GENERATION OF ADDITION CHAINS USING
EVOLUTIONARY ALGORITHMS FOR OPTIMIZING
THE TIME IN MOBILE DEVICES

Thesis submitted to the Bharathidasan University, Tiruchirappalli in

partial fulfilment of the requirements for the award of degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

Submitted By
A. MULLAI
Ref. No: 16634/Ph.D.-K3/Computer Science/Part Time/July 2014

Under the Guidance of
Dr. K. MANI

Associate Professor & Research Advisor

ET

PG AND RESEARCH DEPARTMENT OF COMPUTER SCIENCE

NEHRU MEMORIAL COLLEGE (AUTONOMOVUS)

(Nationally Accredited with ‘A+> Grade by NAAC)
PUTHANAMPATTI , TIRUCHIRAPPALLI - 621 007
TAMIL NADU, INDIA.

MARCH 2022

Curiginal

Document Information

Analyzed document Mullai_Doc.pdf (D131761366)
Submitted 2022-03-28T09:57:00.0000000
Submitted by Srinivasa ragavan S
Submitter email bdulib@gmail.com
Similarity 0%

Analysis address bdulib.bdu@analysis.urkund.com

Sources included in the report

1/36

Dr. K. Mani

Associate Professor

PG & Research Department of Computer Science
Nehru Memorial College (Autonomous)

Nationally Accredited with ‘A+’ Grade by NAAC
(Affiliated to Bharathidasan University by UGC)
Puthanampatti - 621 007, Tiruchirappalli — District
Tamil Nadu, India

Certificate

This is to certify that the thesis entitled ""Generation of Addition Chains Using
Evolutionary Algorithms for Optimizing the Time in Mobile Devices™, submitted
by Mrs.A. Mullai, a Research Scholar, PG & Research Department of Computer
Science, Nehru Memorial College (Autonomous), Puthanampatti - 621 007,
Tiruchirappalli, Tamil Nadu, India for the award of the degree of Doctor of
Philosophy in Computer Science, is a record of original work carried out by her
under my supervision and guidance. The Thesis has fulfilled all requirements as per
the regulations of the University and in my opinion the thesis reached the standard
needed for submission. The results embodied in this thesis have not been submitted to

any other University or Institute for the award of any degree or diploma.

Date: Dr. K.Mani

Place: Puthanampatti Research Supervisor

A. Mullai

Research Scholar

PG & Research Department of Computer Science
Nehru Memorial College (Autonomous)
Nationally Accredited with ‘A+’ Grade by NAAC
(Affiliated to Bharathidasan University by UGC)
Puthanampatti - 621 007, Tiruchirappalli — District
Tamil Nadu, India

Declaration

| hereby declare that the work embodied in this thesis entitled *Generation of
Addition Chains Using Evolutionary Algorithms for Optimizing the Time in
Mobile Devices", is a research work done by me under the supervision and guidance
of Dr. K. Mani, Associate Professor, PG & Research Department of Computer
Science, Nehru Memorial College (Autonomous), Puthanampatti - 621 007,
Tiruchirappalli, Tamil Nadu, India. The thesis or any part there of has not formed the

basis for the award of any Degree, Diploma, Fellowship, or any other similar titles.

Date:

Place: Puthanampatti (A. Mullai)

ACKNOWLEDGEMENT
-God is great-

First and foremost, | thank Almighty God for being with me in all my happiness and
sorrows to complete my research work in time. Nothing can happen without spiritual

prayer.

I would like to extend my sincere and deep sense of gratitude to my Research Advisor
Dr. K. Mani, Associate Professor in Computer Science, Nehru Memorial College
(Autonomous), Puthanampatti for his invaluable suggestions, patience, motivation,
enthusiasm and immense mathematical knowledge, meticulous editing, support and
tutelage during the course of my Ph.D programme. His invaluable guidance helped
me in all the time of publishing the research papers and writing the thesis in an

efficient and effective manner.

| express my deep sense of gratitude to the college management especially,
Mr. Pon Balasubramanian, President and Mr. Pon Ravichandran, Secretary, Nehru
Memorial College (Autonomous), Puthanampatti for providing opportunity and

support to do my research in this esteemed institution.

| am extremely thankful to the Principal, Dr. A. R. Pon Periyasamy, Nehru Memorial
College (Autonomous), Puthanampatti for providing the facilities to carry out my

research work successfully.

My special thanks to my Doctoral Committee Members, Dr. D.l. George
Amalarethinam, Bursar, Director (MCA) & Associate Professor in Computer
Science, Jamal Mohamed College (Autonomous), Tiruchirappalli and Dr. E. George
Dharma Prakash Raj, Associate Professor, School of Computer Science, Engineering
and Applications, Bharathidasan University, Tiruchirappalli for their valuable
suggestions to enhance my research work effectively. My heartfelt thanks to Dr. M.
Muralidharan, Associate Professor and Head, Department of Computer Science,

Nehru Memorial College (Autonomous), Puthanampatti.

| would like to thank our Management trustee and Secretary Sri. R. Panchapakesan
and Co-ordinator Smt. Vasantha Panchapakesan, Seethalakshmi Ramaswami
College (Autonomous), Tiruchirappalli for their blessings and support to do my

research. | extend my sincere thanks to our Executive Director Sri. Ramani

Panchapakesan, and Dr. Kannan Panchapakesan, Director-Academics,
Seethalakshmi Ramaswami College (Autonomous), Tiruchirappalli for their constant

support towards the completion of my research work.

| would like to thank our Principal Dr. M. Vasuki, for the moral support and

guidance towards the completion of my research work.

| extend my sincere thanks to our Head Dr.K.S.Rathnamala and other staff members
Dr.R.Jamuna, Dr.S.Lakshmi Prabha, Ms.K.Mahalakshmi, Ms.V.Gayathri and
Ms.A.M.Aarthi for their encouragements and support for the completion of my
research work. | extend my sincere thanks to the faculty members of computer
Science department and other department, all teaching and non-teaching staff

members for their encouragement and support for me.

| should appreciate and thank Mr.T. L. Kannan for his timely support towards my
research work. | thank all my co-research scholars, Dr. Mohana Krishnan, Dr. Devi,
Dr. Kalpana, Dr. Elavarasan, Dr. Mahendran, Dr. Viswambari, Dr. A. Barakath

Begam, Mrs. A. Akila and Mr. Prasath Sivasubramaniyan, for their timely help.

Finally I owe my deepest gratitude to my Parents, Rtd. Prof. C. N. Arul Prakasam,
A. Bhagavathi, Father-in-law Tashildar(Late) K. Muthuswamy mother in-law Retd.
Headmistress S. Soundranayaki, my Husband Prof. Dr. M. Sundar and my family
members for their blessings, understanding, affection and support for me in
everything. | appreciate my lovable Son Shri. M. S. Shyam Sundar (B.Tech) for
understanding my situation that enabled me to complete my thesis successfully. I wish
to extend my special thanks to my brother in-law, sister in-laws, brothers and sisters
for their encouragement and motivation towards my research. It's their blessings and

prayers that enabled me to complete this work.

The living goals on the earth are parents and teachers. | humbly submit this thesis to
them. It is the result of their care and up-bringing. Above all, I thank God, the
Almighty for bestowing me with abundant grace especially when | waded through

great obstacles in my life.

AMULLAT

ABSTRACT

The usage and applications of mobile devices are increasing exponentially day by
day. The applications of smart mobile phones are also increasing which lead to
many security issues. The security features can be taken and applied on these
devices. Mobile devices deal with heterogeneity of networks and also in ubiquitous
intelligent environment with embedded computers everywhere and reliable services to
the user in an easy way. Mobile computing will enable the transmission of voice,
video and data between human and the computer. It always helps to stay connected to
the world with a wide range of users through the internet. The devices are primarily
designed to make for communication purpose but now people started to do all sort of
works through these devices. They engage people with entertainment, education,
teaching, money transaction, communication, games and all social media apps.
Moreover, the devices have limited battery power and storage. Even though, they
have more offerings to the user, lot of challenges like disconnection, low/high
bandwidth variability, low power and resources, security risks, wide variety of
devices with different capabilities and to fit more functionality into single, smaller

devices.

Thus, it is necessary to optimize their battery power and fixed limited space for
storage which makes serious issues, challenges and threatening from hackers are
analyzed. Security threats also arise while transferring sensitive informations through
mobility as well as wireless devices like mobile devices. All sensitive informations
have been transmitted with high speed as much as possible through these handheld
mobile devices. Hence, there are five parameters have been taken in this work viz.,

encryption time, decryption time, encryption power, decryption power and security.

One essential aspect for secure communications is using cryptography. Cryptography
is the most indispensable tool for keeping information in secure manner in any
computing system and it has been taken into mobile computing systems/devices too.
Even though, many symmetric-key algorithms viz., AES, SERPENT and TWOFISH
are used for providing security in mobile devices, but they are not providing that
much security because they use only basic operations like shifting the bits, initial
permutation, mix column transformation etc., and hence, the public-key algorithms
like Rivest Shamir Adleman (RSA) and Elliptic Curve Cryptography (ECC) have
been taken in this work because they involve some complicated mathematics which

provide more security than symmetric-key encryption algorithms.

RSAis a procedure of computational simplicity whereas ECC provides greater
security. Large prime numbers are used as security keys in these methods. As the key
size taken in RSA and prime number used in ECC are very large, they may take more
time for encryption and decryption. It is noted that if a cryptographic algorithm takes
more time in performing operational time (where the operational time includes both
encryption and decryption) which causes customer’s impatience and dissatisfaction.
Thus, to decrease the operational time in RSA and ECC, Addition Chain (AC) is
incorporated in performing x ¢ mod n of RSA and k[P] of ECC. There are many
algorithms exist in literature to generate the AC. But, the bioinspired based algorithms
viz., Particle Swarm Optimization (PSO), Simplified Swarm Optimization (SSO) and
Bacteria Foraging Optimization (BFO) algorithms are taken in this work to generate
the ACs for an integer n and they are termed as AC-PSO, AS-SSO and AC-BFO

respectively.

PSO is a computational method that optimizes a problem by iteratively trying to
improve a candidate solution with regard to a given measure of quality. Dr. Eberhart
and Dr. Kennedy proposed PSO in 1995, on the basis of flocking birds' social activity
and fish schooling. It is a meta-heuristic algorithm. In PSO, all the birds do not know
where food is but they know how they move in each iteration. In PSO, each member

of the population is called particle and the population is called swarm.

All particles are modified on the basis of the two best values after each iteration. The
first best value called pBest is already obtained by a particle. The second-best value
called gBest is the best value achieved for the fitness function tracked by the particle
swarm optimizer by the general population. Since each parameter tries to modify the
position by using the information viz., (i) the current position, (ii) the current velocity
(iii) the distance between the current position and pbest (iv) the distance between the
current position and gbest. Based on these, the new velocity and new positions are

calculated.

In this work, particle represents the AC, velocity represents the number to be added to
the current number (position) x; so that the next number Xi:1 iS obtained. Further,
fitness function is taken as length of AC denoted as I(n). In this work, c;=c,=0.7
where 0.7 is a uniform random number. Similarly, other random numbers ry, r, are
taken from RAND corporation table. When RSA and ECC are considered, the key is
taken very large, and AC of the key is generated according to the proposed AC- PSO.

SSO is a population-based, evolutionary, stochastic optimization technique in soft
computing and it was originally designed by Yeh. It has some advantages, such as fast
convergence rate, few parameters, and easy implementation. It has simple procedures

and more powerful global searching, prevents from trapping local optimal procedures.

The major difference among SSO and other soft computing algorithms are their
update mechanism (UM). However, the UM of SSO is based on NP-hard problem. In
SSO, each Chain Particle (CP) represents the AC. The search spaces for the elements
are often restricted to simplifying the method of optimization. The first CP is 1 since

all ACs should start with 1. The second CP is 2 with a value of 1 doubled. There are
no optimization processes involving the first two elements. The third CP elements are

either 3(2 + 1) or a 4(2x2) and 5,6 or 8 may be the fourth part. After

completing all epochs, particle outputs are optimized for SSO particles with CP
elements. Bacteria foraging is one of the optimization and evolutionary algorithms. It
was proposed by Kevin M. Passino in 2000 and it has been widely accepted as a new
nature-inspired optimization algorithm. It is inspired by the social foraging behavior

of Escherichia coli .

The foraging strategy of E.coli is achieved by four processes viz., chemotaxis,
swarming, reproduction and dispersal. Chemotaxis is a process which simulates the
movement of E.coli cell through swimming and tumbling via flagella. Movement of
E.coli bacterium can be performed in two ways viz., (i) swim for a period of time in
the same direction or it may tumble (ii) alternate between swim and tumble for the
entire lifetime. In swimming process, a group of E.coli cells arrange themselves in a
travelling ring by moving up the nutrient gradient when placed amidst a semisolid
matrix with a single nutrient chemo-effecter. The healthy bacteria asexually split into
two bacteria, which are then placed in the same location while the least healthy
bacteria eventually die in reproduction process. In elimination and dispersal process,
gradual or sudden changes in the local environment i.e., significant local rise of
temperature or due to unavoidable events all the bacteria in a region are killed or a

group is dispersed into new location.

Vi

In the proposed AC-BFO methodology, the concept of BFO is used to generate the
optimum length AC for an integer . In this optimization, each bacterium represents
AC. The cost or fitness function is computed with minimum length approach based
on the nutrient concentration of the immediate environment of the bacterium
searching for numbers in AC. Swarming step is not considered for the generation of

AC in this method.

All the proposed methodologies are implemented in VC++ with Android and
Windows emulators. A good cryptographic algorithm should be capable of processing
with reasonable power consumption without compromising the security strength. The
proposed AC-PSO, AC-SSO and AC-BFO are incorporated into RSA and ECC
cryptosystems which are widely used in mobile devices with different file sizes of
plaintext viz.,1MB, 2MB, 4MB, 8MB and 16 MB and the parameters like encryption
time, decryption time, power consumed for encryption and decryption are computed.
Similarly, security levels are measured using All Block Cipher (ABC) Universal
Hackman tool. As the mobile devices are battery powered devices. They provide
greater mobility and achieving higher security levels with lesser time and power
consumption are the ultimate aim of a ideal cryptography procedure. Different size

files with parameters are recorded in tables.

It is noted that to transmit any file in secure manner, it should be encrypted. Based on
two different OS based emulators, the results show that the time taken for encryption,
decryption, encryption power and decryption power of RSA and ECC with android
OS take more time than RSA using window OS. It is also evident from the
experimental results that the time taken for encryption, decryption, encryption power

and decryption power using AC-PSO-RSA and AC-PSO-ECC with android OS

vii

emulator takes more time than with window OS emulator. Generally, ECC taken more
time than RSA. Hence, it is proved that AC-BFO-RSA is taking less time than AC-
SSO-ECC. It is known fact that ECC provides more security than RSA. It is also
proved in PSO, SSO and BFO based AC, when they are incorporated into RSA and
ECC combinations. As there is directly proportional relation between time and battery
power consumption, it is proved experimentally too. When security is concerned, the

AC-BFO-ECC is recommended.

In order to support the work, the researcher has published four papers. Among them,

one paper is published in Springer Nature.

viii

LIST OF PUBLICATIONS / COMMUNICATIONS

International Journals

[1].

[2].

[3].

[4].

Dr.K.Mani and A.Mullai, "A Survey on the Security Features of Cryptographic
Techniques in Mobile Devuces", International Journal of Innovative Research
in Computer and Communication Engineering, vol.4, issue 2, February 2016.
Dr.K.Mani and A.Mullai, "Optimizing the Run Time in Mobile Devices",
World Congress on Computing and Communication Technologies (WCCCT)",
2-4, IEEE Xplore, DOI: 10.1109/WCCCT, February 2017.

A.Mullai, Dr.K.Mani, "Enhancing the Security in RSA and elliptic curve
cryptography based on addition chain using simplified Swarm Optimization and
Particle Swarm Optimization for mobile devices"”, International Journal of
Information technology, Springer, vol.13, pp.55-564, 2021. https:/
doi.org/10.1007/s41870-019-00413-8.JUGC-CARE-SCOPUS INDEXED]
Dr.K.Mani and A.Mullai, "Generation of Addition Chain using Bacteria
Foraging Optimization Algorithm", International Journal of Engineering
Trends and Technology, vol. 69, issue 2, pp.32-38, DOI: 10.14445/22315381

/ijett-v69i2p205. [UGC-CARE-SCOPUS INDEXED]

International Conference

[1].

Dr.K.Mani and A.Mullai, "Optimizing the Run Time in Mobile Devices",
World Congress on Computing and Communication Technologies (WCCCT)",

2-4, |IEEE Xplore, DOI: 10.1109/WCCCT.2016.23, February 2017.

CONTENTS

ACKNOWIBAGEMENT..... .o et
ADSEFACT ..o
LiSt OF PUDHCATIONS.ooviiiiiiiiciieeee s
Table OF CONTENTS.eiiiiiieieee e et
LISt OF FIQUIES. ..ot
LiSt Of TabIes. .. . e
List of Algorithms/Pseudo CodesScoviviiriiiiiii e
LiSt OF ADDFEVIALIONS.viiiiiiiiieiceeee e et
List Of SYMDOIS. ... s

CHAPTER-I:
INTRODUCTION. .t it

1.1
1.2
1.3

1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

BaCKGrOUNG.oeoiiieiecee et re e,
Terminologies Used in Cryptography........c.ccooveiiiieiieie e
Types Of Cryptography......cc.e oo e e e
1.3.1 Classical Cryptographycoviiuiiniiitiiitiiii it e
1.3.2 Modern Cryptographyoooiriniiiii s
Rivest Shamir Adleman AIgorithmcccooveiiiii e
Elliptic Curve Cryptographiycccooeeiiiieiieeesese e
MODbile COMPULING ..eenevieeiiieeiiieeiiee ettt e et e e e e e e ereeeaaeesabe e snreeeneeas
OPErating SYSTEIMScuviiiiicieeieeeeieie et et et et ettt
Mobile CommUNICALIONScoovii i e
o (o T O o= o SO
SCOPE OF RESEAICH ...
Particle Swarm OptimizZationcccccevieiieiieie e
Simplified Swarm Optimizationccccceeviiiiiiicicceccce e
Bacterial Foraging Optimizationccocvveiiiiiniiinieieese s
Chapter Organizationcooeiiiiiinieiee e

CHAPTER-II: REVIEW OF LITERATURE........c.ccoiiiiee e

2.1

Background ...

XXV

XXVili

1-18

© oo B~ BB WO DN PP

2.2
2.3
2.4
2.5
2.6

Review of Works Related to Mobile Computingccccoccvveeviveneiieeiene
Review of Works Related to PSO ..o
Review of Works Related t0 SSOcccoviiiiniiiiiese e
Review of Works Related t0 BFOcccooviieiiiiiece e
Chapter SUMMATYoeveee e e e e

CHAPTER-I1I: OVERVIEW OF ADDITION CHAIN AND MOBILE

3.1
3.2

3.3
3.4

3.5

3.6
3.7

3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15

CRYPTOGRAPHY iiiiiiiiiiiiurntnrnrrriateseisiesesssnssssansnns
BaCKGrOUNGoooiieeii et

Mathematical Preliminaries of Addition Chaincccccoocviiiiiiniinieene.
3.2.1 Definition 1 (Addition Chain)cccccveiiiiiiiiesereee e
3.2.2 Definition 2 (Optimal AC)oooveiiee e
3.2.3 Definition (Brauer Chain)cccccoveiiiieiieeie e
Need for Evolutionary Algorithms Based Addition Chainsc..c.......
Reason for Taking RSA and ECC ...,
BUALRSA et
Mathematical Preliminaries Of ECCccccooviiiinenine e
3.5.1 Primitive ROOT c..eevei e
I T | 1= o @1 41 =T (o] o SRR
3.5.3 Definition (Discrete Logarithm Problem)c.cccoevvviiiienininnn
3.5.4 Definition (Quadratic ReSIAUE)ccoveveiieiieieciece e
NEEU FOr ECC ... e
ConCePLS OF ECC .oooeis e
3.7.1 Generation OF EC POINESccooviiiiiieciieie e
3.7.2 Elliptic Curve ArithmetiCccoveiieiieie e
Embedding the PIaINteXtccoeiiiiiiieis e
ElGamal Public-key Cryptosystem with ECccocviiiiiniiiiiice
3.9.1 ElGamal Encryption with EC - An Example ...,
Diffie Helman Key Exchange Protocol with ECCccccccooiiiiciiene,
Mobile Operating SYStEIMSc.coiiiiiieiie e
Constraints 0f IMOSooiiiecce e
Android and Window OS EMUIALOrSccccevieiviiieseee e
NEEd FOr SECUTILY ...viiviiiiiie e

EXperimental SELUP ...ccovviiiie e

Xi

20
26
28
35
39

40
40
40
41
42
42
43
44
46
46
46
46
46
47
47
48
49
50
51
52
53
54
54
55
55
56

3.16
3.17
3.18

Parameters Taken iN the WOTKooo oot
RESUIES AN DISCUSSION ...ttt ettt e e e e e e e e e e e e e e e e e e ae e eeeeeens

Chapter SUMMEAIYoouiieeieeie bbb

CHAPTER-IV: GENERATION OF ADDITION CHAIN USING PARTICLE

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8

SWARM OPTIMIZATION ..ot
Background....... ..o

Need for PSO AlGOrthm ..o
Concepts USEA INPSOooiieieeeeeeeee e e
Proposed AC-PSO Methodologycccccveieeiiiiie e
Generation of AC-PSO - AN EXaMPIEoovieiiiieiee e
Proposed AC-PSO Based CryptoSYStEMcccueeerererinieniene e eieeeeenne
4.6.1 AC-PSO-RSA and AC-PSO-ECC Methodologyccccccvevveiveieiiennnene,
RESUILS @Nd DISCUSSION ...vevveriiiiieiiesiisieeiie ettt st snenreas

Chapter SUMMAIYcooiiiieieeie bbb

CHAPTER-V: GENERATION OF ADDITION CHAIN USING SIMPLIFIED

5.1
5.2
5.3
5.4
5.5
5.6

SWARM OPTIMIZATION ..o
Background.

NEEU FOr AC-SSO ..ottt b e nre s
ConCepts USEA IN SSOccveiiiiiiieiieies et et ettt
Principles AC-SSO Methodologyccccccceeviiniiiii e
RESUILS @Nd DISCUSSION ...vevveiieieiiiiiesiieiieie ettt

Chapter SUMMAIYcoieiieiece sttt nreas

CHAPTER-VI: GENERATION OF ADDITION CHAIN USING BACTERIA

6.1
6.2
6.3
6.4

FORAGING OPTIMIZATION ...ocoiiiiiiiiececeseeee s
Background....... ...

Theoretical Background of Addition Chain ...
Bacteria Foraging Optimizationccccoviviriiiiinieieeee e
Proposed AC-BFO Methodologycccoviieiiiiieciecic e
6.4.1 SEAICN SPACEccuviiiiieciee et
OIS 1 1 =14 410 7= SRR
6.4.3 Minimum Intermediate NUMDBer in ACccccovveieiieeie e
6.4.4 Reproduction and Dispersal Stepccccvvevvueerieiiie e
6.4.5 Proposed AC-BFO - AN EXampPIeccoooviiiiiiiiececcec e

xii

70
71
72
76
77
79
79
81
91

93
93
93
95
99

111-146

111

112
114
115
115
116
117
120

6.5 Proposed AC-BFO-RSA - An EXample ... 121

6.6 Proposed AC-BFO-ECC - An EXampleccoviveii i 122
6.7 ReSUIES and DISCUSSIONc.eeiiieiiiiieiiieiesie sttt sree e 122
6.8 Chapter SUMMAIY ..o 134

CHAPTER-VII: COMPARISON OF PROPOSED BIO-INSPIRED

ALGORITHMS FOR ADDITION CHAIN GENERATION 135-147

WITH RSA AND ECC oo
CHAPTER-VIT CONCLUSION e 148-150
8.1 Summary of the Contributions............ccoiiiiiiiiiiiii e, 149
8.2 Future Research DireCtionS.oerne et e e e e e e 150

8.3 BN N O . oo e e e et ——————————————_ 150

REFERENCES ... ecoseseseessesssseessessesssssessessessesssesessssseesseesesssssesseee 152-163
APPENDIXES. ... cceeeeeeeeeeeeese e eeeessesssseeeeee e eeessssseeeeee s Al-ASb
(1) E736121 (17, 7) POINES. ... ittt Al
(i) Paper Published in JOUrNAIScoooiiiiiiii e A2
(L) IS T L] o] L= O oo oo USSR A3
(iv) Sample SCreenSNOLSc.ocviiieiece e A4
(V) RepOItS GENEIATIONcoueiiiiiiieiee sttt A5

Xiii

Figure
No.
11
1.2
1.3
14
15
1.6
1.7
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
4.1

4.2
4.3

4.4

4.5

LIST OF FIGURES

Title

Cryptography Block Diagram
Types of Cryptographyc.cccccevevnnnnen.
Symmetric-key Cryptography

Asymmetric-key or Public-key Cryptographycccccooevviinnnnns

Mobile Connectivityccocevvvvvvenne
Mobile Device Hardware
Mobile Device Softwarec.co.....
Optimum Addition Chains for n=170 ...

Graph Showing E31(1,1) .oooevviviininee.

GUI - Android / Windows Emulator Launchingcccceene...

Graph Showing Encryption Time using Android Emulator

Graph Showing Dcryption Time using Android Emulator

Graph Showing Encryption Power using Android Emulator

Graph Showing Decryption Power using Android Emulator

Graph Showing Security using Android Emulator

Graph Showing Encryption Time using Windows Emulator

Graph Showing Decryption Time using Windows Emulator

Graph Showing Encryption Power using Windows Emulator

Graph Showing Decryption Power using Windows Emulator

Graph Showing Security using Windows Emulator

Movement of the particle ‘i’ in the solution space during iterations

kKand K41 oo

Numbers Occur in P; , i =1, 2, ...8 Without Duplication

Graph showing the Encryption Time (mS) using AC-PSO in RSA
and ECC with Android Emulator

Graph showing Decryption Time (mS) using AC-PSO in RSA

and ECC with Android EmMUIAtOrccooeeeeee e

Graph showing the Encryption Power (mW) using AC-PSO in

RSA and ECC with Android Emulator

Xiv

75

77

82

83

84

Figure
No.
4.6
4.7
4.8
4.9
4.10
4.11
4,12
5.1

5.2
53&54

5.5

5.6

5.7

5.8

5.9

5.10

... LIST OF FIGURES

Title

Graph showing the Decryption Power (mW) using AC-PSO in
RSA and ECC with Android Emulatorccoccovveiiiiniienenene
Graph showing the Security (%) of AC-PSO in RSA and ECC
with Android EMUIELOrcoovviviiiiiie e
Graph showing the Encryption Time(mS) using AC-PSO in RSA
and ECC with Windows Emulatorcccceovvvvviiinienieneeccce
Graph showing the Decryption Time (mS) using AC-PSO in RSA
and ECC with Windows EMUIAtOrcccoevvveneveniiesccesne
Graph showing the Encryption Power (mW) using AC-PSO in
RSA and ECC with Windows Emulatorccccceveveveiivenieninnnn,
Graph showing the Decryption Power (mW) using AC-PSO in
RSA and ECC with Windows Emulatorcccccoevvcinivivniinnne.
Graph showing the Security (%) using AC-PSO in RSA and ECC
With WINdows EMUIALOLcccveiiieiiceseccce e
Flowchart for SSO AIGOrithmcoeveiiiiiiieeees
The Chain Particles (CP)ccovcoveiie e,
Two different ACs for the Integer 78 Generated Using SSO

SSO Optimized Result Particle Valuesccccooveeeiieincienen,

Graph Showing Encryption Time(mS) using AC-SSO in RSA
and ECC with Android EmMUIatorcccocvveeriveievieeneeeseeins
Graph Showing Decryption Time(mS) using AC-SSO in RSA and
ECC with Android Emulatorccocveveieiinene e,
Graph Showing Encryption Power (mW) using AC-SSO in RSA
and ECC with Android EMUIatorcccocevveriveieviieneeie e
Graph Showing Decryption Power in RSA and ECC with SSO
Addition Chain using Android Emulatorccccoeveiiiiieenne,
Graph Showing Security (%) using AC-SSO in RSA and ECC
with Android EMUIALOLccooviieiieececeee e

XV

Page
No.

85

86

87

88

89

90

91

95
96
97

99

100

101

102

103

104

Figure
No.
5.11

5.12

5.13

5.14

5.15

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

... LIST OF FIGURES

Title

Graph Showing Encryption time in RSA and ECC with SSO
Addition Chain using Windows Emulatorc.cccceeevvveivennnne
Graph Showing Decryption Time(mS) using AC-SSO in RSA
and ECC with Windows Emulatorccoceveviniiininiinieeen,
Graph Showing Encryption Power (mW) using AC-SSO in RSA
and ECC with Windows Emulatorccccvevvieieniencenccee
Graph Showing Decryption Power (mW) using AC-SSO in RSA
and ECC with Windows Emulatorcccceveveneieniiencsenene
Graph Showing Security (%) using AC-SSO in RSA and ECC
with Windows Emulator ...
Optimal ACs for the n= 21 with [(21)= 6ccoveiiiiiiiiriie
The Movement of BaCteriumccocvvveinienene s
Flowchart for the proposed AC-BFOccccooiveiieviiiciiecees
Graph Showing Encryption Time (mS) using AC-BFO in RSA
and ECC with Android EMUIAtorcccoovvveviiii i,
Graph Showing Decryption Time (mS) using AC-BFO in RSA
and ECC with Android Emulatorccccceveveieieieiiieiisenns
Graph Showing Encryption Power in RSA and ECC with BFO
AC Using Android EmMUIatorcccovoiiinineniiineececies
Graph Showing Decryption Power (mW) using AC-PSO in RSA
and ECC with Android Emulatorcccccoveviieiiiiniiiceeen,
Graph Showing Security (%) using AC-BFO in RSA and ECC
with Android EMUIALONc.cooviiiiiiceee e
Graph Showing Encryption Time (mS) using AC-BFO in RSA
and ECC with Windows EmUIatorccccccevevieniienineeieienen,
Graph Showing Decryption time in RSA and ECC with BFO AC
using Windows EMUIAtOrccocvoviiiieiineec e,
Graph Showing Encryption Power (mW) using AC-BFO in RSA
and ECC with Windows Emulatorcccoeviiiininiiiniceee

XVi

Page
No.

105

106

107

108

109

112

117

119

123

124

125

126

127

128

129

130

... LIST OF FIGURES

Figure Page
Title

No. No.

6.12 Graph Showing Decryption Power (mW) using AC-BFO in RSA 131
and ECC with Windows Emulatorccccvevvvienienieieiceee

6.13 Graph showing the Security (%) using AC-SSO in RSA and 132
ECC with Windows EMUIAtOrcccoevvininiiiienc e

7.1 Graph showing the Encryption time using AC-PSO-RSA, AC-
SSO-RSA &AC-BFO-RSA with Android Vs Windows 136
EMUIBLOT ..o

7.2 Graph showing the Encryption time using AC-PSO-ECC, AC-
SSO-ECC &AC-BFO-ECC with Android Vs Windows 137
EMUIALOT ...

7.3 Graph showing the Decryption time using AC-PSO-RSA, AC-
SSO-RSA &AC-BFO-RSA with Android Vs Windows 138
EMUIALOT ...

7.4 Graph showing the Decryption time using AC-PSO-ECC, AC-
SSO-ECC &AC-BFO-ECC with Android Vs Windows 139
EMUILOT ..o

7.5 Graph showing the Encryption power using AC-PSO-RSA,
AC-SSORSA &AC-BFO-RSA with Android Vs Windows 140
EMUIBLOT ..o s

7.6 Graph showing the Encryption power using AC-PSO-ECC, AC-
SSO-ECC &AC-BFO-ECC with Android Vs Windows 141
0 1T L SRS

7.7 Graph showing the Decryption power using AC-PSO-RSA, AC- 142
SSO-RSA &AC-BFO-RSA with Android Vs Windows
Emulator

7.8 Graph showing the Decryption power using AC-PSO-ECC, AC-
SSO-ECC &AC-BFO-ECC with Android Vs Windows 143

Emulator

XVii

... LIST OF FIGURES

Figure Title Page
No. No.
7.9 Graph showing the Security using AC-PSO-RSA, AC-SSO- 144
RSA &AC-BFO-RSA with Android Vs Windows Emulator

7.10 Graph showing the Security using AC-PSO-ECC, AC-ECC- 145
RSA &AC-BFO-ECC with Android Vs Windows Emulator

7.11 Graph Showing the overall performance of Android Vs Window
OS Emulator 147

XViil

Table
No.
3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

LIST OF TABLES

Title

Generations of Points for E3z; (1, 1) coovvvevieiiiiiie e,
Embedding M into E539039 (17,7) weevereienieniniieneeeee e

Encryption time using Android Emulator.............cccceoienininnne.

Decryption time using Android Emulatorccccoocevveieiicieenenn,
Encryption Power using Android Emulatorccccceeeevveivenee.

Decryption Power using Android Emulatorccccceeeeiviieieennene,
Security (%) using Android EMUIatorcccocoeveeienieninie e
Encryption time using Windows Emulatorcccccocovevveiieiiennenn,
Decryption time using Windows Emulatorccccocveveiieinciennen,
Encryption Power using Windows Emulator...........ccccccoecvvveieiinnnnnn
Decryption Power using Windows Emulator.............ccccccoveveiviinnnnn

Security using Windows Emulatorcccccovevviieiieve e,
Generation of AC for n=10 Using AC-PSO
Encryption Time (mS) using AC-PSO in RSA and ECC with

ANAroid EMUIALOT ..o

Decryption Time(mS) using AC-PSO in RSA and ECC with

ANAroid EMUIALOE ..o

Encryption Power (mW) using AC-PSO in RSA and ECC with

ANAroid EMUIALOL ..o,

Decryption Power (mW) using AC-PSO in RSA and ECC with

ANAroid EMUIALOE ..o

Security (%) using AC-PSO in RSA and ECC with Android

EMUIBTOL oo

Encryption Time (mS) using AC-PSO in RSA and ECC with

WINAOWS EMUIALOT ...t

Decryption Time (mS) using AC-PSO in RSA and ECC with

WINAOWS EMUITON ..o

Encryption Power (mW) using AC-PSO in RSA and ECC with

WINdows EMUIALOL ..o

XiX

81

82

83

84

85

86
87

88

Table
No.

4.10

411

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

6.1
6.2

6.3

... LIST OF TABLES

Title

Decryption Power (mW) using AC-PSO in RSA and ECC with
WiINdOWS EMUIALOToovviiiiiiiiieecc s
Security (%) using AC-PSO in RSA and ECC with Windows
EMUIALOT ... e
Encryption Time (mS) using AC-SSO in RSA and ECC with
ANAroid EMUIALOT ..o s
Decryption Time (mS) using AC-SSO in RSA and ECC with
ANAroid EMUIALOTcovviieiieceec e
Encryption Power (mW) using AC-SSO in RSA and ECC with
ANAroid EMUIALOT ..o
Decryption Power (mW) using AC-SSO in RSA and ECC with
ANAroid EMUIALOTovviieiie e
Security (%) using AC-SSO in RSA and ECC with Android
EMUILOT ..o s
Encryption Time (mS) using AC-SSO in RSA and ECC with
WINAOWS EMUIALOT ..o
Decryption Time (mS) using AC-SSO in RSA and ECC with
WiINAOWS EMUIALOTc.ooviiiiieiccie e
Encryption Power (mW) using AC-SSO in RSA and ECC with
WINAOWS EMUIALOT ..o
Decryption Power (mW) using AC-SSO in RSA and ECC with
WiINAOWS EMUIALOTc.ooviiiiieiccie e
Security (%) using AC-SSO in RSA and ECC with Windows
EMUIALOT ...t
Notations Used in AC-BFOccccccovviiiiiieiiee e
Encryption Time (mS) using AC-BFO in RSA and ECC with
ANAroid EMUIALOTooviiieiieiiceee e
Decryption Time (mS) using AC-BFO in RSA and ECC with

ANAroid EMUIALOL ..o

XX

Page
No.

89

90

100

101

102

103

104

105

106

107

108
109
115

123

124

Table
No.
6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

7.1

7.2

7.3

7.4

7.5

... LIST OF TABLES

Title

Encryption Power (mW) using AC-BFO in RSA and ECC with
ANAroid EMUIALOTcooviiiiiiecccc
Decryption Power (mW) using AC-BFO in RSA and ECC with
ANAroid EMUIALOToviiiiiie e
Security (%) using AC-BFO in RSA and ECC with Android
EMUIBLOT ... s
Encryption Time (mS) using AC-BFO in RSA and ECC with
WINAOWS EMUIALOTooviiieiiee e
Decryption Time (mS) using AC-BFO in RSA and ECC with
WINAOWS EMUIALOTcoviiiiiiee e
Encryption Power (mW) using AC-BFO in RSA and ECC with
WiINAOWS EMUIALOTvoveiiiiiiiiiiiieie s
Decryption Power (mW) using AC-BFO in RSA and ECC with
WINAOWS EMUIALOTooviiieiiec e
Security (%) using AC-BFO in RSA and ECC with Windows
EMUILOT ..o e
AC Generated for Some Hard Exponents Using AC-PSO

Comparison of AC upto Integers 1024 - Produced by EXisting
Algorithms and the Proposed AC-BFOcccccooviiiinininiiieeees
Encryption time using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-
RSA with Android Vs Windows Emulatorcccccceveiiieiennnne.
Encryption time using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-
ECC with Android Vs Windows Emulatorccccccccvveieininnnnnn.
Decryption time using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-
RSA with Android Vs Windows Emulatorccccocceveveiviinnnn.
Decryption time using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-
ECC with Android Vs Windows Emulatorcccccooeieiiinnnn.
Encryption power using AC-PSO-RSA, AC-SSO-RSA &AC-
BFO-RSA with Android Vs Windows Emulatorcccccevveee..

XXi

Page
No.

125

126

127

128

129

130

131

132

133
134

135

136

137

138

139

Table
No.

7.6

1.7

7.8

7.9

7.10

7.11

... LIST OF TABLES

Title

Encryption power using AC-PSO-ECC, AC-SSO-ECC &AC-
BFO-ECC with Android Vs Windows Emulatorcc.cccceeeenee.
Decryption power using AC-PSO-RSA, AC-SSO-RSA &AC-
BFO-RSA with Android Vs Windows Emulatorccccoceenenee.
Decryption power using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-
ECC with Android Vs Windows Emulatorcccccccevviiiiiennnnn
Security using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA
with Android Vs Windows Emulatorcccccoevvvieiieiiniceneeee
Security using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC
with Android Vs Windows Emulatorcccccevevireniieneninnnns
Android Vs Window OS EMUIALOrcccooevevviienienice e

XXii

Page
No.

140

141

142

143

144

146

Pseudo.
No.

3.1
3.2
3.3
4.1
5.1

6.1

LIST OF ALGORITHMS / PSEUDOCODES

Page

Title No.

RSA Cryptosystem : RSA-Key generationceoneee. 44
RSA - ENCTYPHON ..ottt e e e e ee e e e eeeans 45
RSA - DECIYPLION ...ttt e et e e e 45
PSO (PSEUdO COUB) ...ovieiiieiieieeie e 75
SSO (PSEUAO COAE) ..ot 94

XXiii

ABC

ACO

AES

Al

AIS

APAU

ASCII

BFA

BFO

BFOA

BSA

CBC

CFB

DES

DLP

DoS

EAs

EC

ECB

ECC

ECDH

ECDLP

ECDSA

LIST OF ABBREVIATIONS

All Block Ciphers Universal Hackman tool
Ant Colony Optimization

Advanced Encryption Standard

Artificial Intelligence

Artificial Immune System

Analysis and Prediction of Application Usage
American Standard Code for Information Interchange
Brute Force Attack

Bacteria Foraging Optimization

Bacteria Foraging Optimization Algorithm
Bird Swarm Algorithm

Cipher Block Chaining

Cipher Feed Back

Data Encryption Standard

Discrete Logarithm Problem

Denial of Service

Evolutionary Algorithms

Elliptic Curve

Electronic Code Book

Elliptic Curve Cryptography

Elliptic Curve Diffie-Hellman

Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Digital Signature Algorithm

XXIV

ELS

FND

GA

GBMAC

GUI

HTTPS

IBE

ICT

IDEA

IFP

ITA

ITU-T

KPA

LM

LPC

LR

LWE

MANET

MD5

MITA

MOS

MPSO

MWSNs

... LIST OF ABBREVIATIONS

Extending Local Search

First Node to Die

Genetic Algorithm

Graph Based Minimal Addition Chain
Graphical User Interface

Hyper Text Transfer Protocol Secure
Identity Based Encryption

Information Communication and Technology
International Data Encryption Algorithm
Integer Factorization Problem
Itoh-Tsujii algorithm

International Telecommunication Union-T
Known Plaintext Attack

Loss Minimization

Lattice Path Cryptosystem

Lattice Reduction

Learning With Errors

Mobile Ad-hoc NETworks

Message Digest Algorithm 5

Modified ITA algorithm

Mobile Operating Systems

Mutation based PSO

Mobile Wireless Sensor Network

XXV

NIST
OAC
O-ECC
0S
P2P
PKC
PKCS
PKI
PSO
PSOFIM
QoS
RC4
RLE
RNG
RRAP
RSA
SMS
SSH
SSO
SSO-MS
SSP

Ul

UM

... LIST OF ABBREVIATIONS

National Standards of Institute and Technology
Optimal Addition Chain

Optimized ECC

Operating Systems

Peer to Peer

Public Key Cryptography

Public-Key Cryptography Standards
Public-key Infrastructure

Particle Swarm Optimization

PSO with Full Information and Mutation Operator
Quality of Service

Rivest Cipher 4

Run-Length Encoding

Random Number Generator

Reliability Redundancy Allocation Problems
Ron Rivest, Adi Shamir, and Leonard Adleman
Short Message Service

Secure Socket Layer

Simplified Swarm Optimization

SSO with Modular Search

Sum of Subsets Problem

User Interface

Update Mechanism

XXVi

VUI

Wi-Fi

WSN

WWW

... LIST OF ABBREVIATIONS
Voice User Interface
Wireless Fidelity
Wireless Sensor Networks

World Wide Web

XXVii

Symbol

(e, ka)

ED,

Gbr Ibest

AC

LIST OF SYMBOLS

Meaning

finite field

Public key and Private key pair
Number of elimination-dispersal events
Global-best value

Keystream

Elimination-dispersal probability
Quadratic Residue

Number of reproduction steps
Learning factors / Accelerating factors
jt variable of X!

Random numbers between 0 to 1
Scalar point multiplication

Pairs of integer coordinates
Concatenation

For All

There Exists

Element of

Not an element of

Identical to

Subset of

Android emulator

Addition Chain

XXVili

Symbol
AC-BFO- ECC
AC-BSO-RSA
AC-BSO-RSA -A
AC-BSO-RSA -W
AC-ECC
AC-PSO-ECC
AC-PSO-RSA
AC-PSO-RSA-A
AC-PSO-RSA-W
AC-RSA
AC-SSO- ECC
AC-SSO-RSA
AC-SSO-RSA-A
AC-SSO-RSA-W
by

CorY

CP

D(C)

Dk(C)

DP

DT

... LIST OF SYMBOLS

Meaning

AC based on BFO used in ECC

AC based on BFO used in RSA

AC based on BFO used in RSA(Android Emulator)
AC based on BFO used in RSA(Windows Emulator)
AC used in ECC

AC based on PSO used in ECC

AC based on PSO used in RSA

AC based on PSO used in RSA (Android Emulator)
AC based on PSO used in RSA (Windows Emulator)
AC used in RSA

AC based on SSO used in ECC

AC based on SSO used in RSA

AC based on SSO used in RSA (Android Emulator)
AC based on SSO used in RSA (Windows Emulator)
bacteria

Ciphertext

Chain Particle

Decryption of Ciphertext

Decrypting the Ciphertext with key K

Decryption Power

Decryption Time

Exponent / Random integer

XXiX

Symbol
Ex(M)

EP

EQF

ET

G
GBAPAC
gBest

GBMAC

n

g
IP
I(n)

IBest

MorPor X

m
N
pBest

PKC

Q nr(P)

Rand ()
RAs

RMs

... LIST OF SYMBOLS

Meaning

Encryption of plaintext with key K
Encryption Power

Equivalent Quadratic Form
Encryption Time

Primitive Root

Graph Based All Possible AC

Global Best

Graph Based Minimum number of AC
Group element multiplied by itself n times
Intermediate Plaintext

Length of AC

Local best

Plaintext

Plaintext character

Natural numbers

Particle Current Best value
Public-Key Cryptography

Quadratic- Non Residue with Prime P
Real numbers

Random number

Repeated Additions

Repeated Multiplications

XXX

Symbol
SE

SE-AC-BFO-RSA-A
SE-AC-BFO-RSA-W
SE-AC-PSO-RSA-A
SE-AC-PSO-RSA-W
SE-AC-SSO-RSA-A
SE-AC-SSO-RSA-W

SKC
\Y
w

ZorZ

BS

... LIST OF SYMBOLS

Meaning
Security Level

Security level produced by AC based
(Android Emulator)

Security level produced by AC based
(Windows Emulator)

Security level produced by AC based
(Android Emulator)

Security level produced by AC based
(Windows Emulator)

Security level produced by AC based
(Android Emulator)

Security level produced by AC based
(Windows Emulator)

on

BFO i

BFO i

PSO i

PSO i

SSO i

SSO

in

RSA

RSA

RSA

RSA

RSA

RSA

Symmetric-Key / Single-Key / Private-key Cryptography

Velocity

Windows emulator

Set of integers

Inertia Weight

Bit Stream

Decryption / Deciphering

Encryption / Enciphering

Key

Point on Infinity

Total number of bacterium in the population
The swimming length

Dimension of the search space. Here,d = 1

Finite group G

XXXI

CHAPTER - |

INTRODUCTION

1.1 Background

As the world becomes more connected, the demand for sending the sensitive data like
credit and debit card numbers, money transaction, sharing the message in military
etc., through the communication channel is increasing exponentially day by day. It
must be protected from the third party called adversary so that he/she could not
understand the meaning of such message. In order to protect such sensitive data, the
indispensable tool cryptography is used [1]. Cryptography is originated from the
Greek word kryptos, meaning "hidden," and the word graphein, means "to write"
which is the process of converting plaintext to ciphertext and vice-versa. It is a
process of transmitting and storing data in a specific form so that the authenticated
person can only read and process it. It is not only used to protect data from theft or
alteration, but it can also provide many security services viz., data integrity,
confidentiality, non-repudiation and authentication as defined in ITU-T (International

Telecommunication Union-T) X.800 recommendation [2].

The service confidentiality refers to the protection of transmitted data from various
attacks particularly passive attacks where passive attack attempts to learn or make use
of information from the system but it does affect the system resources. The
authentication service is concerned with assuring that a communication system is
authentic, 1.e., it is the process of user’s identity. There are two types of authentication
viz., peer entity authentication, data origin authentication. Peer entity authentication is

mainly used in association with a logical connection to achieve the identity of the

entities connected. Data origin authentication is a connectionless transfer which

provides assurance that the source of received data is as claimed [3].

The service data integrity deals with a stream of messages, assures that messages are
sent, with no duplication, insertion, modification, recording, or replays. This service
also covers destruction of data. Non-repudiation is a service which provides
protection against denial by one of the entities involved in a communication of having
participated in all or part of the communication. It consists of two types: non-
repudiation-origin which is a proof that the message was sent by the specified party
and non-repudiation-destination which is a proof that the message was received by the

specified party [4].

1.2 Terminologies Used in Cryptography

In cryptography, original or any readable message is called plaintext M (or X), and
coded or unreadable message is called ciphertext, C(or Y). Encryption or enciphering
E, is a process of applying mathematical function to convert M into C. Decryption or
deciphering D, is the reverse process of encryption or restoring M from C. A key, in
cryptography or cryptographic key (K) is string of bits used in cryptographic
algorithms to transform M into C or vice versa. The process of E and D is called
cryptography. Cryptographic system or cipher includes cryptography and key K.
Cryptanalysis is a method to break the code, i.e., recovering M from C without
knowing K. The area of cryptography and cryptanalysis together is called cryptology
[5]. Mathematically, E and D are represented as C = E, (M) and C = D, (C)
respectively. Further, D(E(M)) = M and E(D(C)) = C. The basic principle used in

modern cryptography is Kerckhoffs's principle. It is mentioned as “A cryptographic

system should be secure if everything about the system, except the key, is public

knowledge”. The concept of cryptography is shown in fig. 1.1.

User-B

Cryptography

Fig. 1.1: Cryptography Block Diagram

1.3 Types of Cryptography

Cryptography is mainly classified into two types, viz., classical and modern

cryptography. It is shown in fig. 1.2.

| Types of Cryptography |
I

v

Classical Ciphers Modern Ciphers
¥

¥
| Substitution Ciphers | | Transposition Ciphers |
T |
v + + v
Mono alphahetical Poly alphahetical Keyless Keyed
Cipher Cipher Ciphers Ciphers
Casear ; ; Vignere i i+ Rail Fence | Row/ Columnar
Cipher i i Cipher i i Cipher i i Cipher
| Symmetric Ciphers |
I
v I
| Stream Ciphers | | Block Ciphers |
|
SR 2 {2 v R SRR v
Vernam’s One
RC4 Time Pad DES AES IDEA

...

DLP

RSA | | ELGamal ! ! Enapsack !

...................................

Fig. 1.2: Types of Cryptography

3

1.3.1 Classical Cryptography

In classical cryptography, no mathematical concepts are involved. The traditional
characters, i.e., letters and digits are directly manipulated in this type. It is focused
mainly on ‘security through obscurity’. The parties involved in communication must
know about the coding that were kept secret. It has two basic components substitution
and transposition cipher. In substitution cipher, each m; € M is replaced by other
letter or symbol. If M is viewed as a sequence of bits, substitution involves replacing
M bit patterns with C bit patterns. One of the earliest known and simplest substitution
cipher was Ceaser cipher. It was invented by Julius Ceaser. In substitution cipher,
each letter in M is shifted a certain number of places down the alphabet. A shift may
be any value, and the general Julius Caeser cipher encryption algorithm is ¢; =
E(m;) = (m; + k)modp, for each c; €C, m; €M and k, €K and k,p =
0,1,...,25. The decryption algorithm is m; = D(c;) = (¢; — k) mod 2 Other
substitution cipher includes monoalphabetic cipher, playfair cipher, Hill cipher,
polyalphabetic cipher etc. Transposition cipher is achieved by performing some kind
of permutation on the plaintext letters, i.e., M remains same, but the order of
characters is shuffled around. Simple columnar transposition cipher, German
ADFGVX cipher etc., are some examples of transposition cipher [6][7]. In this cipher,
if M has n characters, then the total number of possible ciphertexts produced using

this method is n.

1.3.2 Modern Cryptography

It is based on numerous ideas of mathematics such as number theory, computational-
complexity theory and probability theory. It operates on binary bit sequences. In

modern cryptography, secrecy is obtained through a secret-key which is used as the

seed for the algorithms. Absence of secret-key is the computational difficulty of these
algorithms which make it impossible for an attacker to obtain the original information
even if he/she knows the algorithm used for coding. Modern cryptography is divided
into two types viz., Symmetric-Key Cryptography (SKC) and Public-Key

Cryptography (PKC) [8][9].

e Symmetric-Key Cryptography
It is also called secret-key or single-key or private-key algorithm. It deals not only with

E but also deals with authentication [10]. It requires that sender and receiver must

share the same secret-key for performing both E and D. It is shown in fig. 1.3.

Symmetric Encryption

Data is encrypted Data is decrypted
using the shared key using the shared key
L]

- —_—
r >

=
Plaintext Cyphertext Plaintext
(Unencrypted Data) (Encrypted Data) (Unencrypted Data)

Fig. 1.3: Symmetric-key Cryptography

The security of SKC rests in the key; divulging the key means that anyone could
encrypt and decrypt the messages. As long as the communication needs to remain
secret, it must be remain secret. Even though, it is faster than public-key
cryptography, the main problem with this algorithm is getting the sender and receiver
to agree on the secret-key without anyone else finding out [11]. Mathematically, a
symmetric key cryptosystem can be defined as the tuple (P, C, K, E, D) where P is the
set of finitely many possible plaintexts, C is the set of finitely many possible

ciphertexts and K represents the key space i.e., set of finitely many possible keys.

vk € K, 3E,, € E (encryption rule), 3D, € D (decryption rule) Ex: P — Cand Dg: C
— P are well defined functions such that vp € P, D, (E,(P)) = P. SKC is further
divided into stream ciphers and block ciphers. In stream cipher, one bit of character is
encrypted at a time, i.e., it operates on smaller units of M, usually bits. Encryption is
accomplished by a sequence of bits called a keystream (Ks) by combining the Ks with

M, usually with the bitwise XOR operation.

Mathematically, stream cipher can be defined as
E*: M* X K* = C*E*(mk) =c = ¢,c,65 ... Encrypts a stream
m = m,Mm,My.. € M* of characters m; € M as a stream ¢ = ¢,¢,¢5 .. € Cof
ciphertexts ¢; € C by using a key streams k =k k,k; ... € k*,k; €K. One-Time
Pad (OTP) is an example of stream cipher. In OTP, M=K=C={0, 1} and
E:{0,1}x {0,1} = {0,1},(m,k) = m & k. To encrypta message m = m; m,m;
m; € {0,1}, a key stream k = k; k; ks ki ¢ {0,1}, is needed. Encryption and
decryption are given by E* (m,k) =c =¢; C,C; , where ¢; = m;@®k; and D* (c,k) =

C1C2Cs3...., where m; = Ci®ki .

In block cipher encryption, group of bits or characters called block is encrypted at a
time. It transforms fixed-length block of M data into block of C data of the same
length. Mathematically, block cipher is a symmetric-key encryption scheme with
M = C ={0,1}" nis called block length of the cipher. There are various block cipher
modes exist viz., Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher
FeedBack (CFB) and Output FeedBack (OFB) exist. Data Encryption Standard (DES),
Advanced Encryption Standard (AES), Blowfish,RC4 (Rivest Cipher) etc., are some

examples of block cipher symmetric-key encryption algorithms [12].

e Public-Key Cryptography

It is also called as asymmetric-key cryptography in which a pair of keys is involved

known as public-key and private-key(k. k). Each public-key is visible and the

corresponding private-key is kept secret. They are mathematically related but not
identical. In PKC, each key performs a unique function unlike symmetric-key
algorithms that rely on one key to both encrypt and decrypt. In PKC, for encryption
and decryption public-key and private-key is used respectively [13]. Diffie-Hellman

invented the concept of public-key in 1976. It is shown in fig. 1.4.

=0, 8 0 =

Plaintext Ciphered Decrypted .
Sender data Data Plaintext Recipient
data

Public Key Private Key

Fig. 1.4: Asymmetric-key or Public-key Cryptography
The main idea involved in PKC is that it is easy to derive k, from k but it would be

infeasible to derive k; from k, called trapdoor one-way function. RSA, ElGamal,

McEllice, Rabin, Elliptic Curve Cryptography (ECC) etc., are some examples of
PKC. It is further classified into three types viz., Integer Factorization Problem (IFP),
Discrete Logarithm Problem (DLP) and Sum of Subsets Problem (SSP). IFP is
defined as for a given positive integer n, compute its decomposition into prime

numbers n = p£* (unique up to reordering). IFP is the act of splitting into an integers

called factors which, when multiplied together, form the original integer. For

example, for the integer

n = 27997833911221327870829467638722601621070446786955428537560
009929326128400107609345671042955360856061822351910951365783863
71059544820065767750985809557613579098730950144178863178946295

187237869221823983 .

Its two prime factors are

(i) p=3532461934402770121272604978198464368671197400976250236
493034687761212536794320005854 7956528088349

(i) q=92586995447833303334708584148005968773797585736421996073
433034145576787281815213538140930474185467

But, for the given n it is hard to find the factors p and ¢. The security of RSA algorithm
depends on integer factorization. DLP is applied to mathematical structures called

group. For a group element g and a number n, let g" denotes the element obtained

by multiplying g by itself n times, i.e., g" = g*g".." g. The DLP is defined as given

an element g in a finite group G and another element h € G, find an integer x such

that g* = h. For example 5= 1 mod 19 is 9. EIGamal encryption is based on DLP
[14]. SSP is also called knapsack cryptosystem. It is an NP complete problem. It is
defined as for the given positive integer weights a = (ay,..,a,) and
b=2Xl"sa;x; €z for the same bits x; € {0,1}, find x = {xy,....,x,}. Merkle-
Hellman Knapsack cryptosystem is based on SSP. Even though, many PKC exist in

the literature, the two famous popular PKC algorithms RSA and ECC play a vital role

in mobile devices and they are explained in the next subsections.

1.4 Rivest Shamir Adleman Algorithm

RSA is an asymmetric cryptography algorithm. Asymmetric works on two different

keys i.e. public-key and private-key. It is based on the fact that it is very difficult to

factorize a large integer. The public-key has two numbers where one number is the
multiplication of two large prime numbers while another number is private-key and
it is derived from the same two prime numbers. Hence, anyone can factorize the
large number, the private-key is compromised. Therefore, the encryption strength is
totally depending on the key size and if double or triple the key size, the strength of
encryption increases exponentially [15]. In RSA, the key size can be 2048 or 4096

bits.

1.5 Elliptic Curve Cryptography

ECC is a modern public-key encryption technique and it is based on the mathematical
ECs. It is smaller, faster, and more efficient cryptographic keys, based on the
algebraic structures of the ECs over finite fields and on the difficulty of the Elliptic
Curve Discrete Logarithm Problem (ECDLP). It implements the major capabilities of
asymmetric cryptosystems such as encryption, key exchange and signatures. This is
considered as a natural modern successor of the RSA cryptosystem. Since, it uses
smaller keys and signatures than RSA for the same level of security also provides

very fast key generation, agreement and fast signatures [16].

This algorithm is used in the Secure Sockets Layer (SSL) standard for signing SSL
certificates with ECDSA instead of RSA. ECC keys are efficient compared to RSA
as RSA depends on multiplying two prime numbers to get a greater number is simple
and factoring large numbers to return to the original primes is difficult. The usual
ECC key size of 256-bits is equal to a 3072-bits RSA key, which is 10,000 times
efficient than a 2048-bits RSA key to remain safe and to be ahead of a hacker’s

actions, RSA keys must be long and requires keys that are 2048-bits or longer, which

https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Rationale
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Rationale
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Rationale

makes the process slower. The ECC uses simpler, smaller keys with consuming less

energy to factor and convert more power to small mobile devices [17].

1.6 Mobile Computing

Mobile Computing is a technology that provides an environment that enables users to
transmit data from one device to another device without the use of any physical link
or cables. A computer or any wireless enabled device can transmit the data, voice and
video. Also, it gives more flexible for the users to move from one location to another
during the communication. Regardless of their place, it supports a wide variety of
devices which allows people to access data and information. The mobile computing
devices are mainly used in communication, education, directions, entertainment,
business, healthcare and natural hazards with the support of internet to provide
connectivity, social engagement and personalization. They are available in various
sizes, i.e., notebooks, tablets, laptops, eReaders, handheld gaming devices, wearable
devices and smartphones. The Wi-Fi (Wireless Fidelity) [18] is a wireless technology
which can allow an electronic device to exchange data over the internet through radio
waves. It is mainly available in institutions of higher learning, offices, restaurants,
schools, recreational facilities, some public areas, and homes. Fig. 1.5 shows the

connectivity of mobile devices.

Fig. 1.5: Mobile Connectivity

10

Programming languages are used for mobile system software. Operating System (OS)
functions to run the software components onto the hardware [19]. Middleware
components are used for deployment. Protocols and layers are used for transmission
and reception. The programming languages used for mobile computing applications

are viz., Java, J2SE, J2ME, JavaCard, J2EE, C, C++, Visual C++ and Visual Basic.

1.7 Operating Systems

Symbian OS, Window CE, Mac OS and Android OS are some of the OS [20] used in
mobile computing applications. It offers the user to run an application without
considering the hardware specifications and functionalities. They are used to schedule
multiple tasks in a system. It provides user application‘s Graphical User Interface
(GUI), Voice User Interface (VUI) components, and phone Application Programming
Interface (API). It provides the device drivers for the keyboard, display, USB and
other devices. The threats and issues of mobile computing can be divided into two
categories such as general security issues and wireless security issues. The
information and data residing on mobile devices have much more security issues and

threats.

1.8 Mobhile Communications

It refers to an infrastructure that ensures seamless and reliable communication among
wireless devices [21]. The mobile communication consists of communication devices
such as protocols, services, bandwidth and portals necessary to facilitate and support
the stated services. These devices are responsible for delivering a smooth
communication process. It can be classified into four categories such as fixed and
wired, fixed and wireless, mobile and wired and mobile and wireless. Mobile

hardware consists of mobile devices or device components that can be used to receive

11

or access the service of mobility (smart phones, laptops, portable PCs, tablet PCs, and
Personal Digital Assistants (PDA)). These devices are inbuilt with a receptor medium

that can send and receive signals.

Fig. 1.6: Mobile Device Hardware

These devices are capable of operating in full-duplex can send and receive signals at
the same time. They don't have to wait until one device has finished communicating
for the other device to initiate communications [22]. Fig. 1.6 shows the mobile device

hardware.

Mobile software is a program that runs on mobile hardware. This is designed to deal
capably with the characteristics and requirements of mobile applications. In other
words, it is the heart of the mobile systems, and also an essential component that
operates the mobile devices. Further, it provides portability which leads to wireless
communication. Fig. 1.7 shows the mobile device software. It is noted that mobile
devices are handheld devices. They have limited processing capability and less
memory. If the existing exponentiation operation in performing encryption and
decryption are used as it is, it consumes more time which will slow down the speed

of mobile devices. To speed up the process, AC is used.

12

QND30ID Windows Phone 7. BlackBerry.

Fig. 1.7: Mobile Device Software

1.9 Addition Chain

An AC [23] for a positive integer n is a sequence, 1 =a;, < a; = - < a, = n
such that each member after ao is the sum of two earlier (not necessarily distinct)
ones. It is noted that if the value of n is relatively small, the exact value of I(n} is
known. But, for large =, it is known that [(n) = log,n +log, n(1+ a(1))/
(logz nlog,(n)). An AC has elements, 1 = ay < a, < a, < - < a, = e With the
property that for all i = 0 there exist ;= a; T @, andr = i=j = k=0. An
optimal AC [24][25] is the one which has the shortest possible length denoted by i(e)
and it is a strictly increasing sequence as duplicate chain elements could be removed
to shorten the chain. For example, 1 -2 - 3 - 6 - 12 - 13 is one of the optimal ACs for

13and I(13) = 5.

In AC, there are two steps normally involved. They are addition and doubling steps
[26][27] i.e., to get the next number (intermediate number) in AC, any two previous
numbers are added together in addition step where as the current number is multiplied
by two in doubling steps. To generate the AC for given n, two types of algorithms are
normally used viz., deterministic and stochastic or bio-inspired. In deterministic
algorithms since everything is deterministic and the optimal AC may not be obtained
at all time. And also the length of AC is more for the integer n some times. Binary

method, factor method, window method, sliding window method, Fibonacci method,

13

Lucas method, continued fraction method etc., are some examples of deterministic
algorithm. But, bio-inspired algorithms (BIAs) [28] are based on animal or birds
behavior and the optimal AC is not obtained by a single run and hence many more

runs are needed.

