
GENERATION OF ADDITION CHAINS USING

EVOLUTIONARY ALGORITHMS FOR OPTIMIZING

THE TIME IN MOBILE DEVICES

Thesis submitted to the Bharathidasan University, Tiruchirappalli in

partial fulfilment of the requirements for the award of degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

Submitted By

A. MULLAI

Ref. No: 16634/Ph.D.-K3/Computer Science/Part Time/July 2014

Under the Guidance of

Dr. K. MANI

Associate Professor & Research Advisor

PG AND RESEARCH DEPARTMENT OF COMPUTER SCIENCE

NEHRU MEMORIAL COLLEGE (AUTONOMOUS)

(Nationally Accredited with ‘A+’ Grade by NAAC)

PUTHANAMPATTI , TIRUCHIRAPPALLI - 621 007

TAMIL NADU, INDIA.

MARCH 2022

1/36

Document Information

Analyzed document Mullai_Doc.pdf (D131761366)

Submitted 2022-03-28T09:57:00.0000000

Submitted by Srinivasa ragavan S

Submitter email bdulib@gmail.com

Similarity 0%

Analysis address bdulib.bdu@analysis.urkund.com

Sources included in the report

Dr. K. Mani
Associate Professor

PG & Research Department of Computer Science

Nehru Memorial College (Autonomous)

Nationally Accredited with ‘A+’ Grade by NAAC

(Affiliated to Bharathidasan University by UGC)

Puthanampatti - 621 007, Tiruchirappalli – District

Tamil Nadu, India

Certificate

This is to certify that the thesis entitled "Generation of Addition Chains Using

Evolutionary Algorithms for Optimizing the Time in Mobile Devices", submitted

by Mrs.A. Mullai, a Research Scholar, PG & Research Department of Computer

Science, Nehru Memorial College (Autonomous), Puthanampatti - 621 007,

Tiruchirappalli, Tamil Nadu, India for the award of the degree of Doctor of

Philosophy in Computer Science, is a record of original work carried out by her

under my supervision and guidance. The Thesis has fulfilled all requirements as per

the regulations of the University and in my opinion the thesis reached the standard

needed for submission. The results embodied in this thesis have not been submitted to

any other University or Institute for the award of any degree or diploma.

Date:

Place: Puthanampatti

 Dr. K.Mani

 Research Supervisor

A. Mullai

Research Scholar

PG & Research Department of Computer Science

Nehru Memorial College (Autonomous)

Nationally Accredited with ‘A+’ Grade by NAAC

(Affiliated to Bharathidasan University by UGC)

Puthanampatti - 621 007, Tiruchirappalli – District

Tamil Nadu, India

Declaration

I hereby declare that the work embodied in this thesis entitled "Generation of

Addition Chains Using Evolutionary Algorithms for Optimizing the Time in

Mobile Devices", is a research work done by me under the supervision and guidance

of Dr. K. Mani, Associate Professor, PG & Research Department of Computer

Science, Nehru Memorial College (Autonomous), Puthanampatti - 621 007,

Tiruchirappalli, Tamil Nadu, India. The thesis or any part there of has not formed the

basis for the award of any Degree, Diploma, Fellowship, or any other similar titles.

Date:

Place: Puthanampatti

 (A. Mullai)

i

ACKNOWLEDGEMENT

-God is great-

First and foremost, I thank Almighty God for being with me in all my happiness and

sorrows to complete my research work in time. Nothing can happen without spiritual

prayer.

I would like to extend my sincere and deep sense of gratitude to my Research Advisor

Dr. K. Mani, Associate Professor in Computer Science, Nehru Memorial College

(Autonomous), Puthanampatti for his invaluable suggestions, patience, motivation,

enthusiasm and immense mathematical knowledge, meticulous editing, support and

tutelage during the course of my Ph.D programme. His invaluable guidance helped

me in all the time of publishing the research papers and writing the thesis in an

efficient and effective manner.

I express my deep sense of gratitude to the college management especially,

Mr. Pon Balasubramanian, President and Mr. Pon Ravichandran, Secretary, Nehru

Memorial College (Autonomous), Puthanampatti for providing opportunity and

support to do my research in this esteemed institution.

I am extremely thankful to the Principal, Dr. A. R. Pon Periyasamy, Nehru Memorial

College (Autonomous), Puthanampatti for providing the facilities to carry out my

research work successfully.

My special thanks to my Doctoral Committee Members, Dr. D.I. George

Amalarethinam, Bursar, Director (MCA) & Associate Professor in Computer

Science, Jamal Mohamed College (Autonomous), Tiruchirappalli and Dr. E. George

Dharma Prakash Raj, Associate Professor, School of Computer Science, Engineering

and Applications, Bharathidasan University, Tiruchirappalli for their valuable

suggestions to enhance my research work effectively. My heartfelt thanks to Dr. M.

Muralidharan, Associate Professor and Head, Department of Computer Science,

Nehru Memorial College (Autonomous), Puthanampatti.

I would like to thank our Management trustee and Secretary Sri. R. Panchapakesan

and Co-ordinator Smt. Vasantha Panchapakesan, Seethalakshmi Ramaswami

College (Autonomous), Tiruchirappalli for their blessings and support to do my

research. I extend my sincere thanks to our Executive Director Sri. Ramani

ii

Panchapakesan, and Dr. Kannan Panchapakesan, Director-Academics,

Seethalakshmi Ramaswami College (Autonomous), Tiruchirappalli for their constant

support towards the completion of my research work.

I would like to thank our Principal Dr. M. Vasuki, for the moral support and

guidance towards the completion of my research work.

I extend my sincere thanks to our Head Dr.K.S.Rathnamala and other staff members

Dr.R.Jamuna, Dr.S.Lakshmi Prabha, Ms.K.Mahalakshmi, Ms.V.Gayathri and

Ms.A.M.Aarthi for their encouragements and support for the completion of my

research work. I extend my sincere thanks to the faculty members of computer

Science department and other department, all teaching and non-teaching staff

members for their encouragement and support for me.

I should appreciate and thank Mr.T. L. Kannan for his timely support towards my

research work. I thank all my co-research scholars, Dr. Mohana Krishnan, Dr. Devi,

Dr. Kalpana, Dr. Elavarasan, Dr. Mahendran, Dr. Viswambari, Dr. A. Barakath

Begam, Mrs. A. Akila and Mr. Prasath Sivasubramaniyan, for their timely help.

Finally I owe my deepest gratitude to my Parents, Rtd. Prof. C. N. Arul Prakasam,

A. Bhagavathi, Father-in-law Tashildar(Late) K. Muthuswamy mother in-law Retd.

Headmistress S. Soundranayaki, my Husband Prof. Dr. M. Sundar and my family

members for their blessings, understanding, affection and support for me in

everything. I appreciate my lovable Son Shri. M. S. Shyam Sundar (B.Tech) for

understanding my situation that enabled me to complete my thesis successfully. I wish

to extend my special thanks to my brother in-law, sister in-laws, brothers and sisters

for their encouragement and motivation towards my research. It's their blessings and

prayers that enabled me to complete this work.

The living goals on the earth are parents and teachers. I humbly submit this thesis to

them. It is the result of their care and up-bringing. Above all, I thank God, the

Almighty for bestowing me with abundant grace especially when I waded through

great obstacles in my life.

A.MULLAI

iii

ABSTRACT

The usage and applications of mobile devices are increasing exponentially day by

day. The applications of smart mobile phones are also increasing which lead to

many security issues. The security features can be taken and applied on these

devices. Mobile devices deal with heterogeneity of networks and also in ubiquitous

intelligent environment with embedded computers everywhere and reliable services to

the user in an easy way. Mobile computing will enable the transmission of voice,

video and data between human and the computer. It always helps to stay connected to

the world with a wide range of users through the internet. The devices are primarily

designed to make for communication purpose but now people started to do all sort of

works through these devices. They engage people with entertainment, education,

teaching, money transaction, communication, games and all social media apps.

Moreover, the devices have limited battery power and storage. Even though, they

have more offerings to the user, lot of challenges like disconnection, low/high

bandwidth variability, low power and resources, security risks, wide variety of

devices with different capabilities and to fit more functionality into single, smaller

devices.

Thus, it is necessary to optimize their battery power and fixed limited space for

storage which makes serious issues, challenges and threatening from hackers are

analyzed. Security threats also arise while transferring sensitive informations through

mobility as well as wireless devices like mobile devices. All sensitive informations

have been transmitted with high speed as much as possible through these handheld

mobile devices. Hence, there are five parameters have been taken in this work viz.,

encryption time, decryption time, encryption power, decryption power and security.

iv

One essential aspect for secure communications is using cryptography. Cryptography

is the most indispensable tool for keeping information in secure manner in any

computing system and it has been taken into mobile computing systems/devices too.

Even though, many symmetric-key algorithms viz., AES, SERPENT and TWOFISH

are used for providing security in mobile devices, but they are not providing that

much security because they use only basic operations like shifting the bits, initial

permutation, mix column transformation etc., and hence, the public-key algorithms

like Rivest Shamir Adleman (RSA) and Elliptic Curve Cryptography (ECC) have

been taken in this work because they involve some complicated mathematics which

provide more security than symmetric-key encryption algorithms.

RSA is a procedure of computational simplicity whereas ECC provides greater

security. Large prime numbers are used as security keys in these methods. As the key

size taken in RSA and prime number used in ECC are very large, they may take more

time for encryption and decryption. It is noted that if a cryptographic algorithm takes

more time in performing operational time (where the operational time includes both

encryption and decryption) which causes customer’s impatience and dissatisfaction.

Thus, to decrease the operational time in RSA and ECC, Addition Chain (AC) is

incorporated in performing 𝑥 𝑒 mod 𝑛 of RSA and 𝑘[𝑃] of ECC. There are many

algorithms exist in literature to generate the AC. But, the bioinspired based algorithms

viz., Particle Swarm Optimization (PSO), Simplified Swarm Optimization (SSO) and

Bacteria Foraging Optimization (BFO) algorithms are taken in this work to generate

the ACs for an integer n and they are termed as AC-PSO, AS-SSO and AC-BFO

respectively.

v

PSO is a computational method that optimizes a problem by iteratively trying to

improve a candidate solution with regard to a given measure of quality. Dr. Eberhart

and Dr. Kennedy proposed PSO in 1995, on the basis of flocking birds' social activity

and fish schooling. It is a meta-heuristic algorithm. In PSO, all the birds do not know

where food is but they know how they move in each iteration. In PSO, each member

of the population is called particle and the population is called swarm.

All particles are modified on the basis of the two best values after each iteration. The

first best value called pBest is already obtained by a particle. The second-best value

called 𝑔𝐵𝑒𝑠𝑡 is the best value achieved for the fitness function tracked by the particle

swarm optimizer by the general population. Since each parameter tries to modify the

position by using the information viz., (i) the current position, (ii) the current velocity

(iii) the distance between the current position and 𝑝𝑏𝑒𝑠𝑡 (iv) the distance between the

current position and gbest. Based on these, the new velocity and new positions are

calculated.

In this work, particle represents the AC, velocity represents the number to be added to

the current number (position) xi so that the next number xi+1 is obtained. Further,

fitness function is taken as length of AC denoted as l(n). In this work, c1=c2=0.7

where 0.7 is a uniform random number. Similarly, other random numbers r1, r2 are

taken from RAND corporation table. When RSA and ECC are considered, the key is

taken very large, and AC of the key is generated according to the proposed AC- PSO.

SSO is a population-based, evolutionary, stochastic optimization technique in soft

computing and it was originally designed by Yeh. It has some advantages, such as fast

convergence rate, few parameters, and easy implementation. It has simple procedures

and more powerful global searching, prevents from trapping local optimal procedures.

vi

The major difference among SSO and other soft computing algorithms are their

update mechanism (UM). However, the UM of SSO is based on NP-hard problem. In

SSO, each Chain Particle (CP) represents the AC. The search spaces for the elements

are often restricted to simplifying the method of optimization. The first CP is 1 since

all ACs should start with . The second CP is with a value of doubled. There are

no optimization processes involving the first two elements. The third CP elements are

either 3 (2 + 1) or a 4 (2𝑥2) and or may be the fourth part. After

completing all epochs, particle outputs are optimized for SSO particles with CP

elements. Bacteria foraging is one of the optimization and evolutionary algorithms. It

was proposed by Kevin M. Passino in 2000 and it has been widely accepted as a new

nature-inspired optimization algorithm. It is inspired by the social foraging behavior

of Escherichia coli .

