carried out in Step 10 to ensure the method
of generation of elliptic curve is trusted in terms of the randomness used in the curve
generation process and the curve parameters are drawn randomly. It also ensures that
the procedure described in Algorithm 1 can be used to obtain Short Weierstrass
elliptic curves of nearly the same cryptographic strength each time on its execution.

Finally, a trusted and secure elliptic curve E: {p, @ b} and base point Gy ,is
returned in Step 11.

6. Demonstration of trusted Short Weierstrass elliptic curves

We used Algorithm 1 to derive two trusted Short Weierstrass elliptic curves KG256r1
and KG384r1 defined over 256 bit and 384 bit respectively for demonstration. The
details of the proposed KG256rl1 and KG384rl is shown in Table 2 and Table 3,
respectively. These elliptic curves have undergone security analysis in Section 7 to
ensure that the elliptic curves generated using Algorithm 1 have nearly the same
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cryptographic strength in terms of Pollard’s rho complexity and other criteria like big
discriminant, embedding degree, trace, etc., while being compliant with the three
security notions, i.e., ECDLP security, ECC security and trusted security.

Table 2. The proposed KG256r1 elliptic curve

KG256r1
105659876450476807015340827963890761976980048986351025435035631207814085532543
57780130698115176583488499171344771088898507337873238590400955371129685138826
102451950841073747949316796495896937960702115486975363798323596797327090813462
105659876450476807015340827963890761976544313325663770762399235394744121359871

(5385166333114646497810998074612415985821986371151485954586014078688791960064,
88440166531789946723126083546750633179866039092883764784041611065547926159080)
1 (smallest cofactor)

> Q=R

Table 3. The proposed KG384r1 elliptic curve

KG384r1
p | 308504936566801493400799664217561138887972017059009663818402880868888024111765
87972020735012523469267564505420764051

a|268937684885793435941799884521325825414071666675195106719690165313905189264848
5257788827989185822359193013251735562

b | 282679914441081045194064979674986566053141057529253438397674572433074909758239
5451638354661270280127278365677483939

N| 308504936566801493400799664217561138887972017059009663818414387546839003900776
17323565554872996073979103765917522731
G| (263821674697227290786867915392591910846306526222054061903021467945234141274511
83423914120811487055055064 792875345576
202628051316606152195895866462280785015451818341996421511941020893449272958898
57293563989127020260020122002404045204)

h|1 (smallest cofactor)

Resources used. The curve generation programme was written in Python language
using Python Version 2 and Python Version 3.6 compilers and ran on a desktop server
having 2*Intel® Xeon® E5-2620v4 processor with 32 CPU cores and 2.1 GHz clock
frequency and 128 GB DDR4 memory. The desktop server was equipped with Linux
Fedora operating system (kernel Version 4.13.9) and SAGE Version 8.1 was used for
number theory arithmetic support for the curve generation program.

7. Security analysis of the proposed KG256r1 and KG384rl elliptic
curves

7.1. Analysis of the ECDLP and ECC security of the proposed KG256rl1 and
KG384r1 elliptic curves

We used SafeCurves verification script [1] to verify ECDLP security and ECC
security of the elliptic curve parameters. Algorithm 2 describes the SafeCurves
verification script which was used to verify the KG256r1 and KG384r1 elliptic curves
against its ECDLP and ECC security.
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Algorithm 2. Verification of the proposed elliptic curve parameters for
cryptographic security

Input: Elliptic curve parameters p, @, b, N, G

Output: Safe/Weak Elliptic Curve

Step 1. Verify if shape of elliptic curve is Short Weierstrass

Step 2. Else return “Not Short Weierstrass elliptic curve”

Step 3. Verify if pis prime

Step 4. Else return “Weak elliptic curve”

Step 5. Verify if discriminant < —2100

Step 6. Else return “Weak elliptic curve”

Step 7. Verify if base point order is prime

Step 8. Else return “Weak elliptic curve”

Step 9. Verify if GCD (Curve order, base point order)=1

Step 10.
Step 11.
Step 12.
Step 13.
Step 14.
Step 15.
Step 16.
Step 17.
Step 18.
Step 19.
Step 20.
Step 21.
Step 22.
Step 23.
Step 24.
Step 25.
Step 26.
Step 27.
Step 28.
Step 29.
Step 30.
Step 31.
Step 32.
Step 33.
Step 34.
Step 35.
Step 36.
Step 37.
Step 38.
Step 39.