1.10 Scope of Research

As the usage of mobile devices is increasing exponentially, the sensitive or potential
information transmitted from one mobile to another should be protected. One of the
most convenient modes of transmissions but it is associated with many security risks
and the data can be intercepted while the transmissions are not being encrypted.
Furthermore, all devices are not equipped with built-in security software and the users
ignore the fact to install the security software. The common fact that the phones are
vulnerable to threats or the exploitation by the cybercriminals. The security issues can
be tackled by applying the cryptographic techniques using public-key algorithms to
generate keys for both encryption and decryption to protect the information and
maintain security from hackers. Due to the usage of keys, function codes and digital
signatures' are widely used and is becoming more and more acknowledged as one of
the best ways to secure data and applications both stores at rest and in motion
between devices. More and more people are now using a mobile device in either
personal or work related data. Today, the users were increasingly using unmanaged,
personal devices for accessing sensitive enterprise information's and also establishing
connections to the third party services beyond some security controls can leads to

sensitive data to possible attackers.

Mobile devices have lightweight and very less in size. They have some challenges and

certain limitations such as time, power battery power, memory size, processing speed,

14

screen size, resolution, etc. Providing security for mobile devices with limited power
is a difficult job. ECC are normally used to transfer the date securely. They take more
encryption and decryption time called operational time. If operational time is high, it
consumes more battery power which ultimately it degrades the performance of mobile
devices resulting in customer impatience and dissatisfaction. Thus, it is essential to
speed of the process i.e., reducing the computational time of operational process, AC
is used. There are many algorithms exist in the literature to generate the AC But, bio-
inspired algorithms (BIAs) [29] have been proposed to generate the ACs. Thus, the
objectives of the research is formulated as to generate the optimal ACs for the given
integer n using

(i) Particle Swarm Optimization (PSO)

(i) Simplified Swarm Optimization (SSO)

(iii) Bacterial Foraging Optimization (BFO)
The said algorithms are incorporated into RSA and ECC and they used in android as

well as windows emulator and their performances are analyzed. They are explained in

the next subsections in detail.

1.11 Particle Swarm Optimization

It [30] is a population-based optimization algorithm inspired by the motion of bird
flocks and schooling fish and shares many similarities with evolutionary computation
techniques. The system is initialized with a population of random solutions, and the
search for the optimal solution is performed by updating generations. Unlike Genetic
Algorithm (GA), PSO has no evolution operators, such as crossover and mutation. It
has potential solutions, called particles, move in the problem space by following the
current optimum particles and computationally more efficient in terms of both speed

as well as memory requirements. It has become one of the most popular techniques

15

applied in various optimization problems, due to its ease and capability to find the

optimal or near-optimal solutions.

1.12 Simplified Swarm Optimization

SSO [31], is a population-based algorithm to compensate for the deficiencies of PSO
in solving discrete problems. This algorithm has recently been applied in many
research areas because of its simplicity, efficiency, and flexibility. In SSO, each
individual in the swarm, called a particle representing a solution, is encoded as a
finite-length string with a fitness value. This scheme improves the Update Mechanism
(UM), which is the core of any soft computing based methods in terms of
convergence speed, energy and security. The UM updates each particle to be a
compromise of those four sources, particularly a random movement, which is
different from the original PSO, maintains population diversity, and enhances the

capacity of escaping from a local optimum and achieved global optimum solution.

1.13 Bacterial Foraging Optimization

The concept of BFO was proposed by Kevin M. Passino [32][33]. It is a swarm
intelligence based algorithm inspired by the behavior of forging based on the E. coli
bacteria. It has four basic processes such as chemotaxis, swarming, reproduction and
elimination-dispersal. In the elimination-dispersal process, a constant probability of
elimination is assigned to all bacteria. The assignment is independent of bacteria’s
ranking in the population. Therefore, a bacterium which can be near to an optimal
position may be replaced with one which is far away from the optimum solution, thus,
affecting the convergence speed. The proposed algorithm uses a non-uniform

probability distribution and it is implemented to replace the conventional methods.

16

The results shows the efficiency of the proposed algorithms in terms of convergence

time, power and security.

1.14 Chapter Organization

The thesis is organized into eight chapters. The detailed study related to introductory
concepts, types of cryptography, a brief introduction about RSA and ECC which are
mainly used in mobile devices, and an introduction about the AC were discussed in
chapter 1. It also discussed the introduction about the BIAs viz., PSO, SSO and BFO
taken for AC generation. Further, this chapter also addressed the objectives and scope
of the research clearly. Chapter 2 presents, various works related to mobile
computing, various works related to swarm based algorithms viz., PSO, SSO and

BFO. It also explains the works related to ACs.

The mathematical definitions of ACs, and need for EAs based ACs, brief introduction
about RSA, various mathematical preliminaries required for ECC, ECC arithmetic
and embedding the plaintext into EC points are discussed in chapter 3. It presents the
need for security and various parameters taken in the work. It also highlights the
comparative study of time taken for ET, DT, EP, DP and SE used in mobile
cryptographic algorithm with and without incorporation of RM and RA in RSA and

ECC respectively.

In chapter 4, the concepts of PSO, AC generation based on PSO are explained
numerically. It also explains the usefulness of AC-PSO and AC-ECC. A comparative
study between RSA, ECC and the proposed RM-RSA, RA-ECC, AC-PSO-RSA and
AC-PSO-ECC are made and the experimental results obtained from them are

analyzed.

17

The concepts used in SSO, reason for considering SSO for generating AC are present
in chapter 5 with numerical examples. Once, the SSO based ACs are generated for the
integers (encryption and decryption key for RSA, k[P] for ECC), they are
incorporated into the mobile cryptographic algorithms RSA and ECC taken in this
work. After implementing the said concepts, this chapter also analyzed the time taken

for the said five parameters in this thesis.

As the BFO concepts play a vital role in generating ACs, chapter 6 presents the
concept of BFO and the various processes used in it. The methodology used for
generating the ACs using BFO is also explained numerically. After implementing the
proposed methodology AC-BFO in RSA and ECC, the time taken for the said five
parameters are analyzed too. It also presents the AC for some hard exponents and the
comparative results obtained from the existing BIAs viz., GA, AIS, EP with the

proposed BFO based AC for some integers.

The overall comparison of the existing RSA, ECC, RM-RSA, RA-ECC and the
proposed AC-PSO-RSA, AC-PSO-ECC, AC- SSO-RSA, AC- SSO- ECC, AC- BFO-
RSA and AC-BFO-ECC methods are present in chapter 7. Finally, the thesis ends

with conclusion and future enhancements in chapter 8.

18

CHAPTER - Il
REVIEW OF LITERATURE

2.1 Background

One of the basic principles used in mobile computing is broadcasting. It is radiated to
everyone within the prescribed limit. The information transmitted within the limit in
mobile devices must be protected. This is possible only by providing the security for
it so that ithe information passed through the communication channel could be
protected from various attack by the attacker. Thus, it is essential to take utmost care
to prevent the attack while the user roams through different networks with
heterogeneous security infrastructure. One way is to change the information in
different form i.e., non-meaningful form. In order to achieve is to use cryptographic
algorithms which are mainly used in mobile devices. Among them, RSA and ECC
public-key cryptographic algorithms play a vital role in performing security. The
basic building blocks of ECC is scalar point multiplication k[P] where k is a scalar
and P is a point on EC. Similarly, in RSA the encryption and decryption is of the form
x* mod n where e is encryption / decryption key and x is plaintext/ciphertext.
Normally exponentiation operation takes more time than multiplication which takes

more time than addition and subtraction.

To reduce the time, exponentiations and multiplications are performed by RMs and
RAs respectively. To reduce it further AC is used. In order to generate the AC, the
concept BIAs like PSO, SSO and BFO are applied and their results are discussed.
Using them, the ACs for the exponent of RSA and k[P] of ECC are generated. The

encryption/decryption time and energy required for encryption/decryption [37] are

19

also computed and the performances of the cryptographic algorithms in mobile

devices are analyzed with and without the incorporation of AC.

2.2 Review of Works Related to Mobile Computing

Mavridis I. and Pangalos G.[34], discussed the operational, security issues of mobile
components in distributed environments and also gave the details about the
elimination of intrinsic problem in wireless networking using mobile agents. They
have implemented a healthcare paradigm, with security mechanisms. Erik Olson and
Woojin Yu [35] surveyed various symmetric-key algorithms viz., RC5, RC6, Twofish
and Triple-DES and their usage in mobile computing, specifically in the Palm Pilot,
which use the Motorola’s Dragon Ball-EZ processor. They illustrated that the
architecture used in the processor was similar to the 68K processor and it did not

provide the power and versatility of current processors.

Wendy Chou [36], surveyed the explosive growth in the usage of mobile and wireless
devices demands a new generation of Public-key Cryptography (PKC) schemes, and
the limitations on power, bandwidth to provide security in mobile devices, use of
ECC, its security, performance and also its applications. Limor Elbaz [37],
implemented PKC in security of wireless devices and the use of Public-key
Infrastructure (PKI) in applications of mobile phones and proved the Discretix Crypto
Cell implementation of cryptographic algorithms to enable wireless devices to
become PKI enabled cum efficient, lightweight and standard-compliant. Dharma P.
Agrawal et al. [38], discussed the technology in mobile computing users by
combining wireless networking and mobility which served anytime and anywhere
with of various new applications and also services. They also analyzed some security
issues and various threats and concluded that encryption played an important role for

secured communication in mobile computing environments.

20

Hanping Lufei and Weisong Shi [39], discussed the emergence of heterogeneous
devices, diverse networks and the difficulty in using a one-size-fits-all encryption
algorithm. They proposed an adaptive encryption protocol to choose a proper
encryption algorithm dynamically to enhance the security from the candidate
algorithms and minimized the time overhead. Abhishek Kumar Gupta [40], discussed
the need for information as a driving force for the incoming growth in web
technology, wireless communication and portable computing devices and also
explained the field of mobile computing (computing and communication) with aim of

providing seamless computing environment for mobile users.

S. Krishna Mohan Rao and Dr. A Venugopal Reddy [41] discussed the data
dissemination to access the data item quickly in mobile devices with minimum access
time so that the mobile clients saved the precious battery power while using resource-
limited Wireless Sensor Networks (WSN), with reliable and efficient security
mechanisms. Using two potential block ciphers, RC5 and AES-Rijindal discussed and
analyzed the suitability of the algorithm for resource-limited wireless network

security by M. Razvi Doomun and KMS Soyjaudah [42].

Kar and Banshidhar Majhi [43] proposed an efficient password security of Multi-
Party key exchange protocol based on Elliptic Curve Discrete Logarithm Problem
(ECDLP) and the protocols allowed a group of parties communicating over a public
network to establish a common secret-key called session-key and also built a protocol
for password authentication model, where group members were assumed to hold an
individual password rather than a common password with two one-way hash
functions to build the security level high. Mooseeop Kim et al. [44], proposed a
compact architecture for a cryptographic engine on a mobile platform which had very

stringent limitations with respect to the circuit area and the consuming power. It was

21

highly effective to implement the scalable RSA and unified SHA algorithm with a

minimum resource usage.

Bruno P.S. Rocha et al. [45] demonstrated a security service as a middleware to
dynamically change the security protocols used between two peers with variations on
wireless medium parameters, usage of system resources, hardware resources,
application-defined Quality of Service (QoS) metrics and desired data security levels.
Sathish Alampalayam Kumar [46] suggested a mobile agent based mobile computing
system, various types of security attacks and security solutions. Sameer Hasan et
al.[47] proposed a non-server (that is P2P) PKC architecture to secure the mobile
communications and implemented various security services needed for mobile
communication. They used NTRU algorithm for public-key cryptography in non-
server architecture and tested on real equipment, the solution security and potential

risks.

Rahat Afreen and S.C. Mehrotra [48] discussed the ECC and its proper
implementation to analyze in hardware as well as software platforms. Helena Rifa-
Pous and Jordi Herrera- Joancomarti [49] discussed the performance of different
cryptographic algorithms in PDAs and compared it with device’s costs in terms of
OS, screen, network interfaces to determine the overhead and the results were used to
estimate the costs of network security protocols design. Jagdish Bhatta and Lok
Prakash Pandey [50] proposed a software level cryptographic protocol
implementation to measure the energy level through the device’s serial port. They
found the proposed protocol proved better security and less consumption of energy

than the existing cryptographic protocols.

22

K. Sathish Kumar et al. [51] explained the mobile hand-held device in an efficient
way to deliver real time data to users and implemented an energy efficient
authentication protocol with a high level security with minimum energy consumption
for mobile devices. In 2012, Masoud Nosrati et al. [52] proposed an algorithm made
the data into unreadable text which could be decoded only with the associated key and
consumed less CPU time, memory, battery power and computation time in various
mobile devices with their OSs. Ravinder Singh Mann et al. [53] presented the
comparative analysis of ECC, AES and RSA algorithms experimentally with
parameters such as computation time and complexity of the algorithms and concluded

that ECC has more complexity in mobile devices.

Giripunje et al. [54] provided effective security solution using PKC implementation in
two parts: first part was designing API for ECC to generate the shared key for secure
communication and the second part dealt with a creation of web service which
distributed this key to validate the mobile user. Ameya Nayak [55] discussed the
growing android community, its malware attacks, security concerns, aid in serving as
the continuous challenges of identifying current, future vulnerabilities as well as
incorporating security strategies against them and this focus on mobile devices.
Srikanth Pullela [56] has proposed protocols for various applications like wireless
application protocol and mostly based on the public and private-key cryptography. V.
Gayoaso Martinez and L. Hernandez Encinas [57] have discussed the ECC was one of
the best options for protecting sensitive information. The latest version of the JAVA
platform was a cryptographic provider - SunEC which was implemented for EC
operations and protocols. They explained the applications for generation of key pairs,

perform key exchanges and produce digital signatures with EC in JAVA.

23

Muhammad Waseem Khan [58] explained the Short Message Service (SMS) which
was used in mobile services of GSM networks but this facility was not achieved
secure transmission of plaintext between different mobile phone devices. However,
SMS did not have its own built-in mechanism to secure the transmitted data because
security was not considered as a priority application for mobile devices. The existing
schemes provided a room for the secure SMS message communication. The effect of

each security scheme on mobile device’s performance was also observed.

Ram Ratan Ahirwal and Manoj Ahke [59] explained the Diffie-Hellman scheme as
one of the key exchanging cryptosystem and no messages were involved in this
scheme. Two different methods to encrypt and decrypt the message were proposed by
them. They pointed out that the second method support the system with more security
than the first method because the sender computed the exponentiation function
between the coordinates of the encryption algorithm and the receiver computed the
inverse of the exponentiation function between the coordinates of the key in the
decryption algorithm, While in the first method, the sender computed the
multiplication between the coordinates of the key in the encryption algorithm and the
receiver computed the multiplication between the coordinates of the key in decryption

algorithm and forward secrecy in HTTPS protocol.

Sathish Kumar et al. [60] have discussed the mobile hand-held devices which were
used in an efficient way to deliver real time data to the users in the battle field
military applications and the use of security features such as data confidentiality,
authentication etc., which were not readily offered by mobile environment. They
have proposed the implementation of energy efficient authentication protocol for

mobile devices. Hamed Khiabani et al. [61] explained the extensive deployment of

24

wireless networking, mobile, embedded devices and other pervasive computing
technologies that were prone to security threats for which nobody would be prepared
for them. Security and privacy were the main concerns in mobile computing which
could be observed from several perspectives including hardware, operating systems,

networks, databases, user interfaces, and applications.

Seema P. Nakhate and R.M. Goudar [62] have implemented a secured password
based mutual authentication protocol for client-server computing using ECC
framework which provided secure communication between client and server with the
help of user email-id and mobile phone authentication device for mobile handheld
device since it could be best suited for constrained resources such as computational
power, storage capacity. They were extremely limited especially devices like Mobile
phones, PDA’s, Palmtops and Smart cards. Vishnu V and Shobha R [63] discussed
the security in Wireless Sensor Networks (WSN). They have applied dynamic
election of Cluster Head (CH) mechanism and two evolutionary approaches SET-IBS
and SET-IBOOS, since it provided security in data transmission and reduced data
losses due to nodes failure, less residual energy selected in CH. It improved the

lifetime of network by increasing the time of FND (First Node to die).

Tanmoy Kumar Bishoi et al. [64] proposed an algorithm to encrypt the data using
symmetric-key encryption with variable length key size. In [65], Sujithra M et al.
explained the high performance computing techniques. They also implemented
cryptographic algorithms and tested in Local as well as Cloud environment. They
have revealed that storing mobile data in cloud increasing efficiently and AES
algorithm performed better when compared with other algorithms with respect to

mean processing time but the combination of MD5+ECC+AES algorithms qualify

25

better than Speed-Up ratio. Said Bouchkaren and Saiida Lazaar [66] discussed secure
data transmission through Internet. They have designed and implemented a new
secret-key cryptosystem due to a number of iterations of encryption and decryption of
data in blocks, using cellular automata and compared them with AES algorithm. Also
proved that the new algorithm resisted against statistical attacks, faster than AES-256,

achieved good confusion and diffusion tests.

2.3 Review of Works Related to PSO

Arbit and Ashwini Kumar [67], suggested Optimized ECC (O-ECC) to assist more
secure and improved protocol design with easy computation mathematically. In [68],
Ahmed Tariq Sadiq discussed the PSO. The benefit of mutation in PSO (MPSO) was
used as momentum and diversity tool in the population. Experimental results clearly
showed that the amount of recovered key of classical ciphers and fitness function
values were better than PSO. Ahmed A. Esmin and Germano Lambert-Torres [69]
have proposed a methodology which was used to determine the control variable
settings for real power loss minimization in the transmission system. It employed the
PSO algorithm for the optimal setting of Optimal Power Flow (OPF) based on Loss
Minimization (LM) function, tested on IEEE 14, 30, 118 Bus systems and the results

were compared.

G.Prakash and Dr.M.Kannan [70] discussed that the cryptographic smart cards were
used for most of the online transactions. They have designed an integrated approach
of cryptography and steganography which could be used for smart card security.
Initially, user’s confidential details were encrypted using the most secure ECC
technique and then the encrypted cipher was embedded into the users 'photographic
image using steganography named Optimized Modified Matrix Encoding (OMME)
algorithm. Cuevas et al. [71] proposed the swarm intelligence models with collective

26

behaviour in swarms of insects or animals called the social spider optimization for
solving optimization tasks. The outcome revealed a high performance for searching a
global optimum with several benchmark functions. Wilayat Khan et al. [72],
discussed the mobility which was one of the major features of wireless
communication systems and handheld devices form a major part of the systems. The
limited resources like battery, memory and computational power of these devices was

a bottle neck in the security of such devices was also discussed.

Rangit j. Bhosale et al. [73] proposed the Mobile Ad-hoc Networks (MANET) in
wireless technology, having features like dynamic topology and self-configuring
ability of nodes. Swapna B. Sasi and N. Sivanandam [74] compared and analyzed the
performance level with various parameters such as number of keys stored, battery
capacity, runtime. They also concluded that high storage and energy were required for
storing the keys. Dolly U. Jeswani et al. [75], discussed the cryptographic algorithms
which were the key factor of the security mechanisms used for data storage and
uninterrupted network transmissions. A PSO oriented cryptanalysis technique for
breaking the key used in AES algorithm was also introduced. Swarm Intelligence
based cryptanalysis provided a best and optimized solution. Chia-Ling Huang and
Wei-Chang Yeh [76] demonstrated to optimize the Reliability Redundancy Allocation
Problems (RRAP) for the series-parallel system, the complex (bridge) system and the
over speed protection of gas turbine system. To solve the RRAP, PSO algorithm was
proposed to improve the computation efficiency and found that it outperformed the

previously best-known solutions.

Ji Weidong and Zhu Songyu [77] discussed as PSO was the most common algorithms
for optimization because of its simple, convenient and good robustness. They have
proposed a new particle swarm algorithm as improved cut PSO algorithm based on

27

filtering mechanism (ELPSO) to improve its operational speed and more accurate. Jin
Yang et al. [78] presented the enhanced version of the network performance of WSNs
with mobile sinks (MWSNSs) in an efficient routing strategy using PSO to build the
optimal routing paths. A novel greedy discrete particle swarm optimization with
memory (GMDPSO) was introduced to improve the greedy forwarding routing, a
greedy search strategy was designed to drive particles to find a better position quickly,
searching history was memorized to accelerate convergence. Simulation results
revealed that the new protocol significantly improved the robustness and adapted to
rapid topological changes with multiple mobile sinks, while efficiently reducing the

communication overhead and the energy consumption.

2.4 Review of Works Related to SSO

Joppe W et al. [79] have explored the deployment of ECC in practice by investigating
its usage in Bitcoin, SSH, TLS and the Austrian citizen card. They concluded that the
researchers and developers could identify the threats discovered from the attackers
and track the implementation problems to improve the security of the cryptographic
protocols and libraries. The commonly used Itoh-Tsujii algorithm (ITA) was used to
compute the inversion by an entirely sequential process consisting of multiplications
and squarings. Lijuan Li and Shuguo Li [80] proposed a modified ITA algorithm
(MITA) for inversion with polynomial basis (PB) which could reduce the required
clock cycles of ITA by enabling the parallel computation between part of
multiplications and squarings. Furthermore, they were generalized using ACs and to
find the optimal addition chains (OACSs) leading to the fastest inverters with given

hardware resources.

28

An EC addition law is said to be complete if it correctly computes the sum
of any two points in the EC group. One of the main reasons for the increased
popularity of Edwards curves in the ECC community was that they could allow a
complete group law that was also relatively efficient (e.g., when compared to all
known addition laws on Edwards curves). Such complete addition formulas could
simplify the task of an ECC implementer and at the same time, it greatly reduced the
potential vulnerabilities of a cryptosystem. Unfortunately, until now, complete
addition laws that were relatively efficient have only been proposed on curves of
composited order and have thus been incompatible with all of the currently

standardized prime order curves.

Joost Renes, Craig Costello and Lejla Batina [81] have presented optimized addition
formulas to complete on every prime order short Weierstrass curve defined over a
field k with char(k)#2,3char(k)#2,3. Compared to their incomplete counterparts,
these formulas required a larger number of field additions, but interestingly it
required fewer field multiplications. Furthermore, they have discussed how these
formulas could be used to achieve secure, exception-free implementations on all of
the prime order curves in the NIST (and many other) standards. PSO could locate
the region of the optimum faster than EAs, but once in this region it progressed
slowly due to the fixed velocity stepsize [82]. Almost all variants of PSO tried to

solve the stagnation problem.

Bioinspired algorithms have been employed in situations where conventional
optimization techniques could not find a satisfactory solution. For example, when
the function to be optimized was discontinuous, nondifferentiable, and/or present
too many nonlinearly related parameters [83]. One of the most well-known

bioinspired algorithms used in optimization problems is PSO, which basically

29

consisted of a machine-learning technique loosely inspired by birds flocking in
search of food. More specifically, it had a number of particles that collectively move

on the search space in search of the global optimum [84].

Wei-Chang Yeh et al. [85] formulated a General Multi-level Redundancy Allocation
Problem (GMRAP) to break the restrictions and generalize the above problems.
Furthermore, a novel algorithm called SSO with Modular Search (SSO-MS) was
proposed to solve the GMRAP. Finally, the results obtained by SSO-MS were
compared with those obtained from GA and PSO. The comparative results showed
that the proposed SSO-MS was most promising among three algorithms and
demonstrated the effectiveness. Asymmetric cryptographic algorithms were a robust
technology used to reduce security threats in the transmission of messages on the
network. Nowadays, one of the disadvantage is the mathematical solutions because
they require a greater amount of calculation that led to the need for increased use of
computational resources. Fausto Meneses et al. [86] developed an algorithm to
optimize the RSA encryption algorithm and to improve the security, integrity and
availability of information. The results showed that the efficiency and functionality of
the RSA algorithm in terms of information security. Also, the parameter such as time,
memory, processor and network performance were analyzed while performing
encryption and decryption were lower than other RSA solutions, because calculations

was performed on the client and server.

Nigel P. Smart [87] overviewed about ECs with modern public-key systems. It
provided improved efficiency and bandwidth. Katz and Mazur [88], presented with
mathematical proof of recent developments in ECs with their moduli spaces and they
began with Jacobi’s “Fundamenta Nova” in 1829, and the modern theory was erected

by Eichler-Shimura, Igusa, and Deligne-Rapoport.
30

In [89], the authors explained the power of algebra as generalised arithmetic and it led
to a task in which others could explore other possible relations made with a similar
process. They insisted that those who designed and would inspire further investigation
and generalisation. The problem of finding the shortest AC for a given exponent is of
great relevance in cryptography, but it was also very difficult to solve since it is
an NP-hard problem. Stjepan Picek et al. [90] proposed a GA with solutions with new
crossover and mutation operators to minimize the length of the ACs corresponding to
a given exponent. The results were compared with respect to those generated by other
meta heuristics for instances of moderate size, values up to 2'2’-3. Furthermore, three
additional strategies were adopted and the results indicated that the proposed

approach was very promising alternative to deal with this problem.

Finding the shortest AC for a given exponent is a significant problem in cryptography.
Crossover and mutation operators of GA to minimize the length of the ACs
corresponding to a given exponent. Stjepan Picek et al. [91] developed a repair
strategy that gives significant enhanced performance and the results(values up to 22°°-
21) were compared with respect to those generated by other metaheuristics for
exponents of moderate size and optimize the ACs with regards to the type of
operations as well as the number of instructions required for the implementation. AC
calculations play a critical role in determining the efficiency of cryptosystems based
on isogenies on elliptic curves. However, finding a minimal length AC is not easy. A
generalized version of the problem, in which one must find a chain that
simultaneously forms each of a sequence of values, is NP-complete. For the special
primes used in such cryptosystems, finding fast ACs for finite field arithmetic such as

inversion and square root is also not easy. Brian Koziel et al. [92] investigated that

the shape of smooth isogeny primes and proposed new methods to calculate fast ACs.

31

Furthermore, they have provided techniques to reduce the temporary register
consumption of large exponentials, applicable to both software and hardware
implementations utilizing ACs. Finally, the procedures were compared multiple

isogeny primes by the complexity of the ACs.

A novel graph based methods have been proposed [93] for generating the optimal AC
where the vertices of the graph representing the numbers used in the AC and edges
representing the movement from one number to another number in the AC. They
proposed two methods, Method 1 termed as GBAPAC which generated all possible
optimum ACs for the given integer n by considering the edge weight of all possible
numbers generated from every number in AC. Method 2 termed as GBMAC, not all
possible numbers were generated from the particular number in forming AC since
they are mutually exclusive. That is, only one number is generated by doubling step

and the rest of the numbers are generated using addition step.

A methodology [94] was presented for converting the inner dynamics of PSO
algorithm into complex network for improving the performance of evolutionary
computational techniques. It could be used for adaptive measures to manage and also
to put significant amount of information about the inner dynamics of PSO algorithm
into a complex network. A new BIA, namely Bird Swarm Algorithm (BSA), was
proposed [95] for solving optimisation problems. BSA was based on the swarm
intelligence extracted from the social behaviours and social interactions in bird
swarms. Birds mainly have three kinds of behaviours: foraging behaviour, vigilance
behaviour and flight behaviour. Birds might forage for food and escape from the
predators by the social interactions to obtain a high chance of survival. By modelling
these social behaviours, social interactions and the related swarm intelligence, four

search strategies associated with five simplified rules were formulated in BSA.

32

Simulations and comparisons based on eighteen benchmark problems demonstrated

the effectiveness, superiority and stability of BSA.

In order to improve the particle swarm optimizer (PSO) for solving complex
multimodal problems, an improved PSO with full information and mutation operator
(PSOFIM) was proposed in [96]. In PSOFIM, a novel mutation was adopted to
improve the history optimal position of particle (pbest) by disturbance in operation of
each dimension. Additionally, a full information strategy for each particle was
introduced to make the best use of each dimension of each particle to ensure the
information utility for swarm topology where each particle learnt from its
neighbourhood information for it optimal position to improve itself study ability,
whose strategies improve the swarm fly to the probability of the optimal solution. The
simulation experiment results of benchmark function tests showed that PSOFIM has

better performance than the basic PSO algorithm.

In supply chain management, reducing operating cost and satisfying customer demand
are the most important things. However, the products may be spoilt during the
delivery due to collisions, traffic accident, weather factor, theft and so on. Hence, the
authors [97] considered the deterioration effect in a three-stage supply chain
deteriorated network with a mathematical model. A novel Al algorithm named SSO
was adapted in the above problem to minimize the total operating cost. Extending
local search (ELS) was attached to enhance the performance of the original SSO. A
numerical example of network system was presented to compare the proposed
algorithm with GA and PSO. Results indicated that SSO-ELS provided a better

solution than its competitors.

33

Predictive analytics analyze the present and the historical information's and make
future predictions utilizing data mining or machine learning techniques. Predictive
models usually check for some patterns and relationships leading to certain
behaviours based on the dependent variables. In [98], the author proposed a
mechanism named analysis and prediction of application usage (APAU) in android
phones for providing recommendations to a smart phone user while selecting
applications of their interest like mail checking, messaging and making calls. APAU
mainly focused on identifying usage patterns and investigating the human behaviour
during application selections by extracting the generic behavioural patterns to predict
and provide useful set of recommendations. Simulated real-world interaction with a
device and test the features by using the tools included with microsoft emulator [99]
for windows 10 mobile. The emulator like a desktop application that emulated a
mobile device running windows 10. It provided a virtualized environment in which it
could be used to debug and test windows apps without a physical device. It also
provided an isolated environment for application prototypes. The emulator was
designed to provide comparable performance to an actual device. This could be used
to simulate real-world interaction with a device and test various features by using the
tools included in the Microsoft Emulator. In [100], the elementary theory with the

concepts of ECs, facts, cryptosystem and factorization were discussed.

In [101], analog based on ECs over finite fields of public-key cryptosystem was
discussed, which used the multiplicative group of a finite field. These EC
cryptosystems might be more secure, because the analog of the DLP on ECs are likely
to be harder than the classical DLP especially over GF(2"). Furthermore, the question
of primitive points on an EC modulo p, and gave a theorem on non smoothness of the

order of the cyclic subgroup generated by a global point. In [102], the authors

34

discussed about the use of ECs in cryptography and proposed an analogue of the
Diffie-Hellmann key exchange protocol which appeared to be immune from attacks of
the style of Western, Miller, and Adleman. With the current bounds for infeasible
attack, it was 20% faster than the Diffie-Hellmann scheme over GF(p). As

computational power increased, this disparity should get rapidly bigger.

2.5 Review of Works Related to BFO

ECC [103] [104] pairings in pairing-based cryptosystems and computing isogenies in
the quantum-resistant isogeny-based cryptosystems was discussed. To get the next
number, there are two steps normally used in AC. They are addition and doubling
steps, i.e., to get the next number (intermediate number) in AC, any two previous
numbers are added together in addition step, whereas in the doubling step, the current
number is multiplied by two. To generate the AC for given n, two types of algorithms
are normally used viz., deterministic and stochastic or bio-inspired evolutionary
algorithms. Kevin M. Passino proposed it in 2000, and it has been widely accepted as
a new nature-inspired optimization algorithm. It is inspired by the social foraging
behavior of Escherichia Coli, i.e., a bacteria present in the human intestine and has

drawn many researcher's attention.

In [105], Hugo Volger presented several results on I(n). In particular, they
determined I(n) for all n satisfying I(n) < 3 and proved [log n| + 2 < l(n) for all n
satisfying s(n) > 3, where s(n) is the extended sum of digits of n. In [106], Y.H. Tsai
and Y.H. Chin found some mathematical properties of the shortest-length AC for
certain integers whose binary patterns met some special forms; and the correctness of
these properties was proved. In [107], Bergeron et al. proposed generating the shortest

AC based on the continued fraction. They gave a general upper bound for the

35

complexity of continued fraction methods as a chosen strategy function. Thus, the
total number of operations required for the generation of an AC for all integers up to
n was shown to be (n log®nyn), where nyn is the complexity of computing the set of
choices corresponding to the strategy and proved an analogy of the Scholz-Brauer

conjecture.

F Bergeron et al. [108] generated a method of fast ACs for positive integer n, using
continued fraction up to 1000 number obtained with optimal length (with 29
exceptions optimal length plus one). A computer could generate a random sequence
of numbers [109], Uy, U;, U,, ...that behaves as if each number was independently
selected at random between 0 and 1 with the uniform distribution. A new algorithm of
optimal ACs was generated in [110] and also faster than the best-known methods. It
was applicable for single values and slower than the best-known methods. It did not
require any pre-computed values and it was considered suitable for finding optimal

ACs for point values.

Bounds on sums of ACs and properties of optimal ACs were discussed in [111]. The
study exhibited that the final step in an optimal AC of an even number always have
doubling, and also the sum of an optimal AC for an odd number n is asymptotically
nearly 5n%. Noboru Kunihiro and Hirosuke Yamamoto [112] developed two
systematic methods viz., run-length encoding (RLE) and hybrid for generating short
AC. They proved that the hybrid method was far better than RLE with a reduced 8%

of the AC length.

Nareli Cruz - Cortéset et al. [113] explored the usage of a GA approach for the
problem of finding optimal (shortest) ACs for optimal field exponentiation

computations. The GA heuristic presented in this work was capable of finding almost

36

all the optimal ACs for any given fixed exponent e with e < 4096. They found that
GA strategy's percentage error was within 0.4% of the optimal for all cases
considered. In other words, for any given fixed exponent ewith e< 4096, they found
that strategy was able to find the requested shortest AC in at least 99.6% of the cases.
N. Cruz- Cortés et al. [114] proposed an AIS to generate an optimal AC. In that
paper, they dealt with the optimal computation of finite field exponentiation, which
was a well-studied problem with many important applications in error-correcting

codes and cryptography.

Raveen R. Gounder et al. [115] discussed a new strategy for doubling-free (SPA-
resistant) short addition-subtraction chain(GRASC) for an arbitrary integer by using a
precise golden ratio. In this, 12% to 28% reduction was obtained in the average chain
length compared to other doubling-free AC methods. Alejandro Le on - Javier et al.
[116] discussed the PSO algorithm to find the shortest ACs with different exponents.

Mohamed M. Abd. Eldayamet al. [117] proposed an algorithm for shorter AC based
on the window method with small width using 2’s complement. They proved that the
proposed algorithm was more efficient than the last result with a 20% minimum. S
Dominguez-Isidro and E Mezura-Montes et al. [118] proposed an algorithm using EP
to find the minimal length AC and the results obtained were more promising than the
other nature-inspired meta heuristic approaches but with a lower number of
evaluations per run. The proposed EP algorithm comprised the solution encoding with
suitable fitness function and initial population, a mutation operator, and the survivor
selection mechanism and EP did not use other operators such as crossover nor
additional mechanisms like parent selection in GAs. In [119], a note an AC was
presented. Niel Michael Clift [120] proved the perfect matches in the Scholz—Brauer

conjecture 1(2n —1) = I(n) + n — 1 for new values. The minimal sequence of minimal

37

multiplications required for performing modular exponentiation using Brauer Chains'

concept by GA was discussed in [121].

K. Mani [122] proposed division based AC to generate the optimal ACs for the small
exponents, exactly matched with ACs generated by the latest methods. But, for some

large exponents, there was a very small increase in chain length (at most three).

P. Anuradha Kameswari and B. Ravitheja [123] derived a Lucas AC for any integer n
to obtain Lucas sequence (a, 1) and also proved that the computation of V(a, 1) using
this Lucas AC is based on Vx.y(a, 1) for x, y, x—yin the Lucas AC. Stjepan Piceket et
al. [124] derived that the GA approach with an novel encoding using crossover and
mutation operators to minimize the length of the ACs with respect to a given
exponent. Aaron Hutchinson and Koray Karabina implemented algorithms [125], for
multidimensional differential ACs and applied these chains to ECC. This algorithm
has the unique key features using n dimension. With key efficiency cum security
features like uniformity, parallelized, and differential addition formulas were adopted

by allowing speed using precomputation cost and storage requirements.

Dustin Moody and Amadou Tall [126] derived minimal chains with low Hamming
weight using addition-subtraction chains with Lucas addition-subtraction using £(n)
the minimal length n, and proved that [(—(2n) — £—(n)| < 1 for all integers n of
Hamming weight < 4 to have arrived a conclusion that minimal addition- subtraction
chains for low Hamming weight integers, with the consideration of odd integers. In
[127], the authors implemented a new parallel algorithm to obtain minimal AC for n.
The experimental studies on multicore systems revealed that this algorithm's run time
worked faster than the sequential one and obtained the maximum speed up of 2.5

times than the best known sequential algorithm.

38

Narendra Mohan [128] discussed in wireless sensor networks (WSNSs) to enhance the
network lifetime and minimize the energy consumption in sink nodes contained
additional resources like long-range antenna, powerful batteries, large memory. This
should be achieved using Enhanced Emperor Penguin Optimization (EEPO)
algorithm. Bacteria foraging is one of the optimization and evolutionary algorithms.
Kevin M. Passino proposed it in 2000, and it has been widely accepted as a new

nature- inspired optimization algorithm.

2.6 Chapter Summary

From the above literature, it is understood that there is a need to develop enhanced
supportive method to protect from hackers. Moreover, the devices have limited
battery power, storage and have some security threats while transferring sensitive
information's through mobility as well as wireless devices like mobile devices. Hence,
the five parameters have been taken in this research viz., encryption, decryption time,
encryption, decryption power and security. This is possible only with AC. Even
though, too many methods exist in literature for generating AC it is found from the
literature that ACs were not generated by BIAs viz.,, PSO, SSO, BFO with
incorporation into RSA and ECC. These motivate me to select these methods to

generate the ACs and they are discussed in the subsequent chapters.

39

CHAPTER - 111

OVERVIEW OF ADDITION CHAIN AND MOBILE
CRYPTOGRAPHY

3.1 Background

Mobile computing works on the principle of broadcasting so that the information is
radiated to everyone within the wave range to increase the security threats and cyber
attacks replicated quickly and easily. Thus, care must be taken in handling for those
types of attacks to provide information security while the user roams through different
networks with heterogeneous security infrastructure. For that several cryptographic
techniques are employed in mobile devices. Among them, the public-key
cryptographic algorithms like RSA and ECC play a vital role in performing security.
The basic building blocks of ECC are scalar point multiplication k[P] where k is a
scalar and P is a point on EC. Similarly, in RSA, the encryption and decryption is of
the form x ®mod n where e is encryption/decryption key. Normally, exponentiation
operation takes more time than multiplication which takes more time than addition
and subtraction. To reduce the time, exponentiations and multiplications are
performed by repeated multiplications (RMs) and repeated additions (RAS)

respectively. To reduce the time further AC is used.

3.2 Mathematical Definitions of Addition Chain

This section describes some important definition of AC.

3.2.1 Definition (Addition Chain)
An AC for a positive integer n is a sequence, 1 =ay <a; <+ <a, =n such
that each member after a, is the sum of two earlier (not necessarily distinct) ones.

The number I(n) is called the length of the AC. It is noted that if the value of n is

40

relatively small, the exact value of [(n) is known. But, for large n, it is known that
I(n) =logzn+log,n(1+ a(1))/log,(log, n) .. (3.1)
An AC also defined as a finite sequence of positive integers called elements,
l=ay<a;<a; < <a,=e .. (3.2)
with the property that for all i > 0 there exist a;, k with

a=q+aandr=ziz=zj=k=0 .. (3.3)

3.2.2 Definition (Optimal AC)

An optimal AC is the one which has the shortest possible length denoted by I(n) and
it is a strictly increasing sequence as duplicate chain elements could be removed to
shorten the chain. For example, 1-2—-3-6-12-13 is one of the optimal chains for 13,

and its [(13) = 5.

The construction of each element of an AC [24] is called a step.

Foran AC,l =ay < a; <+ < a, = n, the following steps are involved.

Doubling step: a; = 2a;_1, i > 0.

Non-doubling step: a; = a; + a;, i >j >k = 0.

The steps of the form a; = 2q;,j < i — 2 are defined as non-doubling steps.

Big step: A(a;) = A(a;_1) + 1.

Small step: A(a;) = A(a;—1).

Thus, length of the AC, [(n) can be split into two components as [(n) = A(n) + 6(n)
From the above, it is understood that the first step is always a doubling step. A
doubling step is always a star step and never a small step. A doubling step must be
followed by a star step. If step i is not a small step, then step i + [is either a small

step or a star step, or both. It is noted that, not all doubling steps are big steps but big

41

steps are always doubling. Because [(n) is fixed for a given positive integer, finding
optimal ACs amounts to minimizing the number of small steps across all possible
chains. It is noted that for the given integer n, more number of ACs are possible.
But, for finding at least one of the shortest AC is an NP-hard problem. For example,

n=170, all possible optimum ACs are listed in fig. 3.1.

1-2-3-5-10-20-40-45-85-170

1-2-3-5-10-20-40-80-85-170

1-2-3-5-10-20-40-80-90-170

1-2-3-5-10-20-40-80-160-170

1-2-4-5-10-20-40-45-85-170

1-2-4-5-10-20-40-80-85-170

1-2-4-5-10-20-40-80-90-170

1-2-4-5-10-20-40-80-160-170

1-2-4-6-10-20-40-80-90-170

1-2-4-6-10-20-40-80-160-170

1-2-4-8-9-17-34-51-85-170

1-2-4-8-9-17-34-68-85-170

1-2-4-8-9-17-34-68-102-170

1-2-4-8-9-17-34-68-136-170

1-2-4-8-10-20-40-80-90-170

1-2-4-8-10-20-40-80-160-170

1-2-4-8-16-17-34-51-85-170

1-2-4-8-16-17-34-68-85-170

1-2-4-8-16-17-34-68-102-170

1-2-4-8-16-17-34-68-136-170

1-2-4-8-16-18-34-68-102-170

1-2-4-8-16-18-34-68-136-170

1-2-4-8-16-32-34-68-102-170

1-2-4-8-16-32-34-68-136-170

Fig. 3.1: Optimum Addition Chains for n =170

3.2.3 Definition (Brauer Chain)

A Brauer chain is an AC that always uses the previous value for the next one. In
other words, it is a sequence of integers ay, a4, ..., a, With ay = 1, a, = n, such that
a; = @ + a;,_1, i.e., a Brauer chain is an AC in which every member after the first
is the sum of the immediately preceding element and a previous element (possibly

the same element). For example, 1 —2 —3 — 6 — 7 — 13 is a Brauer chain for 13.

3.3 Need for Evolutionary Algorithms Based Addition Chains

To generate the ACs for an integer n, two algorithms are broadly used. They are
deterministic and evolutionary algorithms (EAS). In deterministic algorithms, since
everything is deterministic and the optimal AC may not be obtained at all time.
Binary method, factor method, window method, sliding window method, Fibonacci

method, Lucas method, continuous fraction method etc., are some examples of

42

deterministic algorithm. EAs or Bio-Inspired Algorithm (BIAs) are inspired by the
idea of either natural evolution or social behavior of insects or birds [29][30]. The
optimal ACs produced by EAs are not obtained by a single run. Many more runs are
needed to obtain optimal AC which will eventually take more run. Some examples of
EAs are Genetic Algorithm (GA), Artificial Immune System (AIS), Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO), Simplified Swarm
optimization (SSO). Bacteria Foraging Optimization (BFO) etc. In this thesis, three
popular BIAs viz., PSO, SSO and BFO algorithm concepts are taken and they are

discussed in next chapters.

3.4 Reason for Taking RSA and ECC

The usage of mobile devices are growing rapidly is the urge of today's scenario. The
applications of smart mobile phones are also increasing which lead to many security
issues too. The security features can be taken and applied on these devices. Mobile
devices deal with heterogeneity of networks and also in ubiquitous intelligent
environment with embedded computers everywhere and reliable services to the user
in an easy way. Even though, they have more offerings to the user, lot of challenges
like disconnection, low/ high bandwidth variability, low power and resources, security
risks, wide variety of devices with different capabilities and to fit more functionality
into single, smaller devices. There are many famed cryptography procedures
used for mobile security [36][37]. The public-key algorithms like RSA and ECC are
taken in this thesis. They are used for digital data security in a great extend. RSA is a
procedure of computational simplicity whereas ECC provides greater security. Large

prime numbers are used as security keys in these methods.

43

ECC gets popularity due to its shorter key length which produces same security as in
RSA with larger key length. It is noted that if a cryptographic algorithm takes more
time in performing operational time (where the operational time includes both
encryption and decryption) which causes customer impatience and dissatisfaction.
Thus, to minimize the operational time in RSA and ECC, AC is incorporated in
performing x¢mod n of RSA and k[P] of ECC where the AC is generated using PSO,

SSO and BFO.

341 RSA

RSA is one of the most used asymmetric cryptographic algorithms. It was developed in
1977 by Ronald-Alan Rivest, Adi Shamir, and Leonard Adleman. RSA is a popular
algorithm because it is a simple, easy to understand and to implement. The only
disadvantage is, it works slower than symmetric block ciphers. Most systems use RSA
for the generation of digital signature and distribution of the symmetric keys. Recently
key lengths of 4096 bits have been used in most system. Developers have organized
into RSA Laboratories to define the syntax of different structures related to public-key
cryptography and private-keys. These guidelines are de facto standards and are known
as Public-Key Cryptography Standards (PKCS)_. RSA algorithm consists of three
components viz., key generation, performing encryption and performing decryption
and they are shown in algorithms 3.1, 3.2 and 3.3 respectively. It is noted that in RSA,

Alice (A) is receiver and Bob (B) is sender.

Algorithm 3.1: RSA Cryptosystem: RSA-Key generation

Each entity creates an RSA public-key and a corresponding private-key.

Each entity A should do the following:

44

v Generate two large random (and distinct) primes p and g, each roughly the
same size.

v Computen = pxqanddp (n) = (p — 1)x(q — 1).

v Select arandom integere, 1 < e < ¢(n) such that gcd (e, dp(n)) = 1.

v" Use the extended Euclidean algorithm to compute the unique integer
d,1<d< ¢(n),suchthat e xd =1 (mod ¢(n)).

v' A’s public-key is (n, €).

v' A’s private-key is (n, d).

Algorithm 3.2: RSA- Encryption

B encrypts a message m for A, which A decrypts.
Encryption: B should do the following:

v Obtain A’s authentic public-key (n, e).

v’ Represent the message m as an integer m in the interval {0, 1, 2,..... n — 1}
v' Compute the ciphertext ¢ = m®mod n

v" Send the ciphertext c to A.

Algorithm 3.3: RSA -Decryption

To recover plaintext m from ¢, A should do the following:

v Use the private-key d to recover m = c® mod n.

e RSA Cryptosystem — An Example

Let Entity A chooses the two primes p = 2357,q = 2551. Then n is computed as
n = pq = 6012707 and $p(n) = (p—1)(q—1) = 6007800. Let A chooses
e = 3674911 because gcd (3674911, 6007800) = 1. Using Extended Euclidean
algorithm d is computed asd = 422191. Now, A’s public-key is the pair(n =
6012707; e = 3674911) , while A’s private-key is (n = 6012707; d =
422191). Suppose B wants to send the message m = 5234673 to A. Then, B uses

an algorithm for modular exponentiation to compute

45

c =mfmod n = 523467337*11 mod 6012707 = 3650502 and sends this toA.
After receiving c, c is decrypted by A by computing

c® mod n = 3650502422191 1m0d 6012707 = 5234673 = m.

3.5 Mathematical Preliminaries of ECC

The following mathematical preliminaries are required to understand the concept of
EC and ECC.

Theorem 3.5.1: Primitive Root

Let p be a prime number. Then there exists an element G € F; whose powers give
every element of £y, (ie) F ={1,G,G%G>,..,GP~?} .. (3.9)
Elements with this property are called primitive roots of F, or generators of F;". They

are the elements of F;" having order p — 1.

Theorem 3.5.2: Euler’s Criterion

Let p be an odd prime and a be an integer. Then

-1

a2z = 1modp ... (3.5)
3.5.3 Definition (Discrete Logarithm Problem)

Let G be the primitive root for finite field F, and let & be a nonzero element of £, .

The DLP is the problem of finding an exponent (x) such that
g* = h (mod p) ... (3.6)

The number x is called as DLP of .

3.5.4 Definition (Quadratic Residue)

Let p be an odd prime and ged (a, p) = 1. If the quadratic congruence x2 = a mod p
has a solution, then a is said to be quadratic residue of p i.e., Qr(p), otherwise a is

called quadratic- non residue of p i.e., Q nr(p).

46

3.6 Need for ECC

ECC is an approach to public-key cryptography based on the algebraic structure of
EC over finite fields. It allows smaller keys compared to non — EC cryptography to
provide equivalent security. ECC, an alternative technique to RSA, is a powerful
cryptography approach. It generates the security between key pairs for public-key
encryption by using the mathematics of EC. ECC creates keys that are more difficult
and mathematically crack. For this reason, it also makes sense to adopt ECC to
maintain high levels of both performance and security. ECC provides the same

security as RSA, with the fewer number of bits i.e., keys that are 2048 bits or longer
used in RSA makes the process slow and it also means that key size is important.

Size is a serious advantage of ECC, because it translates into more power for smaller,
mobile devices. In devices with limited memory and computing power, ECC could
become alternatives to other public-key systems. In a world where mobile devices
must do more and more cryptography with less computational power, ECC offers

high security with faster, shorter keys compared to RSA.

3.7 Concepts of ECC

It is noted that the security of RSA algorithm depends on large key values viz., 2096
or 4096 bits. To provide the same security, ECC is normally used with smaller key
length i.e., a 256 bits ECC is considered to be equivalent to 3072 bits RSA. The

concept of ECC was developed by two mathematicians Neal Koblitz and V.S. Miller

independently [99-104]. It is based on algebraic structure of Ec over the finite field F
and has the two variables. The cubic EC is of the form

vi=x3+ax+bmodp .. (3.7)

47

together with point at infinity 0. The point of O is similar to the number 0 as in
normal addition where a and b define the shape of the curve and p is a modulo p

prime for fixing the range of the curve. Also a and b are selected in such a way that it

must satisfy the Weistrass equation
4a® + 27b* =0
EC over the finite field £, is the set of points (x,y) € F, x F, satisfying the

Weiestrass equation. ECC is frequently discussed in the context of the RSA
cryptographic algorithm. RSA achieves one-way encryption of things like emails,

data, and software using prime factorization. EC is shortly denoted as Ep (a, b).

3.7.1 Generation of EC Points

To generate the points of EC, consider E: 2 = x3 + ax + b with aandb value is
taken as 1 and prime p = 31. To generate the points of E3i(1,1), first find Qr(31).

Then, generate the points for EC. Table 3.1 shows the EC points for the curve

E;;(1,1)
Table 3.1: Generations of Points for E5;(1,1)

X XC+x+1 b=x*+x+1mod31 b*mod31 y?€Qq1 Es(1,1) Points
0 1 1 1 Y (0,1) (0,30)

1 3 3 30 N

2 11 11 30 N

3 31 0 0 N

4 69 7 1 Y (4,10),(4,21)
5 131 7 1 Y (5,10),(5,21)
6 223 6 30 N

7 351 10 1 Y (7,14),(7,17)
8 521 25 1 Y (8,5),(8,26)
9 739 26 25 N

10 1011 19 1 Y (10,9),(10,22)
11 1343 10 1 Y (11,14),(11,17)

48

12 1741 5 1 Y (12,6),(12,25)
13 2211 10 1 Y (13,14),(13,17)
14 2759 0 0 N -
15 3391 12 30 N -
16 4113 21 25 N -
17 4931 2 1 Y (17,8),(17,23)
18 5851 23 14 N -
19 6879 28 1 Y (19,11),(19,20)
20 8021 23 14 N -
21 9283 14 1 Y (21,13),(21,18)
22 10671 7 1 Y (22,10),(22,21)
23 12191 8 1 Y (23,15),(23,16)
24 13849 23 14 N -
25 15651 27 24 N -
26 17603 26 25 N -
27 19711 26 25 N -
28 21981 2 1 Y (28,8),(28,23)
29 24419 22 30 N -
30 27031 30 16 N -

The said points are plotted and the E3;(1,1) is obtained. It is shown in fig. 3.2.

W
(0]

N

U o pon

g

y- axis

[][R

A

X- axis

Fig. 3.2: Graph Showing E3;(1,1)

3.7.2 Elliptic Curve Arithmetic

e Addition of Points
Let p; = (x1,¥1) and pz = (x3,¥2) be the two points on EC. The sum of two points

P3 = Py + P2, Where p3 = (x3,v3) is calculated as follows.

49

Case 1:

If p, = p,, then

_ Y23
A=21 .. (3.8)
x:.; = ,12 — xl — x2 e (3.9)
ya = (1 —x3)d —» ... (3.10)
Case 2:
If P1 = P2, then
_ 3xi+a 311
= - (3.11)
x3 —)12 - le (3 12)
ys = (x;—x3)A— .. (3.13)

e Scalar point Multiplication

The central operation of ECC is the scalar point multiplication [k]P , where k is an
integer and P is a point on EC . The [k]P is the result of adding P to itself k times,

where 1 < k < ord(P).

3.8 Embedding the Plaintext

In order to embed the plaintext M into £,(q, b) points, the value of & should be
30 = k = 50. Let m; € M, is the individual characters of M. To embed m,, it must
satisfy the condition (m; + 1) k < p of the £, (a, b). Once the condition is checked
using (mk) + j. where j should be 0 < j < 30 embed m; into £, (a, b) points and
they are used for encryption and decryption with any one of the cryptosystems viz.,

RSA, ECC, ElGamal etc.

For example, let M is taken as “KANNANBABA” and EC is taken as Es3q039(17,7).

The points for Ez35035(17,7) are generated and they are shown in appendix (4.1). To

50

embed a1, let k = 30 or worst case k = 50, then (m + 1)30 < 539039. Suppose,

ASCIl encoding is used for each m;eM then ASC(m;) =

{75,65,78,78,65,08,66,65,66, 65}. To embed m; i.e., Em;,i=12,...,111in E, it
satisfies (m; + 1)30 < 539039. Further, m; (k) +j, 0 < j < 30. For example, to
embed m, = “K”, then ASC(m,) = 75. From EC points, x, = 2252 when j = 2.
Thus, Em, (k)= (2252,226996). Other m;, i = 2,...,11 are embedded in EC points

in this manner and they are shown in table 3.2.

Table 3.2: Embedding M into E<35435(17,7)

i | M, | ASC(m) | (ASC(m)+1)30<p | xi=mi(30)+ Em,
1| K 75 2280 2250 (2252,226996)
2| A 65 1980 1950 (1950, 246296)
3| N 78 2370 2340 (2340,153325)
4| N 78 2370 2340 (2340,153325)
5| A 65 1980 1950 (1950,292743)
6| N 78 2370 2340 (2340,385714)
7 | blank 08 270 240 (240,102442)
8| B 66 2010 1980 (1981,74914)
9| A 65 1980 1950 (1950,246296)
10| B 66 2010 1980 (1981,48955)
11| A 65 1980 1950 (1950,282743)

3.9 ElGamal Public-key Cryptosystem with EC

In order to understand the EC with any cryptosystem, EIGamal proposed a public-key
cryptosystem which is based on the Discrete Logarithm Problem (DLP) in (Z;, +).

This system is presented in ElGamal Public-key Cryptosystem in z; . Let p be a

o1

prime such that the DLP in (z;, +) is reliable, and let < € z; be a primitive
element. Letp = z3, ¢= z;« z; anddefine

K={p aap):B = a*(modp) ... (3.14)
The values of p,e and g are the public-key, and a is the private-key. For

K = (p,x, a,), and for a (secret) random number ¢ Zy_q» define
ex(x.k) = (ka,x + kB) = (y1,v2) ... (3.15)
where v, = a¥ medpand y, = xB¥ modp ... (3.16)

For i and y, € z;; , define

di (1, y2) = 20107 mod p ... (3.17)

3.9.1 ElGamal Encryption with EC - An Example

Let the primitive element @ = (1950,246296) and a = 7. Now,
B = 7a = 7(1950,246296) = (533025,457088)

ex(x. k) = (ka,x + k) = (vi, v2) ... (3.18)

Let £ = 3 and x = m;€E, y, and y, are ciphertexts and the decryption operation is
di(ry,¥2) =y — B ... (3.19)

Suppose, Alice wishes to send the message A1 (here x) , say “KANNAN BABA” t0

Bob. Now, Alice encrypts the character one by one. Now,

my; =K, m, = "A", ..,my, ="A". TO encrypt x; =m, =K, from table 3.2, it is
embedded into EC as Em,; = (2252, 226996). Using eqgn. (3.15) and eqn. (3.16)

vy, and y, are computed as

v, = 3(1950,246296) = (397955,288822)

Y2 = (2252, 226996) + 3(533025, 57088)

= (2252, 226996) + (77065, 118651) = (80907, 94455)

To decrypt (v4, 35), Bob must do as

52

dy = (}’1;}’2) =V¥2 — 7W1
(3.20)
= (80907,94455) — 7((397955,288822)

= (80907,94455) — (345943,368384)
= (80907,94455) + (345943,170655)

= (2252,226996) = Emy; = K

Similar computations can also be performed for other characters too to encrypt and

decrypt them using EIGamal with EC.

3.10 Diffie Helman Key Exchange Protocol with ECC

1. A selects an integer ny less than n. This is A's private-key. A then generates a

public-key P, =n, X G; the public-key is a point Eq(a, b).
2. B similarly selects a private-key ng and computes a public-key Pg.

3. A generates the secret key k = ny X Py . B generates the secret key k = nz X P,.

Global Public Elements
Eq(a,b) EC parameters a, b and q, where ¢ is a prime or an integer of

the form 2™.

G point on EC whose order is large value n

= User A Key Generation

Select private ny ny<n
Calculate public P, P, =n, XG

= User B Key Generation
Select private ng ng <n
Calculate public P4 P =ng X G
= Calculation of Secret Key by User A
k=n4 X Pp
= Calculation of Secret Key by User B
k=ngXP,

53

The two calculations in step 3 produce the same result because

nAXPB: ny X(nBXG):nBX(nAXG):nBXPA

3.11 Mobile Operating Systems

In order to functioning the mobile devices MOS are normally used. This section
describes an overview of MOS.

Smart phones are not only used to make calls but also used for other operations like
video calls, multimedia messages, take pictures, play media files, browse World Wide
Web (WWW), run web applications i.e., multiple tasks run on the device. Powerful OS
has become an essential part and available in various forms depends on the
sophistications of the device level [53]. It can do two things viz., (i) managing the
resources (camera, speaker, keyboard, and screen) (ii) providing different interfaces

(user of the device and also several devices with networks) .

3.12 Constraints of MOS

The special constraints of MOS are:
v Severely limited energy stored in a tiny battery
v" Limited memory space
v' Limited screen size
v" Miniature keyboard
v" Limited processing power
v' Limited battery power
v Limited and fluctuating bandwidth of the wireless medium and
v" Real-time data streaming etc.
The MOS is designed to run on mobile devices such as mobile phones, smartphones,

tablet and other handheld devices. Even though, different types of MOS include Apple

54

10S, Google Android, BlackBerry OS, Nokia’s Symbian and Microsoft’s Windows
Phone OS exist. In this thesis, Android OS and Windows OS will be taken for the test

cases because they are based on Linux OS and Microsoft OS respectively.

3.13 Android and Window OS Emulators

In this thesis, to implement the proposed algorithms only Android (A) and Windows
(W) emulators are taken. Android is one of the popular OSs developed by Google. It is
based on the Linux environment. It is a free open source software. Samsung, HTC,
Micromax, Motorola and many other top manufacturers are using android in their
devices. Windows OS is proprietary mobile OS developed by Microsoft for
Smartphone. It was very popular among people who were used to it. Windows OS
provide colourful and user-friendly interface so currently in demand all over the world.

Fig. 3.3 shows the GUI of Android and Windows emulators.

R
REAC | o [

Ii!FiIF-—!m
WMs6(5 || B = |

Work Foider: [C:\temp

Report File : ‘C:\Emp\ﬁeport‘csv

Andreid

Emulator : | C:\temp\AndEmu'a_emula.exe

[[|

Windows

Emulator : ‘C:\lEmp\WndEmu\WndEmu.ExE

[[

Analysis Completed Successfully

Fig. 3.3: GUI - Android/ Windows Emulator Launching

3.14 Need for Security

Mobile security or mobile device security is becoming more notable within modern
technology. The personal information is that it can be found on smart phone

nowadays. More users are using smart phones to communicate, organize their

55

schedule and their lives. There is a need for confidentiality, integrity, authenticity,
authorization and non-repudiation in database security. Among the additional
challenges for multi-location database is the constant mobility of its users and the
portability of handheld devices and wireless links. Some security issues due to mobile
users, hackers and viruses are vulnerable nowadays. In order to secure database,
authentication mechanism is provided, control access scheme and strong encryption

technique must be implemented [57].

Public-key algorithms like RSA and ECC have become much more widely utilised
than symmetric key systems. ECC gets creditability because the same security level is
produced by the shorter key length. This algorithm's lack of performance causes
customer discontent. Because it requires more operational time (where operational
time includes time taken for encryption and decryption) which leads to customer’s

impatience and dissatisfaction.

In RSA, for encryption and decryption, exponentiation operation is involved which
takes more time. To reduce the time, exponentiation operation is performed by RMs.
For example, to compute x°, the proposed RMSs are x * x * x * x * x. In general, for
performing x¢, (e — 1) multiplications are required. Similarly, in ECC, to perform
k[P], (k — 1) RAs are required which take somewhat less time when it is compared

with classical multiplications used in ECC.

3.15 Experimental Set up

Two different types of mobile emulators A and W are used in this work. The T-
Engine A emulator and W emulator 6.1.4 are used to set up the A and W - OS mobile
infrastructure respectively. The User Interface (Ul) is designed using Visual C++ to
upload files for A and W emulators. Ul and emulator executions are carried out on a

56

Windows 8.1 64-bits Intel i5 2.4 GHz processor-4GB RAM computer. To load and
execute various encryption algorithms, each emulator is individually used. In order to
test the proposed algorithms, the experiments are not stopped until either 500

iterations or it reaches optimal AC and the maximum swarm size is taken as 180.

3.16 Parameters Taken in the Work

There are five parameters mainly used in mobile emulators viz., Encryption Time
(ET), Decryption Time (DT), Encryption Power (EP), Decryption Power (DP) and
Security (SE). ET and DT are the time taken for converting M into C and vice versa
respectively. It includes the time taken for all arithmetic computation of key
generation and encoding of M. Without compromising the security, a good
cryptography algorithm should be able to encrypt the data more quickly. In measuring
the quality of a cryptography algoithm, this DT parameter gets equal priority to the

ET. Shorter DT refers to the quality of cryptography algorithm is high.

The energy consumed by encoding and encrypting M into C and C into M is called EP
and vice versa EP and DP respectively. Mobile devices are battery-powered devices
that enable greater mobility with careful consumption of power. Without
compromising security strength, a successful cryptography algorithm should be

capable of processing with acceptable power consumption.

Producing the security is an another target of cryptography algorithms. Without using
a lot of computing resources, the best cryptography algorithm can provide high
security. The cryptography algorithm should operate with greater power-awareness,
especially in the architecture of mobile devices. With the assistance of key sizes, key

revocations and procedural complexity, security strength can be measured

57

mathematically. Security strength can be calculated using certain crypt-analysis
methods that can use different attacks to attempt to breach security. The ultimate goal
of an ideal cryptography algorithm is to achieve higher security with less operational
time and energy consumption. The security level produced by the existing and the
proposed algorithms are measured by All Block Ciphers (ABC) Universal Hackman

tool which uses dictionary attack.

3.17 Results and Discussion

The regular RSA and ECC, RM-RSA and RA-ECC are implemented using VC++.
The results obtained are tabulated. Tables 3.3 to 3.12 show the time taken for ET, DT,
EP, DP and SE with and without using RM and RA in RSA and ECC respectively
with A and W emulators. Their corresponding graphical representation of said tables

are shown in fig. 3.4 to 3.13.