The foraging strategy of E.coli is achieved by four processes viz., chemotaxis,

swarming, reproduction and dispersal. Chemotaxis is a process which simulates the

movement of E.coli cell through swimming and tumbling via flagella. Movement of

E.coli bacterium can be performed in two ways viz., (i) swim for a period of time in

the same direction or it may tumble (ii) alternate between swim and tumble for the

entire lifetime. In swimming process, a group of E.coli cells arrange themselves in a

travelling ring by moving up the nutrient gradient when placed amidst a semisolid

matrix with a single nutrient chemo-effecter. The healthy bacteria asexually split into

two bacteria, which are then placed in the same location while the least healthy

bacteria eventually die in reproduction process. In elimination and dispersal process,

gradual or sudden changes in the local environment i.e., significant local rise of

temperature or due to unavoidable events all the bacteria in a region are killed or a

group is dispersed into new location.

vii

In the proposed AC-BFO methodology, the concept of BFO is used to generate the

optimum length AC for an integer . In this optimization, each bacterium represents

AC. The cost or fitness function is computed with minimum length approach based

on the nutrient concentration of the immediate environment of the bacterium

searching for numbers in AC. Swarming step is not considered for the generation of

AC in this method.

All the proposed methodologies are implemented in VC++ with Android and

Windows emulators. A good cryptographic algorithm should be capable of processing

with reasonable power consumption without compromising the security strength. The

proposed AC-PSO, AC-SSO and AC-BFO are incorporated into RSA and ECC

cryptosystems which are widely used in mobile devices with different file sizes of

plaintext viz.,1MB, 2MB, 4MB, 8MB and 16 MB and the parameters like encryption

time, decryption time, power consumed for encryption and decryption are computed.

Similarly, security levels are measured using All Block Cipher (ABC) Universal

Hackman tool. As the mobile devices are battery powered devices. They provide

greater mobility and achieving higher security levels with lesser time and power

consumption are the ultimate aim of a ideal cryptography procedure. Different size

files with parameters are recorded in tables.

It is noted that to transmit any file in secure manner, it should be encrypted. Based on

two different OS based emulators, the results show that the time taken for encryption,

decryption, encryption power and decryption power of RSA and ECC with android

OS take more time than RSA using window OS. It is also evident from the

experimental results that the time taken for encryption, decryption, encryption power

and decryption power using AC-PSO-RSA and AC-PSO-ECC with android OS

viii

emulator takes more time than with window OS emulator. Generally, ECC taken more

time than RSA. Hence, it is proved that AC-BFO-RSA is taking less time than AC-

SSO-ECC. It is known fact that ECC provides more security than RSA. It is also

proved in PSO, SSO and BFO based AC, when they are incorporated into RSA and

ECC combinations. As there is directly proportional relation between time and battery

power consumption, it is proved experimentally too. When security is concerned, the

AC-BFO-ECC is recommended.

In order to support the work, the researcher has published four papers. Among them,

one paper is published in Springer Nature.

ix

LIST OF PUBLICATIONS / COMMUNICATIONS

International Journals

[1]. Dr.K.Mani and A.Mullai, "A Survey on the Security Features of Cryptographic

Techniques in Mobile Devuces", International Journal of Innovative Research

in Computer and Communication Engineering, vol.4, issue 2, February 2016.

[2]. Dr.K.Mani and A.Mullai, "Optimizing the Run Time in Mobile Devices",

World Congress on Computing and Communication Technologies (WCCCT)",

2-4, IEEE Xplore, DOI: 10.1109/WCCCT, February 2017.

[3]. A.Mullai, Dr.K.Mani, "Enhancing the Security in RSA and elliptic curve

cryptography based on addition chain using simplified Swarm Optimization and

Particle Swarm Optimization for mobile devices", International Journal of

Information technology, Springer, vol.13, pp.55-564, 2021. https://

doi.org/10.1007/s41870-019-00413-8.[UGC-CARE-SCOPUS INDEXED]

[4]. Dr.K.Mani and A.Mullai, "Generation of Addition Chain using Bacteria

Foraging Optimization Algorithm", International Journal of Engineering

Trends and Technology, vol. 69, issue 2, pp.32-38, DOI: 10.14445/22315381

/ijett-v69i2p205. [UGC-CARE-SCOPUS INDEXED]

International Conference

[1]. Dr.K.Mani and A.Mullai, "Optimizing the Run Time in Mobile Devices",

World Congress on Computing and Communication Technologies (WCCCT)",

2-4, IEEE Xplore, DOI: 10.1109/WCCCT.2016.23, February 2017.

x

CONTENTS Page

No.

Acknowledgement.. i

Abstract .. iii

List of Publications.. ix

Table of Contents... x

List of Figures………………………………………... xiv

List of Tables……………………………………………….......…..……............... xix

List of Algorithms/Pseudo Codes .…………………………………...................... xxiii

List of Abbreviations... xxiv

List of Symbols……………………………………..……....................................... xxviii

CHAPTER-I:

INTRODUCTION…...

1-18

1.1 Background….. 1

1.2 Terminologies Used in Cryptography….. 2

 1.3 Types of Cryptography...............................……………….…….……….......... 3

 1.3.1 Classical Cryptography ..…………………………………….................. 4

 1.3.2 Modern Cryptography ……………………………………................ 4

1.4 Rivest Shamir Adleman Algorithm ... 8

1.5 Elliptic Curve Cryptography ... 9

1.6 Mobile Computing ...…………….............................. 10

1.7 Operating Systems……………... 11

1.8 Mobile Communications ……………………………………….....…............. 11

1.9 Addition Chain .. 13

1.10 Scope of Research ... 14

1.11 Particle Swarm Optimization ... 15

1.12 Simplified Swarm Optimization ... 16

1.13 Bacterial Foraging Optimization .. 16

1.14 Chapter Organization .. 17

CHAPTER-II: REVIEW OF LITERATURE...
19-39

2.1 Background ……………………………………………………...................... 19

xi

2.2 Review of Works Related to Mobile Computing .. 20

2.3 Review of Works Related to PSO……………….................... 26

2.4 Review of Works Related to SSO ... 28

2.5 Review of Works Related to BFO .. 35

2.6 Chapter Summary…………………………………………................... 39

CHAPTER-III: OVERVIEW OF ADDITION CHAIN AND MOBILE

 CRYPTOGRAPHY …………………………………………………

40-69

3.1 Background ... 40

3.2 Mathematical Preliminaries of Addition Chain .. 40

 3.2.1 Definition 1 (Addition Chain) .. 40

 3.2.2 Definition 2 (Optimal AC) ... 41

 3.2.3 Definition (Brauer Chain) .. 42

3.3 Need for Evolutionary Algorithms Based Addition Chains 42

3.4 Reason for Taking RSA and ECC .. 43

 3.4.1 RSA ... 44

3.5 Mathematical Preliminaries of ECC ... 46

 3.5.1 Primitive Root…………………………………………........... 46

 3.5.2 Euler's Criterion .. 46

 3.5.3 Definition (Discrete Logarithm Problem) .. 46

 3.5.4 Definition (Quadratic Residue) .. 46

3.6 Need for ECC……………..…... 47

3.7 Concepts of ECC ……………………………………………............... 47

 3.7.1 Generation of EC Points ... 48

 3.7.2 Elliptic Curve Arithmetic ... 49

3.8 Embedding the Plaintext 50

3.9 ElGamal Public-key Cryptosystem with EC .. 51

 3 .9.1 ElGamal Encryption with EC - An Example .. 52

3.10 Diffie Helman Key Exchange Protocol with ECC .. 53

3.11 Mobile Operating Systems ... 54

3.12 Constraints of MOS ... 54

3.13 Android and Window OS Emulators ... 55

3.14 Need for Security ... 55

3.15 Experimental Set up ... 56

xii

3.16 Parameters Taken in the Work .. 57

3.17 Results and Discussion .. 58

3.18 Chapter Summary .. 68

CHAPTER-IV: GENERATION OF ADDITION CHAIN USING PARTICLE

 SWARM OPTIMIZATION ...

70-92

4.1 Background………………………………………………………....……........ 70

4.2 Need for PSO Algorithm ... 71

4.3 Concepts Used in PSO………….…................................. 72

4.4 Proposed AC-PSO Methodology .. 76

4.5 Generation of AC-PSO - An Example….................................... 77

4.6 Proposed AC-PSO Based Cryptosystem………………. 79

 4.6.1 AC-PSO-RSA and AC-PSO-ECC Methodology 79

4.7 Results and Discussion ... 81

4.8 Chapter Summary .. 91

CHAPTER-V: GENERATION OF ADDITION CHAIN USING SIMPLIFIED

 SWARM OPTIMIZATION ..
93-110

5.1 Background……………………………………………………….……............ 93

5.2 Need for AC-SSO .. 93

5.3 Concepts Used in SSO…….. 93

5.4 Principles AC-SSO Methodology……………………….................... 95

5.5 Results and Discussion .. 99

5.6 Chapter Summary ... 110

CHAPTER-VI: GENERATION OF ADDITION CHAIN USING BACTERIA

 FORAGING OPTIMIZATION ...

111-146

6.1 Background……………………………………………………….……........... 111

6.2 Theoretical Background of Addition Chain .. 111

6.3 Bacteria Foraging Optimization .. 112

6.4 Proposed AC-BFO Methodology .. 114

 6.4.1 Search Space .. 115

 6.4.2 Chemotaxis .. 115

 6.4.3 Minimum Intermediate Number in AC ... 116

 6.4.4 Reproduction and Dispersal Step .. 117

 6.4.5 Proposed AC-BFO - An Example ... 120

xiii

6.5 Proposed AC-BFO-RSA - An Example ... 121

6.6 Proposed AC-BFO-ECC - An Example .. 122

6.7 Results and Discussion .. 122

6.8 Chapter Summary .. 134

CHAPTER-VII: COMPARISON OF PROPOSED BIO-INSPIRED

 ALGORITHMS FOR ADDITION CHAIN GENERATION

 WITH RSA AND ECC ..

135-147

CHAPTER-VIII: CONCLUSION..
148-150

8.1 Summary of the Contributions………………………………………............... 149

8.2 Future Research Directions……………………………………………............ 150

8.3 End Note……………………………………... 150

REFERENCES...
152-163

APPENDIXES... A.1-A.5

(i) 𝐸736121 (17, 7) Points……... A.1

(ii) Paper Published in Journals .. A.2

(iii) Sample Coding .. A.3

(iv) Sample Screenshots ... A.4

(v) Reports Generation .. A.5

xiv

LIST OF FIGURES

Figure

No.
Title

Page

No.

1.1 Cryptography Block Diagram ... 3

1.2 Types of Cryptography .. 3

1.3 Symmetric-key Cryptography ... 5

1.4 Asymmetric-key or Public-key Cryptography 7

1.5 Mobile Connectivity .. 10

1.6 Mobile Device Hardware ... 12

1.7 Mobile Device Software .. 13

3.1 Optimum Addition Chains for n=170 .. 42

3.2 Graph Showing E31(1,1) ... 49

3.3 GUI - Android / Windows Emulator Launching 55

3.4 Graph Showing Encryption Time using Android Emulator 59

3.5 Graph Showing Dcryption Time using Android Emulator 60

3.6 Graph Showing Encryption Power using Android Emulator 61

3.7 Graph Showing Decryption Power using Android Emulator 62

3.8 Graph Showing Security using Android Emulator 63

3.9 Graph Showing Encryption Time using Windows Emulator 64

3.10 Graph Showing Decryption Time using Windows Emulator 65

3.11 Graph Showing Encryption Power using Windows Emulator 66

3.12 Graph Showing Decryption Power using Windows Emulator 67

3.13 Graph Showing Security using Windows Emulator 68

4.1 Movement of the particle ‘𝑖’ in the solution space during iterations

𝑘 and k + 1 ...
75

4.2 Numbers Occur in 𝑃𝑖 , i = 1, 2, ...8 Without Duplication 77

4.3 Graph showing the Encryption Time (mS) using AC-PSO in RSA

and ECC with Android Emulator ...
82

4.4 Graph showing Decryption Time (mS) using AC-PSO in RSA

and ECC with Android Emulator ...
83

4.5 Graph showing the Encryption Power (mW) using AC-PSO in

RSA and ECC with Android Emulator ..
84

xv

... LIST OF FIGURES

Figure

No.
Title

Page

No.