Else return “Weak elliptic curve”

Verify if base point is on curve

Else return “Incorrect base point”

Verify if co-factoris 1 or 2 or 4

Else return “Weak elliptic curve”

Verify if p+1-¢tis a multiple of base point order n
Else return “Weak elliptic curve”

Verify if embedding degree of curve = (N -1)/100
Else return “Weak elliptic curve”

Verify if elliptic curve is MOV safe

Else return “Weak elliptic curve”

Verify if base point order of twist I= p

Else return “Weak elliptic curve”

Verify if twist equation is elliptic

Else return “Weak elliptic curve”

Verify if twist shape is Short Weierstrass

Else return “Weak elliptic curve”

Verify co-factor of twistis 1 or 2 or 4

Else return “Weak elliptic curve”

Verify if GCD (base point order of twist, p) =1
Else return “Weak elliptic curve”

Verify if Pollard’s rho value of elliptic curve > 2100
Else return “Weak elliptic curve”

Verify if rigidity is True

Else return “Weak elliptic curve”

Verify if twist rho value > 2100

Else return “Weak elliptic curve”

Verify if Joint Rho > 2100

Else return “Weak elliptic curve”

Otherwise, return “Cryptographically safe elliptic curve”
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Itis obvious that ECDLP security is a critical security requirement for qualifying
any elliptic curve for cryptography. However, SafeCurves [1] proposed ECC security
as another security notion for evaluating elliptic curves to ensure that the ECC
implementations do not reveal or leak information about user’s secret key. For Short
Weierstrass elliptic curves, a twist secure elliptic curve can prevent ECC
implementation flaws [1]. The elliptic curve E is twist secure if its twist E" is secure
which means that all the ECDLP security validations are also successfully compliant
by E’ [1].

Both KG256r1 and KG384r1 elliptic curves qualified all the ECDLP and ECC
security verifications executed in Algorithm 2. The field orders p and curve orders N
of both elliptic curves were verified deterministically for being a prime number using
Pocklington’s theorem [1]. We avoided any special structure of prime or pre-studied
value to prevent from any vulnerability. For example, NIST P-224 prime, i.e.,
p = 2224 - 296 41 was used by BADAS55-VPR-224 and standard ANSSI prime

0xF1FD178C0B3AD58F10126DESCE42435B3961ADBCABC8CA6DESFCF353D86E9C03

was used by BADAB5-R-256 curve, respectively, to demonstrate vulnerable curves
to the community [2]. Moreover, the discriminants, embedding degrees, cofactor
values and Pollard’s rho values of both curves and their respective twist curves were
verified successfully possessing more than their expected threshold values. These
curves were also verified to confirm that they are not a case of anomalous and
supersingular ones as discussed in Section 5.2 and thus, they are suitable for
cryptography. Table 4 and Table 5 shows these values possessed by both KG256r1
and KG384r1 elliptic curves.

7.2. Analysis of trusted security of KG256r1 and KG384r1 elliptic curves

7.2.1. Validation of Trusted Security Criteria T1

We trust and used /dev/random PRNG for curve generation procedure due to the fact
that it has faced a lot of successful cryptanalysis [27-29] and sustained long with the
Linux kernel since 1994 [28]. Moreover, the latest versions (Version 4.8 or later) of
/dev/random have overcome [30] the criticism of having possible entropy attacks [2].
We used Linux Fedora kernel Version 4.13.9 and selected /dev/random as the PRNG
(sometimes /dev/random is referred as True Random Number Generator (TRNG)
because it has the direct interface with the HRNG). We are actually making a point
here that choose your trusted RNG and own the risk associated with your selection.