Table 3.3: Encryption Time (mS) using Android Emulator

Fi(':ﬂzi)ze ET-RSA-A | ET-ECC-A | ET-RM-RSA-A | ET-RA- ECC-A

1 1660 2447 1227 1820

5 3237 4790 2377 3555

4 6494 9553 4788 7173

3 13689 20179 10077 15130

16 27426 40415 20199 30326
Total 52506 77384 38668 58004
Avg. 10501.2 15476.8 7733.6 11600.8

58

90000 -
80000 -
70000 -

60000 1 B ET-RSA-A

50000 - W ET-ECC-A

ENC. 40000 -
TIME (mS)

ET-RM-RSA-A

30000 - m ET-RA-ECC-A

20000 -

10000 -

1 2 4 8 16 Total Avg.
FILE SIZE(MB)

Fig. 3.4: Graph Showing Encryption Time using Android Emulator

= ET-RSA-A is 1.474 times faster than ET-ECC-A

= ET-RM-RSA-A is 1.500 times faster than ET-RA- ECC-A
= ET-RM-RSA-A is 1.358 times faster than ET-RSA-A

= ET-RA- ECC-Ais 1.334 times faster than ET-ECC-A

Table 3.4: Decryption Time (mS) using Android Emulator

Fi(':ﬂzi)ze DT-RSA-A | DT-ECC-A | DT-RM-RSA-A | DT-RA- ECC-A
1 1616 2330 1205 1789
) 3193 4519 2352 3519
A 6490 9209 4776 7171
8 13645 19375 10066 15082
16 27399 38936 20193 30294
Total 52343 74369 38592 57855
Avg. 10468.6 14873.8 7718.4 11571

59

80000 -
70000 -
60000 -
50000 -
Dec. Power 40000 -
(mw)
30000 -~
20000 -~

10000 -

2 4

8 16 Total Avg.

File Size (MB)

W DT-RSA-A

m DT-ECC-A

DT-RM-RSA-A

m DT-RA-ECC-A

Fig. 3.5: Graph Showing Decryption Time using Android Emulator

= DT-RSA-A is 1.421 times faster than DT-ECC-A

= DT-RM-RSA-A is 1.499 times faster than DT-RA- ECC-A

= DT-RM-RSA-A is 1.356 times faster than DT-RSA-A
= DT-RA-ECC-A is 1.285 times faster than DT-ECC-A

Table 3.5: Encryption Power (mW) using Android Emulator

Fi(IfASBi)Ze EP-RSA-A | EP-ECC-A |EP-RM-RSA-A | EP-RA- ECC-A
1 554 817 421 613
) 1102 1621 806 1197
4 2171 3208 1612 2410
g 4569 6731 3364 5042
16 9156 13510 6735 10134
Total 17552 25887 12938 19396
Avg. 3510.4 5177.4 2587.6 3879.2

60

Enc.Power
(mw)

30000 -

25000 -

20000 -

15000 -

10000 -

5000 -

0 -

2 4

8 16

File Size(MB)

Total

W EP-RSA-A

W EP-ECC-A

EP-RM-RSA-A

W EP-RA-ECC-A

Avg.

Fig. 3.6: Graph Showing Encryption Power (mW) using Android Emulator
= EP-RSA-A is 1.475 times less than EP-ECC-A
= EP-RM-RSA-A is 1.499 times less than EP-RA- ECC-A

= EP-RM-RSA-A is 1.357 times less than EP-RSA-A
= EP-RA-ECC-Ais 1.335 times less than EP-ECC-A

Table 3.6: Decryption Power using Android Emulator

Fi(IfASBi)Ze DP-RSA-A | DP-ECC-A | DP-RM-RSA-A | DP-RA- ECC-A
1 562 815 411 602
5 1081 1506 802 1178
4 2175 3072 1608 2417
3 4548 6463 3357 5035
16 9148 12995 6743 10109
Total 17514 24851 12921 19341
Avg. 3502.8 4970.2 2584.2 3868.2

61

25000 -
20000 -
B DP-RSA-A
Dec.Power (mW) 15000 -
m DP-ECC-A
10000 - DP-RM-RSA-A
B DP-RA-ECC-A
5000 -
0 .

30000 -

1 2 4 8 16 Total Avg.

File Size (MB)

Fig. 3.7: Graph Showing Decryption Power using Android Emulator

DP-RSA-A is 1.419 times less than DP-ECC-A
DP-RM-RSA-A is 1.497 times less than DP-RA- ECC-A
DP-RM-RSA-A is 1.355 times less than DP-RSA-A
DP-RA- ECC-A is 1.285 times less than DP-ECC-A

Table 3.7: Security (%) using Android Emulator

Fi(':ﬂzi)ze SE-RSA-A | SE-ECC-A |SE-RM-RSA-A |SE-RA- ECC-A
1 89 93 92 94
) 88 89 89 92
4 87 88 88 90
3 85 88 87 90
16 85 86 87 89
Avg. 86.8 88.8 88.6 91

62

100

90

80 -
70 -
60 - B SE-RSA-A
Security 50 - W SE-ECC-A
(%) 0 | 1 SE-RM-RSA-A
30 - m SE-RA-ECC-A
20 -
10 -
O -
1 2 4 8 16 Avg.
File Size(MB)
Fig. 3.8: Graph Showing Security using Android Emulator
= SE-ECC-A is 1.023 times more than SE-RSA-A
= SE-RA-ECC-A s 1.027 times more than SE-RM-RSA-A
= SE-RM-RSA-A is 1.021 times more than SE-RSA-A
= SE-RA- ECC-Ais 1.025 times more than SE-ECC-A
Table 3.8: Encryption Time (mS) using Windows Emulator
File Size
(MB) ET-RSA-W | ET-ECC-W |ET-RM-RSA-W | ET-RA- ECC-W
1 1654 2441 1204 1728
2 3233 4748 2378 3362
4 6490 9559 4775 6753
8 13670 20174 10082 14252
16 27432 40443 20214 28603
Total 52479 77365 38653 54698
Avg. 10495.8 15473 7730.6 10939.6

63

Enc. Time
(mS)

90000 -
80000 -
70000 -

60000 -
B ET-RSA-W
50000 -
W ET-ECC-W
40000 -
ET-RM-RSA-W
30000 -
W ET-RA-ECC-W
20000 -

10000 -

1 2 4 8 16 Total Avg.

File Size (MB)

Fig. 3.9: Graph Showing Encryption Time using Windows Emulator

ET-RSA-W is 1.474 times faster than ET-ECC-W
ET-RM-RSA-W is 1.415 times faster than ET-RA-ECC-W
ET-RM-RSA-W is 1.358 times faster than ET-RSA-W
ET-RA- ECC-W is 1.414 times faster than ET-ECC-W

Table 3.9: Decryption Time using (mS) Windows Emulator

Fi(ll\e/ISBi)Ze DT-RSA-W | DT-ECC-W |DT-RM-RSA-W | DT-RA- ECC-W
1 1616 2322 1205 1708
) 3184 4530 2366 3336
4 6496 9212 4778 6755
8 13657 19396 10050 14240
16 27401 38958 20210 28571
Total 52354 74418 38609 54610
Avg. 10470.8 14883.6 7721.8 10922

64

80000 -

70000 -
60000 -
50000 - B DT-RSA-W
Dec.Time 40000 - m DT-ECC-W
(ms)
DT-RM-RSA-W
30000 -
B DT-RA-ECC-W
20000 -
10000 -
0 -
1 2 4 8 16 Total Avg.
File Size (MB)

Fig. 3.10: Graph Showing Decryption Time using Windows Emulator

= DT-RSA-W is 1.421 times faster than DT-ECC-W

» DT-RM-RSA-W is 1.414 times faster than DT-RA-ECC-W
» DT-RM-RSA-W is 1.356 times faster than DT-RSA-W

» DT-RA-ECC-W is 1.363 times faster than DT-ECC-W

Table 3.10: Encryption Power (mW) using Windows Emulator

Fi(ll\eASBi)Ze EP-RSA-W EP-ECC-W |[EP-RM-RSA-W | EP-RA- ECC-W
1 571 840 421 592
2 1100 1582 796 1146
4 2179 3228 1604 2263
8 4577 6750 3361 4765
16 9165 13496 6738 9559
Total 17592 25896 12920 18325
Avg. 3518.4 5179.2 2584 3665

65

30000 -

25000 -
20000 + B EP-RSA-W
Enc. Power
(mMW) 15000 - W EP-ECC-W
EP-RM-RSA-W
10000 - W EP-RA-ECC-W
5000 -
0 .
1 2 4 8 16 Total Avg.

File Size(MB)

Fig. 3.11: Graph Showing Encryption Power using Windows Emulator

= EP-RSA-W is 1.362 times less than EP-ECC-W

» EP-RM-RSA-W is 1.413 times less than EP-RA- ECC-W
» EP-RM-RSA-W is 1.362 times less than EP-RSA-W

» EP-RA-ECC-W is 1.413 times less than EP-ECC-W

Table 3.11: Decryption Power (mW) using Windows Emulator

Fi(ll\e/lSBi)ZB DP-RSA-W | DP-ECC-W | DP-RM-RSA-W | DP-RA- ECC-W

1 541 785 415 584
2 1086 1536 805 1140
4 2192 3088 1604 2275
8 4579 6496 3368 4761
16 9133 12997 6742 9529

Total 17531 24902 12934 18289

Avg. 3506.2 4980.4 2586.8 3657.8

66

30000 +

25000 -

20000 -

Dec.Power
(mw)

15000 -

10000 -

5000 -

2 4

8 16 Total

File Size (MB)

B DP-RSA-W

u DP-ECC-W

DP-RM-RSA-W

E DP-RA-ECC-W

Fig. 3.12: Graph Showing Decryption Power using Windows Emulator

DP-RSA-W is 1.420 times less than DP-ECC-W

DP-RM-RSA-W is 1.414 times less than DP-RA- ECC-W

DP-RM-RSA-W is 1.355 times less than DP-RSA-W
DP-RA- ECC-W is 1.362 times less than DP-ECC-W

Table 3.12: Security (%) using Windows Emulator

Fi(':ﬂzi)ze SE-RSA-W | SE-ECC-W | SE-RM-RSA-W | SE-RA- ECC-W
. o1 92 92 %
, 88 89 89 92
. 86 89 88 o
o 86 88 88 89
16 8 o7 o >
Avg. 87.2 89 88.8 91

67

100 -
90 -
80 -
70 1 B SE-RSA-W

60 -
M SE-ECC-W
Security 50 -

(%) 1 SE-RM-RSA-W
40 -
B SE-RA-ECC-W
30 -

20 A

1 2 4 8 16 Avg.

File Size (MB)

Fig. 3.13: Graph Showing Security using Windows Emulator

= SE-ECC-W is 1.021 times more than SE-RSA-W

= SE-RA-ECC-W is 1.025 times more than SE-RM-RSA-W
= SE-RA-ECC-W is 1.022 times more than SE-ECC-W

= SE-RM-RSA-W is 1.018 times more than SE-RSA-W

3.18 Chapter Summary

The concepts and mathematical preliminaries used in RSA, ECC, RM-RSA and RA-
ECC are discussed elaborately in this chapter. From the experimental results, it is
observed that ECC takes more time than RSA for both operational time and power
consumption. This is because lot of computations like generation of points for EC,
addition of points in performing K[P] are involved in ECC. Normally, regular RSA
and ECC takes more time. To reduce the operational time, the conventional RMs and
RAs are used in RSA and ECC respectively. To reduce the operational time further, in
both cryptographic algorithms which are used in mobile devices, ACs are

incorporated. To generate the AC for the given integer, the BIAs viz., PSO, SSO and
68

BFO are taken in this thesis. If the energy required for the same gets reduced, the
operational time too will come down which ultimately increases the life-time of the

battery. They are discussed in the upcoming chapters.

69

CHAPTER - IV

GENERATION OF ADDITION CHAIN USING PARTICLE
SWARM OPTIMIZATION

4.1 Background

On mobile or handheld computers, security is the key concern since the internet
community can do its job anywhere at any time. To encrypt information on mobile
devices, various cryptographic algorithms such as RSA, ECC etc., can be used today.
But, they take some battery power, OS, memory size, processing speed, screen size,
resolution, etc. Providing security for mobile devices with limited power and
increasing the operational speed are difficult job. In order to have the security,
cryptographic algorithms are being used. To minimize the operational time, the
computation involved in encryption and decryption operations should be eased. Even
though, many methods exist in literature to reduce the said time, ACs are more
predominant one. This is because, it reduces the number of multiplications in RSA

and the number of additions in ECC.

There are several methods exist in literature to generate the ACs for the given integer,
the bio-inspired or Evolutionary Algorithms (EA) are taken in this work. The term
computer intelligence or computational intelligence frequently used to refer to EAs.
EAs are inspired by the idea of either natural evolution or social behaviour of insects,
birds, animals etc. In this chapter, ACs are generated using PSO termed as AC-PSO
and they are used in RSA and ECC with two different emulators for performing
encryption and decryption operations where the said cryptosystems are used in mobile

devices. They are used in encryption and decryption phases of RSA and ECC. Also,

70

the time taken for the said phases and the power consumption for the same are also

evaluated.

4.2 Need for PSO Algorithm

PSO algorithm is a computational method that optimizes the solution by iteratively
trying to improve the candidate solution. In PSO, each individual (particle) X; is
moving with some velocity through the search space which is the essence of PSO. As
a PSO, individual moves through the search space, it has some inertia and so it tends
to maintain its velocity. However, its velocity can change due to a couple of different
factors viz., (i) it remembers its best position in the past, and it would like to change
its velocity to return that position. Also, in PSO, an individual travels through the
search space and its position in the search spaces changes from one generation to the
next. However, the individual remembers its performance from past generations, and
it remembers the search space location at which it is obtained its best performance in
the past (ii) An individual knows the best position of its neighbours at the current
generation. It requires the definition of neighbourhood size and it requires that all of
the neighbours communicate with each other about their performance of the

optimization problem [30]. It has no evolution operators.

It is noted that in AC, the first two numbers in AC is always 1 and 2, i.e., 1-2. From 2,
there are 2 numbers viz., 3 and 4. Since there are two numbers, the search space also
consists of two numbers. On the other hand, if the current number is 10, the search
space consists of 10 numbers starting from 1 to 10 where the next number after 10 is
obtained either using addition step or doubling step depending on the velocity. Since
the velocity determines the neighbour or next number, the optimal AC is determined

based on it. Since, finding optimal AC is an NP-hard, it is possible only using PSO.

71

An AC is said to be an optimal, its length should be minimum and also the time taken
for encryption and decryption and the power consumption for the above said

operations are less.

4.3 Concepts Used in PSO

In computational science, PSO is a computational method that optimizes a problem by
iteratively trying to improve a candidate solution with regard to a given measure of
quality. It is a population-based optimization technique inspired by the motion of bird
flocks and schooling fish. In PSO, all the birds do not know where food is but they
know how they in each iteration. In PSO, each member of the population is called
particle and the population is called swarm. PSO shares many similarities with
evolutionary computation techniques. The system is initialized with a population of
random solutions, and the search for the optimal solution is performed by updating
generations. PSO has no evolution operators, such as crossover and mutation. In PSO,
the potential solutions, called particles, move in the problem space by following the
current optimum particles. It is computationally more efficient in terms of both speed

and memory requirements.

Dr. Eberhart and Dr. Kennedy [32][33] proposed PSO in 1995 on the basis of flocking
birds' social activity and fish schooling. It is a meta-heuristic algorithm. With a
population of multiple random solutions, it is initialised. The effects are refined for
the best outcome by iterations and by tiding generations it acquires an optimal
solution. Although, a group of birds in an area are looking for food, their initial
locations are random. The birds initially do not know the location of the food. But
after a set of movements, which are iterations, they get closer to the food. Following
the direction of the bird that is closest to food is the fastest way to reach food. All

particles are modified on the basis of the two best values after each iteration. The first

72

best value called pBest is already obtained by a particle. The second-best value called
Ipest 1S the best value achieved for the fitness function tracked by the particle swarm

optimizer by the general population.

When the entire group is searching for a certain target, for one individual, the
individual in the current optimal position of the group and the optimal position that it
has reached is often referenced to adjust the next search. Eberhart and
Kennedy modified the model of this simulated group interaction and designed it as a
general method to solve optimization problems; they called it as PSO algorithm.
There is no parameter controlling the progression of ppes Values in general flow of
PSO. In other words, there exists the need of a parameter regenerating the insufficient
particles that cannot improve their individual best position value (ppest). On the other
hand, velocity and position concepts perform the update of particles as much as
employed. Since each parameter tries to modify the position by using the information
viz., (i) the current position, (ii) the current velocity (iii) the distance between the
current position and pbest (iv) the distance between the current position and g -
The new velocity and new positions are calculated using eqgn. (4.1) and eqgn. (4.2)
respectively.
vie{1,n}:V; =V, +c; Xy; X (Pb; — P,) + ¢, Xy, X (Gb; — P;) .. (4.1)
where

n : number of maximum permitted iterations

V' : velocity of the particle

Pb: pbest (Particle best)

P: present position

Gb: gbest (Global best)

73

c1i, Co . learning factors or accelerating factors related to pp.:, and gpes:
respectively. In general ¢; = c, selected from the range of 0 to 1.
¥1,Y2. random numbers between 0 to 1.

P=P+V ..(4.2)
PSO emulates the interaction between members to share information. It has been
applied to numerous areas in optimization and in combination with other existing
algorithms. This method performs the search of the optimal solution through agents,
referred to as particles, whose trajectories are adjusted by a stochastic and a
deterministic component. Each particle is influenced by its ‘best’ achieved position
and the group ‘best’ position, but tends to move randomly. A particle i is defined by
its position vector, x;, and its velocity vector, V;. Every iteration, each particle
changes its position according to the new velocity as in egn.(4.1) where
Prest aNd gp.s; denote the best particle position and best group position and the
parameters cq, c,, 1 and r, are respectively inertia weight, two positive constants
and two random parameters within [0, 1]. Usually maximum and minimum velocity
values are also defined and initially the particles are distributed randomly to

encourage the search in all possible locations.

One of the advantages of PSO over other derivative-free methods is the reduced
number of parameters to tune and constraints acceptance. A 2D representation of one
particle, ‘i’, movement between two positions. It can be observed how the particle best
position, pp.s: , and the group best position, g,..: , influence the velocity of the
particle at the next iteration. Nevertheless, the stochastic properties of the algorithm
allow for solution variability to guarantee the solution space exploitation. Fig. 4.1

«r)

shows the movement of the particle ‘i’ in the solution space during

74

iterations k and k + 1. The evolution of the particle movement is influenced by the

particle best position, p,.s:, and the group best position, g ;-

A

// V‘_r. bext

V FPbest

Y

Fig. 4.1: Movement of the particle ‘i’ in the solution space during
iterations k and k + 1.

In this work, particle represents the AC. Velocity V; represents the number to be
added to the current number X; so that the next number Xi.; is obtained. V; is obtained
eqn. (4.2). It corresponds to either by using addition step or doubling step used in AC
depending on the random number chosen. Further, fitness function is taken as length
of AC denoted as I(xj+1). In this work, c;=c,=0.7 where 0.7 is a uniform random
number. Similarly, other random numbers ry, r, are taken from RAND corporation
table. When RSA and ECC are considered, the key is taken very large, and AC of the
key is generated according to the proposed AC- PSO. The steps involved in PSO are

shown in Pseudo code 4.1.

Pseudo Code 4.1: PSO

a. Initialize all particles
b. Calculate fitness value for each particle

c. If the calculated fitness value p;.; IS better than existing p.s:, then update

Pbest
d. Find the particle with best fitness value g,.,; from overall population

75

e. For all particles, calculate velocity and position based on the equations and
update values
f. Repeat from Step b until maximum number of iterations achieved or optimum

result achieved.

4.4 Proposed AC-PSO Methodology

In order to generate the AC for the given integer n, it is noted that the first number is
always 1. Let it be x;. The next number in AC is 2. Let it be x,. This is because 2 is
obtained from 1 either by using addition or doubling step of x;. Let it be x,. From 2,
the number 3 (2 + 1 = 3) is obtained by using addition step and 4 is obtained either
addition step (3 + 1) or doubling step 2(2) =4) . Thus x3 € {3,4} and the
corresponding ACis1—2—3o0r1—2—4and its [(x3) = 2. From 3, the numbers
4(3+1),5(3+ 2) and 6(3 + 3) are obtained and the ACsare (i) 1 —2 — 3 — 4 (ii)
1—-2-3-5(iii) 1—2—3 -5 with length 4. But, the AC is not considered as
optimal length AC because the AC for 4 has been generated previously with length 3.
Similarly, from 4, the next numbers 5(1-2—-4-5),6(1-2—-4-6) and

8(1,2,4,8). Letitbe x4. Thus, x, € {5,6,8}.

To generate, the next number from x, =5, they are 6(5+ 1),7(5 + 2), 8(5+ 3)
with their lengths 4, i.e., the ACsare1-2—-3-5-61-2—-3-5-7,1-2—
3—-5—-8,1-2—-3—-5-10.But,the AC1-2-3-5-6is not considered due to
increasing its length. The numbers in x;, i = 5, ...,n — 1 are generated in this manner
and they are shown fig. 4.1. From fig. 4.1, it is observed that in general if the number
issay i, if i €x,, thenl(i) = n — 1. For example, ifi = 76, thenl(76) =9 —1 =
8. This concept is very useful in generating the AC for any number n. Fig. 4.2

shows the numbers occur in P/ position.

76

a7
53

55

57

58

59

61

62

29 63

31 67

35 69

37 70

38 73

39 74

19 41 75

21 42 76

22 43 77

11 23 A4 78

13 25 45 81

7 14 26 46 22

5 9 15 27 49 83
| 2] 2 3 3] 16 17 28 58 84
4 g 12 12 30 51 85
16 20 33 52 26

24 34 54 88

32 36 56 o

4 58 92

ag 65 97

64 66 og

68 99

72 198

20 182

96 1&4

128 198

112

120

129

120

132

136

144

X1 X X3 X4 X5 Xg X7 Xg

Fig. 4.2: Numbers Occur in P; ,i=1, 2, ...8 Without Duplication

4.5 Generation of AC-PSO - An Example

In order to generate the AC using PSO, letw = 0.9,¢; = ¢; = 1.5andr;, r, are
taken from RAND table, and fitness function is I(x;), i = 0,1,2,3, For example,
to generate AC for the integer 20 i.e., n = 20. Since x; = 1; x, = 2. To generate

the numbers for x5 , Now v, k = 3,4 are computed using eqn. (4.1) as

77

v33 = 0.9(0.1116) + 1.5(0.4363) (3—2) + 1.5(0.1875) (3—2) = 1.0361
[1.0361] =1
x4 =3+1=4€x, Thus,the ACfor5is1— 2 — 3 —5 and fitness value [(5) = 3.

Vaq = 0.9(0.0613) + 1.5(0.7674)(4 — 2) + 1.5(0.2632) (4 — 2) = 3.14697
= | 3.14697| = 3
X4:4+3 =7 € X4 .

Thus, the AC for 7is 1 — 2 — 4 — 7 and fitness value [(7) = 3.

Table 4.1 shows the generation of AC for the integer n = 10 based on PSO. Only for

illustration purpose small integer is taken. But, when RSA and ECC are considered,

the key is taken very large, and AC of the key is generated according to the proposed

PSO-AC.
Table 4.1: Generation of AC for n=10 Using AC-PSO
Random Nos Taken for | Computation | .,
i| x| AC(x) [|lAC(x))] of Viusing | . _
rv; T, T eqn. (A1) | {Vil-[vil}
3 1-2-3 2 0.1116 | 0.4363 | 0.1875 1.0361 {1,2}
3
4 1-2-4 2 0.1116 | 0.4363 | 0.1875 1.9719 {1,2}
5 1-2-3-5 3 0.0613 | 0.7674 | 0.2632 3.1290 {3,4}
41 5 1-2-4-5 3 0.0613 | 0.7674 | 0.2632 1.6018 {1,2}
6 1-2-4-6 3 0.0613 | 0.7674 | 0.2632 3.1287 {3,4}
7 1-2-3-5-7 4 0.0751 | 0.0010 | 0.4312 1.3642 {1,2}
5
10 | 1-2-4-6-10 4 0.0751 | 0.0010 | 0.4312 2.6608 {2,3}
7 1-2-3-5-7 4 0.0418 | 0.1922 | 0.8917 3.2893 {3,4}
5
10 | 1-2-4-6-10 4 0.0418 | 0.1922 | 0.8917 6.5412 {6,7}

78

x; Isvalid | I[AC(x; i1 | pitl i+1
:;1. ., IS xj11 € pi[Xiz1] AC(xi11) AC(xi11) [(i)] Fold ¢best Tbest
4¢{5,6,8} i i i i i i
145 | 5q56.8) 1-2-3-5 % 3 3 5 5
sey | 5688 1-2-4-5 % 3 4 5 5
! 6¢{5.6,3} 1-2-4-6 % 3 4 6 6
oy | BET91012.16) :]
! 9¢{7,9,10,12.16} 1-2-3-5-9 N
Gy | CE.101216) i : i i i i
! 7¢{7.9,10.12.16} 1-2-4-5-7 % 4 5 7 7
10y | 9870101216} 1-2-4-6-9 N i i i i
: 10¢{7,9,10,12,16} 1-2-4-6-10 Y 4 6 | 10 | 10
8¢{11,13,14,15,16,17}
810} | 0gf111314,1517.19}
12¢{11,13,14,15,17,18} : i
{1213} | 136£11,13,14.15.16,18} |1-2-4-6-10-13 N

4.6 Proposed AC-PSO Based Cryptosystem
In order to speed up the operational time, reducing the power consumption and higher
security, ACs for the given integer are generated based on PSO and they are
incorporated into RSA and ECC.
4.6.1 AC-PSO-RSA and AC-PSO-ECC Methodology
The main operations of RSA are encryption/decryption which consists of modular
exponentiation (ME). They involve raising to the powers. This process involves many
multiplications (M) which make it time consuming. For example, to compute x¢
based on the process of adding and multiplying, it needs (e — 1) RMs of x. Similarly,
in ECC, scalar point multiplication k[P] mod m, where P is a point on EC, kis an
arbitrary integer, and m is a modulus which plays a crucial role. To perform k[P], i.e.,
(k —1) RAs of P are needed.

e Proposed AC-PSO-RSA Methodology - An Example
In order to fully understand the topic under study using RSA, discussed in section

3.4.1 of Chapter Ill. Let p = 13,q = 17 and e = 11, then n = 13(17) =

79

221,(p —1)(q — 1) = 12(16) = 192. Then using extended Euclidean algorithm d
is computed as d = 133. To encrypt, i.e., C = M mod 187, which requires 10
RMs. However, if the AC-PSO is used, the AC fore=11is1—-2—-3-5—-10—

11; I(e) = 5 which needs, only 5 Ms.

e Proposed AC-PSO-ECC Methodology - An Example

Consider the EC, y? = x3 + 17x + 7 mod 539039 . Using Diffie-Hellman key
exchange protocol as discussed in section 3.10 of Chapter Ill. A's private key
ny = 65131 and the base point pgp = (2,7). Thus A's public key P, = nyPp =
65131(2,7). When P, is performed by RAs, it requires 65130 additions. To reduce
the number of additions, PSO based AC is used and one of the ACs for 65131
is 1-2—-3-5-10—-20—-40—-43—-83 — 166 — 249 — 498 — 996 — 1992 —
2035 — 4070 — 8140 — 16280 — 32560 — 32565 — 65130 — 65131, i.e,,

1(65131) = 21. Thus, it requires only 21 additions. Based on this AC, the addition

of EC points are performed using section 3.7.2 of Chapter Ill. Let P = (2, 7). Then,

2P=P+P 3P=2P +P 5P =3P + 2P
= (244768,340039) = (11724,249063) = (506411,102155)
10P = 2(5P) 20P = 2(10P) 40P = 2(20P)

= (219797,239709)
43P = 40P + 3 P
= (8793,297511)

249P = 166P + 83P

= (217586,32021)
1992P = 2(996P)
= (84103,159148)

= (380891, 525867)
83P = 43P + 40 P
= (137967, 526592)
498P = 2(249P)
= (221645,21083)
2035P = 1992P + 43P
= (415947, 244729)

= (214059, 41583)
166P = 83P + 83P

= (382077,526592)
996P = 2(498P)

= (201219,179442)
4070P = 2(2035P)
= (48695, 28739)

8140P = 2(4070P)
= (11378, 429659)

16280P = 2(8140P)
= (3661662, 126957)

32560P = 2(32560P)
= (6996, 35500)

32565P = 32560P + 5P
= (314717,375063)

65130P = 2(32560P)
= (104163,454622)

65131P = 65130P + P
= (350818,39982)

80

4.7 Results and Discussion

The proposed methodology is implemented in VC++ with Android and Windows
emulator for varying file sizes using RSA and ECC. The ET, DT (in mS), EP, DP (in
mW) are computed and SE (in %) is measured by ABC Hackman tool. The results
obtained from the implementation are recorded from table 4.2 to 4.11 and their

corresponding graphical representations are shown from fig. 4.3 to 4.12.

Table 4.2: Encryption Time (mS) using AC-PSO in RSA and ECC with Android

Emulator

_ Existing RSA and ECC Proposed AC-PSO based
:ZIZ without RM and RA | with RM and RA RSAand ECC
(MB) ET-RM- | ET-RA- | ET-AC-PSO- | ET-AC- PSO-

FTROAA ETECCA | peaa | Ecca RSA-A ECC-A

1 1660 2447 1227 1820 1041 1578

2 3237 4790 2377 3555 2048 3069

4 6494 9553 4788 7173 4099 6150

8 13689 20179 10077 15130 8644 12954

16 27426 40415 20199 30326 17322 25981
Total 52506 77384 38668 58004 33154 49732
Avg. 10501.2 | 15476.8 | 7733.6 11600.8 6630.8 9946.4

81

90000 -

80000 -
70000 -
60000 - B ET-RSA-A
HET-ECC-A
. 50000 -
Enc. Time m ET-RM-RSA-A
(mS) 40000 - B ET-RA-ECC-A
30000 - B ET-PSO-RSA-AC-A
m ET-PSO-ECC-AC-A
20000 -
10000 -
0 .

1 2 4 8 16 Total Avg.
File Size (MB)

Fig. 4.3: Graph showing the Encryption Time (mS) using AC-PSO in RSA and
ECC with Android Emulator

= ET-AC-PSO-RSA-Ais 1.584 times faster than ET-RSA-A and 1.166 times faster
than ET-RM-RSA-A

= ET-AC-PSO-ECC-Ais 1.556 times faster than ET-ECC-A and 1.166 times faster
than ET-RA-ECC-A

» ET-AC-PSO-RSA-A is 1.500 times faster than ET-AC- PSO-ECC-A

Table 4.3: Decryption Time(mS) using AC-PSO in RSA and ECC with Android

Emulator
Existing RSA and ECC Proposed AC-PSO
Fi(lls/l E»i)ze without RM and RA | with RM and RA | Pased RSAand ECC
DT-RSAA | DTECCA | ‘pill™ | BocA | RSAA | ECCA
1 1616 2330 1205 1789 1041 1544
2 3193 4519 2352 3519 2011 3040
4 6490 9209 4776 7171 4102 6156
8 13645 19375 10066 15082 8623 12925
16 27399 38936 20193 30294 17301 25954
Total 52343 74369 38592 | 57855 33078 49619
Avg. 10468.6 14873.8 7718.4 | 11571 6615.6 9923.8

82

80000 -

70000 -
60000 - m DT-RSA-A
50000 4 m DT-ECC-A
; m DT-RM-RSA-A
Dec. Time 40000 -
(mS) m DT-RA-ECC-A
30000 -
m DT-PSO-RSA-AC-A
20000 - ® DT-PSO-ECC-AC-A
10000 -
0 .

1 2 4 8 16 Total Avg.

File Size (MB)

Fig. 4.4: Graph showing Decryption Time (mS) using AC-PSO in RSA and
ECC with Android Emulator

= DT-AC-PSO-RSA-A is 1.582 times faster than DT -RSA-A and 1.167 times faster
than DT -RM-RSA-A

= DT -AC-PSO-ECC-A is 1.498 times faster than DT -ECC-A and 1.165 times faster
than DT -RA-ECC-A

» DT -AC-PSO-RSA-A is 1.500 times faster than DT -AC- PSO-ECC-A

Table 4.4: Encryption Power (mW) using AC-PSO in RSA and ECC with Android

Emulator
Existing RSA and ECC Proposed AC-PSO
File [without RM and RA [with RM and RA based RSA and ECC
1ze
e EP-RSA-A | EP-ECC-A I??PSIE—,I\Q_ E%g_’A‘A' ngfgo\- PS%)I?_EA(\:%— A
1 554 817 421 613 357 552
2 1102 1621 806 1197 682 1042
4 2171 3208 1612 2410 1372 2073
8 4569 6731 3364 5042 2893 4325
16 9156 13510 6735 10134 5788 8670
Total 17552 25887 12938 19396 11092 16662
Avg. 3510.4 5177.4 2587.6 3879.2 2218.4 33324

83

30000 -

25000 - B EP-RSA-A
M EP-ECC-A
20000 -
H EP-RM-RSA--A
Enc. Power
(mw) 15000 - B EP-RA-ECC-A
10000 - M EP-PSO-RSA-AC-A

W EP-PSO-ECC-AC-A
5000 -

1 2 4 8 16 Total Avg.

File Size (MB)

Fig. 4.5: Graph showing the Encryption Power (mW) using AC-PSO in RSA and ECC
with Android Emulator

= EP-AC-PSO-RSA-Ais 1.582 times less than EP -RSA-A and 1.166 times less than
EP -RM-RSA-A.

= EP-AC-PSO-ECC-A is 1.553 times less than EP -ECC-A and 1.164 times less than
EP -RA-ECC-A

» EP-AC-PSO-RSA-A is 1.502 times less than EP -AC- PSO-ECC-A

Table 4.5: Decryption Power (mW) using AC-PSO in RSA and ECC with Android

Emulator
Existing RSA and ECC Proposed AC-PSO based
File [without RM and RA [with RM and RA RSAand ECC
1ze
(MB) DP- DP-ECC- | DP-RM- | DP-RA- DP-AC- ng:é‘gé_
RSA-A A RSA-A ECC-A | PSO-RSA-A A
1 562 815 411 602 354 534
2 1081 1506 802 1178 673 1038
4 2175 3072 1608 2417 1375 2066
8 4548 6463 3357 5035 2874 4330
16 9148 12995 6743 10109 5772 8674
Total | 17514 24851 12921 19341 11048 16642
Avg. | 3502.8 4970.2 2584.2 3868.2 2209.6 3328.4

84

30000 -

25000 - = DP-RSA-A
m DP-ECC-A
20000 - = DP-RM-RSA-A
Dec. Pvt\),wer 15000 - B DP-RA-ECC--A
(mW) ® DP-PSO-RSA-AC-A
10000 - = DP-PSO-ECC-AC-A
5000 -
O _

1 2 4 8 16 Total Avg.

File Size (MB)

Fig. 4.6: Graph showing the Decryption Power (mW) using AC-PSO in RSA and ECC
with Android Emulator

= DP-AC-PSO-RSA-Ais 1.585 times less than DP -RSA-A and 1.169 times less than
EP -RM-RSA-A.

= DP-AC-PSO-ECC-Ais 1.493 times less than DP -ECC-A and 1.162 times less than
DP -RA-ECC-A

= DP -AC-PSO-RSA-A is 1.506 times less than DP -AC- PSO-ECC-A

Table 4.6: Security (%) using AC-PSO in RSA and ECC with Android Emulator

Existing RSA and ECC Proposed AC-PSO based

File : : RSA and ECC
Size without RM and RA | with RM and RA
" seroaa seecea | | B | SEACH |G

1 89 93 92 94 94 94

2 88 89 89 92 91 93

4 87 88 88 90 90 91

8 85 88 87 90 89 90

16 85 86 87 89 88 90
Avg. 86.8 88.8 88.6 91 90.4 91.6

85

100 -+
90 -
80 -

B SE- -
20 - SE-RSA-A

| B SE-ECC-A
Security SE-RM-RSA-A
(%) 50 o
40 - B SE-RA-ECC-A
30 - B SE-PSO-RSA-AC-A
20 -

W SE-PSO-ECC-AC-A
10 A

1 2 4 8 16 Avg.
File Size (MB)

Fig. 4.7: Graph showing the Security (%) of AC-PSO in RSA and ECC with Android
Emulator
= SE-AC-PSO-RSA-A is 1.041 times more than SE-RSA-A and 1.020 times more than

SE-RM-RSA-A

= SE-AC- PSO-ECC-A is 1.032 times more than SE-ECC-A and 1.007 times more than
SE-RA-ECC-A

= SE-AC- PSO-ECC-A is 1.013 times more than SE-AC-PSO-RSA-A

Table 4.7: Encryption Time (mS) using AC-PSO in RSA and ECC with Windows

Emulator
Existing RSA and ECC Proposed AC-PSO based

File RSA and ECC
Size |without RM and RA | with RM and RA
" | S | Erecow BEAG | BTG ASEY | TTaSRe

1 1654 2441 1204 1728 1046 1520

2 3233 4748 2378 3362 2050 2984

4 6490 9559 4775 6753 4096 6008

8 13670 20174 10082 14252 8652 12693

16 27432 40443 20214 28603 17318 25402
Total | 52479 77365 38653 54698 33162 48607
Avg. | 10495.8 15473 7730.6 | 10939.6 6632.4 9721.4

86

90000 -

80000 -
70000 - W ET-RSA-W
60000 - M ET-ECC-W
50000 - ® ET-RM-RSA--W
W ET-RA-ECC--W
Enc. Time 40000 -

W ET-PSO-RSA-AC-W

(ms)
® ET-PSO-ECC-AC-W

30000 -
20000 -
10000 -

0 -

Total

1 2 4 8 16
File Size (MB)

Avg.

Fig. 4.8: Graph showing the Encryption Time(mS) using AC-PSO in RSA and ECC
with Windows Emulator

= ET-AC-PSO-RSA-W is 1.582 times faster than ET-RSA-W and 1.165 times faster
than ET-RM-RSA-W

= ET-AC-PSO-ECC-W is 1.591 times faster than ET-ECC-W and 1.125 times faster
than ET-RA-ECC-W

= ET-AC-PSO-RSA-W is 1.465 times faster than ET-AC- PSO-ECC-W

Table 4.8: Decryption Time (mS) using AC-PSO in RSA and ECC with Windows
Emulator

Existing RSA and ECC Proposed AC-
File | without RM and RA with RM and RA PSO b(?sed RSA
Size and ECC

(MB) DT-AC- | DT-AC-

DT-RSA-W | DT-ECC-W EF)eg_AA-\C/:v_ EECASV PSO- | PSO-
RSA-W | ECC-W

1 1616 2322 1205 1708 1027 1517

2 3184 4530 2366 3336 2026 2967

4 6496 9212 4778 6755 4099 6017
8 13657 19396 10050 14240 8616 12647
16 27401 38958 20210 28571 17310 | 25388
Total 52354 74418 38609 54610 33078 | 48536
Avg. 10470.8 14883.6 7721.8 10922 6615.6 | 9707.2

87

80000 -

70000 -
50000 B DT-RSA-W
c0000 m DT-ECC-W
. m DT-RSA-RM-W
Dec. Tlme40000 i
(mw) B DT-ECC-RA-W
30000 -
B DT-PSO-RSA-AC-W
20000 - m DT-PSO-ECC-AC-W
10000 -
0 .

Total

1 2 4 8 16
File Size (MB)

Avg.

Fig. 4.9: Graph showing the Decryption Time (mS) using AC-PSO in RSA and ECC
with Windows Emulator

= DT-AC-PSO-RSA-W is 1.582 times faster than DT -RSA-W and 1.167 times faster
than DT -RM-RSA-W

= DT -AC-PSO-ECC-W is 1.533 times faster than DT -ECC-W and 1.125 times faster
than DT -RA-ECC-W

= DT -AC-PSO-RSA-W is 1.467 times faster than DT -AC- PSO-ECC-W

Table 4.9: Encryption Power (mW) using AC-PSO in RSA and ECC with Windows
Emulator

Existing RSA and ECC Proposed AC-PSO
File | without RM and RA with RM and RA based RSA and ECC
Size
(MB) EP-AC- | EP-AC-
EP-RSA-W | EP-ECC-W Ezﬁ\cfv E(P:('?‘S\; PSO- PSO-
RSA-W ECC-W
1 571 840 421 592 348 513
2 1100 1582 796 1146 699 1003
4 2179 3228 1604 2263 1381 2029
8 4577 6750 3361 4765 2893 4246
16 9165 13496 6738 9559 5775 8483
Total 17592 25896 12920 18325 11096 16274
Avg. 3518.4 5179.2 2584 3665 2219.2 3254.8

88

30000 -~

25000 -
] - -

20000 - DP-RSA-W
H DP-ECC-W

Dec. Power
i B DP-RM-RSA--W
(mW) 15000

m DP-RA-ECC-W

10000 - m DP-PSO-RSA-AC-W

W DP-PSO-ECC-AC-W
5000 -

0 -

1 2 4 8 16 Total Avg.

File Size (MB)

Fig.4.10: Graph showing the Encryption Power (mW) using AC-PSO in RSA and
ECC with Windows Emulator

= EP-AC-PSO-RSA-W is 1.585 times less than EP -RSA-W and 1.164 times less than
EP -RM-RSA-W

= EP-AC-PSO-ECC-W is 1.591 times less than EP -ECC-W and 1.126 times less than
EP -RA-ECC-W

» EP-AC-PSO-RSA-W is 1.467 times less than EP -AC- PSO-ECC-W

Table 4.10: Decryption Power (mW) using AC-PSO in RSA and ECC with Windows

Emulator
Existing RSA and ECC Proposed AC-PSO
File | without RM and RA | with RM and RA based RSA and ECC

Size
DP-AC- | DP-AC-
(MB) DP-AC- DP-AC- PSO- PSO-

DP-RSA-W|DP-ECCW | Zer\v | Eco.w
RSA-W | ECC-W

1 541 785 415 584 350 510
2 1086 1536 805 1140 693 1010
4 2192 3088 1604 2275 1368 2008
8 4579 6496 3368 4761 2877 4220
16 9133 12997 6742 9529 5778 8472

Total | 17531 24902 12934 18289 11066 16220

Avg. | 3506.2 4980.4 2586.8 3657.8 2213.2 3244

89

30000 -~

25000 -
] - -
20000 - DP-RSA-W
H DP-ECC-W
Dec. Power
i B DP-RM-RSA--W
(mW) 15000
m DP-RA-ECC-W
10000 - m DP-PSO-RSA-AC-W
m DP-PSO-ECC-AC-W
5000 -
O -

1 2 4 8 16

Total

Avg.

File Size (MB)

Fig.4.11 : Graph showing the Decryption Power (mW) using AC-PSO in RSA and
ECC with Windows Emulator

= DP-AC-PSO-RSA-W is 1.584 times less than DP -RSA-W and 1.168 times less than
DP -RM-RSA-W

= DP-AC-PSO-ECC-W is 1.535 times less than DP -ECC-W and 1.127 times less than
DP -RA-ECC-W

* DP -AC-PSO-RSA-W is 1.466 times less than DP -AC- PSO-ECC-W

Table 4.11: Security (%) using AC-PSO in RSA and ECC with Windows Emulator

Existing RSA and ECC Proposed AC-PSO
File | without RM and RA | with RM and RA based RSA and ECC
Size
SE-AC- SE-AC-
(MB) SE-ECC- | SE-AC- | SE-AC- - -
SE-RSA-W by vl Iy PSO PSO
RSA-W ECC-W
1 01 92 92 94 92 96
2 88 89 89 92 01 92
4 86 89 88 01 90 01
8 86 88 88 89 89 01
16 85 87 87 89 87 90
Avg. 87.2 89 88.8 01 89.8 92

90

100
90
80
70
60

50
Security 40

(%)
30

20
10
0

W SE-RSA-W

W SE-ECC-W

B SE-RM-RSA-W

B SE-RA-ECC-W

W SE-PSO-RSA-AC-W
m SE-PSO-ECC-AC-W

4 8 16 Avg.

File Size (MB)

Fig.4.12: Graph showing the Security (%) using AC-PSO in RSA and ECC with

Windows Emulator

= SE-AC-PSO-RSA-W is 1.030 times more than SE-RSA-W and 1.011 times more

than SE-RM-RSA-W

= SE-AC-PSO-ECC-W is 1.034 times more than SE-ECC-W and 1.011 times more

than SE-RA-ECC-W

= SE-AC-PSO-ECC-W is 1.024 times more than SE-AC-PSO-RSA-W

From the above results, ECC takes more time than RSA for both operational and

power consumption time. There is because ECC is computationally more intensive

approach than RSA. The operational time and power consumption when using AC-

based PSO is substantially reduced. This shows the efficiency of AC based PSO.

4.8 Chapter Summary

ACs based on PSO are taken into account, integrated into RSA and ECC. They are

implemented successfully. From the experimental results, it is observed that AC-PSO-

RSA takes less operational time, consumes less power than AC-RSA and AC-RM-

RSA when using both emulators. Higher protection levels are achieved by AC-PSO-

ECC when considering security in AC-ECC and AC-RA-ECC. It is also advised to

91

use AC-PSO-RSA when there is a small power source for a mobile device to run. AC-
PSO-ECC offers security of 92% approximately when security parameter is
considered. It is concluded that the experimental findings have clearly shown that the
proposed AC-PSO with RSA and ECC cryptography systems can be used either to
decrease operating power or to achieve enhanced security that are the primary motive
of this work. It is noted that the time taken for all the parameters are decreasing when
PSO is used due to the velocity and position play a vital role to generate the AC. To
reduce the time further for the said parameters without compromising the optimal
length AC for the given integers, an another BIA SSO is considered and it is

discussed in next chapter.

92

CHAPTER -V

GENERATION OF ADDITION CHAIN USING SIMPLIFIED
SWARM OPTIMIZATION

5.1 Background

Mobile device applications have been enhanced its security by using cryptographic
algorithms like RSA and ECC. Even though it has been improved using some EAS
like PSO with AC in the previous chapter, a novel Al based algorithm namely
Simplified Swarm Optimization (SSO) is taken in this chapter to minimize the time
required for encryption and decryption process. SSO algorithm is also used to
generate the optimal AC and it is termed as AC-SSO. In this chapter too, once the AC
is generated using SSO, it is incorporated into RSA and ECC. The results are

compared with existing RM-RSA and RA-ECC.

5.2 Need for AC-SSO

The major difference among SSO and other soft computing algorithms are their
update mechanism (UM). For example, the UM of GA requires genetic operations
like crossover and mutation. The UM of PSO needs to calculate both velocity and
position via functions. But, they are not so in AC-SSO. Here, UM is based on only
random number. Moreover, the UM of SSO is on NP - hard problem. There is no
exact algorithm available to compute on exact solution to the NP - hard problem in

polynomial time, soft computing has been widely used for that [77].

5.3 Concepts Used in SSO

SSO is a population-based, evolutionary, stochastic optimization technique in soft
computing and it was originally designed by Yeh [31]. It has some advantages, such

as fast convergence rate, few parameters, and easy implementation. It has simple

93

procedures and more powerful global searching, prevents from trapping local optimal
procedures.

Let X% = (xiy,x%p,x%, ...,x%;) be the i*" solution at the generation t, where c is
the value of the j¢* variable of

Xip: = i, Pizs D) .. (5.1)
represents the best solution with the best fitness value in its own history, known as

pbest. The best solution with the best fitness value among all solutions is called

gbest, which is denoted by

9 =912 --9j) .. (5.2)
and g; denotes the jt* variable in gbest. x is a new randomly generated value

between the lower bound and the upper bound is a uniform random number between
[0, 1]. C,C, and C, are three pre-defined parameters which form four interval
probabilities representing the probabilities of the new variable updated from four
sources, namely, the current solution, pbest, gbest and a random movement in the

problem space. The newly generated value is computed using egn. (5.3).

pi ", if rand() € [C,,C,)
gj, if rand() € [Cp;Cg)
l x, if rand() € [Cg,l)
The primary steps of the SSO are shown in pseudo code 5.1

t

xi ', if rand() € [0, C,)
={ .. (5.3)

Pseudo Code: 5.1: SSO

Initialize solutions randomly.

Evaluate the fitness value for each particle.
Update pbest and gbest if necessary.
Update particle’s position according to (5.3).

o~ 0D oE

Stop the algorithm if the predefined number of iterations is met; otherwise, go
back to step 2

04

The flowchart corresponding to pseudo code 5.1 is shown in fig. 5.1.

Generate and initialize solution

!

Update phest and ghest

v

i Generate random number rand

@ Keep the origin value

A 4

w Replace value by phest

Replace value by ghest

Generate new individual randomly

'

Conduct extending local search

Meet termination

\ 4

criterion

Fig: 5. 1: Flowchart for SSO Algorithm

5.4 Proposed AC-SSO Methodology

AC-SSO is a strong algorithm in solving discrete problems with good global search
ability. However, its local search ability is weak compared to PSO. Local search
ability is the extent how particles move based on their adjacency. In SSO, Chain
Particle (CP) represents the AC, the CP elements are represented as the numbers used
in AC and the optimal length of AC i.e., [(n) represents the fitness function, where

the initial value of [(n) is computed using eqn. (5.4).

95

log,(n) + log,(v(n)) — 2.13 < l(n) < log,(n) (1 + 0(1))/ (log,(n))) .. (5.4)
where v(n) is Hamming weight. Therefore, [(2n) = I(n) + 1 ... (5.5)
The main operations of any public-key algorithm is to perform the
encryption/decryption operations with modular exponentiation. They involve raising
to powers of large field of some group. This process involves multiple multiplications
which makes it time consuming. For example, to compute x¢ based on the process of
adding and multiplying, it needs (e —1) RMs of e ie., x! 5 x?2 5> x3 > .- >
x¢~1 — x¢. The optimised AC-SSO is carried out in an iterative way. Optimization of
the AC generation begins with small numbers and continues on to large numbers.
Optimization is a one-time operation such that it does not affect the runtime for a

collection of ACs.

19
11

6 12

4 7 13

1 2 3 5 8 14
6 9 15

8 10 16

11 17

12 18

19
20
22
24

Fig. 5.2: The Chain Particles (CP)

In fig. 5.2, elements with minimum AC duration shall be replaced by particles in SSO.
The CP elements are CP; , i = 1,2, ...n. The search spaces for the elements are often
restricted to simplifying the method of optimization. The first value of the variable is

limited to 1 since all ACs should start with 1. The second variable is limited to 2 with
a value of 1 doubled. There are no optimization processes involving the first two

96

elements. A 3(2 + 1) or a4 may be the third variable (2X2)4,5, 6 or 8 may be the

fourth part. After completing all epochs, particle outputs are optimized for SSO

particles.
CP1 = {1}
CP, = {2}
CP, = {34}
CP, = {4,5,6,8)

CP. = {6,7,8,9,10,11,12}
CP, ={8,9,19,11,12,13,14,15,16,17,18,19,20,22,24}

There are two possibilities of SSO based ACs achievement in fig. 5.3 and fig.5.4. For
example, AC for 78 using binary method is1—-2-4-8—-9-18-19—-38 —

39 — 78 with length 9.

18
1
12
m 13 Eb6eHI9EhHTs

m [[1 B2 3
3 Y

11
1
A 13 D639 78

L
=

wloo|~|o
—
—_
I~

15
16

11 17 17
12 18 18
18 19
2 2
2 2
24 24

rn
oo |w| e
w|eo|~]|on

CACAIES

U P
L= = k)
—

Fig. 5.3 and Fig 5.4 : Two different ACs for the Integer 78 Generated Using SSO

While running SSO optimization, some possible ACs for the value 78 with [(n) = 8:

1235813263978/1235813265278/12351013263978/1235101326
5278|/1236713263978/1236713265278/1236915243978/1236915
303978/1236918213978/1236918363978/1236918364278/12369
18367278/12361213263978/12361213265278/12361214265278|1

2361215243978/12361215273978/12361218213978/1236121830

97

4878/12361218306078/12361218363978/12361218364278/1236
1218367278/12361224265278|12361224273978| 123612242751 78]
12361224275478/12361224304878/123612243054 7812361224
363978/12361224364278/12361224367278/12361224485478123
61224487278/1245813263978/1245813265278/1245913263978|1
245913265278/1246713263978/1246713265278124610 162652
78/12461020265278/12461213263978/12461213265278/1246 12
14265278/12461218304878/124612183060 78/ 124612 18 36 42 78| 1
2461218367278|12461224265278/12461224304878|124 6122430
5478/12461224364278|12461224367278/12461224485478/1246
1224487278/1248913263978/1248913265278/1248917 26527812
48918265278/12481016265278/12481018265278/1248 1213 2639
78/12481213265278/12481214265278/12481224265278/124816

182652 78|124 81624 2652 78|

After completing all epochs, SSO Optimized particle (element) values are:

cp, = {1}
CP, = {2}
CP; ={3,4)
CP, = {5,6,8}

CP; ={79,10,12,16}
CP, ={11,13,14,15,17,18,,20,24,32}

After completing the given epochs, SSO generated optimized particle values in the

element positions. The values of SSO optimized result particle are given in fig. 5.5. It

starts with feature space and continues on until all the features are visited. While

98

comparing AC-SSO generation with binary AC generation method, the output of AC-

SSO is less. The shorter an exponent is, the less time is needed for its calculation.

a7

53

55

57

58

59

61

62

29 63

31 67

35 a9

37 70

38 73

39 74

19 41 75

21 42 76

22 43 77

11 23 44 78

13 25 45 21

7 14 | 26 46 22
5 E) 15 27 49 83
2] 2 3 [10 17 28 50 a4
4 2 12 18 30 51 25
16 20 33 52 26
24 | 3a 54 28

32 36 56 20

40 60 92

48 65 a7

64 66 ag

68 99

72 190

g6 162

96 194

128 108

112

120

129

13@

132

136

144

Fig. 5.5: SSO Optimized Result Particle Values

5.5 Results and Discussion

The proposed methodology is implemented in VC++ with Android and Windows
emulator for varying file sizes using RSA and ECC. The time taken for ET, DT (in
mS), EP, DP (in mW) and SE (in %) are recorded in table from 5.1 to 5.10 and their

corresponding graphical representations are shown in fig. 5.6 to 5.15.

99

Table.5.1: Encryption Time (mS) using AC-SSO in RSA and ECC with Android

Emulator
Existing RSA and ECC Proposed AC- SSO
. . } based RSA and ECC
File | without RM and RA | with RM and RA
Size
ET-AC- ET-AC-
(MB) | ET- ET- ET-RM- | ET-RA- SSO- SSO-
RSA-A - RSA-A -
ECC-A ECC-A RSA-A ECC-A
1 1660 2447 1227 1820 1015 1305
2 3237 4790 2377 3555 2001 2547
4 6494 9553 4788 7173 3997 5122
8 13689 20179 10077 15130 8424 10813
16 27426 40415 20199 30326 16899 21666
Total | 52506 77384 38668 58004 32336 41453
Avg. | 10501.2 15476.8 7733.6 11600.8 6467.2 8290.6
90000
80000
20000 B ET-RSA-A
60000 M ET-ECC-A
® ET-RM-RSA--A
Enc.Time 20000 B ET-RA-ECC-A
(mS) 40000
M ET-AC-SSO-RSA-A
30000
M ET-AC-SSO-ECC-A
20000
10000
0
1 2 4 8 16 Total Avg.
File Size(MB)

Fig. 5.6: Graph Showing Encryption Time(mS) using AC-SSO in RSA and ECC with
Android Emulator

than ET-RM-RSA-A
= ET-AC-SSO -ECC-A is 1.867 times faster than ET-ECC-A and 1.399 times faster
than ET-RA-ECC-A

= ET-AC-SSO -RSA-A is 1.282 times faster than ET-AC- SSO -ECC-A

100

ET-AC-SSO-RSA-A is 1.624 times faster than ET-RSA-A and 1.196 times faster

Table.5.2: Decryption Time (mS) using AC-SSO in RSA and ECC with Android

Emulator
Existing RSA and ECC Proposed AC- SSO
File | without RM and RA | with RM and RA | Pased RSAand ECC
(i;IZI:) DT- DT- DT-RM- | DT-RA- Dgég?' DSTS'g(_:'
RSA-A ECC-A RSA-A ECC-A RSA-A ECC-A
1 1616 2330 1205 1789 1014 1282
2 3193 4519 2352 3519 1974 2533
4 6490 9209 4776 7171 4000 5125
8 13645 19375 10066 15082 8406 10785
16 27399 38936 20193 30294 16877 21646
Total 52343 74369 38592 57855 32271 41371
Avg. 10468.6 14873.8 7718.4 11571 6454.2 8274.2
80000 -
70000 - B DT-RSA-A
60000 - m DT-ECC-A
50000 - ® DT-RM-RSA-A
Dec.Time 40000 B DT-RA-ECC-A
(ms) M DT-AC-SSO-RSA-A
30000 ® DT-AC-SSO-ECC-A
20000 -
10000 -
0 -

Total

1 2 4 8 16

Avg.

File Size(MB)

Fig. 5.7: Graph Showing Decryption Time(mS) using AC-SSO in RSA and ECC with
Android Emulator

= DT-AC- SSO -RSA-A is 1.622 times faster than DT -RSA-A and 1.196 times faster
than DT -RM-RSA-A

= DT -AC- SSO -ECC-A is 1.798 times faster than DT -ECC-A and 1.398 times faster
than DT -RA-ECC-A

= DT -AC- SSO -RSA-A is 1.282 times faster than DT -AC- SSO -ECC-A

101

Table.5.3: Encryption Power (mW) using AC-SSO in RSA and ECC with Android

Emulator
Existing RSA and ECC Proposed AC- SSO
:)] based RSA and ECC
File | without RM and RA| with RM and RA
Size EP-AC- | EP-AC-
(MB) EP- EP- EP-RM- EP-RA- SSO- SSO-
RSA-A | ECC-A | RSA-A ECC-A
RSA-A ECC-A
1 554 817 421 613 341 424
2 1102 1621 806 1197 673 792
4 2171 3208 1612 2410 1337 1598
8 4569 6731 3364 5042 2820 3374
16 9156 13510 6735 10134 5633 6752
Total 17552 25887 12938 19396 10804 12940
Avg. 3510.4 5177.4 2587.6 3879.2 2160.8 2588
30000 -
B EP-RSA-A
25000 - B EP-ECC-A
M EP-RM-RSA-A
20000 + B EP-RA-ECC-A
Enc.Pow 000 M EP-AC-SSO-RSA-A
(mw) M EP-AC-SSO-ECC-A
10000 -
5000 -
0 .
1 4 8 16 Total Avg.
File Size(MB)

Fig. 5.8: Graph Showing Encryption Power (mW) using AC-SSO in RSA and ECC with

Android Emulator

EP-AC- SSO -RSA-A is 1.625 times less than EP -RSA-A and 1.198 times less than
EP -RM-RSA-A.

EP -AC- SSO -ECC-A is 2.001 times less than EP -ECC-A and 1.499 times less than

EP -RA-ECC-A
EP -AC- SSO -RSA-A is 1.198 times less than EP -AC- SSO -ECC-A

102

Table.5.4: Decryption Power (mW) using AC-SSO in RSA and ECC with Android

Emulator
Existing RSA and ECC Proposed AC- SSO
. . } based RSA and ECC
File | without RM and RA | with RM and RA
Size
DP-AC- DP-AC-
(MB) DP- DP- DP-RM- DP-RA- SSO- SSO-
- - RSA-A ECC-A
RSA-A ECC-A RSA-A ECC-A
1 562 815 411 602 339 399
2 1081 1506 802 1178 669 799
4 2175 3072 1608 2417 1344 1600
8 4548 6463 3357 5035 2815 3361
16 9148 12995 6743 10109 5634 6739
Total 17514 24851 12921 19341 10801 12898
Avg. 3502.8 4970.2 2584.2 3868.2 2160.2 2579.6
30000 -
25000 -
B DP-RSA-W
20000 W DP-ECC-W
B DP-RM-RSA-W
Dec.Pow 15000 - B DP-RA-ECC-W
(mw) B DP-AC-SSO-RSA-W
10000 - DP-AC-SSO-ECC-W
5000 -
O .
1 4 8 16 Total Avg.
File Size(MB)

Fig. 5.9: Graph Showing Decryption Power in RSA and ECC with SSO Addition Chain
using Android Emulator

= DP-AC- SSO -RSA-A is 1.622 times less than DP -RSA-A and 1.196 times less than
EP -RM-RSA-A.

= DP-AC-SSO -ECC-A is 1.926 times less than DP -ECC-A and 1.500 times less than

DP -RA-ECC-A

* DP -AC-SSO -RSA-A is 1.194 times less than DP -AC- SSO -ECC-A

103

Table.5.5: Security (%) using AC-SSO in RSA and ECC with Android Emulator

File Existing RSA and ECC Proposed AC- SSO
i)) based RSA and ECC
(i/IIZBe) without RM and RA with RM and RA
SE-AC- SE-AC-
an | mcon | Roan | Bech | sso- | sso
RSA-A ECC-A RSA-A ECC-A
1 92 93 92 94 93 95
2 90 91 89 92 92 94
4 88 91 88 90 91 92
8 87 90 87 90 90 92
16 86 88 87 89 89 91
Avg. 88.6 90.6 88.6 91 91 92.8
100 -
90 -
80 -
70 - W SE-RSA-A
60 - W SE-ECC-A
Securitys50 - B SE-RM-RSA-A
(%) 4o
W SE-RA-ECC-A
30 -
W SE-AC-SSO-RSA-A
20 -
10 4 W SE-AC-SSO-ECC-A
O .
1 2 4 8 16 Avg.
File Size(MB)

Fig. 5.10: Graph Showing Security (%) using AC-SSO in RSA and ECC with Android
Emulator

= SE-AC- SSO-RSA-A is 1.027 times more than SE-RSA-A and 1.027 times more than
SE-RM-RSA-A

= SE-AC- SSO -ECC-A is 1.024 times more than SE-ECC-A and 1.020 times more
than SE-RA-ECC-A

= SE-AC- SSO -ECC-A 1.020 times more than SE-AC- SSO -RSA-A.