4.6 Graph showing the Decryption Power (mW) using AC-PSO in

RSA and ECC with Android Emulator ..
85

4.7 Graph showing the Security (%) of AC-PSO in RSA and ECC

with Android Emulator ...
86

4.8 Graph showing the Encryption Time(mS) using AC-PSO in RSA

and ECC with Windows Emulator ...
87

4.9 Graph showing the Decryption Time (mS) using AC-PSO in RSA

and ECC with Windows Emulator ...
88

4.10 Graph showing the Encryption Power (mW) using AC-PSO in

RSA and ECC with Windows Emulator ...
89

4.11 Graph showing the Decryption Power (mW) using AC-PSO in

RSA and ECC with Windows Emulator
90

4.12 Graph showing the Security (%) using AC-PSO in RSA and ECC

with Windows Emulator ...
91

5.1 Flowchart for SSO Algorithm ..

95

5.2 The Chain Particles (CP) ... 96

5.3 & 5.4 Two different ACs for the Integer 78 Generated Using SSO 97

5.5 SSO Optimized Result Particle Values

99

5.6 Graph Showing Encryption Time(mS) using AC-SSO in RSA

and ECC with Android Emulator ..
100

5.7 Graph Showing Decryption Time(mS) using AC-SSO in RSA and

ECC with Android Emulator ..
101

5.8 Graph Showing Encryption Power (mW) using AC-SSO in RSA

and ECC with Android Emulator .. 102

5.9 Graph Showing Decryption Power in RSA and ECC with SSO

Addition Chain using Android Emulator 103

5.10 Graph Showing Security (%) using AC-SSO in RSA and ECC

with Android Emulator ... 104

xvi

... LIST OF FIGURES

Figure

No.
Title

Page

No.

5.11 Graph Showing Encryption time in RSA and ECC with SSO

Addition Chain using Windows Emulator 105

5.12 Graph Showing Decryption Time(mS) using AC-SSO in RSA

and ECC with Windows Emulator ... 106

5.13 Graph Showing Encryption Power (mW) using AC-SSO in RSA

and ECC with Windows Emulator .. 107

5.14 Graph Showing Decryption Power (mW) using AC-SSO in RSA

and ECC with Windows Emulator .. 108

5.15 Graph Showing Security (%) using AC-SSO in RSA and ECC

with Windows Emulator ... 109

6.1 Optimal ACs for the n= 21 with l(21)= 6 112

6.2 The Movement of Bacterium .. 117

6.3 Flowchart for the proposed AC-BFO .. 119

6.4 Graph Showing Encryption Time (mS) using AC-BFO in RSA

and ECC with Android Emulator ... 123

6.5 Graph Showing Decryption Time (mS) using AC-BFO in RSA

and ECC with Android Emulator .. 124

6.6 Graph Showing Encryption Power in RSA and ECC with BFO

AC Using Android Emulator ... 125

6.7 Graph Showing Decryption Power (mW) using AC-PSO in RSA

and ECC with Android Emulator ... 126

6.8 Graph Showing Security (%) using AC-BFO in RSA and ECC

with Android Emulator ... 127

6.9 Graph Showing Encryption Time (mS) using AC-BFO in RSA

and ECC with Windows Emulator .. 128

6.10 Graph Showing Decryption time in RSA and ECC with BFO AC

using Windows Emulator .. 129

6.11 Graph Showing Encryption Power (mW) using AC-BFO in RSA

and ECC with Windows Emulator .. 130

xvii

... LIST OF FIGURES

Figure

No.
Title

Page

No.

6.12 Graph Showing Decryption Power (mW) using AC-BFO in RSA

and ECC with Windows Emulator ..
131

6.13 Graph showing the Security (%) using AC-SSO in RSA and

ECC with Windows Emulator ...
132

7.1 Graph showing the Encryption time using AC-PSO-RSA, AC-

SSO-RSA &AC-BFO-RSA with Android Vs Windows

Emulator ...

136

7.2 Graph showing the Encryption time using AC-PSO-ECC, AC-

SSO-ECC &AC-BFO-ECC with Android Vs Windows

Emulator ...

137

7.3 Graph showing the Decryption time using AC-PSO-RSA, AC-

SSO-RSA &AC-BFO-RSA with Android Vs Windows

Emulator ...

138

7.4 Graph showing the Decryption time using AC-PSO-ECC, AC-

SSO-ECC &AC-BFO-ECC with Android Vs Windows

Emulator ...

139

7.5 Graph showing the Encryption power using AC-PSO-RSA,

AC-SSORSA &AC-BFO-RSA with Android Vs Windows

Emulator ...

140

7.6 Graph showing the Encryption power using AC-PSO-ECC, AC-

SSO-ECC &AC-BFO-ECC with Android Vs Windows

Emulator ...

141

7.7 Graph showing the Decryption power using AC-PSO-RSA, AC-

SSO-RSA &AC-BFO-RSA with Android Vs Windows

Emulator

142

7.8 Graph showing the Decryption power using AC-PSO-ECC, AC-

SSO-ECC &AC-BFO-ECC with Android Vs Windows

Emulator

143

xviii

... LIST OF FIGURES

Figure

No.
Title

Page

No.

7.9 Graph showing the Security using AC-PSO-RSA, AC-SSO-

RSA &AC-BFO-RSA with Android Vs Windows Emulator
144

7.10 Graph showing the Security using AC-PSO-ECC, AC-ECC-

RSA &AC-BFO-ECC with Android Vs Windows Emulator
145

7.11 Graph Showing the overall performance of Android Vs Window

OS Emulator 147

xix

LIST OF TABLES

Table

No.
Title

Page

No.

3.1 Generations of Points for E31 (1, 1) ... 48

3.2 Embedding M into E539039(17,7) .. 51

3.3 Encryption time using Android Emulator..................................... 58

3.4 Decryption time using Android Emulator ... 59

3.5 Encryption Power using Android Emulator 60

3.6 Decryption Power using Android Emulator 61

3.7 Security (%) using Android Emulator ... 62

3.8 Encryption time using Windows Emulator .. 63

3.9 Decryption time using Windows Emulator .. 64

3.10 Encryption Power using Windows Emulator..................................... 65

3.11 Decryption Power using Windows Emulator.................................... 66

3.12 Security using Windows Emulator .. 67

4.1 Generation of AC for n=10 Using AC-PSO 78

4.2 Encryption Time (mS) using AC-PSO in RSA and ECC with

Android Emulator ..
81

4.3 Decryption Time(mS) using AC-PSO in RSA and ECC with

Android Emulator ...
82

4.4 Encryption Power (mW) using AC-PSO in RSA and ECC with

Android Emulator ..
83

4.5 Decryption Power (mW) using AC-PSO in RSA and ECC with

Android Emulator ...
84

4.6 Security (%) using AC-PSO in RSA and ECC with Android

Emulator ...
85

4.7 Encryption Time (mS) using AC-PSO in RSA and ECC with

Windows Emulator ... 86

4.8 Decryption Time (mS) using AC-PSO in RSA and ECC with

Windows Emulator ...

87

4.9 Encryption Power (mW) using AC-PSO in RSA and ECC with

Windows Emulator ...

88

xx

… LIST OF TABLES

Table

No.

Title
Page

No.

4.10 Decryption Power (mW) using AC-PSO in RSA and ECC with

Windows Emulator .. 89

4.11 Security (%) using AC-PSO in RSA and ECC with Windows

Emulator .. 90

5.1 Encryption Time (mS) using AC-SSO in RSA and ECC with

Android Emulator ..
100

5.2 Decryption Time (mS) using AC-SSO in RSA and ECC with

Android Emulator ..
101

5.3 Encryption Power (mW) using AC-SSO in RSA and ECC with

Android Emulator ...
102

5.4 Decryption Power (mW) using AC-SSO in RSA and ECC with

Android Emulator ...
103

5.5 Security (%) using AC-SSO in RSA and ECC with Android

Emulator ... 104

5.6 Encryption Time (mS) using AC-SSO in RSA and ECC with

Windows Emulator ..
105

5.7 Decryption Time (mS) using AC-SSO in RSA and ECC with

Windows Emulator ... 106

5.8 Encryption Power (mW) using AC-SSO in RSA and ECC with

Windows Emulator ...
107

5.9 Decryption Power (mW) using AC-SSO in RSA and ECC with

Windows Emulator ... 108

5.10 Security (%) using AC-SSO in RSA and ECC with Windows

Emulator ..
109

6.1 Notations Used in AC-BFO .. 115

6.2 Encryption Time (mS) using AC-BFO in RSA and ECC with

Android Emulator ...
123

6.3 Decryption Time (mS) using AC-BFO in RSA and ECC with

Android Emulator ...
124

xxi

… LIST OF TABLES

Table

No.

Title
Page

No.

6.4 Encryption Power (mW) using AC-BFO in RSA and ECC with

Android Emulator ...
125

6.5 Decryption Power (mW) using AC-BFO in RSA and ECC with

Android Emulator ...
126

6.6 Security (%) using AC-BFO in RSA and ECC with Android

Emulator ...
127

6.7 Encryption Time (mS) using AC-BFO in RSA and ECC with

Windows Emulator ..
128

6.8 Decryption Time (mS) using AC-BFO in RSA and ECC with

Windows Emulator ..
129

6.9 Encryption Power (mW) using AC-BFO in RSA and ECC with

Windows Emulator ..
130

6.10 Decryption Power (mW) using AC-BFO in RSA and ECC with

Windows Emulator ..
131

6.11 Security (%) using AC-BFO in RSA and ECC with Windows

Emulator ...
132

6.12 AC Generated for Some Hard Exponents Using AC-PSO 133

6.13 Comparison of AC upto Integers 1024 - Produced by Existing

Algorithms and the Proposed AC-BFO ...

134

7.1 Encryption time using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-

RSA with Android Vs Windows Emulator

135

7.2 Encryption time using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-

ECC with Android Vs Windows Emulator

136

7.3 Decryption time using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-

RSA with Android Vs Windows Emulator

137

7.4 Decryption time using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-

ECC with Android Vs Windows Emulator

138

7.5 Encryption power using AC-PSO-RSA, AC-SSO-RSA &AC-

BFO-RSA with Android Vs Windows Emulator

139

xxii

… LIST OF TABLES

Table

No.
Title

Page

No.

7.6 Encryption power using AC-PSO-ECC, AC-SSO-ECC &AC-

BFO-ECC with Android Vs Windows Emulator

140

7.7 Decryption power using AC-PSO-RSA, AC-SSO-RSA &AC-

BFO-RSA with Android Vs Windows Emulator

141

7.8 Decryption power using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-

ECC with Android Vs Windows Emulator

142

7.9 Security using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA

with Android Vs Windows Emulator ..

143

7.10 Security using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC

with Android Vs Windows Emulator ...

144

7.11 Android Vs Window OS Emulator .. 146

xxiii

LIST OF ALGORITHMS / PSEUDOCODES

Pseudo.

No.
Title

Page

No.