7.2.2. Validation of Trusted Security Criteria T2

To validate the T2 criterion, no pre-studied values of the curve coefficients zand b
are used as they have been chosen randomly and independently. The prime numbers
p in both proposed curves KG256r1 and KG384rl are selected randomly first and
then chosen with a form of p = 3 mod 4 for performance tuning and there is no
evidence of these primes p and coefficients zand breported in past as the pre-studied
ones.
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Table 4. Verification result of the ECDLP security of the proposed elliptic curves

Elliptic
curve
E

Offered
Secu-
rity
level

Rho
comp-
lexity

(p-value)

Embedding
degree (k)

Trace (t)

Discriminant

()]

Curve order

(N)

Co-
factor

(W]

Non-
anoma-
lous?

Non-
supersin-
gular?

KG256r1

128

127.8

1056598764504
7680701534082
7963890761976
5443133256637
7076239923539
474412135987

4357356
6068725
4672636
3958130
6996417
2673

1-2327739398073
48890850436587
53644854204373
02456081553631
25035103075438
982165243

105659876450
476807015340
827963890761
076544313325
663770762399
235394744121
359871

(N > 2256)

'Yes

Yes

KG384rl

192

191.6

3085049365668
0149340079966
4217561138887
9720170590096
6381841438754
6839003900776
1732356555487
2996073979103
76591752273

115066
7795097
9789010
2935154
4819860
4726047
1153926
0496758
679

-1220779382520
44953003302331]
47726211104554
02982992783892
89312797446442
90302463031293
45660706643594
39115013756521
231163

1308504936566
801493400799
664217561138
887972017059
009663818414
1387546839003
900776173235
655548729960
739791037659
17522731

(N > 2384)

'Yes

Yes

Table 5. Verification result of the ECC security of the proposed elliptic curves

Twist of
elliptic
curve E’

Offered
security
level
in bits

Rho
complexity
(p’-value)

Embedding degree (k")

Curve order

(N)

Non-
ano-
ma-

lous?

Co-
factor
()

Non-
super-
singu-

lar?

KG256r1

128

44024948521032002923
05867831828781749058
99102695992833781966
7792536835404384

127.8

1056598764504768070153
4082796389076197741578
4647038280107672027020
884049705217

(N TS 2256)

Yes

Yes

KG384r1

192

30850493656680149340
07996642175611388879
72017059009663818391
37419093704432275558
62047591515205086455
6025244924005372

191.6

3085049365668014934007
9966421756113888797201
7059009663818391374190
9370443227555862047591
5152050864556025244924
005373

(N TS 2384)

Yes

Yes

7.2.3. Validation of Trusted Security Criteria T3

To validate the T3 criterion, we conducted an experiment by taking three trials of
executing Algorithm 1 under the same operational environment with same method
and apparatus to retrieve three independent elliptic curves of the same prime lengths.
Subsequently, we examined if they exhibit nearly the same cryptographic strength
measured in terms of Pollard’s rho value for the curves and their respective twists as
discussed in Section 5.2. Table 6 shows the results obtained from this experiment
which proves the successful validation of T3 criterion by the proposed KG256r1 and
KG384r1 elliptic curves.
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Table 6. Validation of Trusted Security criteria of three new elliptic curves: T3

Trial
number

Pollard’s rho
Elliptic curve parameters value/Twist
rho value

p: 87052253706622316800662279631344302713612816742118516
445715106163825624186987

a. 1746151368048811020218968006546743335598218731380998430
8530183605390654503146

1 b: 474236453447930708769624430407166643517516693153699581 Twist rho
1081067226406616322940 21276