104

Table.5.6: Encryption Time (mS) using AC-SSO in RSA and ECC with Windows

Emulator
File Existing RSA and ECC Proposed AC- SSO
(IS\;ZBG) without RM and RA | with RM and RA based RSA and ECC
ET- ET- | ET-RM-| ET-RA- Egég_c- ESTég(_}
RSA-W | ECC-wW | RSA-W | ECC-W RSA-W ECC-W
1 1664 2441 1204 1728 1009 1299
2 3233 4748 2378 3362 1991 2550
4 6490 9559 4775 6753 3995 5119
8 13670 20174 10082 14252 8427 10819
16 27432 40443 20214 28603 16893 21646
Total | 52489 77365 38653 54698 32315 41433
Avg. | 10497.8 | 15473 7730.6 | 10939.6 6463 8286.6
90000 -~
80000 -
70000 -
60000 - M ET-RSA-W
Enc.Time 50000 - B ET-ECC-W
(mS) 40000 - M ET-RM-RSA-W
30000 - W ET-RA-ECC-W
20000 - ® ET-AC-SSO-RSA-W
10000 - W ET-AC-SSO-ECC-W
0 -
1 2 4 8 16 Total Avg.
File Size(MB)

Fig. 5.11: Graph Showing Encryption time in RSA and ECC with SSO Addition Chain

using Windows Emulator

= ET-AC-SSO -RSA-W is 1.624 times faster than ET-RSA-W and 1.196 times faster
than ET-RM-RSA-W

= ET-AC-SSO -ECC-W is 1.867 times faster than ET-ECC-W and 1.320 times faster

than ET-RA-ECC-W
= ET-AC-SSO -RSA-W is 1.282 times faster than ET-AC- SSO -ECC-W

105

Table.5.7: Decryption Time (mS) using AC-SSO in RSA and ECC with Windows

Emulator
File Existing RSA and ECC Proposed AC- SSO
(IS\/iIZS) without RM and RA | with RM and RA based RSA and ECC

DT- DT- DT-RM- | DT-RA- DST;S(_:' DSTégE:'
RSA-W | ECC-W | RSAW | ECC-W | -\ \v | Ecc.w

1 1616 2322 1205 1708 995 1290

2 3184 4530 2366 3336 1967 2515

4 6496 9212 4778 6755 3990 5127
8 13657 19396 10050 14240 8409 10779
16 27401 38958 20210 28571 16887 21643
Total 52354 74418 38609 54610 32248 41354
Avg. 10470.8 14883.6 7721.8 10922 6449.6 8270.8

80000 -
70000 -
m DT-RSA-W
60000 -
m DT-ECC-W
50000 -
Dec.Ti ® DT-RM-RSA-W
ec.Time |
(mS) 40000 H DT-RA-ECC-W
30000 - B DT-AC-SSO-RSA-W
20000 - m DT-AC-SSO-ECC-W
10000 -
0 -
1 2 4 8 16 Total Avg.
File Size(MB)

Fig. 5.12 : Graph Showing Decryption Time(mS) using AC-SSO in RSA and ECC with
Windows Emulator

= DT-AC- SSO -RSA-W is 1.623 times faster than DT -RSA-W and 1.197 times faster
than DT -RM-RSA-W

= DT -AC- SSO -ECC-W is 1.800 times faster than DT -ECC-W and 1.321 times faster
than DT -RA-ECC-W

= DT -AC-SSO -RSA-W is 1.282 times faster than DT -AC- SSO -ECC-W

106

Table.5.8: Encryption Power (mW) using AC-SSO in RSA and ECC with Windows

Emulator
File Existing RSA and ECC Proposed AC-SSO
(IS\/iIZEf) without RM and RA | with RM and RA based RSA and ECC
EP- EP- EP-RM- | EP-RA- Egég?' Egéé(_:'
RSA-W | ECC-W RSA-W | ECC-W RSA-W ECC-W
1 571 840 421 592 345 406
2 1100 1582 796 1146 669 812
4 2179 3228 1604 2263 1341 1597
8 4577 6750 3361 4765 2824 3374
16 9165 13496 6738 9559 5646 6739
Total | 17592 25896 12920 18325 10825 12928
Avg. | 35184 5179.2 2584 3665 2165 2585.6
30000 -
25000 B EP-RSA-W
20000 W EP-ECC-W
® EP-RM-RSA-W
E'(‘:n":\‘l’)‘” 15000 - M EP-RA-ECC—-W
® EP-AC-SSO-RSA-W
10000 1 M EP-AC-SSO-ECC-W
5000 -
0 -

1 2 4 8 16
File Size(MB)

Total Avg.

Fig. 5.13: Graph Showing Encryption Power (mW) using AC-SSO in RSA and ECC
with Windows Emulator

= EP-AC- SSO -RSA-W is 1.625 times less than EP -RSA-W and 1.194 times less than
EP -RM-RSA-W

= EP-AC- SSO -ECC-W is 2.003 times less than EP -ECC-W and 1.417 times less than
EP -RA-ECC-W

= EP-AC- SSO -RSA-W is 1.194 times less than EP -AC- SSO -ECC-W

107

Table.5.9: Decryption Power (mW) using AC-SSO in RSA and ECC with Windows

Emulator
_ Existing RSA and ECC Proposed AC- SSO based
File : : RSA and ECC
Size without RM and RA | with RM and RA
DP-AC- DP-AC-
(MB) DP- DP- DP-RM- DP-RA- SSO- SSO-
. . RSA-W | ECC-W
RSA-W ECC-W RSA-W ECC-W
1 541 785 415 584 342 420
2 1086 1536 805 1140 655 784
4 2192 3088 1604 2275 1344 1608
8 4579 6496 3368 4761 2819 3360
16 9133 12997 6742 9529 5641 6739
Total 17531 24902 12934 18289 10801 12911
Avg. 3506.2 4980.4 2586.8 3657.8 2160.2 2582.2
30000 -
25000 -
H DP-RSA-W
20000 -
m DP-ECC-W
Dec. POW15000 i
(mw) H DP-RM-RSA-W
10000 -

B DP-RA-ECC-W
5000 - B DP-AC-SSO-RSA-W

m DP-AC-SSO-ECC-W

0 .
1 2 4 8 16 Total Avg.

File Size(MB)

Fig. 5.14: Graph Showing Decryption Power (mW) using AC-SSO in RSA and
ECC with Windows Emulator

= DP-AC-SSO -RSA-W is 1.623 times less than DP -RSA-W and 1.197 times less than
DP -RM-RSA-W

= DP-AC- SSO -ECC-W is 1.929 times less than DP -ECC-W and 1.417 times less
than DP -RA-ECC-W

= DP-AC- SSO -RSA-W is 1.195 times less than DP -AC- SSO -ECC-W

108

Table.5.10: Security (%) using AC-SSO in RSA and ECC with Windows Emulator

Existing RSA and ECC Proposed AC- SSO
based RSA and ECC
File | without RM and RA | with RM and RA
Size
(MB) SE- SE- SE-RM- SE-RA- SE-AC- SE-AC-
RSAW | gcc.w | RSAW | ECC-W SSO- SSO-
RSA-W ECC-W
1 91 92 92 94 93 94
2 88 89 89 92 92 93
4 86 89 88 91 90 91
8 86 88 88 89 89 91
16 85 87 87 89 89 89
Avg. 87.2 89 88.8 91 90 91.6
100 -
90 -
80 -
70 1 B SE-RSA-W
60 -
Security 50 - B SE-ECC-W
(%) 40 - B SE-RM-RSA-W
30 - B SE-RA-ECC-W
20 - M SE-AC-SSO-RSA-W
10 - B SE-AC-SSO-ECC-W
0 .
1 2 4 8 16 Awg.
File Size(MB)

Fig. 5.15: Graph Showing Security (%) using AC-SSO in RSA and ECC with
Windows Emulator

= SE-AC- SSO -RSA-W is 1.032 times more than SE-RSA-W and 1.014 times more
than SE-RM-RSA-W

= SE-AC- SSO -ECC-W is 1.029 times more than SE-ECC-W and 1.007 times more
than SE-RA-ECC-W

= SE-AC- SSO -ECC-W is 1.017 times more than SE-AC- SSO -RSA-W

109

From the above results, ECC takes more time than RSA for both operational and
power consumption. This is because ECC is computationally more intensive approach
than RSA. The time required for operational and power consumption when using AC-

SSO is substantially reduced compared to without AC.

5.6 Chapter Summary

ACs based on SSO are thought of and incorporated into RSA and ECC. They are
implemented successfully. The experimental results show that AC-SSO-RSA takes
less operational time, consumes less power than RSA, RM-RSA and ECC, RA-ECC
when using both emulators. Higher protection levels are achieved by AC-SSO-ECC
while considering security of AC-SSO-RSA. It is also suggested to use AC-SSO-RSA
when there is a small power source for a mobile device to run. AC-SSO-ECC offers
security of approximately 92% when security parameter is considered. It is concluded
that the experimental findings have clearly shown that the proposed AC-SSO with
RSA and ECC cryptography systems can be used either to decrease operating power
or to achieve enhanced safety levels that are the primary motive of this work. To
reduce the time taken for the said parameters further without compromising the
optimal length AC for the given integers, an another BIA BFO is considered and it is

discussed in next chapter.

110

CHAPTER - VI

GENERATION OF ADDITION CHAIN USING BACTERIA
FORAGING OPTIMIZATION

6.1 Background

In many number theoretic cryptographic algorithms encryption and decryption is of
the form x"mod p, where x,n and p are integers. Exponentiation is a fundamental
operation in computational number theory which normally takes more time than any
arithmetic operations. It may be performed by RMs which will reduce the
computational time. To reduce the time further, fewer multiplications are performed
in computing the same exponentiation operation using AC [90]. The problem of
determining correct sequence of multiplications requires in performing modular
exponentiation can be elegantly formulated using the concept of AC. To generate the
optimal ACs for the given integer, there are several methods exist in literature. But
novel Bacteria Foraging Optimization (BFO) algorithm based AC termed as AC-
BFO has been proposed in this chapter. Further, the optimal AC generated for an
integer using the proposed method has been verified with existing state art of AC

method like genetic algorithm, evolutionary programming in this chapter.

6.2 Theoretical Background of Addition Chain

An AC can be thought of as a sequence of integers in which first number is always 1
and last number is always n where n is an integer for which ACs are to be generated.
For finite fields, operations such as exponentiations, inversions, or square roots can
be performed efficiently by utilizing an optimal AC, the smallest such AC sequence
to reach n. In particular, fast exponentiation and inversion are paramount to the

performance of scalar point multiplication k[P] where k is a scalar and P is a point in

111

EC in ECC, pairings in pairing-based cryptosystems and computing isogenies in the
quantume-resistant isogeny-based cryptosystems. In order to get the next number,
there are two steps normally used in AC. They are addition and doubling steps i.e., to
get the next number (intermediate number) in AC, any two previous numbers are
added together in addition step where as in doubling step, the current number is
multiplied by two [92][93]. To generate the AC for given n, two types of algorithms

are normally used viz., deterministic and stochastic or bio inspired.

Generating optimal AC for the given integer is an NP-hard problem because too
many optimal ACs are generated for it. For example, different possible optimal ACs

for the integer 21 with length i.e., [(21) = 6 are:

1-2-3-4-7-14-21 | 1-2-3-6- 9-15-21 1-2-4-5-10-20-21 1-2-3-6-9-12-21
1-2-3-5-7 -14 -21 | 1-2-3-6-9-18-21 1-2-4-8-9-12-21 1-2-3-6-9-15-21
1-2-3-5-8-13 -21 | 1-2-3-6-12-15-21 1-2-4-8- 9-13-21 1-2-3-6-7-14-21
1-2-3-5-8 -16-21 | 1-2-3-6-12-18-21 1-2-4-8-9-17-21 1-2-3-6-9-12-21
1-2-3-5-10-11-21 | 1-2-4-6-7-14-21 1-2-4-8-10-11-21 1-2-3-5-8-16-21
1-2-3-5-10-20-21 | 1-2-4-8-16-20-21 | 1-2-4-8-10-20-21 1-2-4-8-12-13-21
1-2-3-6-7-14-21 | 1-2-4-8-16-17-21 | 1-2-4-8-12-20-21

Fig. 6.1: Optimal ACs for the n=21 with 1(21)= 6

This is because 7 can be obtained by adding (7 =3 + 4,7 =2+5,7 =1+

6), 8 can be obtained by adding (8 = 4 + 4, 8 = 3 + 5) etc.

6.3 Bacteria Foraging Optimization

It is one of the optimization and evolutionary algorithms. It was proposed by Kevin
M. Passino in 2000 [32][33] and it has been widely accepted as a new nature- inspired
optimization algorithm. It is inspired by the social foraging behaviour of Escherichia

coli i.e., E.coli bacteria present in the human intestine and drawn the attention of

112

many researchers. The underlying biology behind the foraging is locomotion. It is
achieved by a set of tensile flagella during the foraging of the real bacteria. Foraging
can be modelled as an optimization process where bacterium seeks to maximize the
energy obtained per unit time spent during foraging. If the flagella are rotated in the
clockwise direction by the bacterium, the flagellum pulls on the cells which results
in independent movement of flagella and the bacterium tumbles with lesser numbers
of tumbling. Swimming at a very fast rate of bacterium is performed with the

flagella moving in the counter clockwise direction.

The foraging strategy of E.coli is achieved by four processes viz., chemotaxis,
swarming, reproduction and dispersal. Chemotaxis is a process which simulates the
movement of E.coli cell through swarming and tumbling via flagella. Movement of
E.coli bacterium can be performed in two ways viz.,(i) swim for a period of time in
the same direction or it may tumble (ii) alternate between swim and tumble for the
entire lifetime. In swarming process, a group of E.coli cells arrange themselves in a
travelling ring by moving up the nutrient gradient when placed amidst a semisolid
matrix with a single nutrient chemo-effecter. The healthy bacteria asexually split
into two bacteria, which are then placed in the same location while the least healthy
bacteria eventually die in reproduction process. In elimination and dispersal process,
gradual or sudden changes in the local environment i.e., significant local rise of
temperature or due to unavoidable events all the bacteria in a region are killed or a

group is dispersed into new location.

In BFO, generally the bacteria move for a longer distance in a friendly environment.
When they got sufficient food, their lengths are increased and they break in the

middle to form an exact replica of itself in the presence of suitable environment. The

113

chemotactic progress may be destroyed and a group of bacteria may move to some
other places or some other may be introduced in the swarm of concepts due to
the occurrence of sudden environmental changes. This constitutes the event of
elimination-dispersal in the real bacterial population, where all the bacteria in a

region are killedor a group is dispersed into a new part of the environment.

6.4 Proposed AC-BFO Methodology

In the proposed methodology, the concept of BFO is used to generate the optimum
length AC for an integer n which utilizes foraging behaviour of bacteria. In AC-
BFO, each bacterium represents the AC, movement of bacterium towards searching
the food represents the intermediate numbers to be generated in AC and the fitness
function represents the length of AC for the given number n i.e., [(n). In this
optimization, a virtual bacterium called search agent is actually one trial solution that
moves on the functional surface to find the optimal length AC. The cost or fitness
function is computed with minimum length approach based on the nutrient
concentration of the immediate environment of the bacterium searching for numbers
in AC. Swarming step is not considered for the generation of AC in this method. The

notations used in the proposed AC-BFO methodology shown in table 6.1.

In order to generate the AC for any integer n, first number is always 1 and second
number is 2, i.e., AC starts with a, = 1and a; = 2 and last number a, = n. Let
(i,k,) = {(,k1i = 1,2,...,5) represents each number in the AC in the
population S at the j** chemotactic step, k" reproduction and [** elimination-

dispersal step.

114

Table 6.1: Notations Used in AC-BFO

Index for the chemotactic step

k | Index for the reproduction step

i | Index for the elimination-dispersal event

S | Total number of bacterium in the population

d | Dimension of the search space. Here,d = 1

S, | The swimming length

RP, | Number of reproduction steps

ED,, | Number of elimination-dispersal events

P,; | Elimination-dispersal probability

C (i) | Magnitude of the next number in the random direction specified by the tumble

It is noted that initially S is taken as very large for the given n. Too many ACs are
generated for n but all ACs generated are not necessarily optimum. Moreover,
generation of optimal AC is an NP - hard problem. The prime steps used in BFO related

to generating the AC are as follows.

6.4.1 Search Space
Here, search space is considered as 1-dimension (i.e.,d = 1). As the numbers
involved in generating AC for any integer n and the difference between intermediate

numbers in ACs are finite, the search space is also finite.

6.4.2 Chemotaxis

The movement of an E.coli cell through swimming and tumbling via flagella is
simulated by chemotaxis process. When a bacterium meets a favorable environment
(rich in nutrients, and noxious free), it will continue swimming in the same direction.
When it meets an unfavorable environment, it will tumble, i.e., change its direction.
In BFO, E.coli can swim for a period of time in the same direction or it may tumble

and alternate between these two modes of operation for the entire lifetime. It is the

115

most important step in determining the optimal AC for n. For AC generation,
swimming and tumbling represent addition and doubling step respectively. The goal
IS to move to let the bacterium search for the next number in the AC with minimal

step.

6.4.3 Minimum Intermediate Number in AC

It is noted that the number of intermediate numbers between 2 and n should be
minimum and it is obtained by minimum number of steps as far as possible so that
[(n) could be minimized by considering all the directions (previous numbers) from
the current bacterium position (present current number) can be chosen for the next
step. Initially bacterium i is positioned at number 1, Let m = 0 i.e., ay = 1. From 1,
then it should move to 2. Now, m = m + 1 i.e.,a; = 2, AC « 1 —

2; I(AC) = 1.From 2, itcan move to either 3 or 4, Now,m = m + 1

=201 ...(6.3)
=a, +ay,>>k=>0 ... (6.4)
AC « ACl a,, .. (6.5)
Now, (AC) = AC + 1or (AC) = m (6.6)

All the intermediate numbers obtained in this step are added to the minimal set
G in L€ = {an}. A random intermediate number < a,, is chosen from this
set and it indicates the direction of movement (i.e., from which AC starts) of
bacterium

iIA(D)) = rand{xs € ¢ _. } ...(6.7)

min
Let, (j, k, 1) represents i*" bacterium with 1- dimensional vector represented as,
1,2, ..., S at jt" chromatic, k" reproductive and I elimination-dispersal step. Let,

C (i) be the step size which is taken as unity because from the current number in AC,

116

only one next number in the AC is generated based on previous numbers. Thus, the

movement of bacterium may be represented in chemotaxis process as

G +1,k) =ei(j+k)+C(i)ﬁ .. (6.8)

where A indicates a vector in the random direction whose elements are [1,x]. The

movement of bacterium is explained with tree diagram shown in fig. 6.2.

RN
A 1=t a ,(:,:,, N \ et .
® Ay 1= 2ty 0 A, 1=t Ans @ LR An1=28m2

AR ARY) AR
[] [] LN []
A=A 1T Am2 A=A 1T Am3 A=A 1T Am4 Ay=am1T2

Aw=2apm.

Fig. 6.2: The Movement of Bacterium

6.4.4 Reproduction and Dispersal Step

Local search is provided by chemotaxis step and the speed of convergence is
achieved through reproduction process. The bacteria which yields maximal length of
AC for n is called least healthy bacteria and it never produces the optimal length AC
which eventually dies. Each of the healthiest bacteria (yields minimum length AC)
asexually split into two bacteria which are placed in random location. The dispersion
process happens after a certain number of reproduction processes. Then, some
bacteria are chosen to be killed according to a present probability P,; or moved to
another position within the environment. The steps involved in proposed AC-BFO is

shown in algorithm 6.1.

117

Algorithm: 6.1: AC- BFO

1. Initialize parameters D, S, ¢, R,,, ED,,, 6, C(i),i « 2,3, ..., S.

2. Read r // r is the number for which AC is to be found.

3m < 1;,a9 «< 0,ap « 1;i « 0.

4. AC' = apla,.

5. (ACY) « 1 // length of the AC is initialized as 1.

6.1 « | + 1//Elimination-Dispersal loop.

7.k < k + 1// Reproduction loop.

8.j « j+.1// Chemotaxis loop.
8.1. Fori « 1,2,...,S// Perform the chemotactic step for bacterium i.
82.m « m + 1.
8.3. From the initial position of bacterium (i.e. a0 = 0,al = 1), find all

the number of AC® to reach a,,, < r with minimum number of steps.

8.4. Add these numbers in the minimal set ¢, . .
8.5. Select the number x randomly using egn. (4). Include x in AC'. It is

also used to find the next number a,,, in AC*.

8.6. (@) Move: let (j +1,k) = o'(j + k) + C()) e

(b) Generate a new number a,, for AC* using egn.(3).
(i,j,k) « (i,j—1,k)+a,,.
AC — ACH|| — ay,.
(c) Compute the length of AC! (fitness) as (AC')— (AC") +1
() Juse < (@), k).
@ ifj(@j + Lk) > {jige thenr Jigr < (@j + 1,k)
else print ACY, [(ACY)

(f) update new a,, and AC* for bacterium i.
9.1fj < C,, goto step 8. In this case continue chemotaxis step since the life of

the bacterium is not over.

10. Reproduction and elimination.

The reproduction step increases the number of bacteria for better foraging
whereas the elimination step removes the bacteria that has traversed all the

intermediate numbers.

118

11. If k < R,,, go to step 7. This means that the number of reproduction steps
is not reached. So the next generation of the chemotactic loop is started.
12. Selection of optimal length AC
Now, the length of the ACs are generated by each bacterium has been
calculated, the AC with minimal length is considered as optimal length
AC.
L% (ACY) « imm{I(AC')}

The flowchart for the proposed AC-BFO is shown in fig. 6.3.

Set of numbers up

tor

Y

Initialization of parameters Move bacterium to the next
number using chemostatic step

: !

Bacteria positioned at location
(1,k)=1 then move 2

|

Move bacterium to the next
number using chemostatic step

All the
numbers up to
n are reached

l Y

Select I*(n)

A

All the
numbers up to
n are reached

Compute I(n)

Fig. 6.3: Flowchart for the Proposed AC-BFO

119

6.4.5 Proposed AC-BFO - An Example

In order to understand the relevance of the work, let, n =14,i=1,m = 0,a,, =
ap = 1 and initially bacteria b, is positioned at ay. With the chemotaxis step, it
moves to 2. Now,m=m+ 1,i.e., a; = 2 and l(a;) = 1. From a;, by moves to
either 3 or 4 because a, = a;+ap=2+1=30ra, =2a; =4. Now,m =2,

Thus ¢ . = {3,4}. Let the intermediate number in AC randomly selected from

min

¢, ie, A1) =3.

Thus, the movement of b, is from 3, i.e., a, = 3 and the corresponding AC upto
this stage is 1 — 2 — 3 and l(a;) = 2. From a,, b; moves to either 4 or 5 or 6
because a; = 2a, =60r a3 = a,+a;,=3+1=4 or az =a, + a; =
34+ 2 =05 Now,m = 3. Thus, ® = {4,5,6}. Lets is selected randomly
from the set &,,;,,. Thus, A(1) = 5. The movement of b; is from 5, i.e.,a; = 5.
Correspondingly, AC up to this stage is1 — 2 — 3 — 5 and [(a3) = 3. From
az, by moves to either 6 or 7 or 8 or 10 because a, = 2a; = 10oray, = az +
a =5+1=6o0a =a3+a =5+2=70ra, =az +a,=5+

3 = 8.Now,m = 4. Thus, ¢ = {6,7,8,10}. Let 7 is selected randomly from

min
the set¢ . . Thus, A(1) = 7. The movement of 1 is from 7, ie,a, = 7.
Correspondingly, AC up to thisstageis 1 — 2 — 3 — 5 — 7and l(ay) = 4. From
a4, by moves to either 8 or 9 or 10 or 12 or 14 because as = 2,a4 = 14 oras =
ag, +ag =7+ 1=8oras =a4 +a, =7+ 3 =10,a; = a4 +az =

7+ 5 =12.Now, m =5, Thus, ¢ . = {8910,12,14}. Let 14 is selected
randomly from the set ¢ . . Thus, A(1) = 14. The process is terminated because it
reachesn = 17. Correspondingly, AC up to this stage is1 — 2 — 3 — 5 — 7 —

14 and l(as) = 5. Suppose, other numbers from ¢ . is selected, even though it

120

reaches 14 in the subsequent stages, [(14) is increased and the corresponding bacteria

will eventually die. Based on different bacteria movement, the ACs are generated with

[*(14) = 5.
1-2-3-4-7-14 1-2-3-6-8-14 1-2-4-5-9-14 1-2-4-6-8-14 | 1-2-4-8-10-14
1-2-3-5-7-14 | 1-2-3-6-12-14 | 1-2-4-5-10-14 | 1-2-4-6-10-14| 1-2-4-8-12-14
1-2-3-6-7-14 1-2-4-5-7-14 1-2-4-6-7-14 | 1-2-4-6-12-14

6.5 Proposed AC-BFO-RSA - An Example

In order to understand the relevance of RSA with AC, let p=2957, q=2551, then n =
pg = 6012707 and ¢(n)=(p-1)(q-1)=6007800. Let, the private key e=3674911 because
gcd(3674911, 6007800) = 1. Using the extended Euclidean algorithm d is computed
as d=422191. The public key is the pair (n=6012707, e=3674911), and the private-
key pair is n=6012707,d=422191. To encrypt a message m = 5234673, Then, c=
5234673 ¥ mod 6012707 =3650502. To decrypt C, m= c® mod n =3650502 “?21!
mod 6012707 = 5234673. It is noted that in the encryption decryption, large numbers
are involved which take more time to perform exponentiation operation. To reduce
the time, 3674910 and 422190 RMs are required for encryption and decryption
respectively when regular RMsare used. To reduce the time further, AC for 3674911

and 422191 are generated usingAC-BFO as follows:

1-2-3-6-7-14-28-56-112-224 - 448 - 896 - 1792 - 1795 - 3587 - 7174
-14348 - 28696 - 57392 - 114784 - 229568 - 459136 - 918272 - 918279 - 1836558
-3673116 — 3674911 and 1(3674911) = 26 i.e. it requires only 26
multiplications. Similarly, in the case d = 422191, the AC is1-2-3-5-10-20-
40 - 60 - 63 - 103- 206 - 412 - 824 - 1648 - 3296 - 6592 - 13184 - 26368 - 527336 -
105472 - 105532 -211064 - 422128 — 422191 and 1(422191) = 23 i.e., it requires only

23 multiplications.In this way time is substantially reduced.

121

6.6 Proposed AC-BFO-ECC - An Example

Let the EC and the embedding of K are taken from table 3. Let k= 65131. Then,
k[P]= 65131[2252,226996]. Since multiplication operation takes more time than
addition, it can be performed by RAs. Thus, it requires 65130 additions. To reduce
the number of additions further, again AC is used. Thus, the AC generated for 65131
using AC-PSO is 1-2-3-5-10-20 - 40 - 80 - 120 - 125 - 130- 131 - 250 - 500 -
1000 - 2000 - 4000 - 8000 - 16000 - 32000 - 64000 - 65000 - 65130 — 65131 which
requires only 23 additions. Here, 1-2-3-5-...- 65130 — 65131 represents P, 2P, 3P,
5P, ..., 65130P and 65131P and they are computed using EC arithmetic as discussed

in section 3.7.2.

6.7 Results and Discussion

The proposed methodology is implemented in VC++ with Android and Windows
emulators for varying file sizes using RSA and ECC. The time taken for ET, DT (in
mS), EP, DP (in mW) and SE (in %) are recorded from Table 6.2 to 6.11 and their

corresponding graphical representations are shown in fig. 6.4 to 6.13.

122

Table 6.2: Encryption Time (mS) using AC-BFO in RSA and ECC with Android

Emulator
Existing RSA and ECC Proposed AC-BFO
File | without RM and RA with RM and RA based RSA and ECC
Size
ET-AC- ET-AC-
(MB) | et Rsa-A | ET-ECC-A ERTSIE_'X' EEE‘(F;_AA‘ BFO- BFO-
RSA-A | ECC-A
1 1660 2447 1227 1820 996 1219
2 3237 4790 2377 3555 1944 2412
4 6494 9553 4788 7173 3895 4849
8 13689 20179 10077 15130 8214 10241
16 27426 40415 20199 30326 16469 20503
Total 52506 77384 38668 58004 31518 39224
Avg. 10501.2 15476.8 7733.6 11600.8 6303.6 7844.8
90000 -
80000 -
70000 - B ET-RSA-A
60000 - B ET-ECC-A
e Time 50000 - ¥ ET-RM-RSA-A
(MS) 20000 - B ET-RA-ECC-A
¥ ET-AC-BFO-RSA-A
30000 -
¥ ET-AC-BFO-ECC-A
20000 -
10000 -
O .

1 2 4 8

16 Total Avg.

File Size(MB)

Fig. 6.4: Graph Showing Encryption Time (mS) using AC-BFO in RSA and ECC with
Android Emulator
= ET-AC-BFO-RSA-A is 1.666 times faster than ET-RSA-A and 1.227 times faster
than ET-RM-RSA-A
= ET-AC- BFO -ECC-A is 1.973 times faster than ET-ECC-A and 1.479 times faster
than ET-RA-ECC-A
= ET-AC- BFO -RSA-A is 1.244 times faster than ET-AC- BFO -ECC-A

123

Table 6.3: Decryption Time (mS) using AC-BFO in RSA and ECC with Android

Emulator
Existing RSA and ECC Proposed AC- BFO
File | without RMandRA | withRMandRA | Pased RSAand ECC
Size
(MB) DT-AC- DT-AC-
DT-RSA- | DT-ECC- | DT-RM- | DT-RA- BEO.- BEO.-
A A RSA-A ECC-A
RSA-A ECC-A
1 1616 2330 1205 1789 972 1224
2 3193 4519 2352 3519 1911 2398
4 6490 9209 4776 7171 3897 4850
8 13645 19375 10066 15082 8185 10208
16 27399 38936 20193 30294 16451 20479
Total 52343 74369 38592 57855 31416 39159
Avg. 10468.6 14873.8 7718.4 11571 6283.2 7831.8
80000 -
70000 -
60000 -
50000 - W DT-RSA-A
Enc. Time 40000 - B DT-ECC-A
(ms) ¥ DT-RM-RSA--A
30000 -
B DT-RA-ECC-A
20000 1 B DT-AC-BFO-RSA-A
10000 - ® DT-ACO-BFO-A
O _

1 2 4 8 16 Total Avg.

File Size(MB)

Fig. 6.5: Graph Showing Decryption Time (mS) using AC-BFO in RSA and ECC with
Android Emulator

= DT-AC- BFO -RSA-A is 1.666 times faster than DT -RSA-A and 1.288 times faster
than DT -RM-RSA-A

= DT -AC- BFO -ECC-A is 1.899 times faster than DT -ECC-A and 1.477 times faster
than DT -RA-ECC-A

» DT -AC- BFO -RSA-A is 1.246 times faster than DT -AC- BFO -ECC-A

124

Table 6.4: Encryption Power (mW) using AC-BFO in RSA and ECC with Android

Emulator
Existing RSA and ECC Proposed AC- BFO
File | withoutRMandRA | with RMand RA basedEFéSCA and
Stze EP-AC- | EP-AC-
(MB) | Ep.rsa-A | EP-ECC-A ERPS‘E_'\A' E’E‘CR_AA: BFO- BFO-
RSA-A | ECC-A
1 554 817 421 613 341 388
2 1102 1621 806 1197 664 776
4 2171 3208 1612 2410 1303 1566
8 4569 6731 3364 5042 2739 3283
16 9156 13510 6735 | 10134 5494 6557
Total | 17552 25887 | 12938 | 19396 10541 | 12570
Avg. | 35104 51774 | 2587.6 | 3879.2 | 2108.2 2514

30000 -
25000 -
20000 - B EP-RSA-A
Enc.‘l;‘\;)w 15000 - W EP-ECC-A
(mW) ® EP-RM-RSA-A
10000 + B EP-RA-ECC-A
5000 - B EP-AC-BFO-RSA-A
B EP-AC-BFO-ECC-A
O .

1 2 4 8 16 Total Avg.

File Size(MB)

Fig. 6.6: Graph Showing Encryption Power in RSA and ECC with BFO AC Using
Android Emulator

= EP-AC- BFO -RSA-A is 1.665 times less than EP -RSA-A and 1.227 times less than
EP -RM-RSA-A.

= EP-AC-BFO -ECC-A is 2.059 times less than EP -ECC-A and 1.543 times less than
EP -RA-ECC-A

= EP-AC-BFO -RSA-A is 1.192 times less than EP -AC- BFO -ECC-A

125

Table 6.5: Decryption Power (mW) using AC-BFO in RSA and ECC with Android

Emulator
Existing RSA and ECC Proposed AC- BFO
File .) based RSA and
) without RM and RA with RM and RA
Size ECC
(MB) 5P-RM OP-RA DP-AC- | DP-AC-
DP-RSA-A | DP-ECC-A | “or n | Ecoa BFO- BFO-
RSA-A ECC-A
1 562 815 411 602 334 397
2 1081 1506 802 1178 649 783
4 2175 3072 1608 2417 1299 1561
8 4548 6463 3357 5035 2741 3259
16 9148 12995 6743 10109 5494 6544
Total 17514 24851 12921 19341 10517 12544
Avg. 3502.8 4970.2 2584.2 3868.2 2103.4 2508.8
30000 -
25000 -
20000 - B DP-RSA-W
Dec. Pow 15000 - m DP-ECC-W
(mW) ¥ DP-RM-RSA-W
10000 - W DP-RA-ECC-W
5000 - B DP-AC-BFO-RSA-W
. DP-AC-BFO-ECC-W
1 2 4 8 16 Total Avg.
File Size(MB)

Fig. 6.7: Graph Showing Decryption Power (mW) using AC-BFO in RSA and ECC with
Android Emulator

DP-AC- BFO -RSA-A is 1.665 times less than DP -RSA-A and 1.229 times less than

EP -RM-RSA-A.

DP -AC- BFO -ECC-A is 1.981 times less than DP -ECC-A and 1.542 times less than

DP -RA-ECC-A

DP -AC- BFO -RSA-A is 1.193 times less than DP-AC-BFO -ECC-A

126

Table 6.6: Security (%) using AC-BFO in RSA and ECC with Android Emulator

Existing RSA and ECC Proposed AC-

) .] BFO based RSA
File | without RM and RA with RM and RA and ECC
Size
(MB) SE-RM- | SE-RA- | G | SEAC

- - - - A T BFO- BFO-
SE-RSA-A | SE-ECC-A RSAA ECC-A
RSA-A | ECC-A

1 89 93 92 94 94 96

2 88 89 89 92 91 94

4 87 88 88 90 90 92

8 85 88 87 90 90 91

16 85 86 87 89 89 91
Avg. 86.8 88.8 88.6 91 90.8 92.8
100 -
90 -
80 -
70 - B SE-RSA-A
Security 60 1 B SE-ECC-A
(%) 50 - ¥ SE--RM-RSA-A
40 1 B SE-RA-ECC--A
30 -
® SE-AC-BFO-RSA-A
20 -
W SE-AC-BFO-ECC-A
10 -
O _

4 8

File Size(MB)

16

Avg.

Fig. 6.8: Graph Showing Security (%) using AC-BFO in RSA and ECC with Android

Emulator

= SE-AC- BFO-RSA-A is 1.046 times more than SE-RSA-A and 1.025 times more
than SE-RM-RSA-A
= SE-AC- BFO -ECC-A is 1.045 times more than SE-ECC-A and 1.020 times more
than SE-RA-ECC-A
= SE-AC- BFO -ECC-A is 1.022 times more than SE-AC- BFO -RSA-A

127

Table 6.7: Encryption Time (mS) using AC-BFO in RSA and ECC with Windows

Emulator
Existing RSA and ECC Proposed AC- BFO
]) . based RSA and
File without RM and RA with RM and RA ECC
Size
(MB) ET.RM- | ET.RA. | Ch-AC | ET-AC-
ET-RSA'W | ET-ECCW | ceaw | ecow | BFO BFO-
RSA-W ECC-W
1 1654 2441 1204 1728 986 1235
2 3233 4748 2378 3362 1935 2431
4 6490 9559 4775 6753 3888 4846
8 13670 20174 10082 14252 8209 10228
16 27432 40443 20214 28603 16451 20489
Total 52479 77365 38653 54698 31469 39229
Avg. 10495.8 15473 7730.6 10939.6 6293.8 7845.8
90000
80000
70000
60000 B ET-RSA-W
Enc. Time -0000 mET-ECC-W
(mS) 40000 M ET-RM-RSA-W
30000 m ET-RA-ECC-W
20000

10000

1 2 4

8 16 Total Avg.

File Size(MB)

M ET-AC-BFO-RSA-W
ET-AC-BFO-ECC-W

Fig. 6.9: Graph Showing Encryption Time (mS) using AC-BFO in RSA and ECC with

Windows Emulator

ET-AC- BFO -RSA-W is 1.668 times faster than ET-RSA-W and 1.228 times faster
than ET-RM-RSA-W
ET-AC- BFO -ECC-W is 1.972 times faster than ET-ECC-W and 1.394 times faster
than ET-RA-ECC-W

ET-AC- BFO -RSA-W is 1.247 times faster than ET-AC- BFO-ECC-W

128

Table 6.8: Decryption Time (mS) using AC-BFO in RSA and ECC with Windows

Emulator
Existing RSA and ECC Proposed AC-
) h th BFO based RSA
File without RM and RA with RM and RA and ECC
Size

(MB) DT-AC- | DT-AC-
DT-RM- | DT-RA- | gro. | BFO.

DT-RSAW | DT-ECC-W | Lonn | Eco.w
RSA-W | ECC-W

1 1616 2322 1205 1708 998 1226
2 3184 4530 2366 3336 1914 2384
4 6496 9212 4778 6755 3896 4846
8 13657 19396 10050 14240 8187 10192
16 27401 38958 20210 28571 16454 20474
Total 52354 74418 38609 54610 31449 39122

Avg. 10470.8 14883.6 7721.8 10922 6289.8 | 7824.4

80000 -
70000 -
m DT-RSA-W
60000 - m DT-ECC-W
50000 - ® DT-RM-RSA-W
Dec. Time, 1 ® DT-RA-ECC-W
(ms)
m DT-AC-BFO-RSA-W
30000 -
m DT-AC-BFO-ECC-W
20000 -
10000 -
O .

1 2 4 8 16 Total Avg.

File Size(MB)

Fig. 6.10: Graph Showing Decryption time in RSA and ECC with BFO AC using
Windows Emulator

= DT-AC- BFO -RSA-W is 1.664 times faster than DT -RSA-W and 1.227 times faster
than DT -RM-RSA-W

= DT -AC- BFO -ECC-W is 1.902 times faster than DT -ECC-W and 1.395 times faster
than DT -RA-ECC-W

= DT -AC-BFO -RSA-W is 1.243 times faster than DT -AC- BFO -ECC-W

129

Table 6.9: Encryption Power (mW) using AC-BFO in RSA and ECC with Windows

Emulator
Existing RSA and ECC Proposed AC-
File | without RMand RA | with RM and RA BFO based RSA
Size and ECC
EP-AC- EP-AC-
MB - - -RA-
() EP-RSA-W | EP-ECC-W EQPSAR'\V/\II ECP:CIZQ'\A/\V BFO- BFO-
:) RSA-W | ECC-W
1 571 840 421 592 337 410
2 1100 1582 796 1146 662 779
4 2179 3228 1604 2263 1303 1549
8 4577 6750 3361 4765 2745 3270
16 9165 13496 6738 9559 5494 6541
Total 17592 25896 12920 18325 10541 12549
Avg. 3518.4 5179.2 2584 3665 2108.2 2509.8
30000 -
25000 + ® EP-RSA-W
m EP-ECC-W
20000 -
® EP-RM-RSA-W
Enc. Pow 15000 - W EP-RA-ECC-W
(mw) ® EP-AC-BFO-RSA-W
10000 - ® EP-AC-BFO-ECC-W
5000 -
O 4
1 2 4 8 16 Total Avg.
File Size(MB)

Fig. 6.11: Graph Showing Encryption Power (mW) using AC-BFO in RSA and ECC
with Windows Emulator

= EP-AC- BFO -RSA-W is 1.699 times less than EP -RSA-W and 1.226 times less than
EP -RM-RSA-W

= EP-AC-BFO -ECC-W is 2.064 times less than EP -ECC-W and 1.460 times less
than EP -RA-ECC-W

= EP-AC- BFO-RSA-W is 1.190 times less than EP -AC- BFO-ECC-W

130

Table 6.10: Decryption Power (mW) using AC-BFO in RSA and ECC with Windows

Emulator
Existing RSA and ECC Proposed AC-
File h q h q BFO based RSA
Size without RM and RA with RM and RA and ECC
DP-AC- | DP-AC-
MB - _ RA-
() DP-RSA-W | DP-ECC-W IEQIZAR—'\\/AV gECR—CV BFO- BFO-
RSA-W | ECC-W
1 541 785 415 584 332 410
2 1086 1536 805 1140 641 765
4 2192 3088 1604 2275 1312 1558
8 4579 6496 3368 4761 2741 3253
16 9133 12997 6742 9529 5491 6540
Total 17531 24902 12934 18289 10517 12526
Avg. 3506.2 4980.4 2586.8 3657.8 2103.4 2505.2
30000 -
25000 -
B DP-RSA-W
20000 -
B DP-ECC-W

Dec. Pow 15000 -

(mw)

10000 -

5000 -

4 8
File Size(MB)

Total Avg.

B DP-RM-RSA-W

W DP-RA-ECC-W

W DP-AC-BFO-RSA-W

W DP-AC-BFO-ECC-W

Fig. 6.12 : Graph Showing Decryption Power (mW) using AC-BFO in RSA and ECC
with Windows Emulator

= DP-AC- BFO -RSA-W is 1.667 times less than DP -RSA-W and 1.230 times less
than DP -RM-RSA-W
= DP-AC- BFO -ECC-W is 1.988 times less than DP -ECC-W and 1.460 times less
than DP -RA-ECC-W
* DP-AC-BFO -RSA-W is 1.191 times less than DP -AC-BFO-ECC-W

131

Table 6.11: Security (%) using AC-BFO in RSA and ECC with Windows Emulator

4 8

File Size(MB)

16 Avg.

Existing RSA and ECC Proposed AC-
File _ i BFO based RSA
Size without RM and RA with RM and RA and ECC
MB i i DAL SE-AC- | SE-AC-
(MB) SE-RSA-W | SE-ECC-W ??ESAI?-'\V/IV EI(E;(?. '\A;V BFO- BFO-
RSA-W | ECC-W
1 91 92 92 94 95 96
2 88 89 89 92 91 94
4 86 89 88 91 91 92
8 86 88 88 89 89 91
16 85 87 87 89 88 91
Avg. 87.2 89 88.8 91 90.8 92.8
100 -
90 -
80 - B SE-RSA-W
70 W SE-ECC-W
60 -
Security 50 - W SE-RM-RSA-W
(%) 40 - m SE-RA-ECC-W
30 - m SE-AC-BFO-RSA-W
20 1 ® SE-AC-BFO-ECC-W
10 -
o .

Fig. 6.13: Graph showing the Security (%) using AC-BFO in RSA and ECC with

Windows Emulator

= SE-AC- BFO -RSA-W is 1.041 times more than SE-RSA-W and 1.023 times more
than SE-RM-RSA-W
= SE-AC- BFO -ECC-W is 1.043 times more than SE-ECC-W and 1.020 times more
than SE-RA-ECC-W
= SE-AC- BFO -ECC-W is 1.022 times more than SE-AC-BFO-RSA-W

132

Table 6.12 shows the generation of AC for some hard exponents where the hard exponent is

the one for which AC is not easily generated.

Table 6.12: AC Generated for Some Hard Exponents Using AC-PSO

1-2.3-6-7-14-15-30_31_62_ 124125250 500 —
2000 | 3600 2000. 15
2048 |1-2-4-8_16-32_ 64128256512 1024 - 2048. 11
4096 |1-2-4-8 163264128 256512 1024 — 2048 - 4096, 12

65131 1- 2 - 3 - 5-10-20-40-80-120-130-250-500-1000-2000-4000-8000- 21
16000--32000-64000-65000-65130-65131

196591 1-2-3-5-10-20-30-60-90-180-360-720-1440-1530-3060-6120- 93
12240- 24480-24570-49140-98280-196560-196590-1966591

1-2-3-6-7-14-28-56-112-224-448-896-899-1792-3584-4483-8966-
1176431 | 17932-35864-36763-73526-147052-294104-588208-588215-1176430- 26
1176431

1-2-3-6-12-13-26-52-104-208-416-832-1664-3328-3331-6662-9993-
2211837 | 16655-33310-66620-133240-266480-276473-5529466-552959- 27
1105918-2211836-2211837

1-2-3-6-9-18-36-45-81-162-243-486-972-1017-2034-4068-8136-
4169527 | 16272-32544-65088-130176-260352-260595-521190-1042380- 28
20847660-2084763-41695266-41669527

1-2-3-5-10-20-40-43-86-172-344-688-1376-1379-2758-5516-6695-
14143037 | 13790-27580-55160-110320-220640-441280-882560-883939- 30
1767878-3535756-3535759-7071518-141430366-14143037

From table 6.13, it is observed that the total length of optimal AC produced by BFO
for integers up to 1024 is 11119. They are almost same as the optimal ACs and their

length produced by EP.

133

Table 6.13 : Comparison of AC upto Integers 1024 - Produced by Existing Algorithms
and the Proposed AC-BFO

Range of
Integers (R) Opt. AlS GA EP BFO
[1,512] 4924 4924(+) 4924 4924 4924
[1,1000] 10808 10813(+) 10813 10808 10812
[1,1024] 11115 11120(+) - 11115 11119

Opt - Optimal AIS - Artificial Immune System EP - Evolutionary Programming
GA - Genetic Algorithm

6.8 Chapter Summary

BFO based AC has been thought of and it is implemented successfully. Optimal AC
produced by some integers are proved by both theoretically and experimentally. It is
observed from the experimental results that upto integers 1024, the proposed AC-BFO
produces the same optimal length AC which are exactly equal to other existing
evolutional algorithms like AIS and EP. Further, the optimal length of AC for some
hard exponents are same as other existing evolutionary methods. The experimental
results show that the AC-BFO-RSA takes less operational time, consumes less power
than RSA, RM-RSA and ECC, RA-ECC when using both emulators. Higher
protection levels are achieved by AC-BFO-ECC while considering security of AC-
BFO-RSA. It is also suggested to use AC-BFO-RSA when there is a small power
source for a mobile device to run. AC-BFO-ECC offers security of almost 93% when
security parameter with windows emulator is considered. It is found that the
experimental findings have clearly shown that the proposed AC-BFO with ECC and
RSA cryptosystems can be used to enhance the security or to decrease the operational
time. As the operational time gets reduced which result in decreasing the operational
power. The comparison of all the proposed models on the basis of ET, DT, EP, DP

and SE in both android and window emulators are analyzed in next chapter.

134

CHAPTER - VII

COMPARISON OF PROPOSED BIO-INSPIRED
ALGORITHMS FOR ADDITION CHAIN GENERATION
WITH RSA AND ECC

From the previous chapters, it is observed that ACs generated by all the proposed

bio-inspired algorithms viz., PSO, SSO and BFO take less operational time, less

power consumption and more security when they are compared with regular RSA,

ECC, RM-RSA and RA-ECC. This chapter provides the comparison of all five

parameters values obtained when the existing and the proposed algorithms are

implemented with different files sizes 1MB, 2MB, 4MB, 8 MB and 16 MB in A and

W emulators.

Table 7.1 to 7.10 show the time taken for ET, DT, EP, DP and SE while using A and

W emulator respectively and their graphical representations are shown from fig.7.1

to 7.10.

Table 7.1: Encryption time using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA with
Android Vs Windows Emulator

FILE |ET-AC-PSO-| ET- AC-PSO-|ET-AC-SSO-| ET-AC- ET-AC- ET- AC-
SIZE RSA-A RSA-W RSA-A | SSO-RSA-W | BFO-RSA-A |BFO-RSA-W,
(MB) (mS) (mS) (ms) (ms) (ms) (ms)
1 1048 1035 866 865 996 994
2 2053 2008 1694 1673 1949 1950
4 4100 4094 3415 3417 3888 3894
8 8643 8624 7211 7185 8220 8213
16 17326 17310 14436 14424 16459 16452
Total 33170 33071 27622 27564 31512 31503
Avg. 6634 6614 5524.4 5513 6302.4 6301

135

35000 A mET-AC-PSO-RSA-A

30000 - ®ET- AC-PSO-RSA-W
®ET-AC-SSO-RSA-A

25000 -
HET- AC-SSO-RSA-W

20000 A BET-AC-BFO-RSA-A

Enc.Time
(mS)

15000 - = ET- AC-BFO-RSA-W

10000 -

1 2 4

8 16 Total Avg.
File Size (MB)

Fig. 7.1: Graph showing the Encryption time using AC-PSO-RSA, AC-SSO-RSA
&AC-BFO-RSA with Android Vs Windows Emulator

= ET-AC-PSO-RSA-A is 1.003 times faster than ET- AC-PSO-RSA-W
= ET-AC-SSO-RSA-A is 1.002 times faster than ET- AC-SSO-RSA-W
= ET-AC-BFO-RSA-A is almost same as ET- AC-BFO-RSA-W

It is found that AC based on PSO, SSO and BFO improves the performance of ET
when the said methods are used in RSA with A and W emulators. Further, ET-AC-
RSA-W takes less ET when they are compared with other proposed methods.

Table 7.2: Encryption time using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC with
Android Vs Windows Emulator

FILE |[ET-AC-PSO-|ET- AC-PSO-| ET-AC- ET-AC- |ET-AC-BFO-| ET-AC-
SIZE | ECC-A ECC-W |SSO-ECC-A |SSO-ECC-W | ECC-A |BFO-ECC-W,
(MB) (mS) (mS) (mS) (mS) (mS) (mS)
1 1571 1533 1299 1302 1222 1228
2 3063 3020 2542 2520 2414 2415
4 6139 6145 5119 5125 4843 4853
8 12970 12918 10819 10767 10221 10232
16 26001 25970 21666 21627 20511 20489
Total | 49744 49586 41445 41341 39211 39217
Avg. | 9948.8 9917 8289 8268 7842.2 7843

136

Time

(ms)

Enc

50000 -

40000 ~

30000 ~

20000 ~

10000 -

B ET-AC-PSO-ECC-A
®ET- AC-PSO-ECC-W
®ET-AC-SSO-ECC-A
®ET- AC-SSO-ECC-W
mET-AC-BFO-ECC-A
®ET- AC-BFO-ECC-W

n

8 16

File Size (M

Total

B)

Avg.

Fig. 7.2: Graph showing the Encryption time using AC-PSO-ECC, AC-SSO-ECC
&AC-BFO-ECC with Android Vs Windows Emulator

ET-AC-BFO-ECC-A is almost same as ET- AC-BFO-ECC-W

ET-AC-PSO-ECC-A is 1.003 times faster than ET- AC-PSO-ECC-W
ET-AC-SSO-ECC-A is 1.003 times faster than ET- AC-SSO-ECC

It is also found that AC based on PSO, SSO and BFO improves the performance of
ET when the said methods are used in ECC with A and W emulators. Further, ET-
AC-ECC-A and ET-AC-ECC-W take less ET when they are compared with other

proposed methods.

Table 7.3: Decryption time using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA with
Android Vs Windows Emulator

FILE |DT-AC-PSO-| DT- AC-PSO-| DT-AC-SSO-|DT- AC-SSO- DT-AC-BFO-| DT- AC-BFO-
SIZE | RSA-A RSA-W RSA-A RSA-W RSA-A RSA-W
(MB) (mS) (mS) (mS) (mS) (mS) (mS)

1 363 352 302 293 987 967

2 692 673 573 562 1918 1909

4 1381 1374 1141 1144 3897 3888

8 2896 2881 2418 2398 8182 8190

16 5781 5781 4827 4812 16458 16444
Total | 11113 11061 9261 9209 31442 31398
Avg. | 22226 2212.2 1852.2 1841.8 6288.4 6279.6

137

Dec.Time
(mS)

35000 -

30000 -

25000 ~

20000 -

15000 -

10000 ~

5000 -

EDT-AC-PSO-RSA-A
mDT- AC-PSO-RSA-W
®DT-AC-SSO-RSA-A
mDT- AC-SSO-RSA-W
®DT-AC-BFO-RSA-A
DT AC-BFO-RSA-W

.

8

File Size (MB)

16 Total

Avg.

Fig. 7.3: Graph showing the Decryption time using AC-PSO-RSA, AC-SSO-RSA
&AC-BFO-RSA with Android Vs Windows Emulator

= DT-AC-PSO-RSA-A is 1.005 times faster than DT- AC-PSO-RSA-W
= DT-AC-SSO-RSA-A is 1.006 times faster than DT- AC-SSO-RSA-W
= DT-AC-BFO-RSA-A is 1.001 times faster than DT- AC-BFO-RSA-W

It is also found that AC based on PSO, SSO and BFO improves the performance of
DT when the said methods are used in RSA with A and W emulators. Further, DT-
AC-SSO-RSA-W take less DT when they are compared with other proposed

methods.

Table 7.4: Decryption time using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC with
Android Vs Windows Emulator

FILE [DT-AC-PSO-|DT -AC-PSO-| DT -AC- |DT-AC-SSO-PT -AC-BFO-PT - AC-BFO-
SIZE ECC-A ECC-W |[SSO-ECC-A| ECC-W ECC-A ECC-W
(MB) (mW) (mW) (mW) (mW) (mW) (mw)

1 543 525 422 422 1229 1218

2 1045 1017 800 792 2401 2381

4 2050 2055 1598 1596 4856 4854

8 4323 4318 3369 3361 10202 10201

16 8694 8681 6743 6734 20496 20476
Total 16655 16596 12932 12905 39184 39130
Avg. 3331 3319.2 2586.4 2581 7836.8 7826

138

B DT-AC-PSO-ECC-A
B DT- AC-PSO-ECC-W
uDT-AC-SSO-ECC-A
B DT- AC-SSO-ECC-W
uDT-AC-BFO-ECC-A
DT AC-BFO-ECC-W

Ll

1

2

4

8

16

Total

File Size (MB)
Fig. 7.4: Graph showing the Decryption time using AC-PSO-ECC, AC-SSO-ECC

&AC-BFO-ECC with Android Vs Windows Emulator

Avg.

= DT-AC-PSO-ECC-A is 1.004 times faster than DT- AC-PSO-ECC-W
= DT-AC-SSO-ECC-A is 1.002 times faster than DT- AC-SSO-ECC-W
= DT-AC-BFO-ECC-A is 1.001 times faster than DT- AC-BFO-ECC-W

It is also found that AC based on PSO, SSO and BFO improves the performance of
DT when the said methods are used in ECC with A and W emulators. Further, DT-
AC-SSO-RSA-W take less DT when they are compared with other proposed

methods.

Table 7.5: Encryption power using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA with
Android Vs Windows Emulator

EP-AC- EP- AC-
g: 'Z-E ngfzcs::o\- Psg(:iz%%_-w SS%Z%%—A ss?)(%%g:w BFOARSA' BFO\;\?SA'
(MB) (W) (mW) (mW)

1 1040 1023 865 850 343 336

2 2040 2012 1698 1692 649 666

4 4098 4094 3413 3412 1308 1307

8 8647 8631 7202 7175 2750 2747

16 17317 17308 14436 14422 5489 5489
Total 33142 33068 27614 27551 10539 10545
Avg. 6628 6613.6 5523 5510.2 2108 2109

139

Enc.power
(mw)

35000 -
30000 ~
25000 ~
20000 ~
15000 ~
10000 ~
5000 -

mEP-AC-PSO-RSA-A
m EP-AC-PSO-RSA-W
®EP-AC-SSO-RSA-A
®mEP- AC-SSO-RSA-W
= EP-AC-BFO-RSA-A
EP- AC-BFO-RSA-W

4 8

16 Total

File Size (MB)

Avg.

Fig. 7.5: Graph showing the Encryption power using AC-PSO-RSA, AC-SSO-RSA
&AC-BFO-RSA with Android Vs Windows Emulator

. EP-AC-PSO-RSA-A is 1.002 times faster than EP-AC-PSO-RSA-W
. EP-AC-SSO-RSA-A is 1.002 times faster than EP- AC-SSO-RSA-W

= EP-AC-BFO-RSA-A is is almost same as EP- AC-BFO-RSA-W

It is also found that AC based on PSO, SSO and BFO improves the performance of
EP when the said methods are used in RSA with A and W emulators. Further, EP-
AC-BFO-RSA-A and EP-AC-BFO-RSA-W take less EP when they are compared

with other proposed methods.

Table 7.6: Encryption power using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC

with Android Vs Windows Emulator

EP-AC- EP-AC- EP-AC- EP- AC- EP-AC- EP- AC-

FILE PSO-ECC- PSO- ECC- | SSO-ECC- | SSO-ECC- | BFO- ECC- | BFO- ECC-
SIZE A W A w A W
(MB) (MW) (mw) (mW) (mW) (mW) (mW)

1 1555 1533 1293 1300 395 401

2 3052 3015 2548 2527 782 177

4 6156 6150 5122 5122 1549 1561

8 12949 12925 10807 10762 3277 3277

16 26001 25952 21664 21643 6563 6544
Total 49713 49575 41434 41354 12566 12560
Avg. 9943 9915 8287 8270.8 2513 2512

140

50000 -
40000 - = EP-AC-PSO-ECC-A
= EP- AC-PSO-ECC-W

30000 - = EP-AC-SSO-ECC-A
N mEP- AC-SSO-ECC-W
% s 20000 - = EP-AC-BFO-ECC-A
g. é ®EP- AC-BFO-ECC-W
i 10000 - Il‘ III

0 - [‘w - wsl --l III
1 2 4 8 16 Total Avg.
File Size (MB)

Fig. 7.6: Graph showing the Encryption power using AC-PSO-ECC, AC-SSO-ECC

&AC-BFO-ECC with Android Vs Windows Emulator

EP-AC
EP-AC
EP-AC

-PSO-ECC-A is 1.002 times less than EP-AC-PSO- ECC-W

-SSO- ECC-A is 1.002 times less than EP- AC-SSO- ECC-W
-BFO- ECC-A is is almost same as EP- AC-BFO- ECC-W

It is also found that AC based on PSO, SSO and BFO improves the performance of
EP when the said methods are used in ECC with A and W emulators. Further, EP-
AC-BFO-ECC-A and EP-AC-BFO-ECC-W take less EP when they are compared

with other proposed methods.

Table 7.7: Decryption power using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA with

Android Vs Windows Emulator

DP-AC- DP-AC- | DP-AC-

FILE PESZAQ;_ PSO-RSA- SS%E%%_ R SSI?)(%V%E—-W BFO-RSA- | BFO-RSA-
(MB) (MW) (mw) (mw) (mw)
1 363 354 288 293 334 322
2 696 676 577 570 654 637
4 1382 1375 1151 1150 1315 1305
8 2887 2894 2410 2394 2729 2740
16 5785 5786 4821 4812 5492 5495
Total | 11113 11085 9247 9219 10524 10499
Avg. | 2223 2017 1849 18438 2105 2099.8

141

Dec.Power
(mw)

12000 +

10000 -

8000 -

6000 -

4000 -

2000 -

1

2

8
File Size (MB)

16 Total

= DP-AC-PSO-RSA-A

= DP- AC-PSO-RSA-W

= DP-AC-SSO-RSA-A

= DP- AC-SSO-RSA-W

=DP-AC-BFO-RSA-A

=DP AC-BFO-RSA-W

Avg.

Fig. 7.7: Graph showing the Decryption power using AC-PSO-RSA, AC-SSO-RSA

&AC-BFO-RSA with Android Vs Windows Emulator
» DP-AC-PSO-RSA-A is 1.003 times less than DP-AC-PSO-RSA-W
» DP-AC-SSO-RSA-A is 1.003 times less than DP- AC-SSO-RSA-W
= DP-AC-BFO-RSA-A is 1.002 times less than DP- AC-BFO-RSA-W

It is also found that AC based on PSO, SSO and BFO improves the performance of

DP when the said methods are used in ECC with A and W emulators. Further, DP-

AC-SSO-RSA-W take less DP when they are compared with other proposed

methods.

Table 7.8: Decryption power using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC with
Android Vs Windows Emulator

DP-AC- DP- AC- DP-AC- DP- AC-
FILE DP-AC- DP-AC-PSO- | os5.Ecc- | sso-Ecc- | BFO-ECC- | BFO- ECC-
PSO-ECC- ECC-W
SIZE A (mW) A w A wW
(MB) (MW) (mW) (mW) (mw) (mw)
1 532 529 414 415 394 405
2 1024 1013 803 786 786 764
4 2066 2064 1598 1594 1559 1551
8 4332 4316 3375 3348 3264 3265
16 8677 8659 6745 6742 6553 6545
Total 16631 16581 12935 12885 12556 12530
Avg. 3326 3316.2 2587 2577 2511 2506

142

Dec. Power
(mw)

50000 -

40000 -

30000 -

20000 -

10000 ~

8

16 Total

File Size (MB)

= DP-AC-PSO-ECC-A

mDP- AC-PSO-ECC-W

=DP-AC-SSO-ECC-A

mDP- AC-SSO-ECC-W

=DP-AC-BFO-ECC-A

Avg.

= DP- AC-BFO-ECC-W

Fig. 7.8: Graph showing the Decryption power using AC-PSO-ECC, AC-SSO-ECC
&AC-BFO-ECC with Android Vs Windows Emulator

= DP-AC-PSO-ECC-A is 1.003 times less than DP-AC-PSO- ECC-W
= DP-AC-SSO- ECC-A is 1.004 times less than DP- AC-SSO- ECC-W
= DP-AC-BFO- ECC-A is 1.002 times less than DP- AC-BFO- ECC-W

It is also found that AC based on PSO, SSO and BFO improves the performance of
DP when the said methods are used in ECC with A and W emulators. Further, DP-
AC-BFO-ECC-A and DP-AC-BFO-ECC-A take less DP when they are compared

with other proposed methods.

Table 7.9: Security using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA with Android
Vs Windows Emulator

SE-AC- SE-AC- SE-AC- SE-AC-
FILE SE-AC- PSO-RSA- | SSO-RSA- SE- AC- BFO-RSA- | BFO-RSA-
PSO-RSA- SSO-RSA-W

SIZE A w A (%) A w
(MB) (%) (%) (%) (%) (%)

1 95 93 93 93 94 95

2 92 92 92 91 92 91

8 89 89 90 89 90 89

16 89 88 89 88 88 89
Total 91 90.6 91 90.2 91 90.8
Avg. 95 93 93 93 94 95

143

Security
(%0)

12000 ~

10000 -

8000 -

6000 -

4000 -

2000 -

u SE-AC-PSO-RSA-A
u SE- AC-PSO-RSA-W
u SE-AC-SSO-RSA-A
B SE-AC-SSO-RSA-W
u SE-AC-BFO-RSA-A
m SE-AC-BFO-RSA-W

8

File Size (MB)

16 Total

Avg.

Fig. 7.9: Graph showing the Security using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-
RSA with Android Vs Windows Emulator

= SE-AC-PSO-RSA-A is 1.022 times more than SE-AC-PSO-RSA-W

= SE-AC-SSO-RSA-A is same as SE- AC-SSO-RSA-W
= SE-AC-BFO-RSA-W is 0.989 times more than SE-AC-BFO-RSA-A

It is also found that AC based on PSO, SSO and BFO provides more SE when the said
methods are used in RSA with A and W emulators. SE-AC-PSO-RSA-A, SE-AC-BFO-
RSA-A and SE-AC-BFO-RSA-W provides almost same level of security i.e., 94%

when they are compared with other proposed methods.

Android Vs Windows Emulator

Table 7.10: Security using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC with

SE-AC- SE- AC- SE-AC- SE-AC-
FILE SE-AC- SE-AC-PSO- | oo Ece. | sso-Ecc- | BFO-ECC- | BFO- ECC-
PSO-ECC- ECC-W

SIZE A %) A wW A wW

(MB) (%) (%) (%) (%) (%)
1 95 95 93 97 96 97
2 94 93 92 93 93 93
4 92 93 91 92 93 93
8 91 91 90 92 91 91
16 91 91 89 91 91 91

Total 92.6 92.6 91 93 92.8 93

Avg. 95 95 93 97 96 97

144

98 1 = SE-AC-PSO-ECC-A

96 - ® SE- AC-PSO-ECC-W

o ® SE-AC-SSO-ECC-A

= SE-AC-SSO-ECC-W

>
2 _ 92 A m SE-AC-BFO-ECC-A
3 X
2~ g0 - = SE-AC-BFO-ECC-W
wv

88 A

86 A

84 T T T

1 2 4 8 16 Avg.
File Size (MB)

Fig. 7.10: Graph showing the Security using AC-PSO-ECC, AC-ECC-RSA &AC-
BFO-ECC with Android Vs Windows Emulator

= SE-AC-PSO-ECC-A is same as SE-AC-PSO- ECC-W
= SE-AC-SSO- ECC-W is 1.021 times more than SE- AC-SSO- ECC-A
= SE-AC-BFO- ECC-W is 0.990 times more than SE-AC-BFO- ECC-A

It is also found that AC based on PSO, SSO and BFO provides more SE when the said

methods are used in ECC with A and W emulators. SE-AC-SSO-ECC-A and SE-AC-
BFO-ECC-W provides almost same level of security i.e., 97% when they are compared

with other proposed methods.

Table 7.11 shows the comparison of ET, DT, EP, DP and SE while using Android
and Windows emulator respectively and their graphical representations are shown in
fig.7.11.

From table 7.11, it is revealed that AC-SSO-RSA-W takes less ET and DT. It is also
found that, AC-SSO-RSA-W consumes less power in both EP and DP. While
considering SE, it is proved that AC-SSO-ECC-A and AC-BFO-ECC-W provides

almost equal i.e., 93%.