3.1 RSA Cryptosystem : RSA-Key generation……………….... 44

3.2 RSA - Encryption……………………... 45

3.3 RSA - Decryption…………………........ 45

4.1 PSO (Pseudo Code) ... 75

5.1 SSO (Pseudo Code) ... 94

6.1 AC-BFO …………………………....................................... 118

xxiv

LIST OF ABBREVIATIONS

ABC All Block Ciphers Universal Hackman tool

ACO Ant Colony Optimization

AES Advanced Encryption Standard

AI Artificial Intelligence

AIS Artificial Immune System

APAU Analysis and Prediction of Application Usage

ASCII American Standard Code for Information Interchange

BFA Brute Force Attack

BFO Bacteria Foraging Optimization

BFOA Bacteria Foraging Optimization Algorithm

BSA Bird Swarm Algorithm

CBC Cipher Block Chaining

CFB Cipher Feed Back

DES Data Encryption Standard

DLP Discrete Logarithm Problem

DoS Denial of Service

EAs Evolutionary Algorithms

EC Elliptic Curve

ECB Electronic Code Book

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

xxv

 ... LIST OF ABBREVIATIONS

ELS Extending Local Search

FND First Node to Die

GA Genetic Algorithm

GBMAC Graph Based Minimal Addition Chain

GUI Graphical User Interface

HTTPS Hyper Text Transfer Protocol Secure

IBE Identity Based Encryption

ICT Information Communication and Technology

IDEA International Data Encryption Algorithm

IFP Integer Factorization Problem

ITA Itoh-Tsujii algorithm

ITU - T International Telecommunication Union-T

KPA Known Plaintext Attack

LM Loss Minimization

LPC Lattice Path Cryptosystem

LR Lattice Reduction

LWE Learning With Errors

MANET Mobile Ad-hoc NETworks

MD5 Message Digest Algorithm 5

MITA Modified ITA algorithm

MOS Mobile Operating Systems

MPSO Mutation based PSO

MWSNs Mobile Wireless Sensor Network

xxvi

 ... LIST OF ABBREVIATIONS

NIST National Standards of Institute and Technology

OAC Optimal Addition Chain

O-ECC Optimized ECC

OS Operating Systems

P2P Peer to Peer

PKC Public Key Cryptography

PKCS Public-Key Cryptography Standards

PKI Public-key Infrastructure

PSO Particle Swarm Optimization

PSOFIM PSO with Full Information and Mutation Operator

QoS Quality of Service

RC4 Rivest Cipher 4

RLE Run-Length Encoding

RNG Random Number Generator

RRAP Reliability Redundancy Allocation Problems

RSA Ron Rivest, Adi Shamir, and Leonard Adleman

SMS Short Message Service

SSH Secure Socket Layer

SSO Simplified Swarm Optimization

SSO-MS SSO with Modular Search

SSP Sum of Subsets Problem

UI User Interface

UM Update Mechanism

xxvii

 ... LIST OF ABBREVIATIONS

VUI Voice User Interface

Wi-Fi Wireless Fidelity

WSN Wireless Sensor Networks

WWW World Wide Web

xxviii

LIST OF SYMBOLS

Symbol Meaning

 finite field

(ke, kd) Public key and Private key pair

𝐸𝐷𝑛 Number of elimination-dispersal events

𝐺𝑏, 𝑔𝑏𝑒𝑠𝑡 , Global-best value

𝐾𝑠 Keystream

𝑃𝑒𝑑 Elimination-dispersal probability

𝑄𝑅(p) Quadratic Residue

𝑅𝑃𝑛 Number of reproduction steps

𝑐1, 𝑐2 Learning factors / Accelerating factors

𝑥 𝑖,𝑗
𝑡 𝑗𝑡ℎ variable of 𝑋 𝑖

𝑡

𝛾1,𝛾2 Random numbers between 0 to 1

[𝑘]𝑃 Scalar point multiplication

{x, y} Pairs of integer coordinates

|| Concatenation

∀ For All

∃ There Exists

∈ Element of

∉ Not an element of

≡ Identical to

⊂ Subset of

A Android emulator

AC Addition Chain

xxix

... LIST OF SYMBOLS

Symbol Meaning

AC-BFO- ECC AC based on BFO used in ECC

AC-BSO-RSA AC based on BFO used in RSA

AC-BSO-RSA -A AC based on BFO used in RSA(Android Emulator)

AC-BSO-RSA -W AC based on BFO used in RSA(Windows Emulator)

AC-ECC AC used in ECC

AC-PSO-ECC AC based on PSO used in ECC

AC-PSO-RSA AC based on PSO used in RSA

AC-PSO-RSA-A AC based on PSO used in RSA (Android Emulator)

AC-PSO-RSA-W AC based on PSO used in RSA (Windows Emulator)

AC-RSA AC used in RSA

AC-SSO- ECC AC based on SSO used in ECC

AC-SSO-RSA AC based on SSO used in RSA

AC-SSO-RSA-A AC based on SSO used in RSA (Android Emulator)

AC-SSO-RSA-W AC based on SSO used in RSA (Windows Emulator)

b1 bacteria

C or Y Ciphertext

CP Chain Particle

D(C) Decryption of Ciphertext

DK(C) Decrypting the Ciphertext with key K

DP Decryption Power

DT Decryption Time

e Exponent / Random integer

xxx

... LIST OF SYMBOLS

Symbol Meaning

EK(M) Encryption of plaintext with key K

EP Encryption Power

EQF Equivalent Quadratic Form

ET Encryption Time

G Primitive Root

GBAPAC Graph Based All Possible AC

gBest Global Best

GBMAC Graph Based Minimum number of AC

g
n
 Group element multiplied by itself n times

IP Intermediate Plaintext

l(n) Length of AC

lBest Local best

M or P or X Plaintext

mi Plaintext character

ℕ Natural numbers

pBest Particle Current Best value

PKC Public-Key Cryptography

Q NR(p) Quadratic- Non Residue with Prime P

ℝ Real numbers

Rand () Random number

RAs Repeated Additions

RMs Repeated Multiplications

xxxi

... LIST OF SYMBOLS

Symbol Meaning

SE Security Level

SE-AC-BFO-RSA-A Security level produced by AC based on BFO in RSA

(Android Emulator)

SE-AC-BFO-RSA-W Security level produced by AC based on BFO in RSA

(Windows Emulator)

SE-AC-PSO-RSA-A Security level produced by AC based on PSO in RSA

(Android Emulator)

SE-AC-PSO-RSA-W Security level produced by AC based on PSO in RSA

(Windows Emulator)

SE-AC-SSO-RSA-A Security level produced by AC based on SSO in RSA

(Android Emulator)

SE-AC-SSO-RSA-W Security level produced by AC based on SSO in RSA

(Windows Emulator)

SKC Symmetric-Key / Single-Key / Private-key Cryptography

V Velocity

W Windows emulator

ℤ or Z Set of integers

ω Inertia Weight

𝐵𝑆 Bit Stream

𝐷 Decryption / Deciphering

𝐸 Encryption / Enciphering

𝐾 Key

𝑂 Point on Infinity

𝑆 Total number of bacterium in the population

𝑆𝑤 The swimming length

𝑑 Dimension of the search space. Here, 𝑑 = 1

𝑔 Finite group 𝐺

1

CHAPTER – I

INTRODUCTION

1.1 Background

As the world becomes more connected, the demand for sending the sensitive data like

credit and debit card numbers, money transaction, sharing the message in military

etc., through the communication channel is increasing exponentially day by day. It

must be protected from the third party called adversary so that he/she could not

understand the meaning of such message. In order to protect such sensitive data, the

indispensable tool cryptography is used [1]. Cryptography is originated from the

Greek word kryptos, meaning "hidden," and the word graphein, means "to write"

which is the process of converting plaintext to ciphertext and vice-versa. It is a

process of transmitting and storing data in a specific form so that the authenticated

person can only read and process it. It is not only used to protect data from theft or

alteration, but it can also provide many security services viz., data integrity,

confidentiality, non-repudiation and authentication as defined in ITU-T (International

Telecommunication Union-T) X.800 recommendation [2].

The service confidentiality refers to the protection of transmitted data from various

attacks particularly passive attacks where passive attack attempts to learn or make use

of information from the system but it does affect the system resources. The

authentication service is concerned with assuring that a communication system is

authentic, i.e., it is the process of user‟s identity. There are two types of authentication

viz., peer entity authentication, data origin authentication. Peer entity authentication is

mainly used in association with a logical connection to achieve the identity of the

2

entities connected. Data origin authentication is a connectionless transfer which

provides assurance that the source of received data is as claimed [3].

The service data integrity deals with a stream of messages, assures that messages are

sent, with no duplication, insertion, modification, recording, or replays. This service

also covers destruction of data. Non-repudiation is a service which provides

protection against denial by one of the entities involved in a communication of having

participated in all or part of the communication. It consists of two types: non-

repudiation-origin which is a proof that the message was sent by the specified party

and non-repudiation-destination which is a proof that the message was received by the

specified party [4].

1.2 Terminologies Used in Cryptography

In cryptography, original or any readable message is called plaintext 𝑀 (𝑜𝑟 𝑋), and

coded or unreadable message is called ciphertext, 𝐶(𝑜𝑟 𝑌). Encryption or enciphering

E, is a process of applying mathematical function to convert 𝑀 into 𝐶. Decryption or

deciphering 𝐷, is the reverse process of encryption or restoring 𝑀 from 𝐶. A key, in

cryptography or cryptographic key (𝐾) is string of bits used in cryptographic

algorithms to transform 𝑀 into 𝐶 or vice versa. The process of 𝐸 and 𝐷 is called

cryptography. Cryptographic system or cipher includes cryptography and key 𝐾 .

Cryptanalysis is a method to break the code, i.e., recovering 𝑀 from 𝐶 without

knowing 𝐾. The area of cryptography and cryptanalysis together is called cryptology

[5]. Mathematically, 𝐸 and 𝐷 are represented as 𝐶 = 𝐸𝑘(𝑀) and 𝐶 = 𝐷𝑘(𝐶)

respectively. Further, 𝐷 𝐸 𝑀 = 𝑀 𝑎𝑛𝑑 𝐸 𝐷 𝐶 = 𝐶. The basic principle used in

modern cryptography is Kerckhoffs's principle. It is mentioned as “A cryptographic

3

system should be secure if everything about the system, except the key, is public

knowledge”. The concept of cryptography is shown in fig. 1.1.

Fig. 1.1: Cryptography Block Diagram

1.3 Types of Cryptography

Cryptography is mainly classified into two types, viz., classical and modern

cryptography. It is shown in fig. 1.2.

Fig. 1.2: Types of Cryptography

4

1.3.1 Classical Cryptography

In classical cryptography, no mathematical concepts are involved. The traditional

characters, i.e., letters and digits are directly manipulated in this type. It is focused

mainly on „security through obscurity‟. The parties involved in communication must

know about the coding that were kept secret. It has two basic components substitution

and transposition cipher. In substitution cipher, each 𝑚𝑖 ∈ 𝑀 is replaced by other

letter or symbol. If 𝑀 is viewed as a sequence of bits, substitution involves replacing

𝑀 bit patterns with C bit patterns. One of the earliest known and simplest substitution

cipher was Ceaser cipher. It was invented by Julius Ceaser. In substitution cipher,

each letter in 𝑀 is shifted a certain number of places down the alphabet. A shift may

be any value, and the general Julius Caeser cipher encryption algorithm is 𝑐𝑖 =

𝐸 𝑚𝑖 = (𝑚𝑖 + 𝑘) 𝑚𝑜𝑑 𝑝 , for each 𝑐𝑖 ∈ 𝐶 , 𝑚𝑖 ∈ 𝑀 and 𝑘, ∈ 𝐾 and 𝑘, 𝑝 =

 0,1, … ,25. The decryption algorithm is 𝑚𝑖 = 𝐷 𝑐𝑖 = (𝑐𝑖 − 𝑘) 𝑚𝑜𝑑 2 Other

substitution cipher includes monoalphabetic cipher, playfair cipher, Hill cipher,

polyalphabetic cipher etc. Transposition cipher is achieved by performing some kind

of permutation on the plaintext letters, i.e., M remains same, but the order of

characters is shuffled around. Simple columnar transposition cipher, German

ADFGVX cipher etc., are some examples of transposition cipher [6][7]. In this cipher,

if M has n characters, then the total number of possible ciphertexts produced using

this method is n

1.3.2 Modern Cryptography

It is based on numerous ideas of mathematics such as number theory, computational-

complexity theory and probability theory. It operates on binary bit sequences. In

modern cryptography, secrecy is obtained through a secret-key which is used as the

5

seed for the algorithms. Absence of secret-key is the computational difficulty of these

algorithms which make it impossible for an attacker to obtain the original information

even if he/she knows the algorithm used for coding. Modern cryptography is divided

into two types viz., Symmetric-Key Cryptography (SKC) and Public-Key

Cryptography (PKC) [8][9].

