Answer any THREE questions.

- 16. Prove that a nonempty open set in the plane is connected if and only if any two of its points can be joined by a polygon which lies in the set.
- 17. If the function f(z) is analytic on R, then prove that $\int_{\mathbb{R}} f(z)dz = 0$.
- 18. If f(z) is defined and continuous on a closed bonded set E and analytic on the interior of E. then show that the maximum of |f(z)| on E is assumed on the boundary of E.
- 19. Show that a region Ω is simply connected if and only if $n(\gamma, \alpha) = 0$ for all cycles γ in Ω and all points a which do not belong to Ω .
- 20. If f(z) is analytic in the region Ω containing Z_0 then show that the representation $f(z) = f(z_0) + \frac{f'(z_0)}{1!} (z z_0) + ... + \frac{f^{(n)}(z_0)}{n!} (z z_0)^n \quad \text{is}$ valid in the largest open disk of center z_0 contained in Ω

(For candidates admitted from 2016-2021 Batch)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023.

Mathematics

COMPLEX ANALYSIS

Time: Three hours Maximum: 75 marks

PART A —
$$(10 \times 2 = 20)$$

Answer ALL questions.

- 1. Define Connected.
- 2. State cross ratio.
- 3. When will we say that the arc is rectifiable?
- 4. State Liouville's theorem.
- 5. When we said f(z) is identically equal to g(z)?
- 6. State maximum principle.
- 7. Define simply connected.
- 8. When the cycle γ is said to bound the region Ω ?.
- 9. Write Laplace's equation.

10. Write the Poisson integral of any piecewise continuous function.

PART B —
$$(5 \times 5 = 25)$$

Answer ALL questions, Choosing either (a) or (b).

11. (a) Prove that under a continuous mapping the image of every compact set is compact, and consequently closed.

Or

- (b) Prove that an analytic function in a region Ω whose derivative vanishes identically must reduce to a constant.
- 12. (a) Prove that the line integral $\int_{\gamma} p dx + q dy$, defined in Ω , depends only on the end points of γ if and only if there exists a function U (x,y) in Ω with the partial derivatives $\frac{\partial U}{\partial x} = p, \frac{\partial u}{\partial y} = q.$

Or

(b) Let f(z) be analytic on the set R' obtained from a rectangle R by omitting a finite number of interior points ζ_j . If it is true that $\lim_{z \to \zeta_j} (z - \zeta_j) f(z) = 0 \text{ for all j then prove that } \int_{\partial R} f(z) dz = 0$

13. (a) Prove that a nonconstant analytic function maps open sets onto open sets.

Or

- (b) Show that an analytic function comes arbitrarily close to any complex value in every neighborhood of an essential singularity.
- 14. (a) If f(z) is analytic in a simply connected region Ω , then prove that $\int_{\gamma} f(z)dz = 0$ holds for all cycles γ in Ω .

Or

- (b) State and prove Rouche's theorem.
- 15. (a) Derive Poisson's Formula.

Or

3

(b) If the functions $f_n(z)$ are analytic and not equal to 0 in a region Ω , and if $f_n(z)$ converges to f(z), uniformly on every compact subset of Ω , then prove that f(z) is either identically zero or never equal to zero in Ω .