145

Table 7.11: Android Vs Window OS Emulator

Existing Method Proposed Methods
Operation RSA ECC AC-PSO-RSA | AC-PsO-ECC | AC-sSO-RSA | Ac-sso-EcC | AC-BFO-RsA ACE'gEO'
A w | A W A W A W A W A W A W A | w

ET 10501.4 | 10475 | 15474 | 14885 | 6634 | 6614 | 9948.8 | 9917 | 5524.4 | 5513 | 8289 | 8268 | 6302.4 | 6301 | 7842.2 | 7843

DT 3510.6 | 3499 | 5194 | 4973.6 | 2222.6 | 2212.2 | 3331 | 3319.2 | 1852.2 | 1841.8 | 2586.4 | 2581 | 6288.4 | 6279.6 | 7836.8 | 7826

EP 10502 | 1643 | 15474 | 14885.8 | 6628 | 6613.6 [9943 | 9915 | 5523 | 5510.2 [8287 | 8270.8 | 2108 | 2109 | 2513 | 2512
DP 3511 | 3508.8 | 5174 | 4975.8 | 2223 | 2217 | 3326 |3316.2 | 1849 |1843.8 | 2587 | 2577 | 2105 | 2099.8 | 2511 [2506
SE 88.6 88.8 90.6 90.8 91 90.6 92.6 92.6 91 90.2 92.8 93 91 90.8 92.8 93

146

18000

16000

14000

12000

10000

8000

6000

4000

2000

RSA

ECC

A W

RM-RSA

A W

RA-ECC

A W A W A w A w A W A W

AC-PSO-RSA | AC-PSO-ECC | AC-SSO-RSA | AC-SSO-ECC | AC-BFO-RSA | AC-BFO-ECC

WET
mDT
WEP
mDP
mSE

ET : Encryption Time

DT : Decryption Time EP : Encryption Power DP : Decryption Power SE: Security

Fig. 7.11: Graph Showing the overall performance of Android Vs Window OS Emulator

147

CHAPTER - VIlII

CONCLUSION

Mobile computing is a technology which can defined as at anywhere, any time and
any place anybody can access it. In future, all activities can be controlled through
these devices, which allow the user without any physical connection to complete the
tasks. These devices will enable the transmission of voice, video and data between
human and the computer. It always helps to stay connected to the world with a wide
range of users through the internet. Even though, all sensitive informations are
transmitted through these handheld mobile devices but they have limited battery
power, storage and some security threats occur. Hence, the five parameters viz., ET,
DT, EP, DP and SE have been taken in this research. If the said processes take more
time, it will degrade the performance and will eventually decrease the life of mobile
devices. It is noted that there is a directly proportional relationship between

operational time and power consumption.

Thus, it is essential to minimize the operational time. One way of achieving is to use
the optimal AC. To generate the optimal AC for the integer (keys in cryptographic
algorithms), the concepts used in BIAs viz., PSO, SSO and BFO are taken and they
are incorporated into the public-key algorithms RSA and ECC with two different
mobile emulators Android and Windows. The proposed algorithms are termed as AC-
PSO-RSA, AC-PSO-ECC, AC-SSO-RSA, AC-SSO-ECC, AC-BFO-RSA and AC-

BFO-ECC. They are tested for said parameters.

148

8.1 Summary of the Contributions

The contributions made in this research work are summarised as follows:

1) In the first proposed AC-PSO method, each particles represents the AC, and the
fitness function represents the length of AC. Even though, too may ACs are
generated for the encryption and decryption key of RSA and k[P] of ECC, only
optimal length ACs are alone is considered in this method. The generated ACs are
incorporated into RSA and ECC with two different emulators. Experimental result
clearly indicate that (i) ET-AC-PSO-RSA-A takes less ET, and DT-AC-PSO-RSA-A
and DT-AC-PSO-RSA-W take less DT than the existing and the proposed methods.
(if) when EP is concerned, EP-AC-PSO-RSA-W and DP-AC-PSO-RSA-A take less
EP and DP than the existing and the proposed methods and (iii) regarding the security
parameter, SE-AC-PSO-ECC-A and SE-AC-PSO-ECC-W provide almost same but

more security than the existing and the proposed methods.

ii) In the second proposed AC-SSO method, CPs are taken as ACs and again the
length of the AC is taken as fitness function. Only optimal length ACs generated by
this method are incorporated into RSA and ECC. From the experimental results, it is
observed that (i) ET-AC-SSO-RSA-W takes less time for both encryption and
decryption than the existing and the proposed methods. (ii) when EP is concerned,
EP-AC-SSO-RSA-A takes less EP and DP-AC-SSO-RSA-A and DP-AC-SSO-RSA-
W take less DP than the existing and the proposed methods and (iii) regarding the
security parameter, SE-AC-SSO-ECC-W provides more security than the existing and

the proposed methods.

149

iii) AC-BFO is the third proposed method in which each bacterium is considered as
AC and the optimal ACs are produced using the processes viz., chemotaxis,
reproduction, and elimination-dispersal. As the ultimate aim of this proposed method
is to reduce the operational speed, energy consumption and enchaining the security,
this method is also used for the same to avoid the customer's impatience and
dissatisfaction. The experimental results clearly show that (i) ET-AC-BFO-RSA-W
takes less ET and DT than the existing and the proposed methods (ii) when EP is
concerned, EP-AC-BFO-RSA-W and DP-AC-BFO-RSA-A take less EP and DP-AC-
BFO-RSA-A and DP-AC-BFO-RSA-W take the same and less DP than the existing
and the proposed methods and (iii) regarding the security parameter, SE-AC-BFO-
ECC-A and SE-AC-PSO-ECC-W take almost same but more security than the

existing and the proposed methods.

From the three proposed methods, it is concluded that AC-SSO-RSA-W is for ET,
DT, EP and DP are better than others with respect to time. While considering SE, it is
proved that AC-SSO-ECC-A and AC-BFO-ECC-W provides almost same security

level i.e., 93% than others.

8.2 Future Research Directions

This work can be extended in mobile cloud computing due to the serious limitations
of memory space, battery power for energy consumption as well as the resource

optimization without compromising the security in mobile devices.

8.3 End Note

Mobile computing technology can reach at any part of the world to attain its destiny.
Users can feel very comfortable from any location as they are connected to a secure

150

network. This technology acts as a major part of Information Communication and
Technology (ICT). Mobile functionality available today but their performances need
to be safe and secured means this can lead to attain its heights. This research work has
built a new three proposed BIAs based AC methods to enhance the operational speed
while using any cryptographic algorithms. No cryptographic algorithms have proved
to use such methods to enhance the operational speed in any literature. These ideas
used are unique, novel, innovative and original. This work is nonexistent in any

literature and the same is endorsed by a few journals and conferences for its veracity.

151

[1].

2.

[3].

[41

[5].

[6].

[71

[8].

Elf

[10].

[11].

[12].

[13].

REFERENCES

J Jang-accard and Surya Nepal, "A Survey of emerging threats in Cybersecurity”,
Journal of Computer and System Sciences, 2014, 80, pp.973-993.

International Telecommunication Union, CCITT - The International Telegraph and
Telephone Consultative Committee - Security Architecture for Open Systems

Interconnection for CCITT Applications”, Recommendation X.800, Geneva, 1991.

Gurkan Gur et. al., "Security Analysis of Computer Nerworks: Key concepts and
methodologies”, Modeling and Simulation of Computer Networks and Systems -
Methodologies and Applications, 2015, pp.861-898.

William Stallings, "Cryptography and Network Security”, 2005, 4th edition, pp.209.

Rob Stubbs, "Classification of Cryptographic Keys", A Framework for Designing
Cryptographic Key Management Systems, 2018.

Massoud Sokouti et al., "An approach in improving transposition cipher system",

Indian Journal of Science and Technology, 2009.

Hans Delf and Helmut Knel, "Introduction to Cryptography - Principles and
Applications, Second Edition, Springer, 2007.

Neal Koblitz, "A Course in Number Theory and Cryptography”, Springer Verlag,
1994,

Gary C. Kessler, “An Overview of Cryptography”, Handbook on Local Area
Networks, 1998

Britannica, The Editors of Encyclopaedia. "cipher". Encyclopedia Britannica, 14
Jun. 2021.

Limor Elbaz, “Using Public Key Cryptography in Mobile Phones”, White
Paper,Discretix Technologies Ltd., Advanced security solutions for constrained

environments, October 2002.

Miller V, "Use of elliptic curves in cryptography"”, Advances in Cryptology -
CRYPTO °85, Lecture Notes in Computer Science, 1986.

Evan Dummit, "Cryptography (part 3): Discrete Logarithms in Cryptography
2016", Vol. 1.01, pp. 1-13.

152

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

Jayaprakash Kar & Banshidhar Majhi, “An Efficient Password Security of Multi-
Party key exchange protocol based on ECDLP”, International Journal of Computer
Science and Security (IJCSS), Vol.1, Issue 5, Sep. 20009.

Immons, Gustavus J, "RSA encryption”, Encyclopedia Britannica, 3 Aug. 2012.

Koblitz, N, "Ellipti Curve Cryptosystems", Mathematics of Computation, 48 (177):
203-209, doi:10.2307/2007884. JSTOR 2007884.

Bruno P.S. Rocha et al., “Adaptive Security protocol selection for mobile
computing”, Journal of Network and Computer Applications, 33, 2010, pp. 569.

Bezboruah, Tulshi, "Mobile Computing”, The Emerging Technology, Sensing,
Challenges and Applications, 2011, Vol. 4, pp. 165-174.

David Kleidermacher, Mike Kleidermacher, "Embedded Cryptograph”, Embedded
Systems Security, 2012.

Jyotsna Dei, Anindya Sen, "Investigation on Trends of Mobile Operating Systems",
International Journal of Engineering Research & Technology (IJERT), Vol.4 Issue
07, July 2015.

Vijay K. Garg, "Wireless Communication & Networking", 2007.

Mooseeop Kim et al., “Design of Cryptographic Hardware Architecture for Mobile

Computing”, Journal of Information Processing Systems, vol. 5, no. 4, Dec. 20009.

Maurice Mignotte, "A Note on Addition Chains", International Journal of Algebra,
Issue 5(6), 2011.

Neil Michael Clift, "Calculating Optimal Addition Chains”, Journal of Computing,
Springer, 91, 2011, pp. 265-284.

K Mani, M Viswambari, "A New Method of Generating Optimal Addition Chain
Based on Graph, International Journal of Mathematical Sciences and Computing",
Vol. 2, 2017, pp. 37-54.

P Suradhakameswari and B Ravitheja, Addition Chain for Lucas sequences with Fast
Computation Method, International Journal of Applied Engineering Research, Issue
13(11), 2018, pp. 9413-9419.

Dustin Moody and Amadou Tall, On Addition-Subtraction Chains of Numbers With
Low Hamming Weight ”, Number Theory Mathematics, Vol. 25, 2019, pp. 155-168.

153

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F2007884
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2007884

[28].

[29].

[30].

[31].

[32].

[33].

[34].

[35].

[36].

[37].

[38].

[39].

Floreano and Mattiussi, "Bio-inspired artificial intelligence: Theories, methods,

and technologies”, 2008.

Xian-Bing Meng, X.Z. Gao, Lihua Lu, Yu Liu, Hengzhen Zhang. "A new bio-
inspired optimisation algorithm: Bird Swarm Algorithm", Journal of Experimental
& Theoretical Artificial Intelligence, 2016.

Ke-Lin Du and M. N. S. Swamy. "Particle Swarm Optimization”, Search and

Optimization by Metaheuristics, Springer, 2016.

Wei-Chang Yeh, Wei-Ting Lin, Chyh-Ming Lai, Yen-Chin Lee, Yuk Ying Chung,
Jsen-Shung Lin. "Application of simplified swarm optimization algorithm in
deteriorate supply chain network problem”, Evolutionary Computation (CEC) -
IEEE, 2016.

Swagatam Das, ArijitBiswas, SambartaDasgupta, and Ajith Abraham, “Bacterial
Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and
Applications”, Foundations of Computational Intelligence, Springerlink.com,

Springer-Verlag Berlin Heidelberg, 2009, pp. 23-55.

Kevin M. Paasino, "Bacterial Foraging Optimization", International Journal of

Swarm Intelligence Research, 1(1), 2010, pp.1-16.

Mavridis 1., Pangalos G., “Security Issues in Mobile computing Paradigm”. 1997,

http://www.researchgate.net.
Erik Olson and Woojin Yu, “Encryption for Mobile computing”, 2000.

Wendy Chou, “Elliptic Curve Cryptography and its applications to Mobile Devices",
2000.

Limor Elbaz, “Using Public Key Cryptography in Mobile Phones”, White
Paper,Discretix Technologies Ltd., Advanced security solutions for constrained

environments, October 2002.

Dharma P. Agrawal et al., “Secure Mobile Computing”, S.R. Das, S.K. Das (Eds.):
IWDC 2003, Springer-Verlag., LNCS 2918, 2003, pp.265- 278.

WHanping Lufei and Weisong Shi, “An Adaptive Encryption Protocol in Mobile
Computing”, Wireless/Mobile Network Security, Springer, 2006.

154

http://www.researchgate.net/

[40].

[41].

[42].

[43].

[44].

[45].

[46].

[47].

[48].

[49].

[50].

Abhishek Kumar Gupta, “Challenges of Mobile computing”, Proceedings of 2nd
National Conference on Challenges & Opportunities in Information Technology
RIMT — IET, Mandi Gobindgarth, March 29, 2008.

S. Krishna Mohan Rao and Dr. A Venugopal Reddy, “Data Dissemination in
Mobile Computing Environment”, BIJIT, Bharati Vidyapeeth’s Institute of
Computer applications and Management (BVICAM), New Delhi, Vol. 1, No. 1,
January 2009.

M. Razvi Doomun, and KMS Soyjaudah, “Analytical Comparison of
Cryptographic Techniques for Resource-Constrained Wireless Security”,
International Journal of Network Security, Vol.9, No.1, July 2009, pp. 82-94.

Jayaprakash Kar & Banshidhar Majhi, “An Efficient Password Security of Multi-
Party key exchange protocol based on ECDLP”, International Journal of Computer
Science and Security (IJCSS), Vol.1, Issue 5, Sep. 20009.

Mooseeop Kim et al., “Design of Cryptographic Hardware Architecture for Mobile
Computing”, Journal of Information Processing Systems, Vol. 5, No. 4, Dec. 2009.

Bruno P.S. Rocha et. al., “Adaptive Security protocol selection for mobile

computing”, Journal of Network and Computer Applications, 2010, pp. 5609.

Sathish Alampalayam Kumar, “Classification and Review of Security Schemes in

Mobile Computing”, Wireless Sensor Network, June 2010, pp.419-440.

Sameer Hasan Al-Bakri, Gazi Mahabubul Alam et al., “Securing peer-to-peer

mobile communications using public key cryptography: New security strategy”,

International Journal of the Physical Sciences, Vol. 6(4), Feb. 2011, pp. 930-938.

Rahat Afreen and S.C. Mehrotra, “A Review on Elliptic Curve Cryptography for
Embedded Systems”, International Journal of Computer Science & Information
Technology, Vol. 3, No 3, June 2011.

Helena Rifa-Pous and Jordi Herrera-Joancomarti, “Computational and Energy
Costs of Cryptographic Algorithms on Handheld Devices”, Future Internet, 2011,
Vol.3, pp.31-48.

Jagdish Bhatta and Lok Prakash Pandey, “Performance Evaluation of RSA Variants
and Elliptic Curve Cryptography on Handheld Devices”, International Journal of
Computer Science and Network Security, Vol. 11, No. 11, Nov. 2011.

155

[51].

[52].

[53].

[54].

[55].

[56].

[57].

[58].

[59].

[60].

K. Sathish Kumar et. al., “An Experimental Study on Energy Consumption of
Cryptographic Algorithms for Mobile Hand-Held Devices”, International Journal
of Computer Applications, VVol. 40, No.1, Feb. 2012.

Masoud Nosrati et. al., “Mobile and Operating Systems”, Computing: Principles,
Devices World Applied Programming, Vol. 2, Issue 7, July 2012.

Ravinder Singh Mann et al., “A Comparative Evaluation of Cryptographic
Algorithms”, Int. J. Computer Technology & Applications, Vol. 3(5), Oct. 2012,
pp. 1653-1657.

Giripunje et al., “Comprehensive Security System for Mobile Network Using
Elliptic Curve Cryptography over GF (p)", International Journal of Advanced
Research in Computer Science and Software Engineering, Vol. 3, Issue 5, May
2013, pp. 704-713.

Ameya Nayak, “Android Mobile Platform Security and Malware Survey”, IJRET:
International Journal of Research in Engineering and Technology, Vol. 02 Issue
11, Nov. 2013.

Srikanth Pullela, “Security Issues in Mobile computing”, International Journal of

Research in Engineering and Technology, Vol. 02, Issue: 11, Nov. 2013.

V. Gayoaso Martinez and L. Hernandez Encinas, “Implementing ECC with Java
Standard Edition 77, International Journal of Computer Science and Artificial
Intelligence, Dec. 2013, Vol. 3, Issue. 4, pp. 134-142.

Muhammad Waseem Khan, “SMS Security in Mobile Devices: A Survey”, Int. J.
Advanced Networking and Applications, Vol. 05, Issue 2, 2013, pp. 1873 -1882.

Ram Ratan Ahirwal and Manoj Ahke, “Elliptic Curve Diffie-Hellman Key
Exchange Algorithm for Securing Hypertext Information on Wide Area Network”,
International Journal of Computer Science and Information Technologies, Vol.
4(2), 2013, pp.363 — 368.

Sathish Kumar et. al., “An Asymmetric Authentication Protocol for Mobile Hand
held Devices using ECC over Point Multiplication Method”, International Journal
of Advanced Research in Computer Science & Technology, Vol. 2, Jan.—March
2014.

156

[61].

[62].

[63].

[64].

[65].

[66].

[67].

[68].

[69].

[70].

Hamed Khiabani et. al., “A Review on privacy, Security and Trust issues in Mobile
Computing”, Collaborative outcome of University of Malaysia and MIMOS Berhad

— Information Security Cluster, 2014.

Seema P. Nakhate and R.M. Goudar, “Secure Authentication Protocol”,
International Journal of Computer Networks and Communications Security, Vol. 2,
No. 4, April 2014, pp. 142 — 145.

Vishnu V and Shobha R, “Dynamic Cluster Head (CH) Node Election and Secure
Data Transaction in CWSNs”, International Journal of Engineering Research, Vol.
4, Issue Special 4, May 2015.

Tanmoy Kumar Bishoi et. al., “An Algorithm on Text Based Security in Modern
Cryptography”, Journal of Computer Networking, Wireless and Mobile
Communications (JCNWMC), Vol. 5, Issue 1, Jun 2015, pp. 9-14.

Sujithra M et. al., “Mobile Data Security: A Cryptographic Approach by
Outsourcing Mobile data to Cloud”, Procedia Computer Science, 2015, pp. 480-
485.

Said Bouchkaren and Saiida Lazaar, “A New Iterative Secret Key Cryptosystem
Based on Reversible and Irreversible Cellular Automata”, International Journal of
Network Security, Vol. 18, No. 2, Mar 2016, pp. 345-353.

Arbit and Ashwini Kumar, “Optimized Elliptic Curve Cryptography as Fine Balance
for Wireless Sensor Network™, International Journal of Modeling and Optimization,
Vol.1, No. 4, October 2011.

Ahmed Tariq Sadiq, “Mutation-Based Particle Swarm Optimization (MPSO) to
Attack Classical Cryptography Methods”, Journal of Computer Science and
Technology Research, Issue 2, March 2012., pp. 50-65.

Ahemed A, A. Esmin and Germano Lambert-Torres, "Application of Particle Swarm
Optimization to optimal power systems", International Journal of Innovative
Computing, Information and Control, Vol. 8, No.3(A), March 2012, pp. 1705-1716.

G.Prakash and Dr. M. Kannan, “Enhancing Security in Cryptographic in Smart
Cards through Elliptic Curve Cryptography and Optimized Modified Matrix
Encoding Algorithms”, Journal of Theoretical and Applied Information Technology,
Vol. 58, No.3, December 2013.

157

[71].

[72].

[73].

[74].

[75].

[76].

[77].

[78].

[79].

[80].

Cuevas, E., Cienfuegos, M., Zaldivar, D., Pérez-Cisneros, M. A swarm optimization
algorithm inspired in the behaviour of the social-spider, Expert Systems with
Applications, Vol. 40, No. 16, 2013.

Wilayat Khan, Habib Ullah and Riaz Hussain, “Energy Efficient Mutual
Authentication Protocol for Handheld devices based on Public Key Cryptography”,
International Journal of Computer Theory and Engineering, Vol. 5, No. 5,
October 2013.

Rangit j. Bhosale et al, “A Survey on Intrusion detection System for Mobile Ad-hoc
Networks”, (IJCSIT) International Journal of Computer Science and Information
Technologies, Vol. 5, No. 6, 2014.

Swapna B. Sasi and N. Sivanandam, “A Survey on Cryptography using
Optimization algorithms in WSNs”, Indian Journal of Science and Technology, Vol.
8. No. 3, February 2015.

Dolly U. Jeswani and Swati G. Kale, “The Particle Swarm Optimization Based
Linear Cryptanalysis of Advanced Encryption Standard Algorithm”, International
Journal on Recent and Innovation Trends in Computing and Communication, Vol. 3,
April 2015.

Chia-Ling Huang and Wei-Chang Yeh," Simplified Swarm Optimization Algorithm
for reliability redundancy allocation problems”, IEEE Computer Society, 2015.

Ji Weidong and Zhu Songyu, "A Filtering Mechanism Based Optimization for
Particle Swarm", International Journal of u- and e-Service, Science and Technology,
Vol.9, No. 1, 2016.

Jin Yang, Fagui Liu, Jianneng Cao and Liangming Wang, "Discrete Particle Swarm
Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile
Sinks", MDPI journals , Sensors 2016.

Joppe W. Bos, J. Alex Halderman, Nadia Heninger, Jonathan Moore, Michael
Nacehrig, Eric Wustrow. “Elliptic Curve Cryptography in Practice”, International
Conference on Financial Cryptography and Data Security, Springer, 2014.

Lijuan Li and Shuguo Li, "Fast inversion in GF(2m) with polynomial basis using
optimal addition chains", Circuits and Systems (ISCAS), IEEE, 2017.

158

[81].

182].

[83].

[84].

[85].

[86].

[87].

[88].

[89].

[90].

[91].

Joost Renes, Craig Costello and Lejla Batina, "Complete Addition Formulas for
Prime Order Elliptic Curves”, Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Springer, 2016.

Ke-Lin Du and M. N. S. Swamy. "Particle Swarm Optimization", Search and

Optimization by Metaheuristics, Springer, 2016.

Floreano and Mattiussi, Bio-inspired artificial intelligence: Theories, methods, and

technologies, 2008.

Micael Couceiro, Pedram Ghamisi. "Particle Swarm Optimization”, Fractional

Order Darwinian Particle Swarm Optimization - Springer, 2015.

Wei-Chang Yeh, Cyuan-Yu Luo, Chyh-Ming Lai, Chi-Ting Hsu, Yuk Ying Chung,
Jsen-Shung Lin., "Simplified swarm optimization with modular search for the
general multi-level redundancy allocation problem in series-parallel systems",
Evolutionary Computation (CEC) - IEEE, 2016.

Fausto Meneses, Walter Fuertes, José Sancho, Santiago Salvador, Daniela Flores,
Hernan Aules, Fidel Castro, Jenny Torres, Alba Miranda, Danilo Nuela. "RSA
Encryption Algorithm Optimization to Improve Performance and Security Level of
Network Messages"”, International Journal of Computer Science and Network
Security - IJCSNS, 2016.

Nigel P. Smart. "Elliptic Curves", Cryptography Made Simple - Springer, 2015.

Nicholas M. Katz and Barry Mazur, "Arithmetic Moduli of Elliptic Curves", Annals

of Mathematic Studies, Princeton University Press, 2016.

Turner Paull, Thornton Steve. "Addition chains: A reSolve lesson", Australian

Senior Mathematics Journal, 2017.

Stjepan Picek, Carlos A. Coello Coello, Domagoj Jakobovic, Nele Mentens.
"Evolutionary Algorithms for Finding Short Addition Chains: Going the Distance",

Evolutionary Computation in Combinatorial Optimization - Springer, 2016.

Stjepan Picek, Carlos A. Coello Coello, Domagoj Jakobovic, Nele Mentens.
"Finding short and implementation-friendly addition chains with evolutionary

algorithms", Journal of Heuristics, Springer, 2017.

159

[92].

[93].

[94].

[95].

[96].

[97].

[98].

[99].

[100].

[101].

[102].

[103].

Brian Koziel, Reza Azarderakhsh, David Jao, Mehran Mozaffari-Kermani. "On Fast
Calculation of Addition Chains for Isogeny-Based Cryptography", Information
Security and Cryptology, 2016.

K.Mani, M.Viswambari."A New Method of Generating Optimal Addition Chain
Based on Graph", 1.J. Mathematical Sciences and Computing - MECS, 2017.

Michal Pluhacek, Jakub Janostik, Roman Senkerik, Ivan Zelinka, Donald Davendra.
"PSO as Complex Network—Capturing the Inner Dynamics—Initial Study",
Proceedings of the Second International Afro-European Conference for Industrial

Advancement , Springer, 2016.

Xian-Bing Meng, X.Z. Gao, Lihua Lu, Yu Liu, Hengzhen Zhang. "A new bio-
inspired optimisation algorithm: Bird Swarm Algorithm"”, Journal of Experimental
& Theoretical Artificial Intelligence, 2016.

Yanmin Liu, Chenggi Li, Xiangbiao Wu, Qingyu Zeng, Rui Liu, Tao Huang.
"Particle Swarm Optimizer with Full Information”, Intelligent Computing Theories

and Application, Springer, 2016.

Wei-Chang Yeh, Wei-Ting Lin, Chyh-Ming Lai, Yen-Chin Lee, Yuk Ying Chung,
Jsen-Shung Lin. "Application of simplified swarm optimization algorithm in
deteriorate supply chain network problem”, Evolutionary Computation (CEC) -
IEEE, 2016.

Shreenath Acharya, Asha Shenoy, Macwin Lewis, Namrata Desai. "Analysis and
Prediction of Application Usage in Android Phones", Advances in Electrical,

Electronics, Information, Communication and Bio-Informatics", IEEE, 2016.
https://www.microsoft.com/en-us/download/details.aspx?id=53424.

Neal Koblitz, "A Course in Number Theory and Cryptography”, Springer Verlag,
1994,

Koblitz N, "Elliptic curve cryptosystems", 1987.

Miller V, "Use of elliptic curves in cryptography”, Advances in Cryptology -
CRYPTO '85, Lecture Notes in Computer Science, 1986.

N Koblitz, Elliptic Curve Cryptosystems, Mathematics of Computation, 48, 1982,
pp. 203-2009.

160

https://www.microsoft.com/en-us/download/details.aspx?id=53424

[104].

[105].

[106].

[107].

[108].

[109].

[110].

[111].

[112].

[113].

[114].

[115].

[116].

| Blake, G Seroussi and NP Smart, Elliptic Curves in Cryptography, Ser. London
Math. Soc. Lecture Note Series, Cambridge Univ. Press, 1999.

Hugo Volger, "Some Results on Addition/Subtraction Chains", Information

Processing Letter, Elsevier, 1985.

Y H TsaiandY H Chin,“A Study of Some Addition Chain Problems”, International
Journal of Computer Mathematics, 22(02), 1987, pp. 117-134.

F Bergeron, J Berstel, S Brlek, and C Duboc, "Addition Chains Using Continued
Fractions”, Journal of Algorithms, Elsevier, 1989, pp. 403-412.

F Bergeron J Berstel and S Brlek, "Efficient Computation of Addition Chains",
Joumal de Theorie des Nombresde Bordeaux, 6(1), 1994, pp. 21-38.

Donald E Knuth, "The Art of Computer Programming, Seminumerical Algorithms",
2(3), Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

Gordon DM, "A Survey of Fast Exponentiation Methods", Journal of Algorithms,
1998.

H Zantema, "Minimizing Sums of Addition Chains", Journal of Algorithms,
Elsevier, 12(2), 1999, pp. 21-38.

Noboru Kunihiro and Hirosuke Yamamoto, "New Methods for Generation of Short
Addition Chains" , IEICE Transactions Fundamental, 83(1), 2000.

Nareli Cruz-Cortés, Francisco Rodriguez-Henriquez, RaulJuarez-Morales and Carlos
A Coello- Coello, "Finding Optimal Addition Chains Using a Genetic Algorithm
Approach”, Springer- Verlag, 2005, pp. 208-215.

Cortés, Nareli & Trejo-Pérez, Daniel & Coello, Carlos. Handling Constraints in
Global Optimization Using an Artificial Immune System, Lecture Notes in
Computer Science, 2005, pp. 234-247.

Raveen R Goundar, Ken-ichiShiota, M Toyonaga, "New Strategy for Doubling -
Free Short Addition-Subtraction Chain", Mathematics, 2008.

AlejandroLe'on-Javier, NareliCruz-Cort'es, Moreno-Armend ariz, and Sandra
Orantes - Jim'enesz, Finding Minimal Addition Chains with a Particle Swarm
Optimization Algorithm, Advances in Artificial Intelligence, Springer, 2009, pp.
680-691.

161

https://www.tandfonline.com/author/Tsai%2C%2BYH
https://www.tandfonline.com/author/Chin%2C%2BYH
https://www.semanticscholar.org/author/Raveen-R.-Goundar/2696467
https://www.semanticscholar.org/author/Ken-ichi-Shiota/52410699
https://www.semanticscholar.org/author/M.-Toyonaga/145629889

[117].

[118].

[119].

[120].

[121].

[122].

[123].

[124].

[125].

[126].

MohamedMADbd-Eldayem, EhabTAlnfrawy,andAlyAFahmya, Addition-Subtraction
Chain for 160-bit Integers by using 2’s Complex N Cruz-Cortés, F Rodriguez-
Henriquez and C A Coello-Coello, "Addition Chain Length Minimization With
Evolutionary Programming", Proceedings of Genetic and Evolutionary Computation
Conference (GECCQO) ACM digital Library, 2011.

S Dominguez-Isidro and E Mezura-Montes, "An Evolutionary Programming
Algorithm to Find Minimal Addition Chains”, | Congreso Internacionalde
Ingenieria Electronica, Instrumentacion y Computacion, de Juniodel, Minatitlan

Veracruz, Mexico, 2011.

Maurice Mignotte, "A Note on Addition Chains", International Journal of Algebra,
5(6), 2011.

Neil Michael Clift, "Calculating Optimal Addition Chains”, Journal of Computing,
Springer, 2011, pp. 265-284.

Arturo Rodriguez-Cristerna and Jose Torres-Jimenez, "A Genetic Algorithm for the
Problem of Minimal Brauer Chains for Large Exponents”, Soft Computing
Applications in Optimization, Control, and Recognition, Springer, 2013.

K. Mani, "Generation of Addition Chain using Deterministic Division Based
Method", International Journal of Computer Science & Engineering Technology,
4(05) (2013), pp. 553- 560.

P Anuradha Kameswari and B Ravitheja, Addition Chain For Lucas Sequences
With Fast Computation Method, International Journal of Applied Engineering
Research, 13(11) (2018), pp. 9413-9419.

Stjepanpicek, Carlos A Coello Coello, Domagojjakobovic and n elementens, Finding
Short And Implementation - Friendly Addition Chains with Evolutionary
Algorithms, Journal of Heuristics, 24, 2018, 457-481.

Aaron Hutchinson and koraykarabina, Constructing Multidimensional Differential
Addition Chains and their applications, Springer, Journal of Cryptographic
Engineering, 9, 2019, 1- 19.

Dustin Moody and Amadou Tall, On Addition-Subtraction Chains of Numbers With
Low Hamming Weight”, Number Theory Mathematics, 25, 2019, 155-168.

162

https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/journal/13389
https://link.springer.com/journal/13389
https://link.springer.com/journal/13389

[127]. Hazem M. Bahig and Yasser Koth, An Efficient Multicore Algorithm for Minimal
Length Addition Chains, Computers, MDBI, 8, 2019.

[128]. Narendra Mohan, Lifetime Enhancement of Sensor Nodes Based on Optimized Sink
Node Placement Approach, International Journal of Engineering Trends and
Technology, 68.10, 2020, pp. 10-23.

163

https://sciprofiles.com/profile/author/SkpycjFPL2Mxd1BTdTdDcTd5Qldmc2ozZ2NYZkg3WW5QQ0d4b1owdHozbz0%3D
https://sciprofiles.com/profile/587237

APPENDIX -A.1

GENERATION OF Eg39935(17,7) POINTS

Points from 1 to 10000 for A: 17, B: 7, P: 539039

(1,5) (1,539034), (2,7) (2,539032), (7,209384) (7,329655), (10,254036) (10,285003),
(23,192123) (23,346916), (24,207140) (24,331899), (28,187853) (28,351186),
(29,52806) (29,486233), (40,189675) (40,349364), (41,167198) (41,371841),
(42,146230) (42,392809), (45,86800) (45,452239), (46,82678) (46,456361),
(49,31538) (49,507501), (50,101736) (50,437303), (51,203954) (51,335085),
(54,136270) (54,402769), (56,60393) (56,478646), (57,205207) (57,333832),
(61,199701) (61,339338), (62,137992) (62,401047), (64,219222) (64,319817),
(69,75066) (69,463973), (72,158175) (72,380864), (73,3422) (73,535617),
(74,184001) (74,355038), (75,130341) (75,408698), (76,191752) (76,347287),
(79,116748) (79,422291), (81,130515) (81,408524), (83,208693) (83,330346),
(85,125993) (85,413046), (86,232781) (86,306258), (87,237349) (87,301690),
(91,205623) (91,333416), (94,75784) (94,463255), (97,65630) (97,473409),
(98,29893) (98,509146), (100,155858) (100,383181), (104,243678) (104,295361),
(106,181812) (106,357227), (108,258954) (108,280085), (109,212549) (109,326490),
(113,78317) (113,460722), (114,109103) (114,429936), (120,238388) (120,300651),
(121,172234) (121,366805), (123,55452) (123,483587), (124,190117) (124,348922),
(125,247077) (125,291962), (127,241155) (127,297884), (128,30395) (128,508644),
(132,48252) (132,490787), (133,201326) (133,337713), (136,30090) (136,508949),
(137,195904) (137,343135), (138,19228) (138,519811), (141,1675) (141,537364),
(143,182822) (143,356217), (144,114930) (144,424109), (150,149132) (150,389907),
(152,61587) (152,477452), (153,144363) (153,394676), (155,224959) (155,314080),
(157,224524) (157,314515), (162,232469) (162,306570), (163,10691) (163,528348),
(164,180150) (164,358889), (165,97469) (165,441570), (168,87115) (168,451924),

(171,57970) (171,481069), (172,179701) (172,359338), (173,16639) (173,522400),

(174,202726) (174,336313), (175,51346) (175,487693), (176,154894) (176,384145),
(180,32186) (180,506853), (182,223435) (182,315604), (184,134759) (184,404280),
(189,233512) (189,305527), (190,149620) (190,389419), (191,192350) (191,346689),
(193,172667) (193,366372), (197,65067) (197,473972), (201,62121) (201,476918),
(202,198823) (202,340216), (203,100626) (203,438413), (204,106115) (204,432924),
(205,221304) (205,317735), (206,169311) (206,369728), (207,67870) (207,471169),
(211,102927) (211,436112), (212,75403) (212,463636), (218,193638) (218,345401),
(219,68844) (219,470195), (220,194479) (220,344560), (221,59506) (221,479533),
(222,66841) (222,472198), (223,22755) (223,516284), (224,260244) (224,278795),
(228,5734) (228,533305), (229,107057) (229,431982), (232,145313) (232,393726),
(233,246627) (233,292412), (235,118285) (235,420754), (236,169677) (236,369362),
(239,6330) (239,532709), (240,102442) (240,436597), (241,72093) (241,466946),
(242,2468) (242,536571), (243,225094) (243,313945), (247,254933) (247,284106),
(251,64802) (251,474237), (252,221834) (252,317205), (254,120949) (254,418090),
(255,87053) (255,451986), (260,27032) (260,512007), (261,42867) (261,496172),
(262,146468) (262,392571), (263,184694) (263,354345), (264,237008) (264,302031),
(270,91561) (270,447478), (272,142961) (272,396078), (276,3116) (276,535923),
(277,106770) (277,432269), (279,61380) (279,477659), (280,36435) (280,502604),
(284,212558) (284,326481), (286,171819) (286,367220), (295,230570) (295,308469),
(298,267462) (298,271577), (302,184677) (302,354362), (304,123733) (304,415306),
(305,115445) (305,423594), (306,179223) (306,359816), (310,237584) (310,301455),
(311,56226) (311,482813), (312,180041) (312,358998), (313,92639) (313,446400),
(314,14358) (314,524681), (317,138784) (317,400255), (318,35672) (318,503367),
(319,12136) (319,526903), (323,75958) (323,463081), (324,27007) (324,512032),
(326,69761) (326,469278), (327,255366) (327,283673), (328,101988) (328,437051),
(330,266829) (330,272210), (332,237731) (332,301308), (334,184855) (334,354184),

(335,118546) (335,420493), (336,129177) (336,409862), (339,242058) (339,296981),

(340,100611) (340,438428), (344,157661) (344,381378), (349,137117) (349,401922),
(350,121292) (350,417747), (351,239257) (351,299782), (352,222740) (352,316299),
(354,190475) (354,348564), (356,40896) (356,498143), (357,242472) (357,296567),
(358,215919) (358,323120), (360,85588) (360,453451), (361,98347) (361,440692),
(368,25300) (368,513739), (369,233031) (369,306008), (371,213319) (371,325720),
(377,108669) (377,430370), (378,215453) (378,323586), (379,61576) (379,477463),
(380,216107) (380,322932), (382,78488) (382,460551), (383,92068) (383,446971),
(385,88600) (385,450439), (388,241302) (388,297737), (390,218017) (390,321022),
(393,64411) (393,474628), (397,247680) (397,291359), (400,4911) (400,534128),
(403,83202) (403,455837), (404,145098) (404,393941), (406,109020) (406,430019).
(407,153750) (407,385289), (408,67017) (408,472022), (415,8063) (415,530976),
(416,213816) (416,325223), (417,253992) (417,285047), (418,143225) (418,395814),
(419,166201) (419,372838), (423,48169) (423,490870), (424,128734) (424,410305),
(426,38322) (426,500717), (427,179656) (427,359383), (428,3239) (428,535800),
(429,179231) (429,359808), (432,78296) (432,460743), (436,120266) (436,418773),
(439,221120) (439,317919), (440,145207) (440,393832), (441,205971) (441,333068),
(442,55761) (442,483278), (450,158669) (450,380370), (451,30005) (451,509034),
(452,237940) (452,301099), (455,28875) (455,510164), (456,178525) (456,360514),
(457,1810) (457,537229), (460,60648) (460,478391), (461,260512) (461,278527),
(463,99537) (463,439502), (465,12341) (465,526698), (467,156012) (467,383027),
(468,47355) (468,491684), (470,25227) (470,513812), (471,199881) (471,339158),
(472,186527) (472,352512), (474,53180) (474,485859), (478,250839) (478,288200),
(479,13476) (479,525563), (480,8409) (480,530630), (484,143655) (484,395384),
(485,129775) (485,409264), (486,260299) (486,278740), (488,171598) (488,367441),
(490,207312) (490,331727), (494,66369) (494,472670), (495,60885) (495,478154),
(497,199804) (497,339235), (498,61309) (498,477730), (499,114427) (499,424612),

(500,265589) (500,273450), (501,105829) (501,433210), (503,85369) (503,453670),

(506,137857) (506,401182), (509,33562) (509,505477), (510,268841) (510,270198),
(513,37969) (513,501070), (517,169877) (517,369162), (518,72186) (518,466853),
(522,239963) (522,299076), (525,160534) (525,378505), (528,99263) (528,439776),
(529,264256) (529,274783), (530,175208) (530,363831), (531,126398) (531,412641),
(532,174760) (532,364279), (534,222904) (534,316135), (535,26726) (535,512313),
(536,15325) (536,523714), (537,213058) (537,325981), (539,31067) (539,507972),
(540,190831) (540,348208), (543,36548) (543,502491), (544,202000) (544,337039),
(545,103821) (545,435218), (546,92863) (546,446176), (547,160739) (547,378300),
(555,102288) (555,436751), (561,33865) (561,505174), (562,47407) (562,491632),
(566,143565) (566,395474), (567,45444) (567,493595), (568,139369) (568,399670),
(572,112935) (572,426104), (574,124447) (574,414592), (577,119494) (577,419545),
(578,118071) (578,420968), (581,104255) (581,434784), (582,46728) (582,492311),
(585,252019) (585,287020), (586,85754) (586,453285), (587,190704) (587,348335),
(588,111230) (588,427809), (589,47740) (589,491299), (591,100892) (591,438147),
(592,216405) (592,322634), (595,77114) (595,461925), (596,211814) (596,327225),
(597,68196) (597,470843), (603,90311) (603,448728), (604,87793) (604,451246),

(607,101148) (607,437891), (608,17727) (608,521312), (610,24539) (610,514500),

(611,244172) (611,294867), (612,100636) (612,438403), (613,198922) (613,340117),
(620,158036) (620,381003), (621,137718) (621,401321), (626,73258) (626,465781),
(629,162040) (629,376999), (630,65717) (630,473322), (633,69184) (633,469855),
(638,171427) (638,367612), (640,19664) (640,519375), (641,110592) (641,428447),
(642,143504) (642,395535), (643,103605) (643,435434), (645,36811) (645,502228),
(646,257391) (646,281648), (647,235705) (647,303334), (648,205247) (648,333792),
(653,86764) (653,452275), (654,32570) (654,506469), (656,186460) (656,352579),
(660,51995) (660,487044), (661,264097) (661,274942), (663,87062) (663,451977),
(666,30352) (666,508687), (668,114917) (668,424122), (670,8530) (670,530509),

(672,48734) (672,490305), (674,114734) (674,424305), (677,131510) (677,407529),

(678,191429) (678,347610), (679,170500) (679,368539), (680,135868) (680,403171),
(682,22432) (682,516607), (683,152938) (683,386101), (685,148031) (685,391008),
(686,194138) (686,344901), (689,196374) (689,342665), (690,20785) (690,518254),
(691,75992) (691,463047), (692,67325) (692,471714), (693,72091) (693,466948),
(694,71202) (694,467837), (696,92215) (696,446824), (700,135407) (700,403632),
(703,104143) (703,434896), (704,236083) (704,302956), (705,219536) (705,319503),
(707,118065) (707,420974), (710,94836) (710,444203), (711,147919) (711,391120),
(719,104716) (719,434323), (720,146799) (720,392240), (722,3761) (722,535278),
(726,260689) (726,278350), (728,9482) (728,529557), (729,154353) (729,384686),
(733,83180) (733,455859), (735,263674) (735,275365), (737,99327) (737,439712),
(738,229775) (738,309264), (739,109140) (739,429899), (741,180432) (741,358607),
(745,128463) (745,410576), (746,147341) (746,391698), (750,188301) (750,350738),
(751,108836) (751,430203), (752,49941) (752,489098), (753,211612) (753,327427),
(754,47327) (754,491712), (755,120978) (755,418061), (756,178124) (756,360915),
(762,212822) (762,326217), (765,84603) (765,454436), (766,170508) (766,368531),
(767,55460) (767,483579), (769,202260) (769,336779), (770,99761) (770,439278),
(771,121378) (771,417661), (772,65535) (772,473504), (773,213165) (773,325874),
(775,134699) (775,404340), (776,102369) (776,436670), (777,41521) (777,497518),
(779,205963) (779,333076), (780,43673) (780,495366), (786,197383) (786,341656),
(788,52054) (788,486985), (792,146691) (792,392348), (796,118218) (796,420821),
(797,260061) (797,278978), (798,109261) (798,429778), (801,194696) (801,344343),
(802,210401) (802,328638), (808,204249) (808,334790), (810,235582) (810,303457),
(811,169485) (811,369554), (812,109203) (812,429836), (813,22521) (813,516518),
(815,44522) (815,494517), (818,78940) (818,460099), (819,163460) (819,375579),
(820,267239) (820,271800), (822,193329) (822,345710), (824,54612) (824,484427),
(825,237614) (825,301425), (829,250463) (829,288576), (832,210367) (832,328672),

(834,201978) (834,337061), (835,259647) (835,279392), (837,256918) (837,282121),

(838,89670) (838,449369), (839,58940) (839,480099), (840,192250) (840,346789),
(841,76889) (841,462150), (842,92054) (842,446985), (843,61231) (843,477808),
(844,265914) (844,273125), (845,262398) (845,276641), (847,160068) (847,378971),
(848,148122) (848,390917), (849,155136) (849,383903), (850,103277) (850,435762),
(852,36247) (852,502792), (853,169712) (853,369327), (855,97765) (855,441274),
(857,75845) (857,463194), (860,117018) (860,422021), (866,234098) (866,304941),
(868,105783) (868,433256), (869,142748) (869,396291), (871,164927) (871,374112),
(872,3678) (872,535361), (874,214258) (874,324781), (880,219697) (880,319342),
(882,76133) (882,462906), (883,260233) (883,278806), (885,103033) (885,436006),
(887,34707) (887,504332), (888,266091) (888,272948), (889,269191) (889,269848),
(890,254570) (890,284469), (891,81135) (891,457904), (892,75016) (892,464023),
(894,178018) (894,361021), (895,171152) (895,367887), (897,226535) (897,312504),
(898,51876) (898,487163), (900,238136) (900,300903), (903,174724) (903,364315),
(904,121443) (904,417596), (907,174604) (907,364435), (908,165550) (908,373489),
(911,142788) (911,396251), (912,142218) (912,396821), (913,71186) (913,467853),
(914,35436) (914,503603), (915,46794) (915,492245), (923,161947) (923,377092),
(925,6413) (925,532626), (927,57954) (927,481085), (928,92920) (928,446119),
(929,207307) (929,331732), (930,92765) (930,446274), (932,63123) (932,475916),
(933,267802) (933,271237), (937,193848) (937,345191), (941,199526) (941,339513),
(944,102828) (944,436211), (947,133858) (947,405181), (948,176583) (948,362456),
(949,187749) (949,351290), (950,36107) (950,502932), (955,120302) (955,418737),
(960,22894) (960,516145), (962,54249) (962,484790), (966,30212) (966,508827),
(967,73219) (967,465820), (968,263141) (968,275898), (969,147819) (969,391220),
(970,229253) (970,309786), (972,125198) (972,413841), (974,51536) (974,487503),
(977,18906) (977,520133), (983,76095) (983,462944), (984,231058) (984,307981),
(985,156445) (985,382594), (987,237834) (987,301205), (988,18793) (988,520246),

(993,74068) (993,464971), (997,230633) (997,308406), (998,205292) (998,333747),

(999,93901) (999,445138), (1000,160226)(1000,378813), (1001,222891) (1001,316148),
(1003,197185)(1003,341854), (1004,142918)(1004,396121), (1005,41083)(1005,497956)
(1006,141106)(1006,397933), (1011,62910)(1011,476129), (1012,24359) (1012,514680)
(1014,52366)(1014,486673), (1015,41900)(1015,497139), (1017,260286)(1017,278753)
(1018,97615)(1018,441424), (1020,132095)(1020,406944), (1021,28582)(1021,510457)
(1023,251612)(1023,287427),(1024,215265)(1024,323774),(1025,210197)(1025,328842)
(1026,31362)(1026,507677),(1027,266379)(1027,272660), (1028,237871)(1028,301168),
(1030,22126)(1030,516913),(1033,127348)(1033,411691),(1035,137725)(1035,401314),
(1039,225105)(1039,313934),(1042,90374)(1042,448665),(1043,148483)(1043,390556),
(1044,265515)(1044,273524), (1045,204107)(1045,334932), (1048,5210)(1048,533829),
(1050,78595)(1050,460444), (1051,38952)(1051,500087), (1055,223241) (1055,315798),
(1056,219350)(1056,319689),(1059,242048)(1059,296991),(1060,121292)(1060,417747)
(1065,166597)(1065,372442),(1067,116775)(1067,422264),(1068,26664)(1068,512375),
(1069,211919)(1069,327120), (1071,6691)(1071,532348), (1073,187085)(1073,351954),
(1074,41812)(1074,497227), (1076,29157) (1076,509882), (1077,43600)(1077,495439),
(1078,2081) (1078,536958), (1079,74983) (1079,464056), (1080,83139) (1080,455900),
(1082,172293)(1082,366746),(1083,45718)(1083,493321), (1086,159933)(1086,379106)
(1088,154347)(1088,384692),(1089,123911)(1089,415128),(1090,114768)(1090,424271)
(1091,85637)(1091,453402), (1092,193629)(1092,345410), (1093,223463)(1093,315576)
(1094,175423)(1094,363616),(1097,120589)(1097,418450),(1098,116623)(1098,422416)
(1099,26426)(1099,512613), (1101,134283)(1101,404756), (1103,214704)(1103,324335)
(1105,240672)(1105,298367), (1107,36722)(1107,502317), (1108,64331)(1108,474708),
(1109,16796)(1109,522243), (1111,78761)(1111,460278), (1112,127956)(1112,411083),
(1113,230142)(1113,308897), (1117,211466)(1117,327573), (1118,82113)(1118,456926)
(1119,236455)(1119,302584), (1120,25053)(1120,513986), (1121,153229)(1121,385810)
(1127,47380) (1127,491659), (1129,40312) (1129,498727), (1130,2302) (1130,536737),

(1131,78829)(1131,460210), (1132,141509)(1132,397530), (1135,118852)(1135,420187)

(1136,268371)(1136,270668), (1137,165498)(1137,373541), (1138,17360)(1138,521679)
(1139,36631)(1139,502408), (1140,128277)(1140,410762), (1141,183960)(1141,355079)
(1142,266094)(1142,272945), (1145,13475)(1145,525564), (1149,62221)(1149,476818),
(1152,28390)(1152,510649), (1153,43588)(1153,495451), (1154,252813)(1154,286226),
(1156,37558)(1156,501481), (1158,216711)(1158,322328), (1159,45480)(1159,493559),
(1161,42553)(1161,496486),(1164,153753)(1164,385286), (1165,102549)(1165,436490)
(1166,135189)(1166,403850),(1167,161149)(1167,377890),(1170,172734)(1170,366305)
(1178,146312)(1178,392727),(1181,34373)(1181,504666),(1183,210308)(1183,328731),
(1184,115570)(1184,423469),(1186,106232)(1186,432807),(1187,16346)(1187,522693),
(1188,123094)(1188,415945),(1189,104512)(1189,434527),(1190,149132)(1190,389907)
(1193,207374)(1193,331665),(1195,229155)(1195,309884),(1197,215615)(1197,323424)
(1199,88791)(1199,450248), (1200,11649)(1200,527390), (1205,101486)(1205,437553),
(1209,256362)(1209,282677), (1210,40264)(1210,498775), (1212,90639)(1212,448400),
(1214,154572)(1214,384467),(1217,181500)(1217,357539),(1218,202531)(1218,336508)
(1220,220877)(1220,318162),(1221,49284)(1221,489755), (1222,122091)(1222,416948),
(1224,47987)(1224,491052), (1225,224017)(1225,315022), (1227,245461)(1227,293578)
(1229,189319)(1229,349720), (1230,180749)(1230,358290), (1233,2703)(1233,536336),
(1235,97187)(1235,441852), (1236,163435)(1236,375604), (1241,123586)(1241,415453)
(1245,118649)(1245,420390), (1246,75052)(1246,463987), (1248,212136)(1248,326903)
(1250,230406)(1250,308633), (1251,22415)(1251,516624), (1252,142486)(1252,396553)
(1254,2466)(1254,536573), (1255,152952)(1255,386087), (1256,45507)(1256,493532),
(1257,130202)(1257,408837),(1259,238903)(1259,300136),(1263,134927)(1263,404112)
(1264,149127)(1264,389912),(1265,168142)(1265,370897),(1266,135126)(1266,403913)
(1269,77714)(1269,461325), (1270,145476)(1270,393563), (1274,51546)(1274,487493),
(1275,196535)(1275,342504),(1276,197933)(1276,341106),(1277,163353)(1277,375686)
(1280,153370)(1280,385669),(1282,168085)(1282,370954),(1283,166521)(1283,372518)

(1284,112447)(1284,426592),(1285,210724)(1285,328315),(1286,264976)(1286,274063)

(1292,54007)(1292,485032),(1298,148287)(1298,390752), (1302,244585)(1302,294454),
(1304,204237)(1304,334802), (1306,55277)(1306,483762), (1310,31137)(1310,507902),
(1311,121320)(1311,417719), (1313,107424)(1313,431615), (1314,45121)(1314,493918)
(1319,1820)(1319,537219), (1320,119077)(1320,419962), (1323,199749)(1323,339290)
(1324,39097)(1324,499942), (1325,5320)(1325,533719), (1326,269385)(1326,269654),
(1332,6327)(1332,532712), (1334,261059)(1334,277980), (1337,214614)(1337,324425)
(1339,162815)(1339,376224),(1340,186909)(1340,352130), (1342,40272)(1342,498767)
(1343,179724)(1343,359315),(1344,255159)(1344,283880), 1347,208441)(1347,330598)
(1349,108748)(1349,430291), (1351,62452)(1351,476587), (1353,27025)(1353,512014),
(1355,245102)(1355,293937),(1356,146074)(1356,392965),(1358,204103)(1358,334936)
(1361,45270)(1361,493769), (1362,254763)(1362,284276), (1363,147391)(1363,391648)
(1368,203311)(1368,335728), (1369,143092)(1369,395947), (1371,30597)(1371,508442)
(1372,96496)(1372,442543), (1374,73262)(1374,465777), (1376,54490)(1376,484549)
(1377,98384)(1377,440655), (1378,7464)(1378,531575), (1380,59163)(1380,479876)

(1383,209172)(1383,329867),(1386,195471)(1386,343568),(1387,193941)(1387,345098)
(1388,63208)(1388,475831), (1393,32534)(1393,506505), (1394,245569)(1394,293470)
(1395,214133)(1395,324906),(1398,218055)(1398,320984),(1399,266042)(1399,272997)
(1400,138045)(1400,400994), (1401,71660)(1401,467379), (1402,138839)(1402,400200)
(1403,38567)(1403,500472), (1404,259585)(1404,279454), (1407,76537)(1407,462502)
(1408,4240) (1408,534799), (1409,88193) (1409,450846), (1410,260373)(1410,278666)
(1413,268367)(1413,270672), (1414,208367)(1414,330672), (1417,98607)(1417,440432)
(1420,229128)(1420,309911), (1421,79524)(1421,459515), (1423,218821)(1423,320218)
(1427,182464)(1427,356575), (1428,124426)(1428,414613), (1429,86206)(1429,452833)
(1431,251520)(1431,287519),(1433,104266)(1433,434773),(1435,222298)(1435,316741)
(1437,36370)(1437,502669), (1441,104573)(1441,434466), (1442,226088)(1442,312951)
(1444,198244)(1444,340795), (1445,180400)(1445,358639), (1446,13338)(1446,525701)

(1447,185425)(1447,353614), (1450,50695)(1450,488344), (1451,260952)(1451,278087)

(1454,65843)(1454,473196), (1457,64917)(1457,474122), (1459,205850)(1459,333189)
(1462,224344)(1462,314695),(1469,173968)(1469,365071),(1473,214637)(1473,324402)
(1475,92550)(1475,446489), (1476,158149)(1476,380890), (1477,182165)(1477,356874)
(1478,196970)(1478,342069), (1479,181543)(1479,357496), (1480,72815)(1480,466224)
(1482,75830)(1482,463209), (1483,184583)(1483,354456), (1485,81188) (1485,457851)
(1487,95749)(1487,443290), (1489,170088)(1489,368951), (1491,126226)(1491,412813)
(1494,227773)(1494,311266),(1495,119443)(1495,419596),(1496,165259)(1496,373780)
(1497,224485)(1497,314554), (1498,52597)(1498,486442), (1501,234752)(1501,304287)
(1508,27821)(1508,511218), (1512,66304)(1512,472735), (1513,89395)(1513,449644)

(1516,155702)(1516,383337), (1518,45905)(1518,493134), (1520,104969)(1520,434070)
(1522,68105)(1522,470934), (1523,25829)(1523,513210), (1524,167778) (1524,371261)
(1526,42262)(1526,496777), (1527,180794)(1527,358245), (1529,55873) (1529,483166)
(1530,193506)(1530,345533),(1531,208197)(1531,330842),(1533,172722)(1533,366317)
(1535,101801)(1535,437238), (1538,20898)(1538,518141), (1543,94298) (1543,444741)
(1545,201360)(1545,337679),(1548,167294)(1548,371745),(1550,146142)(1550,392897)
(1551,221992)(1551,317047), (1553,257605)(1553,281434), (1555,98905)(1555,440134)
(1556,42986)(1556,496053), (1557,218330)(1557,320709), (1558,41304) (1558,497735)
(1560,157947)(1560,381092), (1561,203805)(1561,335234), (1563,43359)(1563,495680)
(1566,24056)(1566,514983), (1567,47304)(1567,491735), (1570,223411)(1570,315628)
(1573,41594)(1573,497445), (1574,26899)(1574,512140), (1575,245674)(1575,293365)
(1577,41976)(1577,497063), (1582,44955)(1582,494084), (1584,24218)(1584,514821)
(1585,165939)(1585,373100),(1586,143162)(1586,395877),(1588,119957)(1588,419082)
(1589,63702)(1589,475337),(1590,237149)(1590,301890), (1592,209882)(1592,329157)
(1594,149389)(1594,389650), (1596,190490)(1596,348549),1600,186023)(1600,353016)
(1604,171114)(1604,367925), (1605,95024)(1605,444015), (1613,14415)(1613,524624)
(1618,253588)(1618,285451),(1619,246778)(1619,292261),(1621,240478)(1621,298561)

(1623,70019)(1623,469020), (1624,99170)(1624,439869), (1625,83867)(1625,455172)

(1631,164415)(1631,374624),(1632,121528)(1632,417511),(1637,197266)(1637,341773)
(1639,57305)(1639,481734), (1641,77359)(1641,461680), (1643,66743)(1643,472296)
(1644,172279)(1644,366760), (1646,41286)(1646,497753), (1648,152942)(1648,386097)
(1649,267544)(1649,271495), (1652,56198)(1652,482841), (1653,96521)(1653,442518)
(1655,97969)(1655,441070), (1656,188833)(1656,350206), (1658,42964)(1658,496075)
(1659,4856)(1659,534183), (1660,249375)(1660,289664), (1661,1709)(1661,537330)
(1665,207552)(1665,331487), (1667,231863)(1667,307176), (1669,73382)(1669,465657)
(1674,236938)(1674,302101), (1677,19348)(1677,519691), (1678,54157)(1678,484882)
(1679,192176)(1679,346863),(1682,241594)(1682,297445),(1686,265124)(1686,273915)
(1687,103349)(1687,435690),(1688,125409)(1688,413630),(1690,232654)(1690,306385)
(1695,222767)(1695,316272), (1697,205199)(1697,333840), (1698,45752)(1698,493287)
(1699,98015)(1699,441024), (1700,262357)(1700,276682), (1702,93697)(1702,445342)
(1703,251011)(1703,288028), (1709,170263)(1709,368776), (1710,6239)(1710,532800)
(1713,171704)(1713,367335),(1714,163099)(1714,375940),(1715,173448)(1715,365591)
(1717,192519)(1717,346520), (1719,52757)(1719,486282), (1720,142437)(1720,396602)
(1721,127573)(1721,411466), (1723,12403)(1723,526636), (1725,36991)(1725,502048)
(1728,168358)(1728,370681), (1730,129729)(1730,409310), (1738,37461)(1738,501578)
(1739,28017)(1739,511022), (1740,27383)(1740,511656), (1743,107653)(1743,431386)
(1746,9809)(1746,529230), (1749,214020)(1749,325019), (1753,259877)(1753,279162)
(1759,17323)(1759,521716), (1764,209111)(1764,329928), (1765,19263)(1765,519776)
(1766,37247)(1766,501792), (1770,183165)(1770,355874), (1771,207440)(1771,331599)
(1773,28706)(1773,510333), (1774,146894)(1774,392145), (1775,138892)(1775,400147)
(1777,13110)(1777,525929), (1778,207385)(1778,331654), (1780,238549)(1780,300490)
(1781,177804)(1781,361235), (1782,212570)(1782,326469), (1784,35083)(1784,503956)
(1785,89677)(1785,449362), (1788,169316)(1788,369723), (1790,203138)(1790,335901)
(1792,141883)(1792,397156), (1796,14635)(1796,524404), (1798,16795)(1798,522244)

(1801,82535)(1801,456504), (1802,27855)(1802,511184), (1804,74807)(1804,464232)

(1805,97376)(1805,441663), (1806,105348)(1806,433691), (1807,149397)(1807,389642)
(1812,147936)(1812,391103), (1813,182221)(1813,356818), (1814,58725)(1814,480314)
(1817,246008)(1817,293031), (1818,62657)(1818,476382), (1822,85828)(1822,453211)
(1824,187748)(1824,351291), (1825,228489)(1825,310550), (1826,38787)(1826,500252)
(1835,249689)(1835,289350), (1836,211503)(1836,327536), (1837,45189)(1837,493850)
(1838,21532)(1838,517507), (1840,149593)(1840,389446), (1843,51782)(1843,487257)
(1844,204135)(1844,334904), (1845,20924)(1845,518115), (1850,225036)(1850,314003)
(1851,269489)(1851,269550), (1852,164084)(1852,374955), (1853,24783)(1853,514256)
(1855,73087)(1855,465952), (1857,16871)(1857,522168), (1858,115388)(1858,423651)
(1859,120735)(1859,418304),(1862,184312)(1862,354727),(1863,256628)(1863,282411)
(1869,202750)(1869,336289), (1871,15167)(1871,523872), (1873,159600)(1873,379439)
(1875,128326)(1875,410713), (1876,54248)(1876,484791), (1877,12220)(1877,526819)
(1878,170416)(1878,368623),(1879,126128)(1879,412911),(1882,248456)(1882,290583)
(1883,86582)(1883,452457), (1884,232339)(1884,306700), (1885,34892)(1885,504147)
(1886,173826)(1886,365213), (1888,171007)(1888,368032), (1892,19418)(1892,519621)
(1894,154036)(1894,385003),(1896,169850)(1896,369189),(1898,156747)(1898,382292)
(1900,98260)(1900,440779), (1901,266285)(1901,272754), (1902,117640)(1902,421399)
(1904,137606)(1904,401433), (1910,187194)(1910,351845), (1912,11888)(1912,527151)
(1913,57326)(1913,481713), (1914,263525)(1914,275514), (1915,42913)(1915,496126)
(1918,160146)(1918,378893),(1919,130668)(1919,408371),(1920,122451)(1920,416588)
(1921,56586)(1921,482453), (1922,253095)(1922,285944), (1924,228776)(1924,310263)
(1926,103023)(1926,436016), (1927,210220)(1927,328819), (1930,48617)(1930,490422)
(1931,9812)(1931,529227), (1933,241815)(1933,297224), (1934,150393)(1934,388646)
(1935,140386)(1935,398653),(1937,189055)(1937,349984),(1940,267198)(1940,271841)
(1941,164115)(1941,374924), (1944,130108)(1944,408931), (1945,36461)(1945,502578)
(1946,217885)(1946,321154),(1948,244771)(1948,294268),(1950,246296)(1950,292743)

(1951,74534)(1951,464505), (1954,10216)(1954,528823), (1959,207421)(1959,331618)

(1960,224301)(1960,314738), (1962,52454)(1962,486585), (1964,112099)(1964,426940)
(1965,188291)(1965,350748), (1966,58649)(1966,480390), (1967,9365)(1967,529674)