Gyy: (3456244486426344779228988166678236819980891275183166
3386444135083641970670103
4497371709820032463278128673540807706788485141690500194089
5476727480258436423)

p- 83857931886285555818472058950522827195247211639379970
952195176566538052148959

a. 152220314103590540280417930887083748851745810070536720
26416069700422500171995

2 b: 757236637128308681589266033304884863127887549151635841 Twist rho:
16380630010872983931491 21276

Gy (79991145613299850861660922601873046504314421039422310
330231620709939495217575,
7404893030059505468635576438059973071448465131501496655567
3263252180995491420)

p- 115455173683647336766695198555386616062185957400074700
902465398650769617153383

a. 8924708959453186116722190782467936189647778182777134965

Rho: 21276

Rho: 21276

4639873760799894221702 Rho: 21278
3 | b 474560808384385980207222031163435824555796019933240946 .
11207713288744264819618 ;Vg;gt rho:

Gyy: (8738097286190894292660189281220971403853448243215
6502027178728221855540030831,
1090102247036102758077769996625873990104156057568922076505
40783549332069147687)

8. Results and discussion

The proposed elliptic curves KG256r1 and KG384r1 are compared with other similar
standard Short Weierstrass elliptic curves like NIST, SEC2, Brainpool, FRP256v1
and NUMS curves from ECDLP security, ECC security and trusted security
perspectives in this section.

8.1. Comparison of the proposed KG256r1 and KG384r1 elliptic curves with standard
elliptic curves from ECDLP and ECC security perspectives

It is imperative to note from Table 7 that none of the standard elliptic curves have
passed all the SafeCurves verification criteria [1] of ECDLP security and ECC
security. However, Brainpool recommended elliptic curves have deviated in their
own stipulated procedure of generation [2] and hence cannot be trusted easily. Also,
their verifiably random generation method is under question as such thing can be
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intentionally implanted to manipulate the standard as demonstrated by Bernstein et.
al. through BADAJSS curves [2].

Table 7. Comparison of ECDLP Security and ECC Security of the standard elliptic curves and the
proposed elliptic curves [1]

Verification .
criterion Details Supported by the curve
SafeField Prime of the forms 1 mod 4 and 3 mod 4 A, B, C, D1, KG256r1, KG384r1

safeEquation

Elliptic curve over prime field possessing
either Short Weierstrass or Montgomery or
Edward equation

A, B, C, D1, KG256r1, KG384r1

transfer)

safeBase Possessing prime order of base point A, B, C, D1, KG256r1, KG384rl

safeRho Rho value must be > 2100 A, B, C, D1, KG256r1, KG384r1
Resistant to Smart-ASS attack (additive

safeTransfer transfer) and MOV attack (multiplicative Q E;’ €, D1, KG256r1,

84rl

safeDiscriminant

Absolute value of complex-multiplication
field discriminant | D | > 2100

A, B, D1, KG256r1, KG384r1

Allows only fully rigid and somewhat rigid

are met

safeRigid B, C, KG256r1, KG384rl1
curves

safeTwist Above security requirements for twist of the C. KG256r1, KG384rl
curve as well

safeCurve Elliptic curve is safe if all the above criteria KG256r1, KG384r1

Note: A = NIST recommended elliptic curves, B = Brainpool recommended elliptic curves, C = SEC2
elliptic curves, D1 = ANSSI recommended elliptic curve FRP256v1.