 Symmetric-Key Cryptography

It is also called secret-key or single-key or private-key algorithm. It deals not only with

but also deals with authentication [10]. It requires that sender and receiver must

share the same secret-key for performing both and . It is shown in fig. 1.3.

Fig. 1.3: Symmetric-key Cryptography

The security of SKC rests in the key; divulging the key means that anyone could

encrypt and decrypt the messages. As long as the communication needs to remain

secret, it must be remain secret. Even though, it is faster than public-key

cryptography, the main problem with this algorithm is getting the sender and receiver

to agree on the secret-key without anyone else finding out [11]. Mathematically, a

symmetric key cryptosystem can be defined as the tuple (𝑃, 𝐶, 𝐾, 𝐸, 𝐷) where 𝑃 is the

set of finitely many possible plaintexts, C is the set of finitely many possible

ciphertexts and K represents the key space i.e., set of finitely many possible keys.

6

∀𝑘 ∈ 𝐾, ∃𝐸𝑘 ∈ 𝐸 (encryption rule), ∃𝐷𝑘 ∈ 𝐷 (decryption rule) Ek : P → C and Dk : C

→ P are well defined functions such that ∀𝑝 ∈ 𝑃, 𝐷𝑘 𝐸𝑘 𝑃 = 𝑃. SKC is further

divided into stream ciphers and block ciphers. In stream cipher, one bit of character is

encrypted at a time, i.e., it operates on smaller units of M, usually bits. Encryption is

accomplished by a sequence of bits called a keystream (Ks) by combining the Ks with

M, usually with the bitwise XOR operation.

Mathematically, stream cipher can be defined as

Encrypts a stream

as a stream

ciphertexts by using a key streams . One-Time

Pad (OTP) is an example of stream cipher. In OTP, M=K=C={0, 1} and

. To encrypt a message m = m1 m2 m3

mi ϵ {0,1}, a key stream k = k1 k2 k3 ki ϵ {0,1}, is needed. Encryption and

decryption are given by E* (m,k) = c = c1 c2 c3 , where 𝑐𝑖 = 𝑚𝑖⨁𝑘𝑖 and D* (c,k) =

c1 c2 c3 , where 𝑚𝑖 = 𝑐𝑖⨁𝑘𝑖 .

In block cipher encryption, group of bits or characters called block is encrypted at a

time. It transforms fixed-length block of M data into block of C data of the same

length. Mathematically, block cipher is a symmetric-key encryption scheme with

, n is called block length of the cipher. There are various block cipher

modes exist viz., Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher

FeedBack (CFB) and Output FeedBack (OFB) exist. Data Encryption Standard (DES),

Advanced Encryption Standard (AES), Blowfish,RC4 (Rivest Cipher) etc., are some

examples of block cipher symmetric-key encryption algorithms [12].

7

 Public-Key Cryptography

It is also called as asymmetric-key cryptography in which a pair of keys is involved

known as public-key and private-key . Each public-key is visible and the

corresponding private-key is kept secret. They are mathematically related but not

identical. In PKC, each key performs a unique function unlike symmetric-key

algorithms that rely on one key to both encrypt and decrypt. In PKC, for encryption

and decryption public-key and private-key is used respectively [13]. Diffie-Hellman

invented the concept of public-key in 1976. It is shown in fig. 1.4.

Fig. 1.4: Asymmetric-key or Public-key Cryptography

The main idea involved in PKC is that it is easy to derive from but it would be

infeasible to derive from called trapdoor one-way function. RSA, ElGamal,

McEllice, Rabin, Elliptic Curve Cryptography (ECC) etc., are some examples of

PKC. It is further classified into three types viz., Integer Factorization Problem (IFP),

Discrete Logarithm Problem (DLP) and Sum of Subsets Problem (SSP). IFP is

defined as for a given positive integer 𝑛 , compute its decomposition into prime

numbers (unique up to reordering). IFP is the act of splitting into an integers

called factors which, when multiplied together, form the original integer. For

example, for the integer

8

 .

Its two prime factors are

(i) p = 3532461934402770121272604978198464368671197400976250236

 4930346877612125367943200058547956528088349

(ii) q = 92586995447833303334708584148005968773797585736421996073

 433034145576787281815213538140930474185467

But, for the given it is hard to find the factors and . The security of RSA algorithm

depends on integer factorization. DLP is applied to mathematical structures called

group. For a group element g and a number n, let

denotes the element obtained

by multiplying by itself n times, i.e., . The DLP is defined as given

an element 𝑔 in a finite group 𝐺 and another element ℎ 𝐺, find an integer 𝑥 such

that 𝑔𝑥 = ℎ. For example 5
x

 1 mod 19 is 9. ElGamal encryption is based on DLP

[14]. SSP is also called knapsack cryptosystem. It is an NP complete problem. It is

defined as for the given positive integer weights and

 for the same bits , find 𝑥 = {𝑥1, … . , 𝑥𝑛} . Merkle-

Hellman Knapsack cryptosystem is based on SSP. Even though, many PKC exist in

the literature, the two famous popular PKC algorithms RSA and ECC play a vital role

in mobile devices and they are explained in the next subsections.

1.4 Rivest Shamir Adleman Algorithm

RSA is an asymmetric cryptography algorithm. Asymmetric works on two different

keys i.e. public-key and private-key. It is based on the fact that it is very difficult to

9

factorize a large integer. The public-key has two numbers where one number is the

multiplication of two large prime numbers while another number is private-key and

it is derived from the same two prime numbers. Hence, anyone can factorize the

large number, the private-key is compromised. Therefore, the encryption strength is

totally depending on the key size and if double or triple the key size, the strength of

encryption increases exponentially [15]. In RSA, the key size can be 2048 or 4096

bits.

1.5 Elliptic Curve Cryptography

ECC is a modern public-key encryption technique and it is based on the mathematical

ECs. It is smaller, faster, and more efficient cryptographic keys, based on the

algebraic structures of the ECs over finite fields and on the difficulty of the Elliptic

Curve Discrete Logarithm Problem (ECDLP). It implements the major capabilities of

asymmetric cryptosystems such as encryption, key exchange and signatures. This is

considered as a natural modern successor of the RSA cryptosystem. Since, it uses

smaller keys and signatures than RSA for the same level of security also provides

very fast key generation, agreement and fast signatures [16].

This algorithm is used in the Secure Sockets Layer (SSL) standard for signing SSL

certificates with ECDSA instead of RSA. ECC keys are efficient compared to RSA

as RSA depends on multiplying two prime numbers to get a greater number is simple

and factoring large numbers to return to the original primes is difficult. The usual

ECC key size of 256-bits is equal to a 3072-bits RSA key, which is 10,000 times

efficient than a 2048-bits RSA key to remain safe and to be ahead of a hacker‟s

actions, RSA keys must be long and requires keys that are 2048-bits or longer, which

https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Rationale
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Rationale
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Rationale

10

makes the process slower. The ECC uses simpler, smaller keys with consuming less

energy to factor and convert more power to small mobile devices [17].

1.6 Mobile Computing

Mobile Computing is a technology that provides an environment that enables users to

transmit data from one device to another device without the use of any physical link

or cables. A computer or any wireless enabled device can transmit the data, voice and

video. Also, it gives more flexible for the users to move from one location to another

during the communication. Regardless of their place, it supports a wide variety of

devices which allows people to access data and information. The mobile computing

devices are mainly used in communication, education, directions, entertainment,

business, healthcare and natural hazards with the support of internet to provide

connectivity, social engagement and personalization. They are available in various

sizes, i.e., notebooks, tablets, laptops, eReaders, handheld gaming devices, wearable

devices and smartphones. The Wi-Fi (Wireless Fidelity) [18] is a wireless technology

which can allow an electronic device to exchange data over the internet through radio

waves. It is mainly available in institutions of higher learning, offices, restaurants,

schools, recreational facilities, some public areas, and homes. Fig. 1.5 shows the

connectivity of mobile devices.

Fig. 1.5: Mobile Connectivity

11

Programming languages are used for mobile system software. Operating System (OS)

functions to run the software components onto the hardware [19]. Middleware

components are used for deployment. Protocols and layers are used for transmission

and reception. The programming languages used for mobile computing applications

are viz., Java, J2SE, J2ME, JavaCard, J2EE, C, C++, Visual C++ and Visual Basic.

1.7 Operating Systems

Symbian OS, Window CE, Mac OS and Android OS are some of the OS [20] used in

mobile computing applications. It offers the user to run an application without

considering the hardware specifications and functionalities. They are used to schedule

multiple tasks in a system. It provides user application„s Graphical User Interface

(GUI), Voice User Interface (VUI) components, and phone Application Programming

Interface (API). It provides the device drivers for the keyboard, display, USB and

other devices. The threats and issues of mobile computing can be divided into two

categories such as general security issues and wireless security issues. The

information and data residing on mobile devices have much more security issues and

threats.

1.8 Mobile Communications

It refers to an infrastructure that ensures seamless and reliable communication among

wireless devices [21]. The mobile communication consists of communication devices

such as protocols, services, bandwidth and portals necessary to facilitate and support

the stated services. These devices are responsible for delivering a smooth

communication process. It can be classified into four categories such as fixed and

wired, fixed and wireless, mobile and wired and mobile and wireless. Mobile

hardware consists of mobile devices or device components that can be used to receive

12

or access the service of mobility (smart phones, laptops, portable PCs, tablet PCs, and

Personal Digital Assistants (PDA)). These devices are inbuilt with a receptor medium

that can send and receive signals.

Fig. 1.6: Mobile Device Hardware

These devices are capable of operating in full-duplex can send and receive signals at

the same time. They don't have to wait until one device has finished communicating

for the other device to initiate communications [22]. Fig. 1.6 shows the mobile device

hardware.

Mobile software is a program that runs on mobile hardware. This is designed to deal

capably with the characteristics and requirements of mobile applications. In other

words, it is the heart of the mobile systems, and also an essential component that

operates the mobile devices. Further, it provides portability which leads to wireless

communication. Fig. 1.7 shows the mobile device software. It is noted that mobile

devices are handheld devices. They have limited processing capability and less

memory. If the existing exponentiation operation in performing encryption and

decryption are used as it is, it consumes more time which will slow down the speed

of mobile devices. To speed up the process, AC is used.

13

Fig. 1.7: Mobile Device Software

1.9 Addition Chain

An AC [23] for a positive integer is a sequence,

such that each member after 𝑎0 is the sum of two earlier (not necessarily distinct)

ones. It is noted that if the value of 𝑛 is relatively small, the exact value of is

known. But, for large , it is known that 𝑙 𝑛 = log2 𝑛 + log2 𝑛 (1 + 𝜎 1)/

(log2 𝑛 log2(𝑛)). An AC has elements, with the

property that for all there exist and . An

optimal AC [24][25] is the one which has the shortest possible length denoted by

and it is a strictly increasing sequence as duplicate chain elements could be removed

to shorten the chain. For example, 1 - 2 - 3 - 6 - 12 - 13 is one of the optimal ACs for

 and .

In AC, there are two steps normally involved. They are addition and doubling steps

[26][27] i.e., to get the next number (intermediate number) in AC, any two previous

numbers are added together in addition step where as the current number is multiplied

by two in doubling steps. To generate the AC for given 𝑛, two types of algorithms are

normally used viz., deterministic and stochastic or bio-inspired. In deterministic

algorithms since everything is deterministic and the optimal AC may not be obtained

at all time. And also the length of AC is more for the integer 𝑛 some times. Binary

method, factor method, window method, sliding window method, Fibonacci method,

14

Lucas method, continued fraction method etc., are some examples of deterministic

algorithm. But, bio-inspired algorithms (BIAs) [28] are based on animal or birds

behavior and the optimal AC is not obtained by a single run and hence many more

runs are needed.