(1968,184331)(1968,354708),(1972,258546)(1972,280493),(1977,110117)(1977,428922)
(1978,205811)(1978,333228), (1979,49052)(1979,489987), (1981,74914)(1981,464125)

(1983,48955)(1983,490084), (1984,198539)(1984,340500), (1985,18146)(1985,520893)
(1986,115611)(1986,423428), (1987,74218)(1987,464821), (1989,54537)(1989,484502)
(1992,122588)(1992,416451),(1993,197319)(1993,341720),(1995,227044)(1995,311995)
(1996,102961)(1996,436078), (1998,661)(1998,538378), (1999,267753)(1999,271286)

(2002,1777)(2002,537262), (2003,233755)(2003,305284), (2006,116402)(2006,422637)
(2007,98791)(2007,440248), (2008,168465)(2008,370574), (2010,128888)(2010,410151)
(2015,190096)(2015,348943),(2016,263417)(2016,275622),(2017,105251)(2017,433788)
(2019,133793)(2019,405246),(2021,239084)(2021,299955),(2024,182417)(2024,356622)
(2027,254886)(2027,284153), (2030,50841)(2030,488198), (2033,220067)(2033,318972)
(2034,56852)(2034,482187), (2036,58419)(2036,480620), (2037,38293)(2037,500746)
(2038,38350)(2038,500689), (2043,249764)(2043,289275), (2045,208178)(2045,330861)
(2050,7135)(2050,531904), (2052,186468)(2052,352571), (2055,69344)(2055,469695)

(2056,125240)(2056,413799), (2057,170375)(2057,368664), (2059,10737)(2059,528302)
(2060,235538)(2060,303501), (2062,20931)(2062,518108), (2063,119573)(2063,419466)
(2064,28531)(2064,510508), (2065,147258)(2065,391781), (2067,31385)(2067,507654)
(2070,243817)(2070,295222), (2071,214659)(2071,324380), (2075,25961)(2075,513078)
(2077,144437)(2077,394602),(2079,169850)(2079,369189),(2081,268693)(2081,270346)
(2085,7739)(2085,531300), (2086,38152)(2086,500887), (2087,117628)(2087,421411)
(2088,71420)(2088,467619), (2090,147323)(2090,391716), (2091,150215)(2091,388824)
(2093,84459)(2093,454580), (2096,44639)(2096,494400), (2097,102459)(2097,436580)
(2098,167929)(2098,371110), (2099,20884),(2099,518155),(2100,245443)(2100,293596)
(2101,61926)(2101,477113), (2103,266481)(2103,272558), (2104,233794)(2104,305245)

(2105,49533)(2105,489506), (2111,142064)(2111,396975), (2113,221631)(2113,317408)

(2115,185429)(2115,353610), (2117,252145)(2117,286894), (2118,22053)(2118,516986)
(2121,107155)(2121,431884), (2122,37251)(2122,501788), (2124,188083)(2124,350956)
(2127,241460)(2127,297579), (2130,67324)(2130,471715), (2131,238219)(2131,300820)
(2133,266571)(2133,272468), (2141,251664)(2141,287375), (2142,45379)(2142,493660)
(2143,6475)(2143,532564), (2144,252905)(2144,286134), (2152,17479)(2152,521560)

(2154,223393)(2154,315646),(2156,104209)(2156,434830),(2159,222574)(2159,316465)
(2160,48821)(2160,490218), (2165,232064)(2165,306975), (2166,134291)(2166,404748)
(2167,115628)(2167,423411), (2171,228081)(2171,310958), (2172,16614)(2172,522425)
(2174,92446)(2174,446593), (2175,132765)(2175,406274), (2176,251550)(2176,287489)
(2177,164375)(2177,374664),(2178,149975)(2178,389064), 2184,231592)(2184,307447)
(2185,213043)(2185,325996), (2188,25510)(2188,513529), (2190,199882)(2190,339157)
(2191,2575)(2191,536464), (2194,149100)(2194,389939), (2195,127959)(2195,411080)
(2197,34888), (2197,504151), (2199,98247)(2199,440792), (2202,107141)(2202,431898)
(2203,96634)(2203,442405), (2208,183695)(2208,355344), (2212,257422)(2212,281617)
(2213,95250)(2213,443789), (2214,122736)(2214,416303), (2216,71341)(2216,467698)
(2218,41393)(2218,497646), (2219,93790)(2219,445249), (2220,259081)(2220,279958)
(2225,20803)(2225,518236), (2227,10331)(2227,528708), (2232,213764)(2232,325275)
(2234,102545)(2234,436494), (2236,100984)(2236,438055), (2239,84122)(2239,454917)
(2242,223262)(2242,315777), (2247,85731)(2247,453308), (2248,108703)(2248,430336)
(2252,226996)(2252,312043),(2253,240071)(2253,298968),(2254,156080)(2254,3829509)
(2256,149723)(2256,389316), (2260,138839)(2260,400200), (2262,34408)(2262,504631)
(2264,34650)(2264,504389), (2266,234384)(2266,304655), (2267,229127)(2267,309912)
(2268,78763)(2268,460276), (2269,204827)(2269,334212), (2270,222596)(2270,316443)
(2271,199492)(2271,339547), (2273,90309)(2273,448730), (2274,159235)(2274,379804)
(2275,137417)(2275,401622), (2277,90238)(2277,448801), (2278,222457)(2278,316582)
(2280,119369)(2280,419670), (2282,5391)(2282,533648), (2283,204521)(2283,334518)

(2285,63621)(2285,475418), (2286,59311)(2286,479728), (2287,202190)(2287,336849)

(2289,234646)(2289,304393), (2291,22852)(2291,516187), (2294,67484)(2294,471555)
(2298,217492)(2298,321547), (2306,9680)(2306,529359), (2311,168740)(2311,370299)
(2312,115158)(2312,423881), (2314,182391)(2314,356648), (2316,3370)(2316,535669)
(2317,253223)(2317,285816), (2318,45584)(2318,493455), (2321,82598)(2321,456441)
(2328,87542)(2328,451497), (2329,90426)(2329,448613), (2331,55783)(2331,483256)
(2332,135253)(2332,403786), (2336,9496)(2336,529543), (2337,197145)(2337,341894)
(2338,151994)(2338,387045),(2340,153325)(2340,385714),(2347,200090)(2347,338949)
(2349,123321)(2349,415718),(2350,113475)(2350,425564),(2351,128674)(2351,410365)
(2352,195587)(2352,343452), (2353,85395)(2353,453644), (2355,1045)(2355,537994)
(2356,53505)(2356,485534), (2359,206377)(2359,332662), (2360,63865)(2360,475174)
(2365,77216)(2365,461823), (2368,158362)(2368,380677), (2369,261101)(2369,277938)
(2372,81335)(2372,457704), (2373,237060)(2373,301979), (2374,132727)(2374,406312)
(2376,124802)(2376,414237), (2377,131788)(2377,407251), (2378,80346)(2378,458693)
(2384,48067)(2384,490972), (2385,158531)(2385,380508), (2386,199890)(2386,339149)
(2387,54997)(2387,484042), (2388,91294)(2388,447745), (2391,258121)(2391,280918)
(2392,110929)(2392,428110),(2393,101910)(2393,437129),(2394,137115)(2394,401924)
(2397,251710)(2397,287329), (2399,97398)(2399,441641), (2403,44918)(2403,494121)
(2406,94829)(2406,444210), (2413,267513)(2413,271526), (2415,265094)(2415,273945)
(2416,102264)(2416,436775),(2417,153268)(2417,385771),(2418,214992)(2418,324047)
(2422,43624)(2422,495415), (2423,179735)(2423,359304), (2424,58172)(2424,480867)
(2427,89878)(2427,449161), (2429,141552)(2429,397487), (2431,160554)(2431,378485)
(2434,181331)(2434,357708), (2437,194614)(2437,344425), (2438,67447)(2438,471592)
(2439,43220)(2439,495819), (2441,91358)(2441,447681), (2442,124821)(2442,414218)
(2444,188555)(2444,350484), (2445,23130)(2445,515900), (2450,84554)(2450,454485)
(2451,25860)(2451,513179), (2452,62225)(2452,476814), (2454,36237)(2454,502802)
(2456,61467)(2456,477572), (2458,158297)(2458,380742), (2459,204966)(2459,334073)

(2462,163562)(2462,375477),(2464,134801)(2464,404238),(2466,152474)(2466,386565)

(2467,21012)(2467,518027), (2468,21505)(2468,517534), (2469,119477)(2469,419562)
(2471,155522)(2471,383517),(2472,236632)(2472,302407),(2475,148094)(2475,390945)
(2476,207809)(2476,331230),(2480,158923)(2480,380116),(2482,250459)(2482,288580)
(2483,203678)(2483,335361),(2484,186544)(2484,352495),(2486,194663) (2486,344376)
(2487,95267)(2487,443772), (2489,103046)(2489,435993), (2490,122925)(2490,416114)
(2492,238734)(2492,300305),(2497,172864)(2497,366175),(2499,202749)(2499,336290)
(2500,84623)(2500,454416), (2501,231965)(2501,307074), (2502,179554)(2502,359485)
(2507,197360)(2507,341679), (2509,41461)(2509,497578), (2511,255022)(2511,284017)
(2512,173189)(2512,365850), (2515,266037)(2515,273002), (2518,4495)(2518,534544)
(2523,130792)(2523,408247), (2524,48165)(2524,490874), (2527,154781)(2527,384258)
(2528,95777)(2528,443262), (2531,161313)(2531,377726), (2532,71229)(2532,467810)
(2533,77696)(2533,461343), (2535,232838)(2535,306201), (2537,63655)(2537,475384)
(2539,264253)(2539,274786), (2542,90077)(2542,448962), (2544,254098)(2544,284941)
(2546,32384)(2546,506655), (2547,213898)(2547,325141), (2550,141935)(2550,397104)
(2552,36684)(2552,502355), (2553,210043)(2553,328996), (2555,35632)(2555,503407)
(2559,21240)(2559,517799), (2560,227400)(2560,311639), (2562,224944)(2562,314095)
(2564,55496)(2564,483543), (2565,73107) (2565,465932), (2567,467) (2567,538572)
(2569,193942)(2569,345097), (2571,31048)(2571,507991), (2575,23571)(2575,515468)
(2578,124045)(2578,414994), (2581,11318)(2581,527721), (2591,235306)(2591,303733)
(2596,64538)(2596,474501), (2597,112649)(2597,426390), (2598,40614)(2598,498425)
(2600,136072)(2600,402967), (2601,53691)(2601,485348), (2602,11714)(2602,527325)
(2606,122708)(2606,416331), (2607,80889)(2607,458150), (2608,126450)(2608,412589)
(2609,110058)(2609,428981), (2610,13929)(2610,525110), (2620,228964)(2620,310075)
(2621,171661)(2621,367378),(2622,222224)(2622,316815),(2624,122387)(2624,416652)
(2626,147969)(2626,391070), (2627,7067)(2627,531972), (2629,268412)(2629,270627)
(2630,207984)(2630,331055),(2633,123660)(2633,415379),(2634,264936)(2634,274103)

(2637,235787)(2637,303252), (2639,3255)(2639,535784), (2640,12662)(2640,526377)

(2643,46521)(2643,492518), (2644,82324)(2644,456715), (2648,232224)(2648,306815)
(2652,13950)(2652,525089), (2653,4768)(2653,534271), (2654,21131) (2654,517908)
(2655,62370)(2655,476669), (2656,131496)(2656,407543), (2657,158283)(2657,380756)
(2659,181369)(2659,357670),(2660,107210)(2660,431829),(2663,138868)(2663,400171)
(2667,46321)(2667,492718), (2670,88309)(2670,450730), (2671,244885)(2671,294154)
(2673,1877)(2673,537162), (2675,211176)(2675,327863), (2677,263900)(2677,275139)
(2682,79424)(2682,459615), (2684,7796)(2684,531243), (2685,218841)(2685,320198)
(2686,105986)(2686,433053), (2693,656)(2693,538383), (2696,217058)(2696,321981)
(2699,26710)(2699,512329), (2701,63717)(2701,475322), (2702,250729)(2702,288310)
(2703,262490)(2703,276549), (2705,249750)(2705,289289), (2706,89749)(2706,449290)
(2707,240165)(2707,298874), (2712,66090)(2712,472949), (2713,266792)(2713,272247)
(2715,182730)(2715,356309),(2717,110320)(2717,428719),(2722,170168)(2722,368871)
(2725,247696)(2725,291343), (2726,31835)(2726,507204), (2727,250971)(2727,288068)
(2728,252815)(2728,286224), (2729,85395)(2729,453644), (2736,46238)(2736,492801)
(2737,127762)(2737,411277),(2738,266126)(2738,272913),(2739,129227)(2739,409812)
(2740,37351)(2740,501688), (2742,81999)(2742,457040), (2743,124881)(2743,414158)
(2745,236455)(2745,302584),(2746,108773)(2746,430266),(2750,208922)(2750,330117)
(2751,137409)(2751,401630),(2753,175392)(2753,363647),(2755,187162)(2755,351877)
(2757,3432)(2757,535607), (2762,248171)(2762,290868), (2763,195917)(2763,343122)
(2767,150725)(2767,388314), (2768,149671)(2768,389368), (2769,40711)(2769,498328)
(2770,212346)(2770,326693), (2774,45694)(2774,493345), (2775,182098)(2775,356941)
(2778,144373)(2778,394666), (2779,138673)(2779,400366), (2781,1641)(2781,537398)
(2782,79242)(2782,459797), (2784,125014)(2784,414025), (2787,177354)(2787,361685)
(2788,114301)(2788,424738),(2791,123591)(2791,415448),(2793,235999)(2793,303040)
(2794,6855)(2794,532184), (2797,1894)(2797,537145), (2798,200054)(2798,338985)
(2800,39588)(2800,499451), (2802,11946)(2802,527093), (2803,152140)(2803,386899)

(2807,250955)(2807,288084), (2811,82004)(2811,457035), (2812,121808)(2812,417231)

(2814,57165)(2814,481874), (2816,132166)(2816,406873), (2818,105097)(2818,433942)
(2823,58262)(2823,480777), (2824,247526)(2824,291513), (2825,209550)(2825,329489)
(2828,147849)(2828,391190), (2829,52999)(2829,486040), (2830,189421)(2830,349618)
(2831,254566)(2831,284473), (2832,20645)(2832,518394), (2833,134109)(2833,404930)
(2834,243533)(2834,295506),(2835,164175)(2835,374864),(2837,154579)(2837,384460)
(2838,90010)(2838,449029), (2840,157374)(2840,381665), (2842,207990)(2842,331049)
(2844,236740)(2844,302299), (2847,96016)(2847,443023), (2849,45550)(2849,493489)
(2850,126727)(2850,412312), (2851,96161)(2851,442878), (2852,17463)(2852,521576)
(2853,188048)(2853,350991), (2854,92713)(2854,446326), (2855,101859)(2855,437180)
(2856,236802)(2856,302237),(2859,148033)(2859,391006),(2861,231164)(2861,307875)
(2862,113717)(2862,425322),(2868,213370)(2868,325669),(2869,146388)(2869,392651)
(2870,18159)(2870,520880), (2873,234677)(2873,304362), (2875,120386)(2875,418653)
(2877,79586)(2877,459453), (2879,3081)(2879,535958), (2880,260755)(2880,278284)
(2881,197641)(2881,341398), (2883,24826)(2883,514213), (2884,70420)(2884,468619)
(2885,133621)(2885,405418), (2887,127377)(2887,411662), (2889,10703)(2889,528336)
(2890,61742)(2890,477297), (2891,168905)(2891,370134), (2892,98135)(2892,440904)
(2894,172024)(2894,367015), (2895,91444)(2895,447595), (2896,53311)(2896,485728)
(2898,200628)(2898,338411), (2900,32895)(2900,506144), (2901,205873)(2901,333166)
(2903,15505)(2903,523534), (2906,101382)(2906,437657), (2907,106998)(2907,432041)
(2908,26985)(2908,512054), (2909,228413)(2909,310626), (2913,13787)(2913,525252)
(2919,147252)(2919,391787),(2921,221430)(2921,317609),(2922,203321)(2922,335718)
(2923,171579)(2923,367460),(2924,239010)(2924,300029),(2926,155103)(2926,383936)
(2927,185200)(2927,353839), (2928,32168)(2928,506871), (2930,152382)(2930,386657)
(2933,29291)(2933,509748), (2934,239406)(2934,299633), (2935,77618)(2935,461421)
(2936,198853)(2936,340186), (2940,13329)(2940,525710), (2944,36785)(2944,502254)
(2945,136553)(2945,402486), (2946,119673)(2946,419366), (2949,54081)(2949,484958)

(2950,55829)(2950,483210), (2952,106499)(2952,432540), (2953,226480)(2953,312559)

(2954,150094)(2954,388945), (2955,30642)(2955,508397), (2962,138026)(2962,401013)
(2963,233993)(2963,305046), (2964,43822)(2964,495217), (2965,175723)(2965,363316)
(2966,231510)(2966,307529), (2967,22262)(2967,516777), (2971,124492)(2971,414547)
(2972,46607)(2972,492432), (2973,228961)(2973,310078), (2974,79273)(2974,459766)
(2977,131482)(2977,407557), (2978,189536)(2978,349503), (2980,249)(2980,538790)
(2981,64394)(2981,474645), (2983,229946)(2983,309093), (2986,120567)(2986,418472)
(2987,231528)(2987,307511), (2992,69681)(2992,469358), (2993,103465)(2993,435574)
(2994,213470)(2994,325569), (2995,33486)(2995,505553), (2996,20703)(2996,518336)
(2997,256266)(2997,282773), (3000,28814)(3000,510225), (3001,185250)(3001,353789)
(3003,71638)(3003,467401), (3005,81717)(3005,457322), (3007,60032)(3007,479007)
(3009,135606)(3009,403433), (3010,51119)(3010,487920), (3011,11912)(3011,527127)
(3012,51617)(3012,487422), (3015,17989)(3015,521050), (3017,245077)(3017,293962)
(3020,130762)(3020,408277), (3021,52316)(3021,486723), (3023,171201)(3023,367838)
(3025,210974)(3025,328065),(3026,179039)(3026,360000),(3028,161407)(3028,377632)
(3029,267935)(3029,271104), (3031,33917)(3031,505122), (3034,210307)(3034,328732)
(3036,265307)(3036,273732),(3044,261736)(3044,277303),(3045,170815)(3045,368224)
(3046,236297)(3046,302742), (3047,229919)(3047,309120), (3049,21138)(3049,517901)
(3050,167015)(3050,372024),(3057,102005)(3057,437034),(3059,228564)(3059,310475)
(3060,79612)(3060,459427), (3063,101946)(3063,437093), (3066,118085)(3066,420954)
(3067,139235)(3067,399804),(3069,194595)(3069,344444),(3071,223183)(3071,315856)
(3072,225226)(3072,313813),(3079,120498)(3079,418541),(3081,119378)(3081,419661)
(3083,133356)(3083,405683), (3084,233895)(3084,305144), (3086,39439)(3086,499600)
(3087,156484)(3087,382555),(3088,100342)(3088,438697),(3089,111115)(3089,427924)
(3091,239971)(3091,299068), (3092,85527)(3092,453512), (3093,39873)(3093,499166)
(3094,101190)(3094,437849), (3096,2576)(3096,536463), (3098,134830)(3098,404209)
(3099,147422)(3099,391617),(3100,156674)(3100,382365),(3102,106501)(3102,432538)

(3104,215728)(3104,323311),(3109,143327)(3109,395712),(3112,205287)(3112,333752)

(3113,73497)(3113,465542), (3115,238545)(3115,300494), (3116,56098)(3116,482941)
(3121,64733)(3121,474306), (3122,206427)(3122,332612), (3123,152299)(3123,386740)
(3124,13509)(3124,525530), (3125,192553)(3125,346486), (3126,227574)(3126,311465)
(3129,233737)(3129,305302),(3131,215446)(3131,323593),(3132,259009)(3132,280030)
(3135,188722)(3135,350317), (3137,89024)(3137,450015), (3139,32231)(3139,506808)
(3140,84263)(3140,454776), (3142,35087)(3142,503952), (3144,256539)(3144,282500)
(3148,30273)(3148,508766), (3149,169179)(3149,369860), (3151,60167)(3151,478872)
(3153,4112)(3153,534927), (3156,155828)(3156,383211), (3159,204795)(3159,334244)
(3163,53899)(3163,485140), (3164,104191)(3164,434848), (3165,210887)(3165,328152)
(3166,209462)(3166,329577),(3168,212939)(3168,326100),(3171,103250)(3171,435789)
(3172,262527)(3172,276512), (3173,26267)(3173,512772), (3184,128342)(3184,410697)
(3185,103755)(3185,435284), (3190,237463)(3190,301576), (3191,31169)(3191,507870)
(3192,60743)(3192,478296), (3193,18584)(3193,520455), (3194,267843)(3194,271196)
(3195,220039)(3195,319000), (3199,6640)(3199,532399), (3201,86469)(3201,452570)
(3202,171978)(3202,367061), (3203,238897)(3203,300142), (3207,23014)(3207,516025)
(3209,80855)(3209,458184), (3210,132337)(3210,406702), (3211,231274)(3211,307765)
(3212,56448)(3212,482591), (3213,203940)(3213,335099), (3215,221133)(3215,317906)
(3216,16038)(3216,523001), (3217,64891)(3217,474148), (3218,46332)(3218,492707)
(3220,44778)(3220,494261), (3221,193719)(3221,345320), (3222,45021)(3222,494018)
(3224,223105)(3224,315934),(3228,115552)(3228,423487),(3229,124911)(3229,414128)
(3230,31421)(3230,507618), (3232,64118)(3232,474921), (3233,8006)(3233,531033)
(3236,211899)(3236,327140), (3237,55191)(3237,483848), (3240,137825)(3240,401214)
(3241,105265)(3241,433774), (3242,262414)(3242,276625), (3251,85831)(3251,453208)
(3253,82689)(3253,456350), (3254,1552)(3254,537487), (3255,100698)(3255,438341)
(3256,188458)(3256,350581),(3257,102009)(3257,437030),(3258,120487)(3258,418552)
(3260,127867)(3260,411172), (3263,25138)(3263,513901), (3264,205559)(3264,333480)

(3266,135961)(3266,403078),(3270,156402)(3270,382637),(3277,258799)(3277,280240)

‘IJIRCCE
L A ISSN(Online): 2320-9801

ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol. 4, Issue 2, February 2016

A Survey on the Security Features of
Cryptographic Technigues in Mobile Devices

Dr. Mani® A. Mullai 2
Associate Professor, Department of Computer Science, Puthanampatti, Affiliated to Bharathidasan University,
Trichy, Tamil Nadu, India*
PhD Research Scholar, Department of Computer Science, Puthanampatti, Affiliated to Bharathidasan University,

Trichy, Tamil Nadu, India ?

ABSTRACT: A revolution of technological advancement has taken place in the field of Communication Technology
with the introduction of Wireless Mobile Devices by introducing multifunctional applications embedded in a small
device by replacing the traditional and fixed wired technology. Mobile devices play a vital role in everyday life since
they provide variety of ubiquitous services. In recent years, the availability of these devices and their ubiquitous
services has increased significantly. This is because various forms of connectivity such as Global System for Mobile
Communications (GSM), General Packet Radio Service (GPRS), Bluetooth and Wi-Fi (Wireless Fidelity) etc. are
provided to them. Even though some challenges in mobile computing devices cater the needs of the users, the
transmission of information can be done very easily, quickly without having any previous knowledge because they are
user friendly. The information transmitted through the air by the mobile devices may sometimes being hacked by the
hackers. To avoid hacking Security plays a vital role in transmitting the information and it can be achieved by using
various cryptographic algorithms to prevent from such attacks. This paper gives a comprehensive survey of
cryptographic algorithms and techniques which are being used in mobile devices.

KEYWORDS: Mobile Devices, challenges, hackers, Cryptographic algorithms, techniques.

I. INTRODUCTION

Mobile Computing Portable devices like laptop, palmtop etc. gives an easy access to the people with diverse sources of
global information instantaneously anywhere at any place and at any time. It is a technology constantly developing
towards the needs of human expectations by using the concept of Bring Your Own Device — Bring Your Own
Technology (BYOD — BYOT). A mobile device may be a Personal Digital Assistant (PDA), a handy Cell phone or
Web phone, a laptop, or any one of the above numerous devices that allow the user to complete the tasks without being
tethered, or connected, to a network. The environment of wireless and mobile bring about different challenges to the
users and service providers. The physical constraints like the weight of the device, the battery, the size of the screen,
portability, quality of radio transmission, and error rates become more important. Even though the facility of the
devices include the mobility of the user, the device, the network, the service provider and also some additional
uncertainties, they give opportunities to the users the provision of new services and supplementary information. The
major challenges in mobile computing are low bandwidth, high error rate, power restrictions, security, limited
capabilities, disconnection and the problems created due to the mobility of the client. Inspite of these challenges
security becomes a major concern, because they are connected anonymously. By the application of cryptographic
algorithms in mobile computing, the hackers don’t get the chance to access the mobile units. Various cryptographic
algorithms have been used to maintain security in mobile devices and they provide confidentiality, integrity,
availability, non-repudiation, authorization and trust and accounting (CIANATA). This paper gives an overview of
various cryptographic techniques which are used to provide such security services in mobile devices.

Il. RELATED WORKS

Mavridis 1., Pangalos G. [1], in their paper, have discussed the operational and security issues of

mobile components in distributed environments. Further they illustrated to eliminate the intrinsic problem of wireless A2

Copyright to IJIRCCE DOI: 10.15680/1JIRCCE.2016. 0402186 2406

:IJIRCCE
\ A ISSN(Online): 2320-9801

ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol. 4, Issue 2, February 2016

networking using the mobile agents. They applied some security mechanism in their model which is to be
implemented in a healthcare paradigm, with some special conditions.

In 2000, Erik Olson and Woojin Yu, [2] surveyed various symmetric key algorithms viz., RC5, RC6, Twofish, and
Triple-DES and their usage in mobile computing, specifically in the Palm Pilot, which uses Motorola’s Dragon Ball-EZ
processor. They illustrated that the architecture used in the processor is similar to the 68K processor and it does not
provide the power and versatility of current processors.

In 2000, Wendy Chou [3], surveyed the explosive growth in the usage of mobile and wireless devices
demands a new generation of Public Key Cryptography (PKC) schemes, and the limitations on power, bandwidth to
provide security in mobile devices, use of Elliptic Curve Cryptography (ECC), its security, performance and also its
applications.

In 2002, Limor Elbaz [4], implemented PKC in security of wireless devices and the use of Public Key
Infrastructure (PKI) in current as well as in the future applications of mobile phones. Further he showed that the
Discretix Crypto Cell implementation of cryptographic algorithms which enable wireless devices to become PKI-
enabled cum efficient, lightweight and standard-compliant.

In 2003, Dharma P. Agrawal et al.[5], discussed the technology in mobile computing users by combining
wireless networking and mobility which serves anytime and anywhere with of various new applications and also
services. They had also analyzed some security issues and various threats in the existing countermeasures. They
concluded that encryption plays an important role for secured communication in mobile computing environments.

In 2006, Hanping Lufei and Weisong Shi [6], discussed the emergence of heterogeneous devices and diverse
networks, and the difficulty in using a one-size-fits-all encryption algorithm. They also explained the deployment of
encryption algorithms to choose an appropriate encryption algorithm from multiple algorithms based on the
characteristics of heterogeneous mobile computing environments. They proposed an adaptive encryption protocol, to
choose a proper encryption algorithm dynamically which enhances security from the candidate algorithms, and
minimizes the time overhead.

In 2008, Abhishek Kumar Gupta [7], discussed the need for information as a driving force for the incoming
growth in Web technology, wireless communication, and portable computing devices and also explained the field of
mobile computing (computing and communication) with the aim of providing seamless computing environment for
mobile users, which are all dependent on information and it is available only by accessing a network. Further they
discussed that the mobility can also cause wireless connections to be lost or degraded when the users travel beyond the
limitations of network transceivers or enter areas of high interference.

In [2009], S. Krishna Mohan Rao and Dr. A Venugopal Reddy [8], discussed Data dissemination in
asymmetrical communication environment, where the capacity of the downlink communication is much greater than
the uplink communication capacity and it is best suited for mobile environment. The important issue discussed in this
paper is that the data dissemination which illustrates quickly access of the data item in mobile devices with minimum
access time so that the mobile clients save the precious battery power while they are moving from one place to another.

In [2009], widespread growth in applications for resource-limited Wireless Sensor Networks (WSN), and also
the need for reliable and efficient security mechanisms using two potential block ciphers, namely the RC5 and AES-
Rijindael discussed and analyzed the suitability of the algorithm for resource-limited wireless network security by M.
Razvi Doomun, and KMS Soyjaudah [9].

In [2009], Kar and Banshidhar Majhi[10], proposed an efficient password security of Multi-Party key
exchange protocol based on elliptic curve discrete logarithm problem (ECDLP), and these protocols allow a group of
parties communicating over a public network to establish a common secret key called Session Key and also build
protocol for password authentication model, where group members were assumed to hold an individual password rather
than a common password and two one-way hash functions to build the security level high.

Copyright to IJIRCCE DOI: 10.15680/1JIRCCE.2016. 0402186 2407

:IJIRCCE
\ A ISSN(Online): 2320-9801

ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol. 4, Issue 2, February 2016

In [2009], Mooseeop Kim et.al. [11], proposed a compact architecture for a cryptographic engine on a mobile
platform, which has very stringent limitations with respect to the circuit area and the consuming power It is highly
effective to implement the scalable RSA and unified SHA algorithms with a minimum resource usage. The combined
performance results of circuit area, power efficiency, throughput, and functionality strongly indicate that the proposed
architecture for cryptographic hardware is suitable for mobile computing systems.

In [2010], Bruno P.S. Rocha et. al [12], demonstrated a security service, which works as a middleware, to
dynamically change the security protocols used between two peers and these changes can occur based on variations on
wireless medium parameters, system resource usage, available hardware resources, application-defined Quality of
Service (QoS) metrics, and desired data security levels. They provide the solution to some static security protocols and
adaptability of middleware in different conditions of medium and system, and shows performance gain in the execution
of cryptographic primitives, through the use of data semantics.

In [2010], Sathish Alampalayam Kumar [13], suggested a mobile agent based mobile computing system, the
classification of various types of security attacks, the security solutions for those types of attacks proposed by various
schemes and the open research issues in providing security for mobile agent based computing systems.

In [2011], Sameer Hasan et. al. [14], proposed a non-server (that is P2P) architecture PKC to secure the
mobile communications. They have discussed and implemented various security services needed for mobile
communication. Compared with server based architecture, this architecture has low risk and the security has been
improved to avoid many attacks. They used NTRU algorithm for public key cryptography in non-server architecture
and tested on real equipment, the solution security and potential risks.

In [2011], Rahat Afreen and S.C. Mehrotra [15], discussed the ECC emerged in its proper implementation in
various directions to analyze in hardware as well as software platforms. Helena Rifa-Pous and Jordi Herrera-
Joancomarti [16], discussed the performances of different cryptographic algorithms in PDAs and compared it with
device’s basic costs in terms of operating system, screen, and network interfaces to determine the overhead and the
results were used to estimate the costs of network security protocols design.

In [2011], Jagdish Bhatta and Lok Prakash Pandey [17], proposed a software level cryptographic protocol
implementations to measure the energy level through the device’s serial port, running them and measuring their power
consumption. The results show that the proposed cryptographic protocol provides a guaranteed better security and
acquires very less consumption of energy than the existing cryptographic protocols. The performance analysis are
compared and proved that the proposed scheme is to be more simple, secure and efficient.

In [2012], K. Sathish Kumar et. al. [18], explained the mobile hand-held device in an efficient way to deliver
real time data to users. They designed and implemented an energy efficient authentication protocol that accomplishes a
high level security with minimum energy consumption for mobile devices.

In [2012], Masoud Nosrati et. al. [19], proposed an algorithm for security mechanism in different types of
mobile devices and the operation systems. This security mechanism uses some algorithms to scramble data into
unreadable text which can be only decoded or decrypted by those who possess the associated key and these algorithms
consume a significant amount of computing resources such as CPU time, memory, battery power and computation
time.

In [2012], Ravinder Singh Mann et. al. [20], presented the comparative analysis of ECC, AES and RSA
algorithms experimentally with parameters such as computation time and complexity of the algorithms. Based on the
result it was concluded that ECC has more complexity when compared to AES and RSA in mobile devices.

In [2013], Giripunje et al. [21], discussed many differences in mobile devices, their capabilities, computational
powers and security requirements in networking environments. The security of mobile communication is concerned
with mobile confidentiality, authentication, integrity and non-repudiation. They have mentioned that the currently
available network security mechanisms are inadequate. They provided effective security solution using PKC and its

Copyright to IJIRCCE DOI: 10.15680/1JIRCCE.2016. 0402186 2408

:IJIRCCE
\ A ISSN(Online): 2320-9801

ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol. 4, Issue 2, February 2016

implementation in two parts: first, design for API for ECC which generates shared key for secure communication and
secondly, a web service is created which distributes this key to validate the mobile user.

In [2013], Ameya Nayak [22], discussed the growing android community, its malware attacks, security
concerns, aid in serving as the continuous challenges of identifying current, future vulnerabilities as well as
incorporating security strategies against them and this focus on mobile devices.

In [2013], Srikanth Pullela [23], discussed the performance issues like handoffs, routing etc. Then he further
addressed that security is another key issue, which needs to be considered when the communication channel is set up.
Also protocols are being proposed for different applications like wireless application protocol, 802.11 etc. Most of
them are based on the public and private key cryptography.

In [2013], V. Gayoaso Martinez and L. Hernandez Encinas [24], have discussed the ECC, one of the best
options for protecting sensitive information. The latest version of the JAVA platform includes a cryptographic provider
- SunEC which implements EC operations and protocols. They have explained the complete code of three applications
to generate key pairs, perform key exchanges, and produce digital signatures with EC in JAVA.

In [2013], Muhammad Waseem Khan [25], explained that short message service (SMS) is one of the
frequently used mobile services with universal availability in all GSM networks but the SMS facility has not achieved
secure transmission of plaintext between different mobile phone devices. However, SMS does not have its own built-in
mechanism to secure the transmitted data because security is not considered as a priority application for mobile
devices. The existing schemes provide room for the secure SMS message communication. The effect of each security
scheme on mobile device’s performance was also observed. Finally summary of all security schemes with their
limitations was presented.

In [2013], Ram Ratan Ahirwal and Manoj Ahke [26], explained the Diffie-Hellman scheme as one of the key
exchanging cryptosystem, and no messages are involved in this scheme and using this key and ECC for encryption and
decryption. Two different methods to encrypt and decrypt the message were proposed by them. They pointed out that
the second method supports the system with more security than the first method because the sender computes the
exponentiation function between the coordinates of the encryption algorithm and the receiver computes the inverse of
the exponentiation function between the coordinates of the key in the decryption algorithm, While in the first method,
the sender compute the multiplication between the coordinates of the key in the encryption algorithm, the receiver
compute the multiplication between the coordinates of the key in decryption algorithm and forward secrecy in HTTPS
protocol.

In [2014], Sathish Kumar et. al. [27], have discussed about the mobile hand-held device are used in an
efficient way to deliver real time data to the users in the battle field military applications and the use of security
features in military applications such as data confidentiality, authentication etc., which are not readily offered by
mobile environment. The energy expenditure in such an environment poses bottleneck while achieving privacy. Hence
it is necessary to design and implement an energy efficient authentication protocol that accomplishes a high level of
security with minimum energy consumption. They have proposed the implementation of energy efficient authentication
protocol for mobile devices.

In [2014], Hamed Khiabani et. al. [28], explained the extensive deployment of wireless networking, mobile
and embedded devices, other pervasive computing technologies that are prone to security threats for which nobody will
be prepared for. Security and privacy are the main concerns in mobile computing which can be observed from several
perspectives including hardware, operating systems, networks, databases, user interfaces, and applications.

In [2014], Seema P. Nakhate, and R.M. Goudar [29], have implemented a secured password based mutual
authentication protocol for client-server computing using ECC framework which provides secure communication
between client and server with the help of user email-id and mobile phone authentication device for mobile handheld
device. The proposed protocol is best suited for constrained environments where the resources such as computational
power, storage capacity are extremely limited. Such devices are Mobile phones, PDA’s, Palmtops and Smart cards.

Copyright to IJIRCCE DOI: 10.15680/1JIRCCE.2016. 0402186 2409

I1JTRCCE)

ISSN(Online): 2320-9801
ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol. 4, Issue 2, February 2016

In [2015], Vishnu V and Shobha R [30], discussed the security in Wireless Sensor Networks (WSN). They
have applied dynamic election of Cluster Head (CH) mechanism and two evolutionary approaches SET-IBS and SET-
IBOOS, since it provides security in data transmission and reduces data losses due to nodes failure, less residual energy
selected in CH. It improves the lifetime of network by increasing time of FND (First Node to die).

In [2015], Tanmoy Kumar Bishoi et. al. [31], proposed an algorithm to encrypt the data using symmetric key
encryption technique and now it can be improved by using variable length key.

In [2015], Sujithra M et. al. [32], due to high performance computing techniques, cryptographic algorithms are
implemented and tested in Local as well as Cloud environment. They have revealed that storing mobile data in cloud
increases efficiently and AES algorithm performs better when compared with other algorithms in Mean processing time
but the combination of MD5+ECC+AES algorithms qualify better than Speed-Up ratio.

In [2016], Said Bouchkaren and Saiida Lazaar [33], discussed secure data transmission through Internet. They
have designed and implemented a new secret key cryptosystem due to a number of iterations of encryption and
decryption of data in blocks, using cellular automata and compared them with AES algorithm and also they proved that
the new algorithm resists against statistical attacks, faster than AES-256, achieved good confusion and diffusion tests.

I1l. CONCLUSION

Mobile Computing is a new technological development due to the magnificent growth of internet community
for various applications and variety of tasks that can be performed at the requirement of the users. But the requirement
is that the data must be transferred in a very fast, quick and secured manner. Hence the Cryptographic tools and
techniques will be more useful to achieve this. An eavesdropper or intruder can catch the information/data during the
transmission. In order to prevent this, various types of cryptographic algorithms have been used. From the findings,
Elliptic Curve Cryptography (ECC) is more useful and it produces more security with less number of bits compared to
RSA algorithm. It has been proved that the ECC can be applied in various levels of applications and hand - held
devices.

REFERENCES
1. Mavridis L, Pangalos G., “Security Issues in Mobile computing Paradigm”. 1997, http://www.researchgate.net.
2. Erik Olson and Woojin Yu, “Encryption for Mobile computing”, 2000.
3. Wendy Chou, “Elliptic Curve Cryptography and Its applications to Mobile Devices,2000.
4. Limor Elbaz, “Using Public Key Cryptography in Mobile Phones”, White Paper,Discretix Technologies Ltd., Advanced security solutions
for constrained environments, October 2002.
5. Dharma P. Agrawal et al., “Secure Mobile Computing”, S.R. Das, S.K. Das (Eds.): IWDC 2003, Springer-Verlag., LNCS 2918, pp.265-
278.
6. WHanping Lufei and Weisong Shi, “An Adaptive Encryption Protocol in Mobile Computing”, Wireless/Mobile Network Security,
Springer, 2006.
7. WWWWAbhishek Kumar Gupta, “Challenges of Mobile computing”, Proceedings of 2nd National Conference on Challenges &
Opportunities in Information Technology RIMT — IET, Mandi Gobindgarth, March 29, 2008.
8. S. Krishna Mohan Rao and Dr. A Venugopal Reddy, “Data Dissemination in Mobile Computing Environment”, BIJIT — BVICAM’s
International Journal of Information Technology, Bharati Vidyapeeth’s Institute of Computer applications and Management (BVICAM),
New Delhi, Vol. 1, No. 1, January 2009.
9. M. Razvi Doomun, and KMS Soyjaudah, “Analytical Comparison of Cryptographic Techniques for Resource-Constrained Wireless
Security”, International Journal of Network Security, Vol.9, No.1, July 2009, pp. 82-94.
10. Jayaprakash Kar & Banshidhar Majhi, “An Efficient Password Security of Multi-Party key exchange protocol based on ECDLP”,
International Journal of Computer Science and Security (IJCSS), Vol.1, Issue 5, Sep. 2009.
11. Mooseeop Kim et.al., “Design of Cryptographic Hardware Architecture for Mobile Computing”, Journal of Information Processing
Systems, Vol. 5, No. 4, Dec. 2009.
12. Bruno P.S. Rocha et. al., “Adaptive Security protocol selection for mobile computing”, Journal of Network and Computer Applications 33,
2010, pp. 569.
13. Sathish Alampalayam Kumar, “Classification and Review of Security Schemes in Mobile Computing”, Wireless Sensor Network, June
2010, 2, pp.419-440.
14. Sameer Hasan Al-Bakri, Gazi Mahabubul Alam et. al., “Securing peer-to-peer mobile communications using public key cryptography:

New security strategy”, International Journal of the Physical Sciences Vol. 6(4), Feb. 2011, pp. 930-938.

Copyright to IJIRCCE DOI: 10.15680/1JIRCCE.2016. 0402186 2410

http://www.researchgate.net/

ISSN(Online): 2320-9801
ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering
(An ISO 3297: 2007 Certified Organization)
Vol. 4, Issue 2, February 2016

15. Rahat Afreen and S.C. Mehrotra, “A Review on Elliptic Curve Cryptography for Embedded Systems”, International Journal of Computer
Science & Information Technology Vol. 3, No 3, June2011.

16. Helena Rifa-Pous and Jordi Herrera-Joancomarti, “Computational and Energy Costs of Cryptographic Algorithms on Handheld Devices”,
Future Internet 2011, 3, 31-48; doi: 10.3390/fi3010031, ISSN 1999-5903, www.mdpi.com/journal/futureinternet.

17. Jagdish Bhatta and Lok Prakash Pandey, “Performance Evaluation of RSA Variants and Elliptic Curve Cryptography on Handheld
Devices”, IICSNS International Journal of Computer Science and Network Security, Vol. 11, No. 11, Nov. 2011.

18. K. Sathish Kumar et. al., “An Experimental Study on Energy Consumption of Cryptographic Algorithms for Mobile Hand-Held Devices”,
International Journal of Computer Applications, Vol. 40, No.1, Feb. 2012.

19. Masoud Nosrati et. al., “Mobile and Operating Systems”, Computing: Principles, Devices World Applied Programming, Vol. 2, Issue 7,
July 2012.

20. Ravinder Singh Mann et al., “A Comparative Evaluation of Cryptographic Algorithms”, Int. J. Computer Technology & Applications, Vol
3(5), Oct. 2012, pp. 1653-1657.

21. Giripunje et al., International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 3, Issue 5, May 2013,
pp. 704-713.

22. Ameya Nayak, “Android Mobile Platform Security and Malware Survey”, IIRET: International Journal of Research in Engineering and
Technology, Vol. 02 Issue 11, Nov. 2013.

23. Srikanth Pullela, “Security Issues in Mobile computing”, International Journal of Research in Engineering and Technology, Vol. 02, Issue:
11, Nov. 2013.

24. V. Gayoaso Martinez and L. Hernandez Encinas, “Implementing ECC with Java Standard Edition 7”, International Journal of Computer
Science and Artificial Intelligence, Dec. 2013, Vol. 3 Issue. 4, pp. 134-142.

25. Muhammad Waseem Khan, “SMS Security in Mobile Devices: A Survey”, Int. J. Advanced Networking and Applications, Vol. 05, Issue
2, pp. 1873 -1882.

26. Ram Ratan Ahirwal and Manoj Ahke, “Elliptic Curve Diffie-Hellman Key Exchange Algorithm for Securing Hypertext Information on
Wide Area Network”, International Journal of Computer Science and Information Technologies, Vol. 4(2), 2013, pp.363 — 368.

27. Sathish Kumar et. al., “An Asymmetric Authentication Protocol for Mobile Hand held Devices using ECC over Point Multiplication
Method”, International Journal of Advanced Research in Computer Science & Technology, Vol. 2, Jan.—March 2014.

28. Hamed Khiabani et. al., “A Review on privacy, Security and Trust issues in Mobile Computing”, Collaborative outcome of University of
Malaysia and MIMOS Berhad — Information Security Cluster.

29. Seema P. Nakhate and R.M. Goudar, “Secure Authentication Protocol”, International Journal of Computer Networks and Communications
Security, Vol. 2, No. 4, April 2014, pp. 142 —145.

30. Vishnu V and Shobha R, “Dynamic Cluster Head (CH) Node Election and Secure Data Transaction in CWSNs”, International Journal of
Engineering Research, Vol. 4, Issue Special 4, May 2015.

3L Tanmoy Kumar Bishoi et. al., “An Algorithm on Text Based Security in Modern Cryptography”, Journal of Computer Networking,
Wireless and Mobile Communications (JCNWMC), Vol. 5, Issue 1, Jun 2015, pp.9-14.

32. Sujithra M et. al., “Mobile Data Security: A Cryptographic Approach by Outsourcing Mobile data to Cloud”, Procedia Computer Science
47 (2015), pp. 480-485.

33. Said Bouchkaren and Saiida Lazaar, “A New Iterative Secret Key Cryptosystem Based on Reversible and Irreversible Cellular Automata”,

International Journal of Network Security, Vol. 18, No. 2, pp. 345-353, Mar 2016.

BIOGRAPHY

Dr. K. Mani is working as an Associate Professor in the Department of Computer Science, Nehru Memorial
College, Puthanampatti, Tamil Nadu since 1989. After did his MCA, he got his Graduation in Operations Research
from Operational Research Society of India, Kolkatta and obtained his MTech in Advanced Information Technology
from Bharathidasan University, Trichy, Tamil Nadu. He has completed his Ph. D degree from Bharathidasan
University relating to enhancing security and optimizing the run time in cryptographic algorithms. His current research
area includes cryptography, data mining and coding theory. He has published a number of research papers in national
and international journals and conferences.

Mrs. A. Mullai is working as an Associate Professor in the Department of Computer Science, Seethalakshmi
Ramaswami College, Bharathidasan University, Trichy, Tamil Nadu, India since 2000. She has 15 years of experience
in teaching. After did her M.Sc in Physics, MCA in Computer Applications, she got her M.Phil in Computer Science at
Bharathidasan University, Trichy, Tamil Nadu. She has cleared National Level Eligibility Test (NET) conducted by
University Grants Commission (UGC), New Delhi. She is currently pursuing doctor of philosophy programme at
Nehru Memorial College (Autonomous), Puthanampatti and her current area of research is Cryptography in Mobile
Computing. She has published research papers in national and international conferences.

Copyright to IJIRCCE DOI: 10.15680/1JIRCCE.2016. 0402186 2411

http://www.mdpi.com/journal/futureinternet

2016 World Congress on Computing and Communication Technologies

Optimizing the Run Time in Mobile Devices

K. MANIY, A. MULLAI?

L Associate Professor, Department of Computer Science, Nehru Memorial College (Autonomous), Puthanampatti, Affiliated to
Bharathidasan University, Trichy, Tamil Nadu, India
email:nitishmanik@gmail.com
2 Associate Professor, Department of Computer Science, Seethalakshmi Ramaswami College(Autonomous), Affiliated to
Bharathidasan University, Trichy, Tamil Nadu, India
email: mullai_a@yahoo.com

Abstract: Mobile computing works on the principle of
broadcasting so that the information is radiated to everyone
within the wave range which increases security threats and cyber
attacks replicated quickly and easily. Thus, care must be taken in
handling those types of attacks to provide information security
while the wuser roams through different networks with
heterogeneous security infrastructure. For that several
cryptographic techniques are employed in mobile devices. Among
them the public key cryptographic algorithms like RSA and ECC
play a vital role in performing security. The basic building blocks
of ECC is scalar point multiplication k[P] where k is a scalar and
P is a point on elliptic curve. Similarly, in RSA the encryption
and decryption is of the form x® mod n where encryption
/decryption key. Normally exponentiation operation takes more
time than multiplication which takes more time than addition and
subtraction. To reduce the time, exponentiations and
multiplications are performed by repeated multiplications and
additions respectively. To reduce the time further addition chain
is used. In order to generate the addition chain nature inspired
based algorithms like PSO and SSO are considered in this paper.
Using them, the addition chains for exponent of RSA and K[P] of
ECC are generated. The encryption/decryption time and energy
required for encryption/decryption are also computed and the
performance of the cryptographic algorithms in mobile devices
are analyzed with and without the incorporation of addition
chain.

Keywords: Decryption, ECC, Encryption, Optimization and RSA.
1. INTRODUCTION

Mobile devices deal with heterogeneity of networks and also
in ubiquitous intelligent environment with embedded
computers everywhere and reliable services to the user in an
easy way. Even though they have more offerings to the user,
lot of challenges like disconnection, low/ high bandwidth
variability, low power and resources, security risks, wide
variety of devices with different capabilities and to fit more
functionality into single, smaller devices. Various public key
algorithms like RSA and ECC (Elliptic Curve Cryptography)
are more popular to provide security in mobile devices but
they may take more time for encryption and decryption. ECC
gets popularity due to its shorter key length which produces
same security as in RSA with larger key length. It is noted that
if a cryptographic algorithm takes more time in performing
operational time (where the operational time

978-1-5090-5573-9/16 $31.00 © 2016 IEEE
DOI 10.1109/WCCCT.2016.23

55

includes both encryption and decryption) which causes customer
impatience and dissatisfaction. Thus, to increase the operational
time in RSA and ECC, addition chain is incorporated in
performing x° mod n of RSA and K[P] of ECC where the

addition chain is generated using PSO (Particle

Swarm Optimization) and Simplified Swarm
Optimization(SSO). Further, if the operational time gets
reduced, the energy required for the same is reduced too
which ultimately increases the life time of battery.

The PSO is a robust, stochastic, population-based meta-heuristic
optimization algorithm that was developed by James Kennedy
and Russell Eberhart in 1995. It is based on the movement and
intelligence of swarms by applying the concept of social
interaction with problem solving. It uses a number of agents
(particles) that constitute a swarm moving around in the search
space looking for the best solution. Each particle is treated as a
point in a N -dimensional space which adjusts its “flying”
according to its own flying experience as well as the flying
experience of other particles. Each particle keeps track of its
coordinates in the solution space which are associated with the
best solution (fitness) that has achieved so far by that particle.

The SSO algorithm is based on the simulation of cooperative
behaviour of social -spiders. In the proposed algorithm,
individuals emulate a group of spiders which interact to each
other based on the biological laws of the cooperative colony.
The algorithm considers two different search agents (spiders):
males and females. Depending on gender, each individual is
conducted by a set of different evolutionary operators which
mimic different cooperative behaviours that are typically
found in the colony and it is compared to other well-known
evolutionary methods. The comparison examines several
standard benchmark functions that are commonly considered
within the literature of evolutionary algorithms. The outcome
shows a high performance of the proposed method for
searching a global optimum with several benchmark
functions.

The rest of the paper is organized as follows. Section 2
describes the various cryptographic algorithms that already
exist in the literature with respect to mobile devices. A brief
explanation of RSA, ECC and addition chain are discussed in
section 3. The proposed addition chain based on PSO and

cps™

Conference Publishing Services

SSO are presented in section 4. Experimental results are
discussed in section 5. Finally, section 6 ends with conclusion.

I1. RELATED WORK

Arbit and Ashwini Kumar [1], suggested Optimized ECC (O-
ECC) to assist more secure and improved protocol design with
easy computation mathematically. In [2],Ahmed Tariqg
Sadig,discussed the Particle Swarm Optimization (PSO). The
benefit of mutation in PSO (MPSO) was used as momentum
and diversity tool in the population. Experimental results
clearly showed that the amount of recovered key of classical
ciphers and fitness function values were better than PSO.

Ahmed A.A.Esmin and Germano Lambert-Torres[3], have
proposed a methodology which was used to determine the
control variable settings for real power loss minimization in
the transmission system employs the PSO algorithm for the
optimal setting of optimal power flow (OPF) based on loss
minimization (LM) function has examined, tested on IEEE 14,
30, 118 Bus systems and the results were compared.

In[4],G.Prakash and Dr.M.Kannan, discussed that the
cryptographic smart cards were used for most of the online
transactions. They designed a secure technique by integrating
both cryptography and steganography which could be used for
smart card security. Initially, user’s confidential details were
encrypted using the most secure ECC technique and then the
encrypted cipher was embedded into the users 'photographic
image using steganography named Optimized Modified
Matrix Encoding (OMME) algorithm.

Cuevas, E. Cienfuegos et al. [5], proposed the swarm
intelligence models with collective behaviour in swarms of
insects or animals called the social spider optimization for
solving optimization tasks. The outcome showed a high
performance for searching a global optimum with several
benchmark functions. In [6], Wilayat Khan et al. discussed the
mobility which was one of the major features of wireless
communication systems and handheld devices form a major
part of the systems. The limited resources like battery,
memory, and computational power of these devices was a
bottle neck in the security of such devices were also discussed.

Rangit j. Bhosale et al. [7], proposed the mobile ad-hoc
networks (MANET) in wireless technology, having features
like dynamic topology and self-configuring ability of nodes.
They surveyed Intrusion detection system (IDS) that was one
of the most active fields of research in MANET. Swapna B.
Sasi and N. Sivanandam[8]analyzed the performance of the
different methods and compared with various parameters such
as maximum number of keys stored, battery capacity, runtime.
They also concluded that high storage and energy was
required for storing the keys.

In[9], Dolly U. Jeswani et al., discussed the cryptographic
algorithms which were the key factor of the security

56

mechanisms used for data storage and uninterrupted network
transmissions. To identify the security risk associated with
AES algorithm, a computational intelligence based approach
for known cryptanalysis was used. A PSO oriented
cryptanalysis technique for breaking the key used in Advance
Encryption Standard (AES) algorithm was also introduced.
The key used in AES was detected effectively with PSO.
Swarm Intelligence based Cryptanalysis provided a best and
optimized solution.

In [10], Chia-Ling Huang and Wei-Chang Yeh, demonstrated
to optimize the reliability redundancy allocation problems
(RRAP) for the series-parallel system, the complex (bridge)
system, and the over speed protection of gas turbine system.
Their objective of the RRAP was to maximize the system
reliability for numerous decades. For that number of
redundant components and the reliability of corresponding
components in each subsystem with nonlinear constraints was
considered simultaneously but it was more difficult for the
RRAP. Hence, the RRAP was the mixed-integer programming
problem with the nonlinear constraints that belongs to the NP-
hard problem. To solve the RRAP, SSO algorithm was
proposed to improve the computation efficiency and found
that it outperforms the previously best-known solutions.

In [11], Ji Weidong and Zhu Songyu discussed and PSO
which was one of the most common algorithms for
optimization because of its simple, convenient and good
robustness. They have proposed a new particle swarm
algorithm as improved cut PSO algorithm based on filtering
mechanism (ELPSO) to improve its operation speed and more
accurate.

In [12], Jin Yang et. al. discussed that the Mobile sinks that
could achieve load -balancing and energy-consumption
balancing across the wireless sensor networks (WSNSs).
However, the frequent change of the paths between source
nodes and the sinks caused by sink mobility introduces
significant overhead in terms of energy and packet delays.
They have presented the enhanced version of the network
performance of WSNs with mobile sinks (MWSNSs), in an
efficient routing strategy using PSO to build the optimal
routing paths. A novel greedy discrete particle swarm
optimization with memory (GMDPSO) was introduced to
improve the greedy forwarding routing, a greedy search
strategy was designed to drive particles to find a better
position quickly, searching history was memorized to
accelerate convergence. Simulation results demonstrated that
the new protocol significantly improved the robustness and
adapted to rapid topological changes with multiple mobile
sinks, while efficiently reducing the communication overhead
and the energy consumption.

I11. CONCEPT OF ECC, RSA AND ADDITION CHAIN

This section includes the definition of EC, point addition on
EC, K[P], working principle of RSA and addition chain.

A. EC Definition Over GF(P):

Let p be a prime gzreater than 3 and a and b be two integers

such that 4a°+27b #0(mod p). EC over the finite field Fp is

the set of points (x, y) € FpxFp satisfying the Weiestrass
equation
E: yZE X +ax+b (1)
together with point at infinity O. The point of infinity is
similar to the number 0 as in normal addition. Thus, for all
points in EC, P + O = P and P+(-P)= 0 [14]. An abelian group
is formed by the point on E with the addition operation. —P=

(x1,-y1) is the inverse of the point P= (x1, y1).

Point Addition on EC

o)

Let P= (x1, y1) Q=(x2, y2) be points in EC, given in affine
coordinates. Assume P, Q # O and P #-Q. The sum R=(x3, y3)
= P+Q is computed as
if PAQ, i.e., point addition,
A= (y2-y1) * (x2-X1) }_
X3= xz-xl-xz, Y3 = (X1-X3)A-y1
The cost required for computing point addition is
(11+3M)
If P=Q, i.e., point doubling,
= (3x12-yl) =21 , } ..(3)
X3= x2-2x1, y3 =\ (X1-X3) -Yy1
The cost required for computing point doubling is (11+4M)

Scalar Point Multiplication

The K[P] is similar to the exponentiation operation in other
public- key cryptosystems like RSA. It is noted that
exponentiation operation normally takes more time than
multiplication and hence the exponentiation operation may be
performed as repeated multiplication. Similarly, in ECC, K[P]
is performed by adding p to itself k times [14]. Thus,, for
integer the computation K[P] is given by

k[P]= (RP+P+... +P , fork>0

k times
0 for k=0 ..(4)
[-K] -P for k<0

It is one of the public-key cryptography based on the algebraic
structure of elliptic curves over finite fields and also it gets
popularity due to its shorter key length. Further it reduces
space for key storage, arithmetic cost, and time during the
transmission of keys.

B. RSA

RSA was proposed by Rivest et.al. The private key of a user
consists of two prime p and g and an exponent (decryption
key) d. The public-key consists of the modulus n = pg, and an

exponent e such that d = e’ mod (p-1) x (g-1). To encrypt a

57

plaintext M the user computes C = M® mod n and decryption
is done by calculating M = ¢ mod n.

C. Addition Chain

An addition chain is a finite sequence of positive integers called
elements, 1= ag <a 1< ay < ...<ar = e with the property that for
all i>0 there exist aj, k with a j=aj+agand r>i >j>k

>0. This is called an addition chain of length r for the target e.
An optimal addition chain is the one which has the shortest
possible length denoted by I(e)and it is a strictly increasing
sequence as duplicate chain elements could be removed to
shorten the chain. It is noted that for the given integer e, more
number of addition chains are possible. But for finding at least
one of the shortest addition chain is an NP-hard problem. For
example, n=170. All possible optimum addition chains are
1-2-3-5-10-20-40-45-85-170 1-2-3-5-10-20-40-80-85-170
1-2-3-5-10-20-40-80-90-170 1-2-3-5-10-20-40-80-160-170
1-2-4-5-10-20-40-45-85-170 1-2-4-5-10-20-40-80-85-170
1-2-4-5-10-20-40-80-90-170 1-2-4-5-10-20-40-80-160170 1-
2-4-6-10-20-40-80-90-170 1-2-4-6-10-20-40-80-160-170

IV. PROPOSED METHODOLOGY

Most of the public-key cryptosystems like RSA, ElGamal,
etc., modular exponentiation is the cornerstone operation
which plays a vital role in performing encryption/decryption
operations. They often involve raising large elements of some
group fields to large powers. Successive multiplication is
normally used to perform modular multiplication but it is a

time-consuming process. For example, to compute x° based on
paper-and pencil method, it requires (e-1) multiplication of x.
ie, xt x* x3 ... x*! x © Similarly, in ECC to perform
encryption/ decryption, scalar point multiplication k[PJmod m,
where P is a elliptic curve point, k is an arbitrary integer in the
range 1< k <ord(p), and m is a modulus plays a vital role. To
reduce the number of multiplications further in public key
cryptography like RSA and number of additions in k[P] of
ECC addition chain is used.

To generate the addition chain for an integer using PSO, the
particle represents the addition chain and N represents the
number of addition chains (particle’s population). Before
finding the optimal addition chain, the addition chain for e is
tentatively taken and its corresponding length I(e) is termed as

pbest. Thus, the it particle represents i " addition chain and it

is represented as Xi=(ai1, a i2,, ain), i=1,2,...,N. It is noted

that for the given integer e,N number of addition chains are
generated and the optimal addition chains are always the
subset of N. Also,pbest (global best particle) represents the
optimal addition chain. The velocity of the particle is the next
number to be selected in the addition chain called intermediate

numbers ajj,where 3<j<I-1, where | is the last number in the
addition chain. This is because in any addition chain the first
number aj1=1; ai2=2 and ain= e. These numbers are generated

either from addition or doubling steps from the previous
numbers occur in the addition chain.

In order to generate the intermediate numbers, the random
numbers randl and rand2are used to select the addition or
doubling steps respectively and they indicate the maximum
range of uniform random number. Suppose the selected
random number is <randl, to generate the next number
addition step is considered otherwise doubling step is
considered. It is noted that more than one numbers are
generated using addition step, to select the next number from
the current number the maximum range specified in randl is
divided into number of numbers generated using addition step.
For example, if the current number is 5, from 5 the numbers 6,
7, 8, 9 are generated using addition step and the range of
random number is selected as rand1/4 . Suppose rand1=0.5,
then the probability of selecting each number is 5/4=.125.
Thus, if the uniform random number U is in the
range0.000<U< 0.125, then the next number selected in the
addition chain is 6 from 5, if0.125<U<0.250, then the next
number selected is 7. Similarly, if 0.250<U<0.375, then 8 is
selected and if 0.375<U<0.5 Once the next number of
addition chain is generated the process is recursively
performed till it reaches e and its I(e) is found called as new
I(e). Then the newl(e) is compared with pbest. If it is <pbest,
now pbest= new I(e). Otherwise, previous value of pbest is
retained. Similarly, for all the numbers obtained from current
numbers, the said process is repeated till the optimal addition
chain and its corresponding length is found. The concept used
in SSO is also used for generating the optimal addition chain
for an integer e.

A. Proposed Methodology- RSA-PSO Based Addition Chain-
An Example

In order to get a proper understanding of the subject matter of
this paper using RSA, let p=13, =17 and e=11, then n=
13(17)=221, (E-l)(q-l):12(16):192. Now d = 133. To
encrypt, C=M tmod 187 and to decrypt M = c**3mod 187.
As e=11, the conventional repeated multiplication requires 10
multiplications. But, if the PSO based addition chain is used,
the addition chain for e=11 is 1-2-3-5-10-11; I(e)=5 which
requires only 5 multiplications. Similarly, for d=133,
conventional process requires 132multiplications whereas it
requires only 10 multiplications if PSO based addition chain is
used because the addition chain for d=133is 1-2-3-5-10-20-
30-50-100-130-133 and I(d)=10.

B. Proposed Methodology- ECC-PSO Based Addition Chain-

An Example

To encrypt the message using ECC, Diffie-Hellman key
exchange protocol is used in this paper. For that let p=211;
and Ep(0, -4) and G=(2,2). A’s private key is nA=121, so A’s
public key is Pa=121(2,2)=(115,48). B’s private key is
ng=203, so B’s public key is Pp= 203(2,2)=(130,203), The
shared secret key is 121(130,203)=203(115,48)=(161, 169). It

is noted that in Pa, k=121. If the conventional repeated
addition chain is used, it requires 120 additions whereas ECC-
PSO based addition chain, it requires only 10 additions
because, the addition chain for k=121 is 1-2-3-5-10-20-40-50-

100-120 -121 and I(k)=10. Similarly, for P g, k=203, which
requires only 10 multiplications because its addition chain is
1-2-3-5-10-20-40 -50 -100-200-203; I(k)=10.which is far less
than202 number of addition if the conventional repeated
addition chain is used.