8.2. Comparison of cryptographic security of the proposed KG256r1 and KG384r1
with standard elliptic curves

Table 8. Comparative security evaluation of the proposed elliptic curves with the standard elliptic curves

Trusted
Elliptic curve ECDI.‘P EC(.: security Remarks
security | Security (T1, T2, T3)
No RNG description. Pre-studied value of coefficient z and
NIST P224r1 Yes No No special structure of prime p in Mersenne form. Weak twist
security [3]
No RNG description. Pre-studied value of coefficient @ and
NIST P256r1 Yes No No special structure of prime p in Mersenne form. Weak twist
security [3]
No RNG description. Pre-studied value of coefficient z and
NIST P384r1 Yes No No special structure of prime p in Mersenne form. Weak twist
security [3]
SEC2 prime v Special structure of prime p (Mersenne prime) and insufficient
es No No -
curves documentation [5]
Brainpool None of the Brainpool curves are generated by their own
Yes No No -
curves stipulated procedure [2]
ANSSI Pre-studied value of coefficient a and insufficient
FRP256v1 Yes No No documentation [2]
curve
NUMS curve Yes No No [Dlztfrministic approach with pre-studied coefficients and prime
Randomly generated curve parameters with no pre-studied
KG256r1 Yes Yes Yes value. User trusted RNG to minimize the risk of manipulation
Randomly generated curve parameters with no pre-studied
KG384rl Yes Yes Yes value. User trusted RNG to minimize the risk of manipulation
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The proposed elliptic curves KG256r1 and KG384rl are compared with
standard Short Weierstrass elliptic curves from overall security of ECDLP, ECC and
trust perspectives in Table 8.

We observe from Table 8 that only the proposed KG256r1 and KG384r1 elliptic
curves are secure from ECDLP, ECC and trust perspectives and standard elliptic
curves have met the ECDLP security validations only.

8.3. Performance of the proposed elliptic curves

The proposed KG256r1 and KG384rl elliptic curves demonstrated with
cryptographic operations like key pair generation, signing and verification on desktop
machine having x86_64 with Intel(R) Core(TM) i5-10400 CPU with 2.90GHz
processor, 16GB DDR4 memory using GNU/Linux version 5.4.0-58-generic and
Python Version 3.8.5 software library. Table 9 shows the performance metrics of the
proposed elliptic curves in cryptographic implementations such as key pair
generation, signing and verification. The values indicated are the average of 10,000
trials’ outcomes.

Table 9. Performance of the proposed elliptic curves in cryptographic implementations

Key pair generation Signing Verification
Proposed
elliptic
curve Time Number of Time Number of Time Number of
elapsed | CPUclock | elapsed CPU clock elapsed CPU clock
(in's) cycles used (ins) cycles used (ins) cycles used

KG256r1 | 0.021468 | 62,260,026 |0.0215207 | 62,410,198 |0.0426380 | 123,650,476
KG384rl | 0.035866 104,012,382 | 0.035838 | 103,931,139 | 0.106852 | 309,871,025

9. Conclusion and future directions

Three new trusted security acceptance criteria T1, T2, T3 are proposed to compute
cryptographically safe elliptic curves over the prime fields. These trusted security
acceptance criteria or simply, the trusted security criteria are invoked along with the
ECDLP security and ECC security in order to minimize the scope of manipulation in
the curve parameters due to some (intentionally) non-disclosed property or methods
exhibited by their proposers and sabotaged standards. We also discussed in detail that
only the randomly drawn curve parameters will have the trust factor where a user
trusted strong RNG plays a critical role. The choice of selection of RNG is left with
the users who will own the risks associated with his chosen RNG to generate the seed
and randomness for curve parameters generation requirements. We also computed
two new elliptic curves called KG256r1 and KG384r1 after validating them through
the newly proposed trusted security acceptance criteria along with the ECDLP and
ECC security validations. Furthermore, we experimentally proved that if elliptic
curves are generated keeping these three security notions into consideration then they
would have nearly the same cryptographic strength in terms of Pollard’s rho
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complexity and trustworthiness or suitability. Hence, it is inferred that one must
verify trusted security acceptance criteria for randomly generated elliptic curves in
addition to ECDLP and ECC security validations for secure implementation of
elliptic curve based cryptosystems.

The proposed argument of trusted security and demonstrated KG256r1 and
KG384rl elliptic curves gives the feasibility of future standardization of such
randomly generated elliptic curves for trusted cryptographic implementations.
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