1.10 Scope of Research

As the usage of mobile devices is increasing exponentially, the sensitive or potential

information transmitted from one mobile to another should be protected. One of the

most convenient modes of transmissions but it is associated with many security risks

and the data can be intercepted while the transmissions are not being encrypted.

Furthermore, all devices are not equipped with built-in security software and the users

ignore the fact to install the security software. The common fact that the phones are

vulnerable to threats or the exploitation by the cybercriminals. The security issues can

be tackled by applying the cryptographic techniques using public-key algorithms to

generate keys for both encryption and decryption to protect the information and

maintain security from hackers. Due to the usage of keys, function codes and digital

signatures' are widely used and is becoming more and more acknowledged as one of

the best ways to secure data and applications both stores at rest and in motion

between devices. More and more people are now using a mobile device in either

personal or work related data. Today, the users were increasingly using unmanaged,

personal devices for accessing sensitive enterprise information's and also establishing

connections to the third party services beyond some security controls can leads to

sensitive data to possible attackers.

Mobile devices have lightweight and very less in size. They have some challenges and

certain limitations such as time, power battery power, memory size, processing speed,

15

screen size, resolution, etc. Providing security for mobile devices with limited power

is a difficult job. ECC are normally used to transfer the date securely. They take more

encryption and decryption time called operational time. If operational time is high, it

consumes more battery power which ultimately it degrades the performance of mobile

devices resulting in customer impatience and dissatisfaction. Thus, it is essential to

speed of the process i.e., reducing the computational time of operational process, AC

is used. There are many algorithms exist in the literature to generate the AC But, bio-

inspired algorithms (BIAs) [29] have been proposed to generate the ACs. Thus, the

objectives of the research is formulated as to generate the optimal ACs for the given

integer n using

(i) Particle Swarm Optimization (PSO)

(ii) Simplified Swarm Optimization (SSO)

(iii) Bacterial Foraging Optimization (BFO)

The said algorithms are incorporated into RSA and ECC and they used in android as

well as windows emulator and their performances are analyzed. They are explained in

the next subsections in detail.

1.11 Particle Swarm Optimization

It [30] is a population-based optimization algorithm inspired by the motion of bird

flocks and schooling fish and shares many similarities with evolutionary computation

techniques. The system is initialized with a population of random solutions, and the

search for the optimal solution is performed by updating generations. Unlike Genetic

Algorithm (GA), PSO has no evolution operators, such as crossover and mutation. It

has potential solutions, called particles, move in the problem space by following the

current optimum particles and computationally more efficient in terms of both speed

as well as memory requirements. It has become one of the most popular techniques

16

applied in various optimization problems, due to its ease and capability to find the

optimal or near-optimal solutions.

1.12 Simplified Swarm Optimization

SSO [31], is a population-based algorithm to compensate for the deficiencies of PSO

in solving discrete problems. This algorithm has recently been applied in many

research areas because of its simplicity, efficiency, and flexibility. In SSO, each

individual in the swarm, called a particle representing a solution, is encoded as a

finite-length string with a fitness value. This scheme improves the Update Mechanism

(UM), which is the core of any soft computing based methods in terms of

convergence speed, energy and security. The UM updates each particle to be a

compromise of those four sources, particularly a random movement, which is

different from the original PSO, maintains population diversity, and enhances the

capacity of escaping from a local optimum and achieved global optimum solution.

1.13 Bacterial Foraging Optimization

The concept of BFO was proposed by Kevin M. Passino [32][33]. It is a swarm

intelligence based algorithm inspired by the behavior of forging based on the E. coli

bacteria. It has four basic processes such as chemotaxis, swarming, reproduction and

elimination-dispersal. In the elimination-dispersal process, a constant probability of

elimination is assigned to all bacteria. The assignment is independent of bacteria‟s

ranking in the population. Therefore, a bacterium which can be near to an optimal

position may be replaced with one which is far away from the optimum solution, thus,

affecting the convergence speed. The proposed algorithm uses a non-uniform

probability distribution and it is implemented to replace the conventional methods.

17

The results shows the efficiency of the proposed algorithms in terms of convergence

time, power and security.

1.14 Chapter Organization

The thesis is organized into eight chapters. The detailed study related to introductory

concepts, types of cryptography, a brief introduction about RSA and ECC which are

mainly used in mobile devices, and an introduction about the AC were discussed in

chapter 1. It also discussed the introduction about the BIAs viz., PSO, SSO and BFO

taken for AC generation. Further, this chapter also addressed the objectives and scope

of the research clearly. Chapter 2 presents, various works related to mobile

computing, various works related to swarm based algorithms viz., PSO, SSO and

BFO. It also explains the works related to ACs.

The mathematical definitions of ACs, and need for EAs based ACs, brief introduction

about RSA, various mathematical preliminaries required for ECC, ECC arithmetic

and embedding the plaintext into EC points are discussed in chapter 3. It presents the

need for security and various parameters taken in the work. It also highlights the

comparative study of time taken for ET, DT, EP, DP and SE used in mobile

cryptographic algorithm with and without incorporation of RM and RA in RSA and

ECC respectively.

In chapter 4, the concepts of PSO, AC generation based on PSO are explained

numerically. It also explains the usefulness of AC-PSO and AC-ECC. A comparative

study between RSA, ECC and the proposed RM-RSA, RA-ECC, AC-PSO-RSA and

AC-PSO-ECC are made and the experimental results obtained from them are

analyzed.

18

The concepts used in SSO, reason for considering SSO for generating AC are present

in chapter 5 with numerical examples. Once, the SSO based ACs are generated for the

integers (encryption and decryption key for RSA, k[P] for ECC), they are

incorporated into the mobile cryptographic algorithms RSA and ECC taken in this

work. After implementing the said concepts, this chapter also analyzed the time taken

for the said five parameters in this thesis.

As the BFO concepts play a vital role in generating ACs, chapter 6 presents the

concept of BFO and the various processes used in it. The methodology used for

generating the ACs using BFO is also explained numerically. After implementing the

proposed methodology AC-BFO in RSA and ECC, the time taken for the said five

parameters are analyzed too. It also presents the AC for some hard exponents and the

comparative results obtained from the existing BIAs viz., GA, AIS, EP with the

proposed BFO based AC for some integers.

The overall comparison of the existing RSA, ECC, RM-RSA, RA-ECC and the

proposed AC-PSO-RSA, AC-PSO-ECC, AC- SSO-RSA, AC- SSO- ECC, AC- BFO-

RSA and AC-BFO-ECC methods are present in chapter 7. Finally, the thesis ends

with conclusion and future enhancements in chapter 8.

19

CHAPTER - II

REVIEW OF LITERATURE

2.1 Background

One of the basic principles used in mobile computing is broadcasting. It is radiated to

everyone within the prescribed limit. The information transmitted within the limit in

mobile devices must be protected. This is possible only by providing the security for

it so that ithe information passed through the communication channel could be

protected from various attack by the attacker. Thus, it is essential to take utmost care

to prevent the attack while the user roams through different networks with

heterogeneous security infrastructure. One way is to change the information in

different form i.e., non-meaningful form. In order to achieve is to use cryptographic

algorithms which are mainly used in mobile devices. Among them, RSA and ECC

public-key cryptographic algorithms play a vital role in performing security. The

basic building blocks of ECC is scalar point multiplication k[P] where k is a scalar

and P is a point on EC. Similarly, in RSA the encryption and decryption is of the form

x
e
 mod n where e is encryption / decryption key and x is plaintext/ciphertext.

Normally exponentiation operation takes more time than multiplication which takes

more time than addition and subtraction.

To reduce the time, exponentiations and multiplications are performed by RMs and

RAs respectively. To reduce it further AC is used. In order to generate the AC, the

concept BIAs like PSO, SSO and BFO are applied and their results are discussed.

Using them, the ACs for the exponent of RSA and k[P] of ECC are generated. The

encryption/decryption time and energy required for encryption/decryption [37] are

20

also computed and the performances of the cryptographic algorithms in mobile

devices are analyzed with and without the incorporation of AC.

2.2 Review of Works Related to Mobile Computing

Mavridis I. and Pangalos G.[34], discussed the operational, security issues of mobile

components in distributed environments and also gave the details about the

elimination of intrinsic problem in wireless networking using mobile agents. They

have implemented a healthcare paradigm, with security mechanisms. Erik Olson and

Woojin Yu [35] surveyed various symmetric-key algorithms viz., RC5, RC6, Twofish

and Triple-DES and their usage in mobile computing, specifically in the Palm Pilot,

which use the Motorola’s Dragon Ball-EZ processor. They illustrated that the

architecture used in the processor was similar to the 68K processor and it did not

provide the power and versatility of current processors.

Wendy Chou [36], surveyed the explosive growth in the usage of mobile and wireless

devices demands a new generation of Public-key Cryptography (PKC) schemes, and

the limitations on power, bandwidth to provide security in mobile devices, use of

ECC, its security, performance and also its applications. Limor Elbaz [37],

implemented PKC in security of wireless devices and the use of Public-key

Infrastructure (PKI) in applications of mobile phones and proved the Discretix Crypto

Cell implementation of cryptographic algorithms to enable wireless devices to

become PKI enabled cum efficient, lightweight and standard-compliant. Dharma P.

Agrawal et al. [38], discussed the technology in mobile computing users by

combining wireless networking and mobility which served anytime and anywhere

with of various new applications and also services. They also analyzed some security

issues and various threats and concluded that encryption played an important role for

secured communication in mobile computing environments.

21

Hanping Lufei and Weisong Shi [39], discussed the emergence of heterogeneous

devices, diverse networks and the difficulty in using a one-size-fits-all encryption

algorithm. They proposed an adaptive encryption protocol to choose a proper

encryption algorithm dynamically to enhance the security from the candidate

algorithms and minimized the time overhead. Abhishek Kumar Gupta [40], discussed

the need for information as a driving force for the incoming growth in web

technology, wireless communication and portable computing devices and also

explained the field of mobile computing (computing and communication) with aim of

providing seamless computing environment for mobile users.

S. Krishna Mohan Rao and Dr. A Venugopal Reddy [41] discussed the data

dissemination to access the data item quickly in mobile devices with minimum access

time so that the mobile clients saved the precious battery power while using resource-

limited Wireless Sensor Networks (WSN), with reliable and efficient security

mechanisms. Using two potential block ciphers, RC5 and AES-Rijindal discussed and

analyzed the suitability of the algorithm for resource-limited wireless network

security by M. Razvi Doomun and KMS Soyjaudah [42].

Kar and Banshidhar Majhi [43] proposed an efficient password security of Multi-

Party key exchange protocol based on Elliptic Curve Discrete Logarithm Problem

(ECDLP) and the protocols allowed a group of parties communicating over a public

network to establish a common secret-key called session-key and also built a protocol

for password authentication model, where group members were assumed to hold an

individual password rather than a common password with two one-way hash

functions to build the security level high. Mooseeop Kim et al. [44], proposed a

compact architecture for a cryptographic engine on a mobile platform which had very

stringent limitations with respect to the circuit area and the consuming power. It was

22

highly effective to implement the scalable RSA and unified SHA algorithm with a

minimum resource usage.

Bruno P.S. Rocha et al. [45] demonstrated a security service as a middleware to

dynamically change the security protocols used between two peers with variations on

wireless medium parameters, usage of system resources, hardware resources,

application-defined Quality of Service (QoS) metrics and desired data security levels.

Sathish Alampalayam Kumar [46] suggested a mobile agent based mobile computing

system, various types of security attacks and security solutions. Sameer Hasan et

al.[47] proposed a non-server (that is P2P) PKC architecture to secure the mobile

communications and implemented various security services needed for mobile

communication. They used NTRU algorithm for public-key cryptography in non-

server architecture and tested on real equipment, the solution security and potential

risks.