V. EXPERIMENTAL RESULTS

The proposed methodology is implemented in VC++ with
android emulator for varying file sizes using RSA and ECC.
Table 1 and Table 2 show the encryption/decryption time and
encryption/decryption power using RSA and ECC without
addition chain respectively and also their corresponding
graphical representations of encryption/decryption time and
energy required for encryption and decryption operations are
shown in Fig. 1, Fig. 2, Fig. 3 and Fig. 4 respectively.

Table 1: Operational Time and Power Consumption using
RSA without Addition Chain

FS(in MB) Time (in Ms) Power (in mw)
| E D E D
1 1664 1643 571 570
2 3233 3190 1096 1090
4 6492 6484 2177 2181
8 13672 13666 4569 4569
16 27417 27420 9163 9148

FS- File Size E-Encryption Time D-Decryption Time

Table 2: Operational Time and Power Consumption using
ECC without Addition Chain

Time (in Ms) Power (in mW)
FS(in MB)
E D E D
1 2419 2313 848 77
2 4788 4517 1596 1506
4 9562 9225 3192 3075
8: 20182 19377 6734 6466
16 40434 38939 13504 13000
- e
Gragh: Excrygeion T eS) |

» b

|| 1 |
fig. 1. Encryption Time Using RSA without addition chain

After incorporating PSO addition chain in RSA and ECC, the
time taken for encryption/decryption operation and the power
consumption for the same operations are shown in Table 3
and Table 4 respectively.

Table.3:Operational Time and Power Consumption using
RSA with PSO Addition Chain

FS(in MB) Time (in Ms) Power(in MW)
E D E D
1 1034 1022 361 349
2 2036 2010 679 669
4 4102 4100 1384 1378
8 8654 8619 2902 2888
_ . i) y _ 17326
Fig. 2. Decryption Time Using RSA without addition chain 16 17311 5792 5781

PACERD

D W bate e
Gragt Eacyprton Povwe (M)

Table. 4: Operational Time and Power Consumption using ECC

with PSO Addition Chain

FS(in MB) Time(in mS) Power(mWw)
E D E D
1 1580 1555 541 536
2 3079 3013 1036 1013
4 6148 6143 2052 2050
8 12979 12920 4350 4309
16 25997 25968 8686 8656

al - o [ERRYIO

Table. 5:Operational Time and Power Consumption using RSA
Fig. 3 Encryption Power TimeUsing ECC without addition chain

with SSO Addition Chain

. - -
y e FS(in MB) Time(mS) Power(mw)
= E D E D
1 869 864 294 291
| 2 1696 1680 575 564
4 3420 3416 1144 1147
8 7206 7182 2416 2397
16 14442 14424 4827 4809

After incorporating SSO addition chain in RSA and ECC, the
time taken for encryption/decryption operation and the power
consumption for the same operations are shown in Table 5
and Table 6 respectively.

Fig. 4. Decryption Time Using ECC without addition chain

59

Table. 6:Operational Time and Power Consumption
using ECC with SSO Addition Chain

FS(inMB) Time(mS) Power(mW)
E D E D
1 1291 1291 408 417
2 2560 2515 813 785
4 5119 5118 1593 1604
8 10818 10789 3367 3369
16 21664 21633 6739 6731

From Table 1 and Table 2, it is observed that ECC takes more
time than RSA for both operational and power consumption.
This is because lot of computations like generation of points
on EC, addition of points in performing k[P] are involved in
ECC when it is compared with RSA. It is evident from Table
3 and Table 4 that the time required for operational and power
consumption time is substantially reduced using RSA and
ECC with PSO based addition chain when the same is
compared without addition chain. It is observed from table 5
and table 6, same is also happening in the case of RSA and
ECC with SSO based addition chain. But SSO based addition
chain always takes less time when it is compared with PSO if
they are incorporated in RSA and ECC. This is because in
PSO based addition chain, computations of velocity and
inertia weight take more time than SSO because based on
random number alone the next number in the addition chain is
determined.

VI. CONCLUSION

PSO and SSO based addition chain for the integers are
thought of and they are incorporated in public key
cryptographic algorithms like RSA and ECC which play a
vital role in optimizing the runtime in mobile devices. To
implement the proposed algorithms Android emulator has
been chosen for the experimental setup. The proposed
algorithms significantly reducing the encryption and
decryption time in both RSA and ECC because the said
algorithms minimize the number of multiplications and
additions in exponentiation and k[P] respectively which will
eventually result in minimizing the energy required for both
encryption and decryption.

REFERENCES

[1]. Arbit and Ashwini Kumar, “Optimized Elliptic Curve Cryptography as
Fine Balance for Wireless Sensor Network”, International Journal of
Modeling and Optimization, Vol.1, No. 4, October 2011.

[2]. Ahmed Tariq Sadiq, “Mutation-Based Particle Swarm Optimization
(MPSO) to Attack Classical Cryptography Methods”, Journal of
Computer Science and Technology Research 2 (2012) 50-65, ISSN:2231-
8852, March 2012.

[3]. Ahemed A. A.Esmin and Germano Lambert-Torres, "Application of

Particle Swarm Optimization to optimal power systems", International

60

Journal of Innovative Computing, Information and Control, Vol. 8, No.
3(A), pp. 1705-1716, March 2012.
[4]. G.Prakash and Dr.M.Kannan, “Enhancing Security in Cryptographic in
Smart Cards through Elliptic Curve Cryptography and Optimized
Modified Matrix Encoding Algorithms”, Journal of Theoretical and
Applied Information Technology, Vol. 58, No.3, December 2013.
[5]. Cuevas, E., Cienfuegos, M., Zaldivar, D., Pérez-Cisneros, M. A swarm
optimization algorithm inspired in the behaviour of the social-spider,
Expert Systems with Applications, Vol. 40, No. 16, 2013.

[6]. Wilayat Khan, Habib Ullah and Riaz Hussain, “Energy Efficient Mutual
Authentication Protocol for Handheld devices based on Public Key
Cryptography”, International Journal of Computer Theory and
Engineering, Vol. 5, No. 5, October 2013.

[7]. Rangit j. Bhosale et al, “A Survey on Intrusion detection System for
Mobile Ad-hoc Networks”, (IJCSIT) International Journal of Computer
Science and Information Technologies, Vol. 5, No. 6, 2014.

[8]. Swapna B. Sasi and N. Sivanandam, “A Survey on Cryptography using
Optimization algorithms in WSNs”, Indian Journal of Science and
Technology, Vol. 8. No. 3, February 2015.

[9]. Dolly U. Jeswani and Swati G. Kale, “The Particle Swarm
Optimization Based Linear Cryptanalysis of Advanced Encryption
Standard Algorithm”, International Journal on Recent and Innovation
Trends in Computing and Communication, Vol. 3, April 2015.

[10]. Chia-Ling Huang and Wei-Chang Yeh," Simplified Swarm Optimization
Algorithm for reliability redundancy allocation problems”, IEEE
Computer Society, 2015.

[11]. Ji Weidong and Zhu Songyu, "A Filtering Mechanism Based

Optimization for Particle Swarm", International Journal of u- and e-
Service, Science and Technology Vol.9, No. 1, 2016.

[12]. Jin Yang, Fagui Liu, Jianneng Cao and Liangming Wang, "Discrete
Particle Swarm Optimization Routing Protocol for Wireless Sensor
Networks with Multiple Mobile Sinks", MDPI journals , Sensors 2016.

Enhancing the security in RSA and elliptic
curve cryptography based on addition
chain using simplified Swarm Optimization
and Particle Swarm Optimization for
mobile devices

A. Mullai & K. Mani

International Journal of Information
Technology

An Official Journal of Bharati
Vidyapeeth's Institute of Computer
Applications and Management

ISSN 2511-2104
Volume 13
Number 2

Int. j. inf. tecnol. (2021) 13:551-564
DOI 10.1007/s41870-019-00413-8

@ Springer

Your article is protected by copyright

and all rights are held exclusively by

Bharati Vidyapeeth's Institute of Computer
Applications and Management. This e-offprint
is for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer

Int. j. inf. tecnol. (April 2021) 13(2):551-564
https://doi.org/10.1007/s41870-019-00413-8

Check for
updates

ORIGINAL RESEARCH

Enhancing the security in RSA and elliptic curve cryptography
based on addition chain using simplified Swarm Optimization
and Particle Swarm Optimization for mobile devices

A. Mullai'® - K. Mani>

Received: 15 November 2018/ Accepted: 16 December 2019 /Published online: 7 January 2020
© Bharati Vidyapeeth’s Institute of Computer Applications and Management 2020

Abstract Security is the major concern in mobile or
portable devices because the internet community can do
their work at any time at any place at anywhere. Today
various cryptographic algorithms like RSA, Elliptic Curve
Cryptography (ECC), etc., can be used to protect the
information in mobile devices. But, they have some limi-
tations viz., energy, battery power, processing speed,
operating systems, screen size, resolution, memory size,
etc. Providing security for limited power mobile devices is
a challenging task. RSA and ECC are normally used in
mobile devices. In RSA, both encryption and decryption
are of the form x® mod n and in ECC, the scalar point
k[P] where k is a scalar and P is a point in EC plays a vital
role in performing encryption and decryption. The point
arithmetic involved in ECC is a power starving process. To
speed up the operations in both cryptographic algorithms,
addition chains (AC) are normally used. If the encryption
and decryption time get reduced, it ultimately reduces the
power consumption. There are several AC algorithms exist
in the literature. But, ACs are generated using Particle
Swarm Optimization and Simplified Swarm Optimization
are proposed in this paper and they are used in the said
processes of RSA and ECC with two android and window

< A. Mullai
mullai_a@yahoo.com

K. Mani
nitishmanik @gmail.com

Department of Computer Science, Seethalakshmi
Ramaswami College (Autonomous), Affiliated to
Bharathidasan University, Trichy, Tamil Nadu, India

Department of Computer Science, Nehru Memorial College
(Autonomous), Affiliated to Bharathidasan University,
Puthanampatti, Trichy, Tamil Nadu, India

emulators. The processing time, power consumption taken
for encryption, decryption process and security of the said
algorithms are also analysed.

Keywords RSA - ECC - Addition chain - PSO and SSO

1 Introduction

Mobile devices are primarily battery powered. The power
has to be utilized optimally to improve the mobility and life
time of the mobile node. Data involved in today’s mobile
communications are diverged in sensitivity from insensi-
tive public social media data to highly confidential delicate
private data. Ensuring security in present mobile network is
a critical task because high security protocols have to be
used and the power consumption of the security architec-
ture is to be kept in control. Current security algorithms in
practice are having a general nature in common wherever
security is improved and their power utilization may be
high. Computing and updating of security keys are taking
more power consumption which are directly proportional
to the size of the security keys. Larger size keys provide
higher security and they consume more computational
power as well. There are many famed cryptography pro-
cedures are used for mobile security. RSA [1] and ECC are
used for digital data security in a great extend. RSA is a
procedure of computational simplicity whereas ECC pro-
vides greater security. Large prime numbers are used as
security keys in these methods. At present while comparing
many cryptography methods, ECC [2, 3] provides more
security even with lesser key sizes. In ECC, k[P] [4, 5]
plays a vital role in performing encryption and decryption
process. Similarly in RSA, the encryption and decryption
are of the form x° mod n. Since the exponentiation

@ Springer

http://orcid.org/0000-0002-9825-2358
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-019-00413-8&domain=pdf
https://doi.org/10.1007/s41870-019-00413-8

552

Int. j. inf. tecnol. (April 2021) 13(2):551-564

operation takes more time than any other arithmetic oper-
ations, to minimize the time, exponentiations are per-
formed by repeated multiplication. Similarly, in the case of
k[P] of ECC, the multiplications should be performed by
repeated addition. To reduce the number of multiplications
in RSA and number of additions in k[P] further, ACs are
used. The Kk[P] calculations involved in ECC makes it
perplexed to use in limited power mobile nodes.

AC [6] is a sequence of integers in which each suc-
ceeding element should be the sum of two preceding ele-
ments or the doubled value of a preceding element. In
general, ACs are started with the positive integers 1 and 2
where the third element may be 1 +2 =3 or 2 4+ 2 = 4.
Most of the public-key cryptography procedures operate in
the basis of computing of modular exponentiations.

The construction [7, 8] of each element of an AC is
called a step. For an AC,

l=ay<a;<---< a,=n. (1)
The following steps are involved.
Doubling step:

a; =2a;_1, i> 0. (2)
Non-doubling step:

a=aj+a, i>j>k>0. (3)

The steps of the form a; = 2a ;, j < i —2 are defined as
non-doubling steps.

Big step:

Ma;) = ai-1) + 1. (4)
Small step:

Ma;) = Mai-y). ®)

Finding minimal length ACs helps in diluting the
complexity of modular exponentiations. Minimal length
ACs [9, 10] can be calculated either using brute force
method or some clever algorithm. Brute force method is
not recommended because of its high computational cost.
A few intelligent procedures are in use to calculate mini-
mal length ACs.

There is no defined procedure available to produce
minimal length AC for all numbers. These methods are
consuming different computational powers to calculate
minimal length ACs. A new procedure is presented in this
paper to generate it using Swarm Optimizations [11] like
Particle Swarm Optimization (PSO) [8, 12] and Simplified
Swarm Optimization (SSO) [13]. Generated ACs by both
methods are used in RSA and ECC to measure the standard
crypt-analyse parameters like encryption time, decryption
time, power consumption and security levels. They are
termed as RSA-Particle Swarm Optimization based AC
(RSA-PSOAC), ECC-Particle Swarm Optimization based

@ Springer

AC (ECC-PSOAC) and RSA-Simplified Swarm Opti-
mization based AC (RSA-SSOAC) and ECC-Simplified
Swarm Optimization based AC (ECC-SSOAC). Files with
different sizes are encrypted and decrypted in android and
windows mobile operating environments to measure the
said metric parameters.

The rest of the paper is organized as follows: Sect. 2
describes the concepts involved in RSA, ECC, PSO and
SSO. Existing works are given in Sect. 3. The proposed
methodology for generating AC using PSO and SSO are
discussed in Sect. 4. The experimental set up is shown in
Sect. 5. The results obtained after incorporating AC into
RSA and ECC encryptions in two different OS are dis-
cussed in Sect. 6. Finally, Sect. 7 ends with conclusion
with future extension of this work.

2 Concepts of RSA, ECC, PSO and SSO

This section explains the concepts involved in RSA, ECC,
PSO and SSO.

2.1 RSA

RSA is a public key cryptography and it was proposed by
Rivest et al. [6, 14]. The public-key of a user consists of
two prime p and ¢ and an exponent (encryption key) e. The
private-key consists of the modulus n = pq, and an expo-
nent d such that d = e~ mod (p — 1) (q — 1). To encrypt
a plaintext M, the user computes C = M® mod n and
decryption is done by calculating M = CY mod n. This
asymmetric crypto-procedure is widely used in the digital
age to secure delicate data because of its simplicity.

2.2 ECC

ECC was proposed in 1985 by Neal Koblitz and Victor
Miller [15-17]. It is an alternative to the established
cryptosystems like RSA, ElGamal, Rabin, etc. It guaran-
tees all the security services with the shorter keys. The use
of shorter length implies less space for key storage, less
arithmetic cost and time saving when keys are transmitted.
ECC produces same level of security with 160-bit keys as
other methods security with 1024-bit keys.

2.2.1 Definition (elliptic curve)

Let p be a prime greater than 3 and a and b be two integers
such that 4a® + 27b> # 0 (mod p).

EC over the finite field F, is the set of points (x, y) €
F, x F, satisfying the Weiestrass equation

E:yY=xX4+ax+b (6)

Int. j. inf. tecnol. (April 2021) 13(2):551-564

553

together with point at infinity O. The point of infinity [18]
is similar to the number O as in normal addition.

2.2.2 Point addition and doubling on EC

Let P = (x4, y;) and Q = (X5, y») be two points in EC, given
in affine coordinates. Assume P, Q # 0 and P # — Q.
The sum R = (x3, y3) = P + Q is computed as if P # Q,
i.e., point addition,

A= =)/ —x1), x3=2"—x1 —x2,

_ (7)
y3 = (x1 —x3)4 = y1.
If P = Q, i.e., point doubling,
A= (3x%fy1)/2y1, x3 =A% — 2xq, (8)

y3 = /l(xl —X3).

In ECC, k[P] is performed by adding p to itself k times
[19]. Thus, for integer the computation

k[P]is given by k[P] =P+ P+ ---+ P, fork>0. (9)
—_—

k times

2.3 Particle Swarm Optimization (PSO)

PSO was developed in 1995 by Dr. Eberhart and Dr.
Kennedy based on the social behaviour of flocking birds
and fish schooling [20, 21]. It is initialized with a popu-
lation of multiple random solutions. The results are opti-
mized through iterations towards the best result and it
acquires an optimum solution by tiding generations. While
a group of birds searching for food in an area, their initial
locations are random. The birds do not know the place of
the food initially. But they get closer to the food after a set
of movements that is iterations. The best way to reach food
is following the way of the bird which is nearest to food.
All particles are updated after each iteration based on two
best values. The first best value pBest is achieved by a
particle as yet. Second best value gBest is the best value
achieved by the overall population towards the fitness
function trailed by the particle swarm optimizer [22]. There
are two equations defined to determine the velocity and the
position of the particles.
Velocity equation:

Ve{l, n}:v
=v; +c1 +y1x(pbi — pi) + c2 X y2 X (Gb; — P;),
(10)

where, n is the number of maximum permitted iterations, v
is the velocity of the particle, py, is the pbest (particle best),
p is the present position, G is the gbest (global best), ¢y, c,
is the learning factors.

In general ¢; = ¢, selected from the range of 04 y,, y,:
Random numbers between 0 and 1,

Position Equation: P=P+ V. (11)

The steps involved in PSO algorithm are:

1. Initialize all particles

2. Calculate fitness value for each particle

3. If the calculated fitness value pBest is better than
existing pBest, then update pBest

4. Find the particle with best fitness value gBest from
overall population

5. For all particles, calculate velocity and position based
on the equations and update values

6. Repeat from Step ii until maximum number of
iterations achieved or optimum result achieved.

2.4 Simplified Swarm Optimization (SSO)

SSO was proposed by Wei-Chang Yeh. It is an evolu-
tionary computational swarm based intelligence method
and it is used in many recent research fields because of its
efficiency and flexibility. SSO procedure is commenced
with initial population of particles embedded with a pair or
finite-length encoded string and a fitness value. In this
process, each individual particle refers a solution. An
updating mechanism (UM) [23] is defined to improve the
solutions through iterations. The UM of SSO is declared as,

xX;' o ifp e [0, G
P;l lfp € [Cw7 Cp]

8i if p € [Cp G
x if p € [Cy 1]

T __
X} = (12)

where Xf] refers the position of ith particle with respect to
jth variable of the solution space at tth generation.

pi = (Pi1, P, .. .Pig) (13)

where d refers total number of variables in the problem. P;
is otherwise referred as particle best value. pBest is the best
solution with best fitness value of its own history.

The overall best solution of entire population is repre-
sented as global best value gBest which is referred as g,

g=(81,82,--84) (14)

where g; refers jth variable in gBest, X is a random value
between the lower bound and upper bound of jth variable, p
is a consistent random number between 0 and 1, ¢y, ¢, and
c, are predetermined parameters.

The steps involved in SSO are:

1. Initialize Xy; = P; randomly
2. Let n = Number of maximum solutions
3. Lett=1andi=1,2,...m

@ Springer

Int. j. inf. tecnol. (April 2021) 13(2):551-564

554

4. Calculate F(X(;) and find gBest

5. [Initializei=1

6. Calculate X,; from X,_;; based on UM

7. If F (Xyy) is better than F (P;), then P; _ X,;, else go to

Step ix
If F (Py) is better than F(Pgg,,), then gBest = i
Ifi<nthenleti=1i+ 1 and go to step iv.

o x

SSO differs from PSO by its updating mechanism UM
which is used to maintain population diversity and to
reduce the local optimum lockouts.

3 Related works

The major challenges in mobile computing are low band-
width, high error rate, power restrictions, security, limited
capabilities, disconnection and the problems created due to
the mobility of the user. Applying cryptographic algo-
rithms to the mobile units would not be accessed by the
hackers. The existing works in this area are listed as
follows.

Mavridis I and Pangalos G, discussed the operational
and security issues of mobile components in distributed
environments in wireless networking using the mobile
agents and applied some security mechanism in a health-
care paradigm [24]. Erik Olson and Woojin Yu, surveyed
various symmetric key algorithms and their usage in
mobile computing, and proposed the architecture used in
the processor is similar to 68K processor [25]. Wendy
Chou, surveyed the explosive growth in the usage of
mobile and wireless devices demands a new generation of
public key cryptography (PKC) schemes, their limitations
due to power, bandwidth for providing security in mobile
devices [26].

Limor Elbaz, implemented PKC in security of wireless
devices and the use of Public Key Infrastructure (PKI) in
current and future applications of mobile phones [27].
Dharma P. Agrawal et al., analyzed some security issues,
various threats in the existing countermeasures and con-
cluded that encryption plays an important role for secured
communication in mobile computing environments [28].
Hanping Lufei and Weisong Shi, proposed an adaptive
encryption protocol to choose a proper encryption algo-
rithm dynamically which enhances security and minimizes
the time overhead [29]. Abhishek Kumar Gupta, explained
the field of mobile computing (computing and communi-
cation) dependent on information, it is available only by
accessing a network and discussed that the mobility can
also cause wireless connections to be lost or degraded [30].

S. Krishna Mohan Rao and A. Venugopal Reddy, dis-
cussed the data dissemination which illustrates quickly
access of the data item in mobile devices with minimum

@ Springer

access time so that the mobile clients save the precious
battery power while they are moving from one place to
another [31]. The resource-limited wireless sensor net-
works (WSN) needs reliable and efficient security mecha-
nisms using two block ciphers, namely the RC5 and AES,
the suitability of the algorithm for resource-limited wire-
less network security is analyzed by M. Razvi Doomun,
and K.M.S. Soyjaudah [32].

Kar and Banshidhar Majhi proposed an efficient pass-
word security of multi-party key exchange protocol based
on elliptic curve discrete logarithm problem (ECDLP),
when communicating over a public network to establish a
common secret key called session key and also build pro-
tocol for password authentication model for group mem-
bers to hold an individual password rather than a common
password and two one-way hash functions to build the
security [33].

Mooseeop Kim et al., proposed a compact architecture
for a cryptographic engine on a mobile platform, is highly
effective to implement the scalable RSA and unified SHA
algorithms with a minimum resource usage. The combined
performance results of circuit area, power efficiency,
throughput, and functionality is suitable for mobile com-
puting systems [34]. Bruno P.S. Rocha et al., demonstrated
a security service, which works as a middleware, to
dynamically change the security protocols used between
two peers and provide the solution for performance gain in
the execution of cryptographic primitives [35].

Sathish Alampalayam Kumar, suggested the security
solutions for various types of attacks proposed by various
schemes and the open research issues in providing security
for mobile agent based computing systems [36]. Sameer
Hasan et al., proposed a non-server architecture PKC to
secure the mobile communications and implemented vari-
ous security services needed for mobile communication.
Compared with server based architecture, this has low risk
and the security has been improved. They used NTRU
algorithm for public key cryptography in non-server
architecture [37].

Rahat Afreen and S.C. Mehrotra, discussed the ECC
implementation in hardware as well as software platforms
analysis and Helena Rifa-Pous and Jordi Herrera-Joanco-
marti discussed the performances of different crypto-
graphic algorithms in PDAs and compared in terms of
device cost, operating system, screen, and network inter-
faces to determine the overhead and the results were used
to estimate the costs of network security protocols design
[38, 39].

Jagdish Bhatta and Lok Prakash Pandey, proposed a
software level cryptographic protocol to measure the
energy level through the device’s serial port and their
power consumption which provides better security and
acquires very less consumption of energy than the existing

Int. j. inf. tecnol. (April 2021) 13(2):551-564

555

cryptographic protocols [40]. K. Sathish Kumar et al.,
designed and implemented an energy efficient authentica-
tion protocol that accomplishes a high level security with
minimum energy consumption for mobile devices [41].

Masoud Nosrati et al., proposed an algorithm for secu-
rity mechanism in different types of mobile devices use
some algorithms to scramble data into unreadable text
which can be only decoded or decrypted by those who
possess the associated key and these algorithms consume a
significant amount of computing resources such as CPU
time, memory, battery power and computation time [42].

Ravinder Singh Mann et al., presented the comparative
analysis of ECC, AES and RSA algorithms experimentally
with parameters such as computation time and complexity
of the algorithms. Based on the result, it was concluded that
ECC has more complexity when compared to AES and
RSA in mobile devices [43]. Giripunje et al., provided
effective security solution using PKC and its implementa-
tion in two parts: first, design for API for ECC which
generates shared key for secure communication and sec-
ondly, a web service is created which distributes this key to
validate the mobile user [44].

Ameya Nayak discussed the growing android commu-
nity, its malware attacks, security concerns, aid in serving
as the continuous challenges of identifying current, future
vulnerabilities as well as incorporating security strategies
against them and this focus on mobile devices [45]. Sri-
kanth Pullela discussed the performance issues of handoffs,
routing, etc. Then, he further addressed that security is
another key issue, which needs to be considered when the
communication channel is set up. Most of them are based
on the public and PKC [46].

V. Gayoaso Martinez and L. Hernandez Encinas, have
discussed the ECC, one of the options for protecting sen-
sitive information. The latest version of the JAVA platform
includes a cryptographic provider—SunEC which imple-
ments EC operations and protocols [47]. Muhammad
Waseem Khan explained that short message service (SMS)
is one of the frequently used mobile services with universal
availability in all GSM networks. However, SMS does not
have its own built-in mechanism to secure the transmitted
data because security is not considered as a priority
application for mobile devices and provides room for the
secure SMS message communication [48].

Ram Ratan Ahirwal and Manoj Ahke have explained
two different methods to encrypt and decrypt the message.
They pointed out that the second method supports the
system with more security than the first method because the
sender computes the exponentiation function between the
coordinates of the encryption algorithm and the receiver
computes the inverse of the exponentiation function
between the coordinates of the key in the decryption
algorithm [49].

Sathish Kumar et al., discussed the usage of mobile
hand-held devices that are used in an efficient way to
deliver real time data to the users in the battle field military
applications such as data confidentiality, authentication,
etc., which are not readily offered by mobile environment.
It is necessary to design and implement an energy efficient
authentication protocol that accomplishes a high level of
security with minimum energy consumption and proposed
an energy efficient authentication protocol for mobile
devices [50].

Hamed Khiabani et al., explained the wireless net-
working, mobile and embedded devices, other pervasive
computing technologies to provide security. Security and
privacy are the main concerns in mobile computing [51].
Seema P. Nakhate and R.M. Goudar have implemented a
secured password based mutual authentication protocol for
client-server computing using ECC framework which
provides secure communication with the help of user
email-id and mobile phone authentication device for
mobile handheld device Such devices are mobile phones,
PDA’s, Palmtops and Smart cards [52].

V. Vishnu and R. Shobha discussed the security in
WSN. They have applied dynamic election of Cluster Head
(CH) mechanism and two evolutionary approaches SET-
IBS and SET-IBOOS which provide security in data
transmission and reduce data losses due to nodes failure,
less residual energy selected in CH [29]. Tanmoy Kumar
Bishoi et al., proposed an algorithm to encrypt the data
using symmetric key encryption technique and can be
improved by using variable length key [53].

M. Sujithra et al., has explained that the cryptographic
algorithms are implemented and tested in Local as well as
cloud environment, verified that the mobile data in cloud
increases efficiently and AES algorithm performs better
when compared with other algorithms in mean processing
time but the combination of MD5 + ECC + AES algo-
rithms qualify better than speed-up ratio [54].

Said Bouchkaren and Saiida Lazaar discussed secure
data transmission via Internet and also they have designed
and implemented a cryptosystem due to a number of iter-
ations of encryption and decryption of data in blocks, using
cellular automata and compared them with AES algorithm
and proved that the new algorithm resists against statistical
attacks, faster than AES-256, achieved good confusion and
diffusion tests [55].

4 Proposed methodology
SSO based AC generation procedure is proposed here to
use with RSA and ECC cryptographic algorithms. SSO

based optimized AC is performed in iterative basis. The
AC generation optimization starts with small numbers and

@ Springer

556

Int. j. inf. tecnol. (April 2021) 13(2):551-564

then move on towards the large numbers. Optimization is
one time process so it will not affect the runtime while
generating ACs for a set of numbers. Applying SSO to
generate ACs require the following initializations.

Let s = I(n) (15)
where 1(n) is the smallest length AC for a number n and

log (1) + log, (v(n))
213 <1(n) < logy()(1 + 0(1))/ log,(logs(n) ~ (16)

where v(n) is Hamming weight.
Therefore,

1(2n) < I(n) + 1. (17)

The elements of the minimum length AC are substituted
for particles in SSO as explained in Fig. 1.

The elements of CP are CP;, i = 1, 2,... n. The elements’
search spaces also limited to simplify the optimization
process. The first element CP, value is restricted with the
value 1 because all AC should start with 1. The second
element CP, is restricted to 2 as the doubled value of 1.
The first two elements are not involved in optimization
process at all. The third element CP; can be either 3
(2 4+ 1)or4 (2 + 2). The fourth element CP4canbe 4, 5, 6
or 8. Then, completing all epochs, SSO Optimized particle
(element) values are: CP; = {1}, CP, = {2}, CP; = {3, 4},
Cp,=1{4, 5, 6, 8}, CPs={6, 7, §, 9, 10, 11, 12},
CP¢ = {8,9,10,11,12,13,14,15,1,17,18,19,20,22,24 }

Two possibilities of SSO ACs accomplishment are
shown in Fig. 2. For example, AC for 78, using binary
method is 1 >2-54-58-59-518->19 - 38 -
39 — 78 with In (78) = 9. While running SSO optimiza-
tion, some possible ACs for the value 78 with 1(n) = 8 are:

1235813263978112358132652781123510
13263978112351013265278112367 132639 78I 1
23671326527811236915243978112369 1530

10
11

6 1
4 7 13

[1 | 2 3 5 8 14
4 6 9 15

8 10 16

11 17

12 18

19

20

2

2%

Fig. 1 The chain particles (CP)

@ Springer

39781123691821397811236918363978112369
18 36 42 78lI.

After completing given epochs, SSO generates an opti-
mized particle values in the element positions. The SSO
optimized result particle values are given in Fig. 3. In SSO
the optimization is started from the element CP; = {3,4}
and it continues up to the element CP,,_;. While comparing
SSOAC generation with binary AC generation method,
SSO takes a little more processing time but the target of
minimal length AC is achieved by SSOAC. The minimal
length AC saves more time while calculating exponents in
RSA and k[P] in ECC procedures so compromising a little
more time. The AC for an integer n based on PSO is
generated in this manner using the steps involved in PSO
algorithm.

The flow diagram of the proposed methodology is
shown in Fig. 4. First the emulator which is used for the
choice of the device and then select the RSA/ECC for
cryptographic algorithm. Then, finally select PSO/SSO
with Addition Chain with RSA/ECC. This process can be
repeatedly executed and stop when the final result (opti-
mum solution) has been obtained.

5 Experimental set up

Two different types of mobile emulators are used in this
work to measure the performance of various cryptography
procedures. Widely used android and windows mobile
devices are taken into experiment. To establish android OS
and Windows OS mobile infrastructure [19], T-Engine
Android emulator (A) and Windows Mobile (W) emulator
6.1.4 [56] respectively are used. A user interface (UI) is
designed using Visual C++- to upload files and to measure
emulator performance parameters for both Android and
Windows Emulators. The UI and emulators executions are
carried out in a 2.4 GHz Intel i5 processor-4 GB RAM
computer with Windows 8.1 64-bit OS. Each emulator is
launched individually to load and execute different
encryption algorithms. The sample screenshots of UI,
Android Emulator and Windows Mobile Emulator are
shown in Figs. 5, 6, 7 respectively.

6 Results and discussions

Processing time, power consumption and security levels
are the prime parameters to determine the quality of a
cryptography algorithm. Encryption and decryption time
refers the time taken to convert the plaintext into ciphertext
and vice versa respectively. Both parameters get equal
priority to measure the quality of a cryptography proce-
dure. Lesser encryption and decryption time refers higher

Int. j. inf. tecnol. (April 2021) 13(2):551-564

557

8
9
10
11

6 12
4 7_gm 13 ED26cDHIIEHT8
[[(1 > 2> 3 ¢ scbsc‘qu
4 6 9 15
8 18 16
11 17
12 18

19
20
22
24

Fig. 2 Two different ACs for the integer 78 generated using SSO

47

53

55

57

58

59

61

62

29 | 63

31 67

35 69

37 | 70

38 | 73

39 | 74

19 | 41 75
21 | 42 | 76
22 | 43 77

11 [23 | 44 | 78
13 125] 45 | 81
7 | 14126 | 46 | 82
151271 49 | 83
10 | 17 [28 | 50 | 84
41812]18]30] 51 85
16 | 20 | 33 | 52 | 86
24 |34 | 54 | 88
32 136 | 56 | 90

W
el

[1]2

w
[o)}

40 | 60 | 92
48 | 65 | 97
64 | 66 | 98
68 | 99

72 | 100

80 | 102
96 | 104
128 | 108
112

120

129

130

132

136

144

Fig. 3 SSO optimized result particle values

10
11
12
13 926 H39 H78
14

P

w|oo|~|on

-
==
~
v
w
CICICIES

l’

16
17
18
19
20
22
24

e
SIS
)

quality of the cryptography algorithm. Similarly, power
consumed to encode a plaintext into ciphertext is called
encryption power consumption. Mobile devices are battery
powered devices and they provide greater mobility of the
power is consumed cautiously. A good cryptography
algorithm should be capable of processing with reasonable
power consumption without compromising the security
strength. Powers consumed by different cryptography
methods for different file sizes are measured in android
(A) and windows mobile (W) environment are compared.

Achieving higher security levels with lesser time and
power consumption is the ultimate aim of an ideal cryp-
tography procedure. Different file sizes 1 MB, 2 MB,
4 MB, 8 MB and 16 MB are used in this work to measure
these parameters like encryption time, decryption time,
power consumed for encryption, decryption and security
levels are measured using All Block Cipher (ABC)
Universal Hackman tool for RSA, ECC, RSA-PSOAC,
ECC-PSOAC, RSA-SSOAC and ECC-SSOAC in both
Android and Windows mobile. Measured results are
recorded in tables. Table 1 shows encryption and decryp-
tion time using RSA in two different OS. Table 2 shows
the time taken by their corresponding power consumption
parameters.

Table 3 shows encryption and decryption time using
ECC in two different OS. Table 4 shows the time taken by
their corresponding power consumption parameters.

Table 5 shows the time taken by encryption and
decryption process after incorporating the AC based on
PSO into RSA in two different OS. Table 6 shows time
taken by their corresponding power consumption
parameters.

Similarly, Table 7 shows the time taken by encryption
and decryption process after incorporating the AC based on
PSO into ECC in two different OS. Table 8 shows time
taken by their corresponding power consumption
parameters.

Table 9 shows the time taken by encryption and
decryption process after incorporating the AC based on

@ Springer

558

Int. j. inf. tecnol. (April 2021) 13(2):551-564

Fig. 4 Flow diagram

Choose
PSO/SSO

Android/
Windows
Emulator

Choose
PSO/SSO

SSO with
addition chain

SSO with PSO with
addition chain addition chain

L/\A
> <

Minimal
Addition Chain

Ll

Please Select Emulator 1

Fig. 5 User interface

SSO into RSA in two different OS. Table 10 shows time
taken by their corresponding power consumption
parameters.

Similarly, Table 11 shows the time taken by encryption
and decryption process after incorporating the AC based on
SSO into ECC in two different OS. Table 12 shows time
taken by their corresponding power consumption
parameters.

@ Springer

PSO with
addition chain
| :/\:
No
& R R ~ |
Endatr 1 J
Enatr 2 J
- -
~Andrid ~Widows

Length

Fig. 6 Android emulator

Table 13 shows the security in RSA (Android) Vs RSA
(Windows) and ECC (Android) vs ECC (Windows) and
Table 14 shows the security in RSA-SOAC (Android) vs

Int. j. inf. tecnol. (April 2021) 13(2):551-564

559

- I

Fig. 7 Windows mobile emulator

Table 1 Encryption time,
decryption time (ms) RSA
(A) vs RSA (W)

Table 2 Encryption power,
decryption power (mW) RSA
(A) Vs RSA (W)

Table 3 Encryption time (ms),
decryption time ECC (A) vs
ECC (W)

RSA-PSOAC (Windows) and ECC-PSOAC (Android) Vs
ECC-PSOAC (Windows).

Table 15 shows the security in RSA-SSOAC (A) Vs
RSA-SSOAC (W) & ECC-SSOAC (A) Vs ECC-SSOAC
(W).

Figures 8 and 9 shows the security strength in Android
as well as Windows environment.

As per the observations, ECC provides more security
than RSA in both PSO and SSO combinations. RSA con-
sumes lesser power than ECC in PSO and SSO combina-
tion. When security is concerned the ECC-SSOAC is
recommended.

7 Results analysis

When transmitting any file securely it should be encrypted
first. Based on two different OS’s based emulators, the
experimental results clearly reveal that the time taken for
encryption and decryption, encryption and decryption

FS (MB) RSA (A) ET RSA (W) ET RSA (A) DT RSA (W) DT
1 1656 1628 571 541
2 3230 3180 1081 1073
4 6496 6490 2171 2162
8 13,691 13,657 4565 4554
16 27,434 27,422 9165 9165
Avg 10,501 10,475 3511 3499

FS file size, A Android, W Windows, ET encryption time (in ms), DT decryption time (in ms), Avg average

time (in ms)

FS (MB) RSA (A) EP RSA (W) EP RSA (A) DP RSA (W) DP
1 1658 1643 554 573
2 3218 3207 1081 1083
4 6484 6484 2177 2186
8 13,702 13,659 4577 4554
16 27,447 27,401 9165 9148
Avg 10,502 10,479 3511 3509

EP encryption power (in W), DP decryption power (in W)

FS (MB) ECC (A) ET ECC (W) ET ECC (A) DT ECC [W] DT
1 2447 2292 856 791
2 4768 4541 1629 1512
4 9550 9220 3222 3083
8 20,185 19,413 6770 6485
16 40,420 38,961 13,493 12,997
Ave 15,474 14,885 5194 4974

@ Springer

560

Int. j. inf. tecnol. (April 2021) 13(2):551-564

Table 4 Encryption power,
decryption power (mW) ECC
(A) vs ECC (W)

FS (MB) ECC (A) EP ECC (W) EP ECC (A) DP ECC (W) DP
1 2452 2330 859 788
2 4748 4557 1590 1536
4 9562 9209 3194 3091
8 20,174 19,394 6750 6469
16 40,434 38,939 13,476 12,995
Avg 15,474 14,886 5174 4976

Table 5 Encryption time, decryption time (ms) RSA-PSOAC (A) vs RSA-PSOAC (W)

FS (MB) RSA-PSOAC (A) ET RSA-PSOAC (W) ET RSA-PSOAC (A) DT RSA-PSOAC (W) DT
1 1048 1035 363 352
2 2053 2008 692 673
4 4100 4094 1381 1374
8 8643 8624 2896 2881
16 17,326 17,310 5781 5781
Avg 6634 6614 2223 2212

Table 6 Encryption power,
decryption power (mW) RSA-
PSOAC (A) vs RSA-PSOAC
(W)

FS (MB) RSA-PSOAC (A) EP RSA-PSOAC (W) EP RSA-PSOAC (A) DP

RSA-PSOAC (W) DP

1 1040
2 2040
4 4098
8 8647
16 17,317
Avg 6628

1023
2012
4094
8631
17,308
6614

363
696
1382
2887
5785
2223

354
676
1375
2894
5786
2217

Table 7 Encryption time, decryption time (ms) ECC-PSOAC (A) vs ECC-PSOAC (W)

FS (MB) ECC-PSOAC (A) ET ECC-PSOAC (W) ET ECC-PSOAC (A) DT ECC-PSOAC (W) DT
1 1571 1533 543 525
2 3063 3020 1045 1017
4 6139 6145 2050 2055
8 12,970 12,918 4323 4318
16 26,001 25,970 8694 8681
Avg 9949 9917 3331 3319

power of RSA and ECC using Android OS takes more time
than RSA using Windows OS. And the time taken for
encryption, decryption, encryption power and decryption
power of PSO with addition chain of RSA and ECC using
Android OS takes more time than RSA RSA-PSOAC(W).
Similarly the time taken for encryption, decryption,

@ Springer

encryption power and decryption power of SSO with
addition chain of RSA and ECC using Android OS takes
more time than RSA RSA-SSOAC(W). Generally ECC
taken more time than RSA and it is also proved here that
the ECC(A) takes more time than RSA(A) and also the
ECC-PSOAC(A) takes more time than RSA-PSOAC(A).

Int. j. inf. tecnol. (April 2021) 13(2):551-564

561

Table 8 Encryption power, decryption power (mW) ECC-PSOAC (A) vs ECC-PSOAC (W)

FS (MB) ECC-PSOAC (A) EP ECC-PSOAC (W) EP ECC-PSOAC (A) DP ECC-PSOAC (W) DP
1 1555 1533 532 529
2 3052 3015 1024 1013
4 6156 6150 2066 2064
8 12,949 12,925 4332 4316
16 26,001 25,952 8677 8659
Avg 9943 9915 3326 3316

Table 9 Encryption time, decryption time (ms) RSA-SSOAC (A) vs RSA-SSOAC (W)

FS (MB) RSA-SSOAC (A) ET RSA-SSOAC (W) ET RSA-SSOAC (A) DT RSA-SSOAC (W) DT
1 866 865 302 293
2 1694 1673 573 562
4 3415 3417 1141 1144
8 7211 7185 2418 2398
16 14,436 14,424 4827 4812
Avg 5524 5513 1852 1842

Table 10 Encryption power,
decryption power (mW) RSA-

FS (MB) RSA-SSOAC (A) EP RSA-SSOAC (W) EP RSA-SSOAC (A) DP

RSA-SSOAC (W) DP

SSOAC (A) vs RSA-SSOAC

1 865
W)

2 1698

4 3413

8 7202

16 14,436

Avg 5523

850
1692
3412
7175

14,422
5510

288
5717
1151
2410
4821
1849

293
570
1150
2394
4812
1844

Table 11 Encryption time, decryption time (mS) ECC-SSOAC (A) vs ECC-SSOAC (W)

FS (MB) ECC-SSOAC (A) ET ECC-SSOAC (W) ET ECC-SSOAC (A) DT ECC-SSOAC (W) DT
1299 1302 422 422

2 2542 2520 800 792
5119 5125 1598 1596

8 10,819 10,767 3369 3361

16 21,666 21,627 6743 6734

Avg 8289 8268 2586 2581

And the ECC-SSOAC(A) takes more time than RSA-
SSOAC(A). Hence it is proved that RSA-SSOAC is taking
less time than any of the above method.

8 Conclusion and future extension

PSO and SSO based ACs are thought of incorporated into
RSA and ECC and implemented successfully. Proposed
SSO optimized AC based RSA consumes lower power than

@ Springer

562

Int. j. inf. tecnol. (April 2021) 13(2):551-564

Table 12 Encryption power,

decryption power (mW) ECC- FS (MB) ECC-SSOAC (A) EP

ECC-SSOAC (W) EP ECC-SSOAC (A) DP ECC-SSOAC (W) DP

SSOAC (A) vs ECC-SSOAC

1 1293 1300 414 415
W) 2 2548 2527 803 786

4 5122 5122 1598 1594

8 10,807 10,762 3375 3348

16 216,664 21,643 6745 6742

Avg 8287 8271 2587 2577
Table 13 Security (%) RSA (A) vs RSA (W) and ECC (A) vs ECC (W)
FS (MB) RSA (A) RSA (W) ECC (A) ECC (W)
1 92 93 93 94
2 90 90 91 92
4 88 88 91 91
8 87 87 90 89
16 86 86 88 88
Avg 88.6 88.8 90.6 90.8
Table 14 Securit -
PSOACA) Vs Rsyz(Zb) RSA FS (MB) RSA-PSOAC (A) RSA-PSOAC (W) ECC-PSOAC (A) ECC-PSOAC (W)
PSOAC(W) & ECC- 1 95 93 95 95
PSOAC(A) Vs ECC-
PSOAC(W) 2 92 92 94 93

4 90 91 92 93

8 89 89 91 91

16 89 88 91 91

Avg 91 90.6 92.6 92.6
Table 15 Security (%) RSA-
SSOAC (A) vs Rg A(-S)S OAC FS (MB) RSA-SSOAC (A) RSA-SSOAC (W) ECC-SSOAC (A) ECC-SSOAC (W)
(W) and ECC-SSOAC (A) vs | 93 93 95 97
ECC-SSOAC (W)

2 92 91 94 93

4 91 90 92 92

8 90 89 92 92

16 89 88 91 91

Avg 91 90.2 92.8 93

any other procedures compared. When considering secu-
rity, SSO optimized AC based ECC provides more security
levels. So, it is recommended to use RSA-SSOAC when a
mobile device has limited power source to operate. When
security is concerned ECC-SSOAC provides more security
level of 97%. Experimental results clearly revealed that the
proposed SSOAC optimization with RSA and ECC

@ Springer

cryptography systems can be used either to reduce opera-
tional power or to achieve improved security levels which
are the prime motive of this paper. This work can be
extended by using this concept in mobile cloud computing
due to the serious limitations of memory space, battery
power for energy as well as resource optimization tech-
niques without compromising the security.

Int. j. inf. tecnol. (April 2021) 13(2):551-564

563

Graph: Security Level O e ﬂ

-->

- RSA
ST
-* RSA-PSOAC
ECC-PSOAC
RSA-SSOAC
ECC-SSOAC

-- Security Level (%) --
0
0

<
®
w

65 s 1 Sssd a0 G G 1
<---- File size (MB) ---->

Enc.Time | Dec.‘nme| Enc.Power] Dec.Power |

Seaxity

Fig. 8 Security strength (%) (Android)

Graph: Security Level M@i‘ “

RS

- RSA
2 ECC

RSA-PSOAC
] —=#r— ECC-PSOAC
e ‘= %= RSA-SSOAC
e —®— ECC-SSOAC

<---- Security Level (%)

1 2 e 16
<---- File size (MB) --

>

enc.time | DecTime | EncPower | Decpower | [(S:

oK

Fig. 9 Security strength (%) (Windows Mobile)

References

. Meneses F, Fuertes W, Sancho J, Salvador S, Flores D, Aules H,
Castro F, Torres J, Miranda A, Nuela D (2016) RSA encryption
algorithm optimization to improve performance and security
level of network messages. Int J Comput Sci Netw Secur

. Bos JW, Halderman JA, Heninger N, Moore J, Naehrig M,
Wustrow E (2014) Elliptic curve cryptography in practice.
International conference on financial cryptography and data
security. Springer, New York. https://eprint.iacr.org/2013/734.pdf
. Renes J, Costello C, Batina L (2016) Complete addition formulas
for prime order elliptic curves. In: Annual international confer-
ence on the theory and applications of cryptographic techniques.
Springer, New York. https://eprint.iacr.org/2015/1060.pdf

. Smart NP (2015) Elliptic curves. Cryptography made simple.
Springer, New York

. Katz NM, Mazur B (2016) Arithmetic moduli of elliptic curves.
Annals of Mathematic Studies. Princeton University Press,
Princeton

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Paull T, Steve T (2017) Addition chains: a reSolve lesson. Austr

Sr Math J. https://search.informit.com.au/documentSummary;dn=
062208249066592;res=IELHSS

. LiL, Li S (2017) Fast inversion in GF(2m) with polynomial basis

using optimal addition chains. Circuits and systems (ISCAS).
IEEE. https://ieeexplore.ieee.org/document/8050627/
footnotes#footnotes

. Du KL, Swamy MNS (2016) Particle Swarm Optimization.

Search and optimization by metaheuristics. Springer, New York

. Picek S, Coello CAC, Jakobovic D, Mentens N (2016) Evolu-

tionary algorithms for finding short addition chains: going the
distance. Evolutionary computation in combinatorial optimiza-
tion. Springer, New York. https:/link.springer.com/chapter/10.
1007/978-3-319-30698-8_9

Picek S, Coello CAC, Jakobovic D, Mentens N (2017) Finding
short and implementation-friendly addition chains with evolu-
tionary algorithms. J Heuristics. https://dspace.mit.edu/handle/
1721.1/115968

Mani K, Viswambari M (2017) A new method of generating
optimal addition chain based on graph. Int J Math Sci Comput
MECS

Couceiro M, Ghamisi P (2015) Particle Swarm Optimization.
Fractional Order Darwinian Particle Swarm Optimization.
Springer, New York

Yeh WC, Luo CY, Lai CM, Hsu CT, Chung YY, Lin JS (2016)
Simplified swarm optimization with modular search for the
general multi-level redundancy allocation problem in series-par-
allel systems. Evolutionary computation (CEC). IEEE. https://
www.researchgate.net/publication/311254679

Stallings W (2006) Cryptography and network security principles
and practices, 4th edn. Pearson Education Inc.,

Koblitz N (1994) A course in number theory and cryptography.
Graduate texts in mathematics, 2nd edn. Springer, New York.
https://www.springer.com/gp/book/9780387942933

Koblitz N (1987) Elliptic curve cryptosystems. Mathematics of
Computation, vol 48, no 177. http://pages.cs.wisc.edu/ ~cs812-1/
koblitz87.pdf

Miller V (1986) Use of elliptic curves in cryptography. Advances
in Cryptology—CRYPTO’85, Lecture Notes in Computer Sci-
ence. https://link.springer.com/chapter/10.1007/3-540-39799-X _
31

Koziel B, Azarderakhsh R, Jao D, Mozaffari-Kermani M (2016)
On fast calculation of addition chains for isogeny-based cryp-
tography. Information Security and Cryptology

Acharya S, Shenoy a, Lewis M, Desai N (2016) Analysis and
prediction of application usage in android phones. Advances in
electrical, electronics, information, communication and bio-in-
formatics. IEEE. https://ieeexplore.ieee.org/document/7538346
Pluhacek M, Janostik J, Senkerik R, Zelinka I, Davendra D
(2016) PSO as complex network—capturing the inner dynam-
ics—initial study. In: Proceedings of the Second International
Afro-European Conference for Industrial Advancement. Springer,
New York. https://www.springerprofessional.de/en/pso-as-com
plex-network-capturing-the-inner-dynamics-initial-stud/7383416
Meng XB, Gao XZ, Lu L, Liu Y, Zhang H (2016) A new bio-
inspired optimisation algorithm: bird Swarm Algorithm. J Exp
Theor Artif Intell. https://www.tandfonline.com

Liu Y, Li C, Wu X, Zeng Q, Liu R, Huang T (2016) Particle
Swarm Optimizer with full information. Intelligent computing
theories and application. Springer, New York

Yeh WC, Lin WT, Lai CM, Lee YC, Chung YY, Lin JS (2016)
Application of simplified swarm optimization algorithm in dete-
riorate supply chain network problem. Evolutionary computation
(CEC). IEEE. https://ieeexplore.ieee.org/document/7744127

@ Springer

https://eprint.iacr.org/2013/734.pdf
https://eprint.iacr.org/2015/1060.pdf
https://search.informit.com.au/documentSummary;dn=062208249066592;res=IELHSS
https://search.informit.com.au/documentSummary;dn=062208249066592;res=IELHSS
https://ieeexplore.ieee.org/document/8050627/footnotes#footnotes
https://ieeexplore.ieee.org/document/8050627/footnotes#footnotes
https://link.springer.com/chapter/10.1007/978-3-319-30698-8_9
https://link.springer.com/chapter/10.1007/978-3-319-30698-8_9
https://dspace.mit.edu/handle/1721.1/115968
https://dspace.mit.edu/handle/1721.1/115968
https://www.researchgate.net/publication/311254679
https://www.researchgate.net/publication/311254679
https://www.springer.com/gp/book/9780387942933
http://pages.cs.wisc.edu/~cs812-1/koblitz87.pdf
http://pages.cs.wisc.edu/~cs812-1/koblitz87.pdf
https://link.springer.com/chapter/10.1007/3-540-39799-X_31
https://link.springer.com/chapter/10.1007/3-540-39799-X_31
https://ieeexplore.ieee.org/document/7538346
https://www.springerprofessional.de/en/pso-as-complex-network-capturing-the-inner-dynamics-initial-stud/7383416
https://www.springerprofessional.de/en/pso-as-complex-network-capturing-the-inner-dynamics-initial-stud/7383416
https://www.tandfonline.com
https://ieeexplore.ieee.org/document/7744127

564

Int. j. inf. tecnol. (April 2021) 13(2):551-564

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Mavridis 1., Pangalos G (1997) Security issues in mobile com-
puting paradigm. https://link.springer.com/chapter/10.1007/978-
0-387-35256-5_5

Olson E, Yu W (2000) Encryption for mobile computing

Chou W (2000) Elliptic curve cryptography and its applications
to mobile devices. https://www.semanticscholar.org/paper

Elbaz L (2002) Using public key cryptography in mobile phones.
White Paper, Discretix Technologies Ltd., Advanced security
solutions for constrained environments. https://www.scribd.com/
document/55521438/

Agrawal DP et al (2003) Secure mobile computing. In: Das SR,
Das SK (eds) WDC. Springer, LNCS, New York. https:/link.
springer.com/chapter/10.1007/978-3-540-24604-6_26

Lufei H, Shi W (2006) An adaptive encryption protocol in mobile
computing. Wireless/mobile network security. Springer, New
York

Gupta AK (2008) Challenges of mobile computing. In: Pro-
ceedings of 2nd National Conference on Challenges & Oppor-
tunities in Information Technology RIMT—IET, Mandi
Gobindgarth

Rao SKM, Reddy AV (2009) Data dissemination in mobile
computing environment, vol 1, no 1. BIJIT, Bharati Vidyapeeth’s
Institute of Computer applications and Management (BVICAM),
New Delhi. http://bvicam.ac.in/bjit/downloads/pdf/issue1/10.pdf
Doomun MR, Soyjaudah KMS (2009) Analytical comparison of
cryptographic techniques for resource-constrained wireless
security. Int J Netw Secur 9(1):82-94. http://ijns.jalaxy.com.tw/
contents/ijns-v9-n1/ijns-2009-v9-n1-p82-94.pdf

Kar J, Majhi B (2009) An efficient password security of multi-
party key exchange protocol based on ECDLP. Int J] Comput Sci
Secur 1(5):405-413

Kim M et al (2009) Design of cryptographic hardware architec-
ture for mobile computing. J Inf Process Syst 5(4):187-196
Rocha BPS et al (2010) Adaptive security protocol selection for
mobile computing. J Netw Comput Appl 33:569-587

Kumar SA (2010) Classification and review of security schemes
in mobile computing. Wirel Sens Netw 24:419

Al-Bakri SH, Alam GM et al (2011) Securing peer-to-peer
mobile communications using public key cryptography: new
security strategy. Int J Phys Sci 6(4):930-938

Afreen R, Mehrotra SC (2011) A review on elliptic curve cryp-
tography for embedded systems. Int J Comput Sci Inf Technol
3(3)

Rifa-Pous H, Herrera-Joancomarti J (2011) Computational and
energy costs of cryptographic algorithms on handheld devices.
Future Internet. https://doi.org/10.3390/fi3010031. https://www.
mdpi.com/1999-5903/3/1/31 (ISSN: 1999-5903)

Bhatta J, Pandey LP (2011) Performance evaluation of RSA
variants and elliptic curve cryptography on handheld devices.
IJCSNS Int J Comput Sci Netw Secur 11(11):8

@ Springer

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Kumar KS et al (2012) An experimental study on energy con-
sumption of cryptographic algorithms for mobile hand-held
devices. Int J Comput Appl 40(1):1-7

Nosrati M et al (2012) Mobile and operating systems. Comput
Princ Dev World Appl Progr 2(7)

Mann RS et al (2012) A comparative evaluation of cryptographic
algorithms. Int J Comput Technol Appl 3(5). https://pdfs.seman
ticscholar.org/9d7a/Sbal94b3aafaf55e8db42e699b2a09832a4c.
pdf

Giripunje L, Nimbhorkar S (2013) Comprehensive security sys-
tem for mobile network using elliptic curve cryptography over
GF (p). Int J Adv Res Comput Sci Softw Eng 3(5). https://www.
semanticscholar.org/paper/

Nayak A (2013) Android mobile platform security and malware
survey. IJJRET 2(11). https://www.academia.edu/

Pullela S (2013) Security issues in mobile computing. Int J Res
Eng Technol 2(11). https://pdfs.semanticscholar.org/2035/
f3a467dcc3523¢c6¢2454605¢021aff9a353d.pdf

Martinez G, Encinas LH (2013) Implementing ECC with Java
Standard Edition 7. Int J Comput Sci Artif Intell 3(4):134. http://
www.academicpub.org/ijcsai/paperInfo.aspx ?paperid=14496
Khan MW (2013) SMS security in mobile devices: a survey. Int J
Adv Netw Appl 5(2):1873

Ahirwal RR, Ahke M (2013) Elliptic curve Diffie-Hellman key
exchange algorithm for securing hypertext information on wide
area network. Int J Comput Sci Inf Technol 4(2):363-368
Sathish K et al (2014) An asymmetric authentication protocol for
mobile hand held devices using ECC over point multiplication
method. Int J Adv Res Comput Sci Technol 2:393-399
Khiabani H et al (2014) A review on privacy, security and trust
issues in mobile computing. Collaborative outcome of University
of Malaysia and MIMOS Berhad, Information Security Cluster
Nakhate SP, Goudar RM (2014) Secure authentication protocol.
Int J Comput Netw Commun Secur 2(4)

Vishnu V, Shobha R (2015) Dynamic cluster head (CH) node
election and secure data transaction in CWSNs. Int J Eng Res
4(4). https://www.academia.edu/27582814/

Bishoi TK et al (2015) An algorithm on text based security in
modern cryptography. J Comput Netw Wirel Mobile Commun
5(1)

Sujithra M et al (2015) Mobile data security: a cryptographic
approach by outsourcing mobile data to cloud. Procedia Comput
Sci 47:480-485

(2019) Emulator available at: https://www.microsoft.com/en-us/
download/details.aspx ?id=53424

Bouchkaren S, Lazaar S (2016) A new iterative secret key
cryptosystem based on reversible and irreversible cellular auto-
mata. Int J Netw Secur 18(2):345-353

https://link.springer.com/chapter/10.1007/978-0-387-35256-5_5
https://link.springer.com/chapter/10.1007/978-0-387-35256-5_5
https://www.semanticscholar.org/paper
https://www.scribd.com/document/55521438/
https://www.scribd.com/document/55521438/
https://link.springer.com/chapter/10.1007/978-3-540-24604-6_26
https://link.springer.com/chapter/10.1007/978-3-540-24604-6_26
http://bvicam.ac.in/bjit/downloads/pdf/issue1/10.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v9-n1/ijns-2009-v9-n1-p82-94.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v9-n1/ijns-2009-v9-n1-p82-94.pdf
https://doi.org/10.3390/fi3010031
https://www.mdpi.com/1999-5903/3/1/31
https://www.mdpi.com/1999-5903/3/1/31
https://pdfs.semanticscholar.org/9d7a/5ba194b3aafaf55e8db42e699b2a09832a4c.pdf
https://pdfs.semanticscholar.org/9d7a/5ba194b3aafaf55e8db42e699b2a09832a4c.pdf
https://pdfs.semanticscholar.org/9d7a/5ba194b3aafaf55e8db42e699b2a09832a4c.pdf
https://www.semanticscholar.org/paper/
https://www.semanticscholar.org/paper/
https://www.academia.edu/
https://pdfs.semanticscholar.org/2035/f3a467dcc3523c6c2454605c021aff9a353d.pdf
https://pdfs.semanticscholar.org/2035/f3a467dcc3523c6c2454605c021aff9a353d.pdf
http://www.academicpub.org/ijcsai/paperInfo.aspx?paperid=14496
http://www.academicpub.org/ijcsai/paperInfo.aspx?paperid=14496
https://www.academia.edu/27582814/
https://www.microsoft.com/en-us/download/details.aspx%3fid%3d53424
https://www.microsoft.com/en-us/download/details.aspx%3fid%3d53424

International Journal of Engineering Trends and Technology
ISSN: 2231 — 5381 /d0i:10.14445/22315381/IJETT-V6912P205

Volume 69 Issue 2, 32-38, February 2021
© 2021Seventh Sense Research Group®

Generation of Addition Chain using Bacteria
Foraging Optimization Algorithm

Dr.K.Mani?, A. Mullai?

1Associate Professor in Computer Science, Nehru Memorial College(Autonomous), Puthanampatti, Affiliated to
Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

2Associate Professor in Computer Science, Seethalakshmi Ramaswami College (Autonomous), Affiliated to
Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Initishmanik@gmail.com, 2mullai_a@yahoo.com

Abstract

In many number-theoretic cryptographic algorithms,
encryption and decryption are of the form 17 mod p
where x; 72 and p are integers. When exponentiation
operation is involved in many cryptosystems, it takes
more time than any normal arithmetic operations. The
computation time can be reduced by using repeated
multiplications rather than using exponential operation.
This can also be further reduced by using addition chain.
Modular exponentiation with addition chain is used to
determine the correct sequence of multiplications. There
exist several algorithms in the literature to generate the
optimal addition chain for the given integer. A novel
bacteria foraging optimization algorithm based addition
chain has been proposed and it is verified with the
existing state of art of addition chain algorithms like
genetic algorithm, evolutionary programming etc., in this
paper.

Keywords - Addition Chain, RSA, ECC, PSO, SSO,
BFOA, Optimization.

I. INTRODUCTION

An Addition Chain (AC) can be thought of as a sequence
of integers in which the first number is always 1 and the
last number is always n, where n is an integer for which
ACs are to be generated. For finite fields, operations such
as square roots or inversions, exponentiations can be
performed efficiently by utilizing an optimal AC, the
smallest such AC sequence to reach n. In particular, fast
exponentiation and inversion are paramount to the
performance of scalar point multiplication k[P] wherek is

a scalar and P is a point in elliptic curve (EC) in elliptic
curve cryptography (ECC) [1] [2], pairings in pairing-
based cryptosystems, and computing isogenies in the
guantum-resistant isogeny-based cryptosystems [23]. To
get the next number, there are two steps normally used in
AC. They are addition and doubling steps, i.e., to get the
next number (intermediate number) in AC, any two
previous numbers are added together in addition step,
whereas in the doubling step, the current number is
multiplied by two. To generate the AC for given n, two
types of algorithms are normally used viz., deterministic
and stochastic or bio-inspired.

In deterministic algorithms, since everything is
deterministic and the optimal AC may not be obtained at
all times. The binary method, factor method, window
method, sliding window method, Fibonacci method,
Lucas method, continuous fraction method, etc., are
examples of the deterministic algorithm. Evolutionary
algorithms or bio-inspired are inspired by the idea of
either natural evolution or social behavior of insects or
birds. The optimal ACs produced by evolutionary
algorithms are not obtained by a single run. Many more
runs are needed to obtain optimal AC, which will
eventually take more times. Some examples of
evolutionary algorithms are Genetic Algorithm(GA),
Artificial Immune System(AlS), Ant Colony
Optimization(ACO), Particle Swarm Optimization
(PSO), Simplified Swarm Optimization(SSO), etc.
Generating optimal AC for the given integer is an NP-
hard problem because too many optimal ACs are
generated. For example, different possible optimal ACs
for the number 21 with length i.e., 1(21) = 6 are:

1-2-3-4-7-14-21
1-2-3-5-7 -14-21

1-2-3-5-8-13-21
1-2-3-5 -8-16-21
1-2-3-5-10-11-21
1-2-3-5-10-20-21

1-2-3-6-9-15-21
1-2-3-6-9-18-21
1-2-3-6-12-15-21
1-2-3-6-12-18-21
1-2-4-6-7-14-21
1-2-4-8-16-20-21

1-2-4-5-10-20-21
1-2-4-8-9-12-21
1-2-4-8-9-13-21
1-2-4-8-9-17-21
1-2-4-8-10-11-21
1-2-4-8-10-20-21

1-2-3-6-9-12-21
1-2-4-8-12-13-21
1-2-4-8-12-20-21
1-2-4-8-16-17-21
1-2-3-6-7-14-21

e 1 his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://ijettjournal.org/archive/ijett-v69i2p205
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dr.K.Mani & A. Mullai. / 1JETT, 69(2), 32-38, 2021

This is because 7 can be obtained by adding (7=3+4,7
=2+5,7=1+6), 8 can be obtained by adding (8 =4 +
4,8=3+5)etc.