Rahat Afreen and S.C. Mehrotra [48] discussed the ECC and its proper

implementation to analyze in hardware as well as software platforms. Helena Rifa-

Pous and Jordi Herrera- Joancomarti [49] discussed the performance of different

cryptographic algorithms in PDAs and compared it with device’s costs in terms of

OS, screen, network interfaces to determine the overhead and the results were used to

estimate the costs of network security protocols design. Jagdish Bhatta and Lok

Prakash Pandey [50] proposed a software level cryptographic protocol

implementation to measure the energy level through the device’s serial port. They

found the proposed protocol proved better security and less consumption of energy

than the existing cryptographic protocols.

23

K. Sathish Kumar et al. [51] explained the mobile hand-held device in an efficient

way to deliver real time data to users and implemented an energy efficient

authentication protocol with a high level security with minimum energy consumption

for mobile devices. In 2012, Masoud Nosrati et al. [52] proposed an algorithm made

the data into unreadable text which could be decoded only with the associated key and

consumed less CPU time, memory, battery power and computation time in various

mobile devices with their OSs. Ravinder Singh Mann et al. [53] presented the

comparative analysis of ECC, AES and RSA algorithms experimentally with

parameters such as computation time and complexity of the algorithms and concluded

that ECC has more complexity in mobile devices.

Giripunje et al. [54] provided effective security solution using PKC implementation in

two parts: first part was designing API for ECC to generate the shared key for secure

communication and the second part dealt with a creation of web service which

distributed this key to validate the mobile user. Ameya Nayak [55] discussed the

growing android community, its malware attacks, security concerns, aid in serving as

the continuous challenges of identifying current, future vulnerabilities as well as

incorporating security strategies against them and this focus on mobile devices.

Srikanth Pullela [56] has proposed protocols for various applications like wireless

application protocol and mostly based on the public and private-key cryptography. V.

Gayoaso Martinez and L. Hernandez Encinas [57] have discussed the ECC was one of

the best options for protecting sensitive information. The latest version of the JAVA

platform was a cryptographic provider - SunEC which was implemented for EC

operations and protocols. They explained the applications for generation of key pairs,

perform key exchanges and produce digital signatures with EC in JAVA.

24

Muhammad Waseem Khan [58] explained the Short Message Service (SMS) which

was used in mobile services of GSM networks but this facility was not achieved

secure transmission of plaintext between different mobile phone devices. However,

SMS did not have its own built-in mechanism to secure the transmitted data because

security was not considered as a priority application for mobile devices. The existing

schemes provided a room for the secure SMS message communication. The effect of

each security scheme on mobile device’s performance was also observed.

Ram Ratan Ahirwal and Manoj Ahke [59] explained the Diffie-Hellman scheme as

one of the key exchanging cryptosystem and no messages were involved in this

scheme. Two different methods to encrypt and decrypt the message were proposed by

them. They pointed out that the second method support the system with more security

than the first method because the sender computed the exponentiation function

between the coordinates of the encryption algorithm and the receiver computed the

inverse of the exponentiation function between the coordinates of the key in the

decryption algorithm, While in the first method, the sender computed the

multiplication between the coordinates of the key in the encryption algorithm and the

receiver computed the multiplication between the coordinates of the key in decryption

algorithm and forward secrecy in HTTPS protocol.

Sathish Kumar et al. [60] have discussed the mobile hand-held devices which were

used in an efficient way to deliver real time data to the users in the battle field

military applications and the use of security features such as data confidentiality,

authentication etc., which were not readily offered by mobile environment. They

have proposed the implementation of energy efficient authentication protocol for

mobile devices. Hamed Khiabani et al. [61] explained the extensive deployment of

25

wireless networking, mobile, embedded devices and other pervasive computing

technologies that were prone to security threats for which nobody would be prepared

for them. Security and privacy were the main concerns in mobile computing which

could be observed from several perspectives including hardware, operating systems,

networks, databases, user interfaces, and applications.

Seema P. Nakhate and R.M. Goudar [62] have implemented a secured password

based mutual authentication protocol for client-server computing using ECC

framework which provided secure communication between client and server with the

help of user email-id and mobile phone authentication device for mobile handheld

device since it could be best suited for constrained resources such as computational

power, storage capacity. They were extremely limited especially devices like Mobile

phones, PDA’s, Palmtops and Smart cards. Vishnu V and Shobha R [63] discussed

the security in Wireless Sensor Networks (WSN). They have applied dynamic

election of Cluster Head (CH) mechanism and two evolutionary approaches SET-IBS

and SET-IBOOS, since it provided security in data transmission and reduced data

losses due to nodes failure, less residual energy selected in CH. It improved the

lifetime of network by increasing the time of FND (First Node to die).

Tanmoy Kumar Bishoi et al. [64] proposed an algorithm to encrypt the data using

symmetric-key encryption with variable length key size. In [65], Sujithra M et al.

explained the high performance computing techniques. They also implemented

cryptographic algorithms and tested in Local as well as Cloud environment. They

have revealed that storing mobile data in cloud increasing efficiently and AES

algorithm performed better when compared with other algorithms with respect to

mean processing time but the combination of MD5+ECC+AES algorithms qualify

26

better than Speed-Up ratio. Said Bouchkaren and Saiida Lazaar [66] discussed secure

data transmission through Internet. They have designed and implemented a new

secret-key cryptosystem due to a number of iterations of encryption and decryption of

data in blocks, using cellular automata and compared them with AES algorithm. Also

proved that the new algorithm resisted against statistical attacks, faster than AES-256,

achieved good confusion and diffusion tests.

2.3 Review of Works Related to PSO

Arbit and Ashwini Kumar [67], suggested Optimized ECC (O-ECC) to assist more

secure and improved protocol design with easy computation mathematically. In [68],

Ahmed Tariq Sadiq discussed the PSO. The benefit of mutation in PSO (MPSO) was

used as momentum and diversity tool in the population. Experimental results clearly

showed that the amount of recovered key of classical ciphers and fitness function

values were better than PSO. Ahmed A. Esmin and Germano Lambert-Torres [69]

have proposed a methodology which was used to determine the control variable

settings for real power loss minimization in the transmission system. It employed the

PSO algorithm for the optimal setting of Optimal Power Flow (OPF) based on Loss

Minimization (LM) function, tested on IEEE 14, 30, 118 Bus systems and the results

were compared.

G.Prakash and Dr.M.Kannan [70] discussed that the cryptographic smart cards were

used for most of the online transactions. They have designed an integrated approach

of cryptography and steganography which could be used for smart card security.

Initially, user’s confidential details were encrypted using the most secure ECC

technique and then the encrypted cipher was embedded into the users 'photographic

image using steganography named Optimized Modified Matrix Encoding (OMME)

algorithm. Cuevas et al. [71] proposed the swarm intelligence models with collective

27

behaviour in swarms of insects or animals called the social spider optimization for

solving optimization tasks. The outcome revealed a high performance for searching a

global optimum with several benchmark functions. Wilayat Khan et al. [72],

discussed the mobility which was one of the major features of wireless

communication systems and handheld devices form a major part of the systems. The

limited resources like battery, memory and computational power of these devices was

a bottle neck in the security of such devices was also discussed.

Rangit j. Bhosale et al. [73] proposed the Mobile Ad-hoc Networks (MANET) in

wireless technology, having features like dynamic topology and self-configuring

ability of nodes. Swapna B. Sasi and N. Sivanandam [74] compared and analyzed the

performance level with various parameters such as number of keys stored, battery

capacity, runtime. They also concluded that high storage and energy were required for

storing the keys. Dolly U. Jeswani et al. [75], discussed the cryptographic algorithms

which were the key factor of the security mechanisms used for data storage and

uninterrupted network transmissions. A PSO oriented cryptanalysis technique for

breaking the key used in AES algorithm was also introduced. Swarm Intelligence

based cryptanalysis provided a best and optimized solution. Chia-Ling Huang and

Wei-Chang Yeh [76] demonstrated to optimize the Reliability Redundancy Allocation

Problems (RRAP) for the series-parallel system, the complex (bridge) system and the

over speed protection of gas turbine system. To solve the RRAP, PSO algorithm was

proposed to improve the computation efficiency and found that it outperformed the

previously best-known solutions.

Ji Weidong and Zhu Songyu [77] discussed as PSO was the most common algorithms

for optimization because of its simple, convenient and good robustness. They have

proposed a new particle swarm algorithm as improved cut PSO algorithm based on

28

filtering mechanism (ELPSO) to improve its operational speed and more accurate. Jin

Yang et al. [78] presented the enhanced version of the network performance of WSNs

with mobile sinks (MWSNs) in an efficient routing strategy using PSO to build the

optimal routing paths. A novel greedy discrete particle swarm optimization with

memory (GMDPSO) was introduced to improve the greedy forwarding routing, a

greedy search strategy was designed to drive particles to find a better position quickly,

searching history was memorized to accelerate convergence. Simulation results

revealed that the new protocol significantly improved the robustness and adapted to

rapid topological changes with multiple mobile sinks, while efficiently reducing the

communication overhead and the energy consumption.

2.4 Review of Works Related to SSO

Joppe W et al. [79] have explored the deployment of ECC in practice by investigating

its usage in Bitcoin, SSH, TLS and the Austrian citizen card. They concluded that the

researchers and developers could identify the threats discovered from the attackers

and track the implementation problems to improve the security of the cryptographic

protocols and libraries. The commonly used Itoh-Tsujii algorithm (ITA) was used to

compute the inversion by an entirely sequential process consisting of multiplications

and squarings. Lijuan Li and Shuguo Li [80] proposed a modified ITA algorithm

(MITA) for inversion with polynomial basis (PB) which could reduce the required

clock cycles of ITA by enabling the parallel computation between part of

multiplications and squarings. Furthermore, they were generalized using ACs and to

find the optimal addition chains (OACs) leading to the fastest inverters with given

hardware resources.

29

An EC addition law is said to be complete if it correctly computes the sum

of any two points in the EC group. One of the main reasons for the increased

popularity of Edwards curves in the ECC community was that they could allow a

complete group law that was also relatively efficient (e.g., when compared to all

known addition laws on Edwards curves). Such complete addition formulas could

simplify the task of an ECC implementer and at the same time, it greatly reduced the

potential vulnerabilities of a cryptosystem. Unfortunately, until now, complete

addition laws that were relatively efficient have only been proposed on curves of

composited order and have thus been incompatible with all of the currently

standardized prime order curves.

Joost Renes, Craig Costello and Lejla Batina [81] have presented optimized addition

formulas to complete on every prime order short Weierstrass curve defined over a

field k with char(k)≠2,3char(k)≠2,3. Compared to their incomplete counterparts,

these formulas required a larger number of field additions, but interestingly it

required fewer field multiplications. Furthermore, they have discussed how these

formulas could be used to achieve secure, exception-free implementations on all of

the prime order curves in the NIST (and many other) standards. PSO could locate

the region of the optimum faster than EAs, but once in this region it progressed

slowly due to the fixed velocity stepsize [82]. Almost all variants of PSO tried to

solve the stagnation problem.

Bioinspired algorithms have been employed in situations where conventional

optimization techniques could not find a satisfactory solution. For example, when

the function to be optimized was discontinuous, nondifferentiable, and/or present

too many nonlinearly related parameters [83]. One of the most well-known

bioinspired algorithms used in optimization problems is PSO, which basically

30

consisted of a machine-learning technique loosely inspired by birds flocking in

search of food. More specifically, it had a number of particles that collectively move

on the search space in search of the global optimum [84].

Wei-Chang Yeh et al. [85] formulated a General Multi-level Redundancy Allocation

Problem (GMRAP) to break the restrictions and generalize the above problems.

Furthermore, a novel algorithm called SSO with Modular Search (SSO-MS) was

proposed to solve the GMRAP. Finally, the results obtained by SSO-MS were

compared with those obtained from GA and PSO. The comparative results showed

that the proposed SSO-MS was most promising among three algorithms and

demonstrated the effectiveness. Asymmetric cryptographic algorithms were a robust

technology used to reduce security threats in the transmission of messages on the

network. Nowadays, one of the disadvantage is the mathematical solutions because

they require a greater amount of calculation that led to the need for increased use of

computational resources. Fausto Meneses et al. [86] developed an algorithm to

optimize the RSA encryption algorithm and to improve the security, integrity and

availability of information. The results showed that the efficiency and functionality of

the RSA algorithm in terms of information security. Also, the parameter such as time,

memory, processor and network performance were analyzed while performing

encryption and decryption were lower than other RSA solutions, because calculations

was performed on the client and server.