Bacteria foraging is one of the optimization and
evolutionary algorithms. Kevin M. Passino proposed it in
2000, and it has been widely accepted as a new nature-
inspired optimization algorithm [15]. It is inspired by the
social foraging behavior of Escherichia Coli, i.e., a
bacteria present in the human intestine and has drawn
many researcher's attention. The underlying biology
behind foraging is locomotion. During the foraging of the
real bacteria, locomotion can be performed by a set of the
tensile flagella and optimization process is achieved by
foraging behaviour of bacteria in bacterium seeks to
maximize the energy obtained per unit time spent during
foraging. Suppose the flagella are rotated in the
clockwise direction by the bacterium. In that case, the
flagellum pulls on the cells, which results in independent
movement of flagella, and the bacterium tumbles with
lesser numbers of tumbling. Swimming at a very fast rate
of the bacterium is performed with the flagella moving in
the counter-clockwise direction.

The foraging strategy of E.coli is achieved by four
processes viz., chemotaxis, swarming, reproduction and
dispersal. Chemotaxis is a process which simulates the
movement of E.coli cell through swimming and tumbling
via flagella. Movement of E.coli bacterium can be
performed in two ways viz., (i) swim for some time in the
same direction or tumble (ii) alternate between the swim
and tumble for the entire lifetime. In the swarming
process, a group of E.coli cells arranged themselves in a
traveling ring by moving up the nutrient gradient when
placed amidst a semisolid matrix with a single nutrient
chemo-effecter. The healthy bacteria asexually split into
two bacteria, which are then placed in the same location
while the least healthy bacteria eventually die in the
reproduction process. In the elimination and dispersal
process, gradual or sudden changes in the local
environment, i.e., the significant local rise of temperature
or due to unavoidable events, all the bacteria in a region
are killed, or a group is dispersed into the new location.

In BFOA, generally, the bacteria can be moved for a long
distance in a friendly environment. When sufficient food
they had, their length also increased and will break in the
middle to form a replica of themselves in the presence of
a suitable environment. In swarm intelligence concept,
this chemotactic progress may be eliminated and also a
group of bacteria can move on to some areas or introduce
some others related to the occurrences environmental
changes like the event of elimination- dispersal done in
the real bacterial population (where all the bacteria in a
region are killed or a group will be dispersed into a new
part of the environment).

Il. RELATED WORK

In [3], Hugo Volger presented several results on I(n). In
particular, they determined I(n) for all n satisfying I(n)<3
and proved |logn|+2<i(n) for all n satisfying s(n) > 3,

33

where s(n) is the extended sum of digits of n. In [4],
Y.H. Tsai and Y.H. Chin found some mathematical
properties of the shortest-length AC for certain integers
whose binary patterns meet some special forms; and the
correctness of these properties was proved. In [5],
Bergeron et al. proposed generating the shortest AC
based on the continued fraction. They gave a general
upper bound for the complexity of continued fraction
methods as a chosen strategy function. Thus, the total
number of operations required for the generation of an
AC for all integers up to n was shown to be (n log?nyn),
where yn is the complexity of computing the set of
choices corresponding to the strategy and proved an
analogy of the Scholz-Brauer conjecture.

In [6], F. Bergeron et al. generated a method of fast
addition chains with a small length of positive integer n,
using continued fraction up to 1000 obtained with
optimal length, (with 29 exceptions optimal length plus
one). A new algorithm of optimal ACs described in [8]
and also faster than the best-known methods. It is
applicable for single values and slower than the best-
known methods. This does not require any pre-computed
values and is considered suitable for finding optimal ACs
for point values.

Bounds on sums of ACs and properties of optimal ACs
are discussed in [9]. The study results that the final step in
an optimal AC of an even number always have doubling,
and also the sum of an optimal AC for an odd number nis
asymptotically nearly 5n2. In [10], Noboru Kunihiro and
Hirosuke Yamamoto developed two systematic methods
viz., run-length encoding (RLE) and hybrid for
generating short AC. They proved that the hybrid method
was far better than RLE with a reduced 8% of the AC
length.

In[11], Nareli Cruz-Cortéset al. explored the usage of a
GA approach for the problem of finding optimal
(shortest) ACs for optimal field exponentiation
computations. The GA heuristic presented in this work
was capable of finding almost all the optimal ACs for
any given fixed exponent ewith e< 4096. They found
that our GA strategy's percentage error was within 0.4%
of the optimal for all cases considered. In other words,
for any given fixed exponent e with e< 4096, they found
that strategy was able to find the requested shortest AC in
at least 99.6% of the cases. In [12], N. Cruz- Cortés et al.
proposed an artificial immune system(AIS) to generate
an optimal AC. In that paper, they dealt with the optimal
computation of finite field exponentiation, which is a
well-studied problem with many important applications
in error-correcting codes and cryptography.

In [13], Raveen R. Gounder et al. discussed a new
strategy for doubling-free (SPA-resistant) short addition-
subtraction chain(GRASC) for an arbitrary integer by
using a precise golden ratio. In this, 12% to 28%
reduction was obtained in the average chain length
compared to other doubling-free AC methods. In [14],
Alejandro Le’on-Javier et al. discussed the PSO
algorithm to find short ACs with different exponents.

Dr.K.Mani & A. Mullai. / 1JETT, 69(2), 32-38, 2021

In[16], Mohamed M. Abd. Eldayamet al. proposed an
algorithm for shorter AC based on the window method
with small width using 2’s complement. They proved
that the proposed algorithm was more efficient than the
last result with a 20% minimum. In[17], S Dominguez-
Isidro and E Mezura-Montes et al. proposed an algorithm
using evolutionary programming to find the minimal
length AC and the results obtained were more promising
than the other nature-inspired metaheuristic approaches
but with a lower number of evaluations per run. The
proposed EP algorithm comprised the solution encoding
with suitable fitness function and initial population, a
mutation operator, and the survivor selection mechanism,
and EP does not use other operators such as crossover nor
additional mechanisms like parent selection in GAs.

In [18], a note an addition chain was presented. Niel
Michael Clift [19] proved the perfect matches in the
Scholz—Brauer conjecture 1(2n —1) = 1(n) + n — 1 for new
values. The minimal sequence of minimal multiplications
required for performing modular exponentiation using
Brauer Chains' concept by GA discussed in [20].

In [21], K. Mani proposed division based AC to generate
the optimal ACs for the small exponents, exactly
matched with ACs generated by the latest methods. But,
for some large exponents, there was a very small increase
in chain length (at most three).

In [24], a survey of the AC problem for optimizing the
AC was made and effectively applied to implement a
public-key cryptosystem. Mani K and Viswambari M
[25] implemented a new method for the generation of the
AC using graph G(V,E) where in the G's vertices refer to
the numbers in the AC and edges refer to the move from
one to another number in the AC. They have proposed
two methods viz.,, Graph-Based All Possible AC
(GBAPAC) generated all possible optimum ACs for the
given integer n and Graph-Based Minimal AC
(GBMAC), which generated the minimum number of
optimum ACs by considering mutually exclusive edges
starting from every number and also proved with the
conjectures like Scholz-Brauer.

In [26], P. Anuradha Kameswari and B. Ravitheja derived
a Lucas AC for any integer n to obtain Lucas sequence
Vn(a, 1) and also proved that the computation of Va(a, 1)
using this Lucas AC is based on Viy(a, 1) for x, y, x — y
in the Lucas AC. In [27], Stjepan Picek et al. derived that
the GA approach with an novel encoding using crossover
and mutation operators to minimize the length of the ACs
with respect to a given exponent. Aaron Hutchinson and
Koray Karabina implemented algorithms[28], for
multidimensional differential ACs and applied these chains
to ECC. This algorithm has the unique key features using n
dimension. With key efficiency cum security features like
uniformity, parallelized, and differential addition formulas
were adopted by allowing speed using precomputation cost
and storage requirements.

Dustin Moody and Amadou Tall [29], derived minimal
chains with low Hamming weight using addition-

34

subtraction chains with Lucas addition-subtraction in using
{—(n) the minimal length n, and proved that [£—(2n) —
t—(n)| < 1 for all integers n of Hammingweight <4 to
have arrived a conclusion that minimal addition-
subtraction chains for low Hamming weight integers, with
the consideration of odd integers. In [30], Hazem M. Bahig
and Yasser Kotb implemented a new parallel algorithm to
obtain minimal AC for n. The experimental studies on
multicore systems revealed that this algorithm's run time
worked faster than the sequential one and obtained the
maximum speed up of 2.5 times than the best known
sequential algorithm.

In [31], A. Mullai and K. Mani proposed Particle Swarm
Optimization (PSO) and Simplified Swarm Optimization
(SSO) with ACs in RSA and ECC with two emulators,
android and window. The processing time, power
consumption was taken for encryption, decryption process,
and security of the above was analyzed and also proved
that the SSOAC optimization with RSA to reduce
operational power and SSOAC optimization with ECC for
more security. Narendra Mohan [32], discussed in
Wireless Sensor Networks (WSNs), to enhance the
network lifetime and minimize the energy consumption in
sink nodes contains additional resources like long-range
antenna, powerful batteries, large memory. This should be
achieved using Enhanced Emperor Penguin Optimization
(EEPO) algorithm.

I1l. THEORETICAL BACKGROUND

This section describes some mathematical preliminaries
required for AC.

Definition 3.1 (Addition Chain)

An AC [7] for a positive integer n is a sequence, 1 = ao <
ai< -+ < ar = n such that each member after a is the sum
of two earlier (not necessarily distinct) ones. The number
I(n) is called the length of the AC. It is noted that if the
value of n is relatively small, the exact value of I(n) is
known.

Definition 3.2 (Optimal Addition Chain)

An AC is optimal if its length is the smallest among all
possible ACs. For example, 1-2 -3 —6— 12— 13 isone
of the optimal chains for 13, and with 1(13) =5.

The construction [20] of each element of an AC is called
a step. For an AC, 1 = a0 < a1 < -+ < ar = n, the
following steps are involved. Doubling step: a: = 2a; 4,
i> 0. Non-doubling step: ai = a; + ax, i>j>k > 0. The
steps of the form a: = 2a;, j < i — 2 are defined as non-
doubling steps.

Big step: A (a:) = A (ai1) + 1.
Small step: A (a:) = A (ai-1).

Thus, the length of the AC, I(n) can be split into two
components as I(n) = A(n) +S(n). where S(n) is the
number of small steps in an optimal AC for n.

Dr.K.Mani & A. Mullai. / 1JETT, 69(2), 32-38, 2021

IV. BFOA_AC - PROPOSED METHODOLOGY

In the proposed methodology, the concept of BFOA is
used to generate the optimum length AC for an integer n,
which utilizes the foraging behaviors of bacteria. i.e.,
chemotaxis, swarming, reproduction, and elimination
dispersal [15], are the four principal mechanisms used in
BFOA. In this optimization, a virtual bacterium called
search agent is one trial solution that moves on the
functional surface to find the optimal length AC. The
cost or fitness function is computed with a minimum
length approach based on the nutrient concentration of
the bacterium's immediate environment, searching for
numbers in AC. The swarming step is not considered for
the generation of AC in this method. The following
notations are used in generating the optimal AC in this

paper.

j Index for the chemotactic step

k Index for the reproduction step

i Index for the elimination-dispersal
event

S Total number of the bacterium in the
population

d The dimension of the search space. Here, d
=1

Sw The swarming length

RP. | Number of reproduction steps

ED, | Number of elimination-dispersal events

Pgq | Elimination-dispersal probability

C(i) | The magnitude of the next number in the

random direction specified by the tumble

To generate the AC for any integer n, the first number is
always 1, and the second number is 2, i.e., AC starts with
ao =1 and a; = 2 and last number a- = n. Let (i, k, [) =
{(, k, lli=1,2, ..., S) represents each number in the AC
in the population S at the ;M chemotactic, k"
reproduction, and I elimination-dispersal steps. It is
noted that initially, the length of AC is taken as very
large for the given integer n. Too many ACs are
generated for n, but all ACs generated are not necessarily
optimum. Moreover, the generation of optimal AC is an
NP-hard problem. The prime steps used in BFOA related
to generating the AC are as follows.

A. Search Space

Here, the search space is taken as one
dimension(i.e.,d=1), and also the integer numbers are
involved in generating AC for any n. Since the
difference between intermediate numbers in AC is finite,
the search space is also finite.

35

B. Chemotaxis

The movement of an E.coli cell through swimming and
tumbling via flagella is simulated by the chemotaxis
process. When a bacterium meets a favourable
environment (rich in nutrients and noxious free), it will
continue swimming in the same direction. When it meets
an unfavorable environment, it will tumble, i.e., change
its direction. In BFOA[22], E.coli can swim for a period
of time in the same direction, or it may tumble and
alternate between these two modes of operation for the
entire life time. It is the most important step in
determining the optimal AC for n. For AC generation,
swimming and tumbling represent addition and doubling
step, respectively. The goal is to move to let the
bacterium search for the next number in the AC with
minimal step.

a) Minimum Intermediate Number in AC

It is noted that the number of intermediate numbers
between 2 and n should be minimum and it is obtained by
a minimum number of steps as far as possible so that {(n)
could be minimized by considering all the directions
(previous numbers) from the current bacterium position
(present current number) can be chosen for the next step.
Initially bacterium i is positioned at number 1, Let m=0
i.e., ap = 1. From 1, then it should move to 2. Now, m =
m+1lie,am=2 AC «—1-2;1(AC) =1.From 2, itcan
move to either 3 or 4, Now, m=m + 1

2am71=am+ao, |>]>k20 (1)
AC—AC||am (2
Now,

new_I(AC) = old_I(AC) +1 or I(AC)=m ..(3)

All the intermediate numbers obtained in this step are
added to the minimal set ®mini.e., ®min = {am}. A
random intermediate number < ax is chosen from this set,
and it indicates the direction of movement (i.e., from
which AC starts) of bacteriumi.

A() = rand{ x€Dmin} .(4)

Let, (j, k, 1) represents i bacterium with 1-dimensional
vector represented as, 1,2, ..., Sat j" chromatic, k™
reproductive and I elimination-dispersal step. Let C(i)
be the step size, which is taken as a unity because, from
the current number in the AC, only one next number in
the AC is generated based on previous numbers. Thus,
the movement of the bacterium may be represented in the
chemotaxis process as

A(D)

G+LK) = 6'G.0) + O fomag

..(5)

Where A indicates a vector in the random direction
whose elements are [1, x].
The movement of the bacterium is explained with tree
diagram as shown in fig. 1.

Dr.K.Mani & A. Mullai. / 1JETT, 69(2), 32-38, 2021

a=aytay =2

a3ty

LN N Ay gy B0ty

Fig.1: The Movement of Bacterium

C. Reproduction and Dispersal Step

Local search is provided by chemotaxis step, and the
speed of convergence is achieved through the
reproduction process. The bacteria which vyields the
maximal length of AC for n is called the least healthy
bacteria, and it never produces the optimal length AC,
which eventually dies. Each of the healthiest bacteria
(vields minimum length AC) is asexually split into two
bacteria, placed randomly. The dispersion process
happens after a certain number of reproduction process.
Depending on the probability, some bacteria were chosen
to be killed or move to another position within the
environment.

V. BFOA_AC - AN EXAMPLE

In order to understand the relevance of the work, let, n =
14,i=1, m=0, an = ao = 1 and initially bacteria b1 is
positioned at ap. With the chemotaxis step, it moves to 2.
Now, m=m+ 1, i.e, a1 =2and I(a1) = 1. From az, b1
moves to either 3 or 4 because az = a1+ ap=2+1=30r
az = 2a; = 4. Now, m = 2. Thus, ®min={3,4}. Let the
intermediate number in AC randomly selected from ®umin,
i.e.,, A(1) = 3, Thus, the movement of by is from 3, i.e.,
a,=3 and the corresponding AC up to this stageis 1 —2 —
3 and l(a,) = 2. From az, b1 moves to either 4 or 5 or 6
because az =2a; =6 or a3 =a+ap =3+1=4 or
as =az+a1=3+2=5Now, m=3. Thus, ® ={4,5,6}.

Let 5 is selected randomly from the set ®min. Thus, A(1)
= 5. The movement of by is from 5, i.e, as = b.
Correspondingly, AC up to this stageis1 —2—3 —5 and
I(as) = 3. From as, bymoves to either 6 or 7 or 8 or 10
because as =2az=100r as =az+ap =5+1=6 or as
T+t wm=5+2=7orau=az+a=5+3=8 Now, m
= 4. Thus, Omin = {6,7,8,10}. Let 7 is selected randomly
from the set ®min. Thus, A(1) =7. The movement of by is
from 7, i.e., as =7. Correspondingly, AC up to this stage
is 1-2-3-5—7and l(as) = 4. From a4, by moves to
either 8 or 9 or 10 or 12 or 14 because as = as + ap =7 +
l1=8oras=ast+ai=-7t2=90ras=as+ ax=7+3=10
oras=as+as=7+5=12 or as = 2(as) =2(7) = 14.
Now, m =5, Thus, ®mn = {8,9,10,12,14}. Let 14 is
selected randomly from the set ®min. Thus, A(1) = 14.
The process is terminated because it reaches n = 17.
Correspondingly, AC up to this stage is

1-2-3-5-7—14and I(as) = 5.

Suppose, other numbers from ®min are selected, even
though it reaches 14 in the subsequent stages, 1(14) is
increased, and the corresponding bacteria will eventually
die. Repeat the said process for other numbers, and the
other ACs for 14 with I*(14) are given below.

1-2-3-4-7-14 1-2-45-7-14 [1-2-4-6-8-14

1-2-35-7-14 12-45-9-14 [1-2-4-6-10-14
1-2-3-6-7-14 1-2-45-10-14 [1-2-4-6-12-14
1-2-3-6-8-14 1-2-46-7-14 [1-2-4-8-10-14
1-2-3-6-12-14 1-2-4-8-12-14

VI. IMPLEMENTATION

The proposed methodology is implemented in VC++ and
AC for the numbers up to 1024 are generated. It is shown
in table 1. In table 1, I(r) indicates the sum of all optimal
addition chains up tor. Table 1 exhibits the total | (up to
1024).

TABLE 1 TOTAL LENGTH OF OPTIMAL ADDITION CHAIN UPTO 1024

r 001- 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001-
100 200 300 400 500 600 700 800 900 1000 1024
I(r) 663 918 1011 1071 1121 1148 1183 1205 1230 1262 307
Total 4784 6028 307
Grand Total:11119

36

Dr.K.Mani & A. Mullai. / 1JETT, 69(2), 32-38, 2021

Table 2 reveals AC generated for some hard exponents
by BFOA where the hard exponent is the one for which
AC is not easily found. Table 3 compares the optimal AC
up to integers 1024 produced by the existing algorithms
and the proposed BFOA.

TABLE 2 AC FOR HARD EXPONENTS BY BFOA

Exponents
®

2000 1-2-3-6-7-14-15-30-31-62-124—
125 — 250 — 500 — 1000 — 2000.

Optimal length (E)

2048 1-2-4-8-16-32-64—-128 —256 —512 -
1024 - 2048.

4096 1-2-4-8-16-32-64—-128—-256—-512—
1024 — 2048 - 4096.

65131 1-2-3-5-7-11-19-29-47-71-127 -
191 — 379 — 607 — 1087 — 1903 — 3583 — 6271 —

11231 - 18287 — 34303 - 65131.

196591 1-2-3-5-7-11-19-29-47-71-127-191 -
379 - 607 - 1087 - 1903 - 3583 - 6271 - 11231 -

18287 - 34303 - 65131 - 110591 — 196591.

1176431 -7-11-19-29-47-71-127-191 - 379 - 607 -
1087 - 1903 - 3583 - 6271 - 11231 - 18287 -
34303 - 65131 - 110591 - 196591 - 357887 -

685951 — 1176431.

2211837 1-2-3-6-9-15-30-60-120-126-252 -
504 - 1008 - 2016 - 4032 - 8062 - 16128 - 16143
- 32286 - 64572 - 129144 - 258288 - 516576 -
1033152 - 2066304 - 2195448 - 2211591 -

2211717 —2211837.

4169527 1-2-3-5-7-11-19-29-47-71-127-191 -
379 - 607 - 1087 - 1903 - 3583 - 6271 - 11231 -
18287 - 34303 - 65131 - 110591 - 196591 -

357887 - 685951 - 1176431 - 2211837 — 4169527.

14143037 1-2-3-5-7-11-19-29-47-71-127-191 -
379 - 607 - 1087 - 1903 - 3583 - 6271 - 11231 -
18287 - 34303 - 65131 - 110591 - 196591 -
357887 - 685951 - 1176431 - 2211837 - 4169527 -

7624319 — 14143037.

From table 3, it is observed that the total length of optimal
AC produced by BFOA with integers up to 1024 is 11119.
They are almost the same as the optimal addition chains
and their length produced by EP.

TABLE 3 COMPARISON OF AC UPTO
INTEGERS 1024(PRODUCED BY EXISTING
ALGORITHMS AND THE PROPOSED BFOA)

R Opt. AIS GA EP BFOA

[1,512] 4924 | 4924(+) 4924 | 4924 4924

[1,1000] 10808 10813(+) 10813 10808 10812

[1.1024] | 11115 | 11120(+) - 11115 | 11119

VII. CONCLUSION

BFOA based AC has been thought of and it is
implemented successfully. In this paper, ACs produced by
some integers are proved both theoretically and
experimentally. From the experimental results, up to
integers 1024, the proposed BFOA algorithm produces the
same optimal length AC which is almost equal to other
existing evolutionary algorithms like AIS, GA, and EP.
Further, the optimal length of AC for some hard exponents
are the same as other existing evolutionary algorithms.
This paper also provides an idea about the generation of
AC based on BFOA. In future, this concept may be
incorporated into public-key algorithms like RSA and
ECC to reduce the encryption and decryption time because
the said algorithms are used in maobile devices.

REFERENCES

[1] N Koblitz, Elliptic Curve Cryptosystems, Mathematics of
Computation, 48(1982) 203-209.

[21 | Blake, G Seroussi and NP Smart, Elliptic Curves in
Cryptography, Ser. London Math. Soc. Lecture Note Series,
Cambridge Univ. Press,1999.

[3] Hugo Volger, Some Results on Addition/Subtraction Chains,
Information Processing Letter, Elsevier, 1985.

[4] Y H TsaiandY H Chin, “A Study of Some Addition Chain
Problems”, International Journal of Computer Mathematics, 22(02)
(1987) 117-134.

[5] R Begeron, J Berstel, S Brlek, and C Duboc, Addition Chains
Using Continued Fractions, Journal of Algorithms, Elsevier,
10(1989) 403-412.

[6] Bergeron, JBerstel and S Brlek, Efficient Computation Of Addition
Chains”, Journalde Théorie des Nombresde Bordeaux, 6(1)(1994)
21-38.

[71 Donald E Knuth, The Art of Computer Programming,
Seminumerical ~ Algorithms, 2(3), Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA,1997.

[8] Gordon DM, A Survey of Fast Exponentiation Methods, Journal of
Algorithms, 27(1998).

[9] H Zantema, Minimizing Sums of Addition Chains, Journal of
Algorithms, Elsevier, 12(2) (1999) 281-307.

[10] Noboru Kunihiro and Hirosuke Yamamoto, New Methods for
Generation of Short Addition Chains, IEICE Transactions
Fundamental, 83(1)(2000).

[11] Nareli Cruz-Cortés, Francisco Rodriguez-Henriquez, RaulJuarez-
Morales and Carlos A Coello- Coello, Finding Optimal Addition
Chains Using a Genetic Algorithm Approach, Springer- Verlag,
(2005) 208-215.

[12] N Cruz-Cortes, F Rodriguez-Henriquez, and C A Coello-Coello,
An Artificial Immune System Heuristic for Generating Short
Addition Chains, IEEE Transactions on Evolutionary Computation,
6(2005) 252-280.

[13] Raveen R Goundar, Ken-ichiShiota, M Toyonaga,New Strategy for
Doubling - Free Short Addition-Subtraction Chain,
Mathematics,2008.

[14] AlejandroLe on-Javier,NareliCruz-Cort’es,MarcoAMoreno-
Armend’ariz,andSandraOrantes- Jim’enez, Finding Minimal
Addition Chains with a Particle Swarm Optimization Algorithm,
Advances in Artificial Intelligence, Springer, (2009) 680-691.

[15] Swagatam Das, ArijitBiswas, Sambarta Dasgupta, and Ajith
Abraham, “Bacterial = Foraging Optimization Algorithm:
Theoretical Foundations, Analysis, and Applications”, Foundations
of Computational Intelligence, Springerlink.com, Springer-Verlag
Berlin Heidelberg, 3SCI 203(2009) 23-55.

[16] Mohamed M Abd-Eldayem, EhabT Alnfrawy, and AlyA Fahmya,
Addition-Subtraction Chain for 160-bit Integers by using 2’s
Complex N Cruz-Cortés, F Rodriguez-Henriquez,and C A Coello-
Coello, Addition Chain Length Minimization With Evolutionary
Programming, Proceedings of Genetic and Evolutionary
Computation Conference (GECCO) ACM digital Library, (2011).

https://www.tandfonline.com/author/Tsai%2C%2BYH
https://www.tandfonline.com/author/Chin%2C%2BYH
https://www.semanticscholar.org/author/Raveen-R.-Goundar/2696467
https://www.semanticscholar.org/author/Ken-ichi-Shiota/52410699
https://www.semanticscholar.org/author/M.-Toyonaga/145629889

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Dr.K.Mani & A. Mullai. / 1JETT, 69(2), 32-38, 2021

S Dominguez-Isidro and E Mezura-Montes, An Evolutionary
Programming Algorithm to Find
Minimal AdditionChains,|CongresolnternacionaldelngenieriaElectr
oOnica,Instrumentacion y Computacion, de Juniodel, Minatitlan
Veracruz, México,2011.

Maurice Mignotte, A Note on Addition Chains, International
Journal of Algebra, 5(6)(2011).

Neill Michael Clift, Calculating Optimal Addition Chains”, Journal
of Computing, Springer, 91 (2011) 265-284.

Arturo Rodriguez-Cristerna and Jose Torres-Jimenez, A Genetic
Algorithm for the Problem of Minimal Brauer Chains for Large
Exponents, Soft Computing Applications in Optimization, Control,
and Recognition, Springer, (2013) 27-5.

K. Mani, Generation of Addition Chain using Deterministic
Division Based Method, International Journal of Computer Science
& Engineering Technology, 4(05) (2013) 553- 560.

Om PrakashVerma, Rashmi Jain, and Vindhya Chhabra, Solution of
Travelling Salesman Problem Using Bacteria Foraging
Optimization Algorithm, International Journal of Swarm
Intelligence, Inderscience publisher, 1(2) (2014).

BrianKoziel, Reza Azarderakhsh, David Jaocand Mehran Mozaari-
Kermani, On Fast Calculation of Addition Chains for Isogeny -
Based Cryptography, Inscrypt 2016, IACR Cryptology, 2016.
Adamu Muhammad Noma, Abdullah Muhammed, Mohamad
Afendee Mohamed, and Zuriati Ahmad Zulkarnain. A Review on
Heuristics for Addition Chain Problem: Towards Efficient Public-
Key Cryptosystem, Journal of Computer Science, 13(2017) 275-
289.

38

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

K Mani, M Viswambari, A New Method of Generating Optimal
Addition Chain Based on Graph, International Journal of
Mathematical Sciences and Computing, 2(2017) 37-54.

P Anuradha Kameswari and B Ravitheja, Addition Chain For Lucas
Sequences With Fast Computation Method, International Journal of
Applied Engineering Research, 13(11) (2018) 9413-9419.

Stjepan Picek, Carlos A CoelloCoello, Domagoj Jakobovic and
Nele Mentens, Finding Short And Implementation - Friendly
Addition Chains With Evolutionary Algorithms, Journal of
Heuristics, 24 (2018) 457-481.

Aaron Hutchinson and Koray Karabina, Constructing
Multidimensional Differential Addition Chains and Their
Applications, Springer, Journal of Cryptographic Engineering,
9(2019) 1- 19.

Dustin Moody and Amadou Tall, On Addition-Subtraction Chains
of Numbers With Low Hamming Weight”, Number Theory
Mathematics, 25(2019) 155-168.

Hazem M. Bahigr and Yasser Kotb, An Efficient Multicore
Algorithm for Minimal Length Addition Chains, Computers,
MDBI, 8(2019).

A Mullai and K Mani, Enhancing The Security In RSA and Elliptic
Curve Cryptography Based on Addition Chain Using Simplified
Swarm Optimization and Particle Swarm Optimization For Mobile
Devices, International Journal of Information Technology,
Springer, (2020).

Narendra Mohan Lifetime Enhancement of Sensor Nodes Based
On Optimized Sink Node Placement Approach, International
Journal of Engineering Trends and Technology 68.10(2020):10-23.

https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/journal/13389
https://sciprofiles.com/profile/author/SkpycjFPL2Mxd1BTdTdDcTd5Qldmc2ozZ2NYZkg3WW5QQ0d4b1owdHozbz0%3D
https://sciprofiles.com/profile/587237

APPENDIX - A.3
SAMPLE CODING

/I ACC.h: interface for the ACC class.
//Advanced C 8.1 [15052015]
i

#if
Idefined(AFX_ACC_H__FCCA8395_1892_4D17 AC1A 31C3FB2135A2_ INCLU
DED)

#define
AFX_ACC H_ FCCAB8395 1892 4D17 ACI1A _ 31C3FB2135A2 INCLUDED

#if _MSC_VER > 1000
#pragma once

#endif / _MSC_VER > 1000

IIHASH

#define DEF 0x00
#define SHA32 0x01
#define SHA64 0x02
#define SHA128 0x03

#define KHA 0x04

class AFX_EXT_CLASS ACC

{
public:
void es(char s[1000],char t[2000],char x[10],int I);

void GetProcessMessage(char me[200]);

char gps[100];

void BrowseAllFiles(char _fname[1000]);

void BrowseAllFolders(char _fold[1000]);

void BulkCopy(char _src[1000],char _des[1000]);

void FindBrowser(char _bname[1000]);

void FindAssociatedApplication(char _fn[1000],char _app[1000]);
bool fbc(char _ofn[1000],char _nfn[1000]);

void WaitDelete(char _fn[1000]);

long TimeDifference(SYSTEMTIME _t1,SYSTEMTIME _t2);
void ClosePrinterDC();

void StopPrinter();

bool StartPrinter();

bool SetPrinterDC(void);

CDC PrinterDC;

CDC *gwdc;

void ShowComboBox(CComboBox & _ccbh);

void HideComboBox(CComboBox &_cch);

void HideEditBox(CEdit & ce);

void ShowEditBox(CEdit & ce);

void DisableEditBox(CEdit & ce);

void EnableEditBox(CEdit & _ce);

bool IsFilePresent(char _fn[1000]);

void SetFileToPath(char _fn[1000],char _path[1000],char _res[1000]);
bool CreateDumpFile(char _fn[1000],char _msg[1000]);

void RunAsApplication();

void RunAsService();

bool IsRunning(char _classname[50],char _windowname[150]);

CWnd* GetApplication(char _classname[50],char _windowname[150]);

void RGBtoColors(COLORREF _rgb,unsigned char & r,unsigned char
& g,unsigned char & b);

UINT CreateGraph();

bool bc(char _ofn[1000],char _nfn[1000]);
void Play(char _fn[1000],unsigned char _mode=0);
void PlayTime();

UINT CreateBluetooth();

UINT CreateDynamicHandle();

UINT CreateESP();

char RegisterInf(char fn[1000],char uid[50]);
void SetCalendar(CStatic & cs);

void InitClock();

bool 11,12 release;

void StopClock();

void SetClock(CStatic & cs,char _m);

void SetClock(CStatic & cs);

void EnableButton(CButton & cb);

void DisableButton(CButton & cb);

void ShowButton(CButton & _cb);

void HideButton(CButton & cb);

void ShowsStatic(CStatic & cs);

void HideStatic(CStatic & _cs);

void GetTimeString(char _s[15],bool _h12);
void GetTimeString(char _s[15]);

void GetDateString(char _s[15]);

bool GetFileSize(char fn[1000], unsigned long long &fsize);

bool CHash(unsigned char pro, char fname[1000], char hash[100]);
SYSTEMTIME st;

char s[500];

ACC(HWND _hw);

void Show();

void Hide();

void SetHandle(HWND _hw);

ACC();

virtual ~ACC();

private:
DOCINFO gpdi;
char gem[200];
bool acr;
HWND hw;
public:
void SetGWDC(CDC* wdc);
HICON LoadApplconRes(UINT ICONRES);
bool ExePro(char file[1000]);

bool ExeProEx(char file[1000], char arg1[1000], char arg2[1000]);

#endif //
Idefined(AFX_ACC_H__FCCAB8395 1892 4D17_ACI1A 31C3FB2135A2_ INCLU
DED)

/I BCCC.h: interface for the BCCC class.

/I REV: AAZGAZBD

I REV: ZFZFAZBI
T

/I This header file has methods for the following technologies
Il Cryptography

// Data Security

/[Data Compression

/I Network Security

I/ Cloud Security

// Cloud offloading

/l Mobile Cloud Offloading
// Data Integrity

// Grid Computing

/I Parallel Processing

Il Processor Scheduling

// Data Mining

// Big Data Analysis

/I Optimizations

#if
Idefined(AFX_BCCC_H__8B355BA0_920B_4999 83F1 7C8AB544DA29 INCL
UDED)

#define
AFX BCCC_H_ 8B355BA0 920B 4999 83F1 7C8AB544DA29 INCLUDED

#if _MSC_VER > 1000
#pragma once

#endif // _MSC_VER > 1000

/[Cryptographic Procedures

#define RAC 0x00
#define ECC 0x01
#define ELG 0x02

#define NAF 0x03

//Random Access Cryptography

: Hardaware Version

/[Elliptic Curve Cryptography
//[ElGamal

/INon Adjacent Form

#define WNAF 0x04 //Windowed NAF

#define DSA 0x05

#define SHA 0x06

/[Digital Signature Algorithm

//Secure Hash Algorithm

#define QCRY 0x07 //Quantum Cryptography : Hardware Version

#define RC4 0x08
#define RC5 0x09
#define RSA 0x0A
#define BCC 0x0B

#define AES_DFA 0x0C
Analysis

#define DES_DFA 0x0D
#define SRAC Ox0E

#define GSRAC 0x0F
Version

#define ECC_DH 0x10
#define GELG 0x11
#define GNAF 0x12
#define GWNAF 0x13
#define GDSA 0x14
#define GSHA 0x15
#define GECDHM 0x16

#define KNAPS 0x17

/IRivest Cipher 4
/IRivest Cipher 5
/IRivest Shamir Adleman

/[Block Cipher Cryptography : PCH version

/IAdvanced Encryption Standard Differential Fault

/[Data Endryption Standard Differential Fault Analysis
/I[Random Access Cryptography : Software Version

//Genetic Random Access Cryptography : Software

/[ECC with Diffie Hellman
/IGenetic EIGamal
//Genetic NAF
//Genetic WNAF
//Genetic DSA
//Genetic SHA
/IGenetic ECC_DH

/IKnapsack inherited Cryptography

#define MECC_DH 0x18

/IMontgomery ECC_DH

#define MMECC_DH 0x19 //Modified Montgomery ECC_DH

#define AES 0x1A

/IAES standalone

#define EDSSUMRT 0x1B // Loaded from PCH

#define ECC_AC

0x1C // ECC Addition Chain

#define ECC_ANNAC 0x1D // ECC ANN Addition Chain

#define EVOTSCH 0x1E

#define ECCRCV 0x1F

/IVoting Scheme

/ICCRCV

#define ETHCM 0x20//Legacy

#define ECC_EAC 0x21
#define DES 0x22 [/
#define PPTDES 0x23

#define PPTDDES 0x24
Distance

#define BWTELG 0x25
#define EBWTELG 0x26
#define MRRSA 0x27
#define MRELG 0x28//
#define BWTRSA 0x29
#define EBWTRSA 0x2A
#define ECC_1AC 0x2B
#define HIL 0x2C
#define MHIL Ox2D
#define UDES 0x2E
#define URDES 0x2F
#define BFISH 0x30

#define AROMON 0x31

/ ECC Enhanced Addition chain
Data Encryption Standard
1 Primitive pythagorean Triples DES

1 PPTDDES PPT Different Rotating Hamming

1 Burrows Wheeler Transform ElGamal
1 Enhanced Burrows Wheeler Transform ElGamal
/I Magic Rectangle RSA

Magic Rectangle EI-Gamal

// Burrows Wheeler Transform RSA

I/l Enhanced Burrows Wheeler Transform RSA
/[ECC 1's Complement Addition Chain

/[Hill Cipher

/I Modified Hill Cipher

/' U-Matrix DES

/' U-Matrix Random Key DES

// Blow Fish

/I User defined Legacy

#define SKM 0x32 I/l User defined Legacy

#define ECSRZ 0x33 // EIGamal Encryption using Elliptic Curve Spiral Clockwise
Rotation and Zigzak Encryption Model

#define PPTRSA 0x34 /I Primitive pythagorean Triples RSA
#define CLC 0x35 //Configurable Lattice Cryptography

#define CPEL 0x36 //Cantor Pair before EIGamal

#define RPEL 0x37 //Rosenberg Pair before EIGamal

#define EPEL 0x38 //Elegant Pair before EIGamal

#define ELCP 0x39 //EIGamal Cantor Pair

#define ELRP Ox3A //EIGamal Rosenberg Pair

#define ELEP 0x3B //EIGamal Elegant Pair

#define MRSA_2K 0x3C //Modified RSA-based algorithm A double secure
approach 2 Key

#define MRSA_3K 0x3D //Modified RSA-based algorithm A double secure
approach 3 Key

/[Compression

#define NONE 0x00 //None

#define ZIP 0x01 11Zip

#define ZIP7 0x02 //7-Zip

#define RAR 0x03 //Real Archieve

#define HUFLAG 0x04 /[Huffman Lagrange's
#define HUFFIB 0x05 /[Huffman Fibbonacci
#define HUFLUC 0x06 /[Huffman Lucas
#define HUFCOL 0x07 /[Huffman Collective
#define RLE 0x08 //Run Length Encode

#define OPTRLE 0x09 //Orthogonal Polynomial Transform RLE

/[Digital Signature Algorithms

#define DS_DEFA 0x00 /[Default Hash Signature

#define DS_RSA 0x01 /IRivest Shamir Adleman
#define DS_ELG 0x02 //[ElGamal
#define DS_DSA 0x03 /[Digital Signature Algorithm

#define DS_ECDSA 0x04 //Elliptic Curve Digital Signature Algorithm

#define DS_GOST 0x05 /IGOST R 34.10 - 2012

#define DS_SSA 0x06 //Schnorr Signature Algorithm
#define DS_RDS 0x07 /IRapid Digital Signature
#define DS_GMR 0x08 /IGoldwasser Micali Rivest
#define DS_RCS 0x09 /IRobin Crypto System

#define DS_EDDSA 0x0A //Edwards-curve Digital Signature Algorithm
#define DS_ESIGN 0x0B //Electronic Signature Algorithm

#define DS_MECDSA 0x0C //Modified Elliptic Curve Digital Signature Algorithm

/IVariables
#define DEF 0x00 //Default
#define FSI 0x01 /IFile Size

#define KSI 0x02 /IKey Size

//Optimizations

#define ACO 0x01 //Ant Colony Optimization
#define PSO 0x02 //Particle Swarm Optimization
#define SSO 0x03 //Simplified Swarm Optimization
#define TTSO 0x04 //Track Trade Spend Optimization
#define GNO Ox05 //Genetic Numeric Optimization

#define NACO 0x06 //Nodal Ant Colony Optimization

#define BFO 0x07 //Bacterial Forage Optimization

#define ADC 0x08 //Addition Chain

//Processor Architecture

#define HASWELL 0x01

#define S_BRIDGE 0x02 //Sandy Bridge
#define |_BRIDGE 0x03 /llvy Bridge
#define T_BRIDGE 0x04 //Intel T-Bridge
#define X_BRIDGE 0x05 //Intel X-Bridge

#define Q_BRIDGE 0x06 //QualComm Multicore

//Processor Scheduling

#define GANG_FILL 0x01 //Gang-Fill

#define BACK_FILL 0x02 //Back-Fill

#define EEFF_FILL 0x03 //Energy Efficient Fill

#define MAXP_FILL 0x04 //Maximum Performance Fill

/[File Types
#define UNKN 0x00
#define TEXTF 0x01

#define BINARY 0x02

// Data Mining

#define DDM 0x00 //DDM
#define APRI 0x01 //Apriori
#define FPTR 0x02 //FP-Tree

#define FPGR 0x03 //FP-Growth

APPENDIX - A4
SAMPLE REPORTS

This Report is Generated by REAC App on 14-06-2021 at 12:32:52

Parameter: Encryption Time (mS) [Android]

Data Size

(MB) RSA ECC AC-RSA AC-ECC
1 1660 2447 1227 1820
2 3237 4790 2377 3555
4 6494 9553 4788 7173
8 13689 20179 10077 15130

16 27426 40415 20199 30326

Parameter: Decryption Time (mS) [Android]

Data Size

(MB) RSA ECC AC-RSA AC-ECC
1 1616 2330 1205 1789
2 3193 4519 2352 3519
4 6490 9209 4776 7171
8 13645 19375 10066 15082

16 27399 38936 20193 30294

Parameter: Encryption Power (mW) [Android]

Data Size

(MB) RSA ECC AC-RSA AC-ECC
1 554 817 421 613
2 1102 1621 806 1197
4 2171 3208 1612 2410
8 4569 6731 3364 5042

16 9156 13510 6735 10134

Parameter: Decryption Power (mW) [Android]

Data Size

(MB) RSA ECC AC-RSA AC-ECC
1 562 815 411 602
2 1081 1506 802 1178
4 2175 3072 1608 2417
8 4548 6463 3357 5035

16 9148 12995 6743 10109

Parameter: Security (%) [Android]

Data Size AC- AC-
(MB) RSA ECC RSA ECC
1 89 93 92 94
2 88 89 89 92
4 87 88 88 90
8 85 88 87 90
16 85 86 87 89
Parameter: Encryption Time (mS) [Windows]
Data Size AC- AC-
(MB) RSA ECC RSA ECC
1 1654 2441 1204 1728
2 3233 4748 2378 3362
4 6490 9559 4775 6753
2017
8 13670 4 10082 14252
4044
16 27432 3 20214 28603
Parameter: Decryption Time (mS) [Windows]
Data Size AC- AC-
(MB) RSA ECC RSA ECC
1 1616 2322 1205 1708
2 3184 4530 2366 3336
4 6496 9212 4778 6755
1939
8 13657 6 10050 14240
3895
16 27401 8 20210 28571
Parameter: Encryption Power (mW) [Windows]
Data Size AC- AC-
(MB) RSA ECC RSA ECC
1 571 840 421 592
2 1100 1582 796 1146
4 2179 3228 1604 2263
8 4577 6750 3361 4765
1349
16 9165 6 6738 9559
Parameter: Decryption Power (mW) [Windows]
Data Size AC- AC-
(MB) RSA ECC RSA ECC
541 785 415 584
1086 1536 805 1140

o AN R

2192 3088 1604 2275
4579 6496 3368 4761

1299
16 9133 7 6742 9529

Parameter: Security (%) [Windows]

Data Size AC- AC-
(MB) RSA ECC RSA ECC
1 91 92 92 94
2 88 89 89 92
4 86 89 88 91
8 86 88 88 89
16 85 87 87 89

Parameter: Encryption Time (mS) [Android]

Data Size AC- AC- PSO-
(MB) RSA ECC RSA ECC AC-RSA
1 1660 2447 1227 1820 1041
2 3237 4790 2377 3555 2048
4 6494 9553 4788 7173 4099
2017
8 13689 9 10077 15130 8644
4041
16 27426 5 20199 30326 17322
Parameter: Decryption Time (mS) [Android]
Data Size AC- AC- PSO-
(MB) RSA ECC RSA ECC AC-RSA
1 1616 2330 1205 1789 1041
2 3193 4519 2352 3519 2011
4 6490 9209 4776 7171 4102
1937
8 13645 5 10066 15082 8623
3893
16 27399 6 20193 30294 17301
Parameter: Encryption Power (mW) [Android]
Data Size AC- AC- PSO-
(MB) RSA ECC RSA ECC AC-RSA
1 554 817 421 613 357
2 1102 1621 806 1197 682
4 2171 3208 1612 2410 1372
8 4569 6731 3364 5042 2893
1351
16 9156 0 6735 10134 5788

Parameter: Decryption Power (mW) [Android]

PSO-AC-ECC
1578
3069
6150

12954

25981

PSO-AC-ECC
1544
3040
6156

12925

25954

PSO-AC-ECC
552
1042
2073
4325

8670

Data Size AC- AC- PSO-
(MB) RSA ECC RSA ECC AC-RSA
1 562 815 411 602 354
2 1081 1506 802 1178 673
4 2175 3072 1608 2417 1375
8 4548 6463 3357 5035 2874
1299
16 9148 5 6743 10109 5772
Parameter: Security (%) [Android]
Data Size AC- AC- PSO-
(MB) RSA ECC RSA ECC AC-RSA
1 89 93 92 94 94
2 88 89 89 92 91
4 87 88 88 90 90
8 85 88 87 90 89
16 85 86 87 89 88
Parameter: Encryption Time (mS) [Windows]
Data Size AC- AC- PSO-
(MB) RSA ECC RSA ECC AC-RSA
1 1654 2441 1204 1728 1046
2 3233 4748 2378 3362 2050
4 6490 9559 4775 6753 4096
2017
8 13670 4 10082 14252 8652
4044
16 27432 3 20214 28603 17318
Parameter: Decryption Time (mS) [Windows]
Data Size AC- AC- PSO-
(MB) RSA ECC RSA ECC AC-RSA
1 1616 2322 1205 1708 1027
2 3184 4530 2366 3336 2026
4 6496 9212 4778 6755 4099
1939
8 13657 6 10050 14240 8616
3895
16 27401 8 20210 28571 17310
Parameter: Encryption Power (mW) [Windows]
Data Size AC- AC- PSO-
(MB) RSA ECC RSA ECC AC-RSA
1 571 840 421 592 348
2 1100 1582 796 1146 699
4 2179 3228 1604 2263 1381
8 4577 6750 3361 4765 2893

PSO-AC-ECC
534
1038
2066
4330

8674

PSO-AC-ECC
94
93
91
90
90

PSO-AC-ECC
1520
2984
6008

12693

25402

PSO-AC-ECC
1517
2967
6017

12647

25388

PSO-AC-ECC
513
1003
2029
4246

1349

16 9165 6 6738 9559 5775 8483
Parameter: Decryption Power (mW) [Windows]
Data Size AC- AC- PSO-
(MB) RSA ECC RSA ECC AC-RSA PSO-AC-ECC
1 541 785 415 584 350 510
2 1086 1536 805 1140 693 1010
4 2192 3088 1604 2275 1368 2008
8 4579 6496 3368 4761 2877 4220
16 9133 12997 6742 9529 5778 8472
Parameter: Security (%) [Windows]
Data Size PSO-
(MB) RSA ECC AC-RSA AC-ECC AC-RSA PSO-AC-ECC
1 91 92 92 94 92 96
2 88 89 89 92 91 92
4 86 89 88 91 90 91
8 86 88 88 89 89 91
16 85 87 87 89 87 90
Parameter: Encryption Time (mS) [Android]
SSO-
Data Size PSO- PSO- AC-
(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC RSA
1 1660 2447 1227 1820 1041 1578 1015
2 3237 4790 2377 3555 2048 3069 2001
4 6494 9553 4788 7173 4099 6150 3997
8 13689 20179 10077 15130 8644 12954 8424
16 27426 40415 20199 30326 17322 25981 16899
Parameter: Decryption Time (mS) [Android]
SSO-
Data Size PSO- PSO- AC-
(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC RSA
1 1616 2330 1205 1789 1041 1544 1014
2 3193 4519 2352 3519 2011 3040 1974
4 6490 9209 4776 7171 4102 6156 4000
8 13645 19375 10066 15082 8623 12925 8406
16 27399 38936 20193 30294 17301 25954 16877
Parameter: Encryption Power (mW) [Android]
Data Size PSO- PSO- SSO-
(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC AC-

SSO-AC-ECC

1305

2547

5122
10813
21666

SSO-AC-ECC

1282

2533

5125
10785
21646

SSO-AC-ECC

1 554 817 421 613 357 552
2 1102 1621 806 1197 682 1042
4 2171 3208 1612 2410 1372 2073
8 4569 6731 3364 5042 2893 4325
16 9156 13510 6735 10134 5788 8670

Parameter: Decryption Power (mW) [Android]

Data Size PSO- PSO-

(mMB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 562 815 411 602 354 534
2 1081 1506 802 1178 673 1038
4 2175 3072 1608 2417 1375 2066
8 4548 6463 3357 5035 2874 4330
16 9148 12995 6743 10109 5772 8674

Parameter: Security (%) [Android]

Data Size PSO- PSO-

(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 89 93 92 94 94 94
2 88 89 89 92 91 93
4 87 88 88 90 90 91
8 85 88 87 90 89 90
16 85 86 87 89 88 90

Parameter: Encryption Time (mS) [Windows]

Data Size PSO- PSO-

(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 1654 2441 1204 1728 1046 1520
2 3233 4748 2378 3362 2050 2984
4 6490 9559 4775 6753 4096 6008
8 13670 20174 10082 14252 8652 12693
16 27432 40443 20214 28603 17318 25402

Parameter: Decryption Time (mS) [Windows]

Data Size PSO- PSO-

(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 1616 2322 1205 1708 1027 1517
2 3184 4530 2366 3336 2026 2967
4 6496 9212 4778 6755 4099 6017
8 13657 19396 10050 14240 8616 12647
16 27401 38958 20210 28571 17310 25388

RSA

341
673
1337
2820
5633

SSO-
AC-
RSA

339
669
1344
2815
5634

SSO-

RSA
92
91
90
89
88

SSO-
AC-
RSA

1009
1991
3995
8427
16893

SSO-
AC-
RSA

995
1967
3990
8409

16887

424
792
1598
3374
6752

SSO-AC-ECC
399
799
1600
3361
6739

SSO-AC-ECC
95
92
92
90
89

SSO-AC-ECC
1299
2550
5119

10819

21646

SSO-AC-ECC
1290
2515
5127

10779

21643

Parameter: Encryption Power (mW) [Windows]

Data Size PSO- PSO-

(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 571 840 421 592 348 513
2 1100 1582 796 1146 699 1003
4 2179 3228 1604 2263 1381 2029
8 4577 6750 3361 4765 2893 4246
16 9165 13496 6738 9559 5775 8483

Parameter: Decryption Power (mW) [Windows]

Data Size PSO- PSO-

(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 541 785 415 584 350 510
2 1086 1536 805 1140 693 1010
4 2192 3088 1604 2275 1368 2008
8 4579 6496 3368 4761 2877 4220
16 9133 12997 6742 9529 5778 8472

Parameter: Security (%) [Windows]

Data Size PSO- PSO-

(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 91 92 92 94 92 96
2 88 89 89 92 91 92
4 86 89 88 91 90 91
8 86 88 88 89 89 91
16 85 87 87 89 87 90

Parameter: Encryption Time (mS) [Android]

Data Size PSO- PSO-

(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 1660 2447 1227 1820 1041 1578
2 3237 4790 2377 3555 2048 3069
4 6494 9553 4788 7173 4099 6150
8 13689 20179 10077 15130 8644 12954
16 27426 40415 20199 30326 17322 25981

Parameter: Decryption Time (mS) [Android]

Data Size RSA ECC AC-RSA AC-ECC PSO- PSO-

SSO-
AC-
RSA

345
669
1341
2824
5646

SSO-
AC-
RSA

342
655
1344
2819
5641

SSO-
AC-
RSA

93
92
90
89
89

SSO-
AC-
RSA

1015
2001
3997

8424

16899

SSO-

SSO-AC-ECC
406
812
1597
3374
6739
SSO-AC-ECC
420
784
1608
3360
6739
SSO-AC-ECC
94
93
91
91
89
SSO- BFO-
AC- AC-
ECC RSA
1305 996
2547 1944
5122 3895
10813 8214
1646
21666 9
SSO- BFO-

BFO-
AC-ECC

1219
2412

4849
1024

2050

BFO-

(MB) AC-RSA AC-ECC

1 1616 2330 1205 1789 1041 1544
3193 4519 2352 3519 2011 3040

4 6490 9209 4776 7171 4102 6156
8 13645 19375 10066 15082 8623 12925
16 27399 38936 20193 30294 17301 25954

Parameter: Encryption Power (mW) [Android]

Data Size PSO- PSO-

(mMB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 554 817 421 613 357 552
2 1102 1621 806 1197 682 1042
4 2171 3208 1612 2410 1372 2073
8 4569 6731 3364 5042 2893 4325
16 9156 13510 6735 10134 5788 8670

Parameter: Decryption Power (mW) [Android]

Data Size PSO- PSO-

(mMB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 562 815 411 602 354 534
2 1081 1506 802 1178 673 1038
4 2175 3072 1608 2417 1375 2066
8 4548 6463 3357 5035 2874 4330
16 9148 12995 6743 10109 5772 8674

Parameter: Security (%) [Android]

Data Size PSO- PSO-

(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 89 93 92 94 94 94
2 88 89 89 92 91 93
4 87 88 88 90 90 91
8 85 88 87 90 89 90
16 85 86 87 89 88 90

Parameter: Encryption Time (mS) [Windows]

Data Size PSO- PSO-

(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 1654 2441 1204 1728 1046 1520
2 3233 4748 2378 3362 2050 2984
4 6490 9559 4775 6753 4096 6008

AC-

RSA
1014
1974
4000

8406

16877

SSO-
AC-
RSA

341
673
1337
2820
5633

SSO-

RSA
339
669

1344
2815
5634

SSO-
AC-
RSA

92
91
90
89
88

SSO-
AC-
RSA

1009
1991
3995

AC-

ECC
1282
2533
5125

10785

21646

SSO-
AC-
ECC

424
792
1598
3374
6752

SSO-

ECC
399
799

1600
3361
6739

SSO-
AC-
ECC

95
92
92
90
89

SSO-
AC-
ECC

1299
2550
5119

AC-

RSA
972
1911
3897

8185
1645

BFO-
AC-
RSA

341
664

1303

2739

5494

BFO-

RSA
334
649

1299

2741

5494

BFO-
AC-
RSA

94
91
90
90
89

BFO-
AC-
RSA

986

1935

3888

AC-ECC

1224
2398

4850
1020

2047

BFO-
AC-ECC

388
776
1566
3283
6557

BFO-
AC-ECC

397
783
1561
3259
6544

BFO-
AC-ECC

96
94
92
91
91

BFO-
AC-ECC
1235
2431
4846

8 13670 20174 10082 14252 8652 12693
16 27432 40443 20214 28603 17318 25402
Parameter: Decryption Time (mS) [Windows]
Data Size PSO- PSO-
(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 1616 2322 1205 1708 1027 1517
2 3184 4530 2366 3336 2026 2967
4 6496 9212 4778 6755 4099 6017
8 13657 19396 10050 14240 8616 12647
16 27401 38958 20210 28571 17310 25388
Parameter: Encryption Power (mW) [Windows]
Data Size PSO- PSO-
(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 571 840 421 592 348 513
2 1100 1582 796 1146 699 1003
4 2179 3228 1604 2263 1381 2029
8 4577 6750 3361 4765 2893 4246
16 9165 13496 6738 9559 5775 8483
Parameter: Decryption Power (mW) [Windows]
Data Size PSO- PSO-
(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 541 785 415 584 350 510
2 1086 1536 805 1140 693 1010
4 2192 3088 1604 2275 1368 2008
8 4579 6496 3368 4761 2877 4220
16 9133 12997 6742 9529 5778 8472
Data Size PSO- PSO-
(MB) RSA ECC AC-RSA AC-ECC AC-RSA AC-ECC
1 91 92 92 94 92 96
2 88 89 89 92 91 92
4 86 89 88 91 90 91
8 86 88 88 89 89 91
16 85 87 87 89 87 90

end of report

8427

16893

SSO-
AC-
RSA

995
1967
3990

8409

16887

SSO-
AC-
RSA

345
669
1341
2824
5646

SSO-

RSA
342
655

1344
2819
5641

SSO-
AC-
RSA

93
92
90
89
89

10819

21646

SSO-
AC-
ECC

1290
2515
5127

10779

21643

SSO-
AC-
ECC

406
812
1597
3374
6739

SSO-

ECC
420
784

1608
3360
6739

SSO-
AC-
ECC

94
93
91
91
89

8209
1645
1

BFO-
AC-
RSA

988

1914

3896

8187
1645

BFO-
AC-
RSA

337
662

1303

2745

5494

BFO-

RSA
332
641

1312

2741

5491

BFO-
AC-
RSA

95
91
91
89
88

1022

2048

BFO-
AC-ECC

1226
2384

4846
1019

2047
4

BFO-
AC-ECC
410
779
1549
3270
6541

BFO-
AC-ECC
410
765
1558
3253
6540

BFO-
AC-ECC

96
94
92
91
91

APPENDIX - A.5
SAMPLE SCREENSHOTS

- Propeties [

10D_ECCACSSO_DIALOG (Diskog) € »

+ 9 X ECCACSSOuc- I0D_d Stte]-Disog & X

ECCACSSO

Hot Key

List Control

Rich Edit 20 Control

IP Address Contro

Btended Combo Box

1

A @EER 0>+ 0

Center Mk

L= MEC ShellTee Contro

ENG 18:06
Us 10-02-2021

[RR T
v ix & 00_..d States)] - Diskog Sater) - Dik ECCACSSODIgcpp

AECCACSSO

DIALOG (Englsh (United Sta

% AVG Internet Security

@ Application communication request

Application: ECCACSSO Advanced C App
£ Publisher: 1000

9@ Save my decision and use i every tme | usethe application.

Allow the application
The application can communicate to the Iternet and can receive 6a1a from the
applications or when you need to access the

Block the application
Any conectic rbidden. Recommended for
unknown applications or there i o need 10 access the Internet,

recation, use

, © failed, O up-to-date, @

pi (ol |

ENG 18:07
Us 10-02-2021

A5

3 -
Resource View - ECCACSSO ECCACSSODigcpp Properti
- 2 CECCACSODlg OnTiens(UINT_PTR nDEven) ECCAGSSO Prject Propesties
e 5 4 Genenl
B M
(Name)

Project Depend

100%

output from:

g W6 1ee
W s 1000201

BULD DEBUG TEAM TOOLS TEST ANAUZE WINOOW HELP
4 Windows Debugger = Auto Release « Wink2 (]
ix K 0...d Sutes] - D dSttes) - Disog

- CECCACSSODlg

x ACSSODIgapp + DGRAR
AECCACSS

OnBaClickedBlaul)

See online help for

O\VC\include\stdio.n(211)
or variable say be unsafe

12.0\VC\include\staio.n(211)

18:08
10-02-2021

ECCACSSODigapp & X X

OnBeCicked8lan

There are no usable contros in

o False
TypeString void

ENG 1812
Us 10-02-2021

]

ECCACSSODigh

AndEmy

Fie nome [
Flescitpe: [Moble Emters
O s oy

ENG 18:08
Us 10-02-2021

Citemp

» ThishC »

5 o Homegroop

B ThisPC
& Desktop
Documents
& i Downloads
9 & Pictores
8 Videos
Mindowsd, 03 (C)
¥ s LINOVO (D)

etmork

2items (Dsk free space: 100 G8)

ECCACSSO

Emdator 1: [ClierpWedrls_em.exe
Emdota 2: [G2 W WindEm ene
Report: [Cliorp Repart ot

sedrod

Analyzing PSO Addition Chain ECC...Please Wait....

Piture Too

Vindows?

AndEmy

feportat

LR

0lg.pp.

Enudoer 1: [Cienp\Rndirup_oms.exe

ECCACSSO

Enudater 2 [ChempindEm Ve exe
Report: [CempRepart ot
Aodrod

el

Lo |
_o= |

Reprt Created Successtully

(]

ENG 18:09
Us 10-02-2021

1810
10-02-2021

5 Report: Gencrated cr B5-81-2017 Ot 36:10:3
Enulation Type: [ERERIEN
Procedure: #34

2 Dee. Time(ns) Enc.pouer(md)
1043 ss
00
Bst
st
it

Bec. Time(ns)
0

5 File:

rocedire: 550 X
E

- na of regert

Enc.powtr(m)

15

265
5

:1

securdty(x

sewwrty(y
5

3t

»
H

seurity(y
3

I

securdty (¥
3

securtty(x)
i

D, Time(e5) nc.Potr(sd)
s s

ey

3 100_ECCACSS0.0ALOG fEngsh (Uniked S

ne hel

100,

Emator 1: [CliempWedEruls_emul.exe
Emdatee 2: [C:emo WodEmy indEms eve

Repart: [Ciorp Repert bt

deprecation, us

ENG

There are no usable controls
thes group. Drag an tem onto

&N

10-02-2021

10-02-2021

vax
OnBeCicked8la

VCCodefunction +

OnBoCickedBlau
CAtemp

» ThaPC » Windowss, 051C) » temp

5 o Homegoup

& ThisPC
e Desktop
Documents

Downloads

5 Pictures
8 Videos

-l Windows8, 05 (C)

& s LENOVO (D)

& Network

Sitems 1 ftem selected 445KB

Type: Tet Document, e 445 KB, Dte moddied: 05-01-2017 1639

(18

Graptx Decryption Time (L5

WndEmy

0 RSA

=@ ECC

¥ RSA-PSOAC
ECC-PSOAC

- %= RSA-SSOAC

R ECC-SS0AC

- Decryption Time (nS)

e Compur

ENG 18n

10-02-2021

ECCACSSOuc-

Emlate i

(Englsh (United S
Bt 2

Regert;

ebugger - Auto

100...d State]] - Diskog & X

Sample edtbox

Sample edtbox

Somple edtbox

A

Tt Bar

Center Mous

S elTree Control

eaie N

TR

ENG
us

¢

17:59
10-02-2021

	Enhancing the security in RSA and elliptic curve cryptography based on addition chain using simplified Swarm Optimization and Particle Swarm Optimization for mobile devices
	Abstract
	Introduction
	Concepts of RSA, ECC, PSO and SSO
	RSA
	ECC
	Definition (elliptic curve)
	Point addition and doubling on EC

	Particle Swarm Optimization (PSO)
	Simplified Swarm Optimization (SSO)

	Related works
	Proposed methodology
	Experimental set up
	Results and discussions
	Results analysis
	Conclusion and future extension
	References

	Abstract
	I. INTRODUCTION
	II. RELATED WORK
	III. THEORETICAL BACKGROUND
	Definition 3.1 (Addition Chain)
	Definition 3.2 (Optimal Addition Chain)
	A. Search Space
	B. Chemotaxis
	a) Minimum Intermediate Number in AC
	C. Reproduction and Dispersal Step
	V. BFOA_AC – AN EXAMPLE

	VI. IMPLEMENTATION
	BFOA based AC has been thought of and it is implemented successfully. In this paper, ACs produced by some integers are proved both theoretically and experimentally. From the experimental results, up to integers 1024, the proposed BFOA algorithm produc...
	REFERENCES