Nigel P. Smart [87] overviewed about ECs with modern public-key systems. It

provided improved efficiency and bandwidth. Katz and Mazur [88], presented with

mathematical proof of recent developments in ECs with their moduli spaces and they

began with Jacobi’s “Fundamenta Nova” in 1829, and the modern theory was erected

by Eichler-Shimura, Igusa, and Deligne-Rapoport.

31

In [89], the authors explained the power of algebra as generalised arithmetic and it led

to a task in which others could explore other possible relations made with a similar

process. They insisted that those who designed and would inspire further investigation

and generalisation. The problem of finding the shortest AC for a given exponent is of

great relevance in cryptography, but it was also very difficult to solve since it is

an NP-hard problem. Stjepan Picek et al. [90] proposed a GA with solutions with new

crossover and mutation operators to minimize the length of the ACs corresponding to

a given exponent. The results were compared with respect to those generated by other

meta heuristics for instances of moderate size, values up to 2
127

−3. Furthermore, three

additional strategies were adopted and the results indicated that the proposed

approach was very promising alternative to deal with this problem.

Finding the shortest AC for a given exponent is a significant problem in cryptography.

Crossover and mutation operators of GA to minimize the length of the ACs

corresponding to a given exponent. Stjepan Picek et al. [91] developed a repair

strategy that gives significant enhanced performance and the results(values up to 2
255

-

21) were compared with respect to those generated by other metaheuristics for

exponents of moderate size and optimize the ACs with regards to the type of

operations as well as the number of instructions required for the implementation. AC

calculations play a critical role in determining the efficiency of cryptosystems based

on isogenies on elliptic curves. However, finding a minimal length AC is not easy. A

generalized version of the problem, in which one must find a chain that

simultaneously forms each of a sequence of values, is NP-complete. For the special

primes used in such cryptosystems, finding fast ACs for finite field arithmetic such as

inversion and square root is also not easy. Brian Koziel et al. [92] investigated that

the shape of smooth isogeny primes and proposed new methods to calculate fast ACs.

32

Furthermore, they have provided techniques to reduce the temporary register

consumption of large exponentials, applicable to both software and hardware

implementations utilizing ACs. Finally, the procedures were compared multiple

isogeny primes by the complexity of the ACs.

A novel graph based methods have been proposed [93] for generating the optimal AC

where the vertices of the graph representing the numbers used in the AC and edges

representing the movement from one number to another number in the AC. They

proposed two methods, Method 1 termed as GBAPAC which generated all possible

optimum ACs for the given integer n by considering the edge weight of all possible

numbers generated from every number in AC. Method 2 termed as GBMAC, not all

possible numbers were generated from the particular number in forming AC since

they are mutually exclusive. That is, only one number is generated by doubling step

and the rest of the numbers are generated using addition step.

A methodology [94] was presented for converting the inner dynamics of PSO

algorithm into complex network for improving the performance of evolutionary

computational techniques. It could be used for adaptive measures to manage and also

to put significant amount of information about the inner dynamics of PSO algorithm

into a complex network. A new BIA, namely Bird Swarm Algorithm (BSA), was

proposed [95] for solving optimisation problems. BSA was based on the swarm

intelligence extracted from the social behaviours and social interactions in bird

swarms. Birds mainly have three kinds of behaviours: foraging behaviour, vigilance

behaviour and flight behaviour. Birds might forage for food and escape from the

predators by the social interactions to obtain a high chance of survival. By modelling

these social behaviours, social interactions and the related swarm intelligence, four

search strategies associated with five simplified rules were formulated in BSA.

33

Simulations and comparisons based on eighteen benchmark problems demonstrated

the effectiveness, superiority and stability of BSA.

In order to improve the particle swarm optimizer (PSO) for solving complex

multimodal problems, an improved PSO with full information and mutation operator

(PSOFIM) was proposed in [96]. In PSOFIM, a novel mutation was adopted to

improve the history optimal position of particle (pbest) by disturbance in operation of

each dimension. Additionally, a full information strategy for each particle was

introduced to make the best use of each dimension of each particle to ensure the

information utility for swarm topology where each particle learnt from its

neighbourhood information for it optimal position to improve itself study ability,

whose strategies improve the swarm fly to the probability of the optimal solution. The

simulation experiment results of benchmark function tests showed that PSOFIM has

better performance than the basic PSO algorithm.

In supply chain management, reducing operating cost and satisfying customer demand

are the most important things. However, the products may be spoilt during the

delivery due to collisions, traffic accident, weather factor, theft and so on. Hence, the

authors [97] considered the deterioration effect in a three-stage supply chain

deteriorated network with a mathematical model. A novel AI algorithm named SSO

was adapted in the above problem to minimize the total operating cost. Extending

local search (ELS) was attached to enhance the performance of the original SSO. A

numerical example of network system was presented to compare the proposed

algorithm with GA and PSO. Results indicated that SSO-ELS provided a better

solution than its competitors.

34

Predictive analytics analyze the present and the historical information's and make

future predictions utilizing data mining or machine learning techniques. Predictive

models usually check for some patterns and relationships leading to certain

behaviours based on the dependent variables. In [98], the author proposed a

mechanism named analysis and prediction of application usage (APAU) in android

phones for providing recommendations to a smart phone user while selecting

applications of their interest like mail checking, messaging and making calls. APAU

mainly focused on identifying usage patterns and investigating the human behaviour

during application selections by extracting the generic behavioural patterns to predict

and provide useful set of recommendations. Simulated real-world interaction with a

device and test the features by using the tools included with microsoft emulator [99]

for windows 10 mobile. The emulator like a desktop application that emulated a

mobile device running windows 10. It provided a virtualized environment in which it

could be used to debug and test windows apps without a physical device. It also

provided an isolated environment for application prototypes. The emulator was

designed to provide comparable performance to an actual device. This could be used

to simulate real-world interaction with a device and test various features by using the

tools included in the Microsoft Emulator. In [100], the elementary theory with the

concepts of ECs, facts, cryptosystem and factorization were discussed.

In [101], analog based on ECs over finite fields of public-key cryptosystem was

discussed, which used the multiplicative group of a finite field. These EC

cryptosystems might be more secure, because the analog of the DLP on ECs are likely

to be harder than the classical DLP especially over GF(2"). Furthermore, the question

of primitive points on an EC modulo p, and gave a theorem on non smoothness of the

order of the cyclic subgroup generated by a global point. In [102], the authors

35

discussed about the use of ECs in cryptography and proposed an analogue of the

Diffie-Hellmann key exchange protocol which appeared to be immune from attacks of

the style of Western, Miller, and Adleman. With the current bounds for infeasible

attack, it was 20% faster than the Diffie-Hellmann scheme over GF(p). As

computational power increased, this disparity should get rapidly bigger.

2.5 Review of Works Related to BFO

 ECC [103] [104] pairings in pairing-based cryptosystems and computing isogenies in

the quantum-resistant isogeny-based cryptosystems was discussed. To get the next

number, there are two steps normally used in AC. They are addition and doubling

steps, i.e., to get the next number (intermediate number) in AC, any two previous

numbers are added together in addition step, whereas in the doubling step, the current

number is multiplied by two. To generate the AC for given n, two types of algorithms

are normally used viz., deterministic and stochastic or bio-inspired evolutionary

algorithms. Kevin M. Passino proposed it in 2000, and it has been widely accepted as

a new nature-inspired optimization algorithm. It is inspired by the social foraging

behavior of Escherichia Coli, i.e., a bacteria present in the human intestine and has

drawn many researcher's attention.

In [105], Hugo Volger presented several results on l(𝑛). In particular, they

determined l(𝑛) for all 𝑛 satisfying l(𝑛) ≤ 3 and proved ⌊𝑙𝑜𝑔 𝑛⌋ + 2 ≤ 𝑙(𝑛) for all 𝑛

satisfying 𝑠(𝑛) ≥ 3, where 𝑠(𝑛) is the extended sum of digits of 𝑛. In [106], Y.H. Tsai

and Y.H. Chin found some mathematical properties of the shortest-length AC for

certain integers whose binary patterns met some special forms; and the correctness of

these properties was proved. In [107], Bergeron et al. proposed generating the shortest

AC based on the continued fraction. They gave a general upper bound for the

36

complexity of continued fraction methods as a chosen strategy function. Thus, the

total number of operations required for the generation of an AC for all integers up to

𝑛 was shown to be (𝑛 𝑙𝑜𝑔2 𝑛𝛾𝑛), where 𝑛𝛾𝑛 is the complexity of computing the set of

choices corresponding to the strategy and proved an analogy of the Scholz-Brauer

conjecture.

F Bergeron et al. [108] generated a method of fast ACs for positive integer 𝑛, using

continued fraction up to 1000 number obtained with optimal length (with 29

exceptions optimal length plus one). A computer could generate a random sequence

of numbers [109], 𝑈0 , 𝑈1, 𝑈2, ...that behaves as if each number was independently

selected at random between and with the uniform distribution. A new algorithm of

optimal ACs was generated in [110] and also faster than the best-known methods. It

was applicable for single values and slower than the best-known methods. It did not

require any pre-computed values and it was considered suitable for finding optimal

ACs for point values.

Bounds on sums of ACs and properties of optimal ACs were discussed in [111]. The

study exhibited that the final step in an optimal AC of an even number always have

doubling, and also the sum of an optimal AC for an odd number 𝑛 is asymptotically

nearly 5𝑛2
. Noboru Kunihiro and Hirosuke Yamamoto [112] developed two

systematic methods viz., run-length encoding (RLE) and hybrid for generating short

AC. They proved that the hybrid method was far better than RLE with a reduced 8%

of the AC length.

Nareli Cruz - Cortéset et al. [113] explored the usage of a GA approach for the

problem of finding optimal (shortest) ACs for optimal field exponentiation

computations. The GA heuristic presented in this work was capable of finding almost

37

all the optimal ACs for any given fixed exponent 𝑒 with 𝑒 < 4096. They found that

GA strategy's percentage error was within 0.4% of the optimal for all cases

considered. In other words, for any given fixed exponent 𝑒with 𝑒< 4096, they found

that strategy was able to find the requested shortest AC in at least 99.6% of the cases.

N. Cruz- Cortés et al. [114] proposed an AIS to generate an optimal AC. In that

paper, they dealt with the optimal computation of finite field exponentiation, which

was a well-studied problem with many important applications in error-correcting

codes and cryptography.

Raveen R. Gounder et al. [115] discussed a new strategy for doubling-free (SPA-

resistant) short addition-subtraction chain(GRASC) for an arbitrary integer by using a

precise golden ratio. In this, 12% to 28% reduction was obtained in the average chain

length compared to other doubling-free AC methods. Alejandro Le´on - Javier et al.

[116] discussed the PSO algorithm to find the shortest ACs with different exponents.

Mohamed M. Abd. Eldayamet al. [117] proposed an algorithm for shorter AC based

on the window method with small width using 2’s complement. They proved that the

proposed algorithm was more efficient than the last result with a 20% minimum. S

Domínguez-Isidro and E Mezura-Montes et al. [118] proposed an algorithm using EP

to find the minimal length AC and the results obtained were more promising than the

other nature-inspired meta heuristic approaches but with a lower number of

evaluations per run. The proposed EP algorithm comprised the solution encoding with

suitable fitness function and initial population, a mutation operator, and the survivor

selection mechanism and EP did not use other operators such as crossover nor

additional mechanisms like parent selection in GAs. In [119], a note an AC was

presented. Niel Michael Clift [120] proved the perfect matches in the Scholz–Brauer

conjecture l(2n −1) = l(n) + n − 1 for new values. The minimal sequence of minimal

38

multiplications required for performing modular exponentiation using Brauer Chains'

concept by GA was discussed in [121].

K. Mani [122] proposed division based AC to generate the optimal ACs for the small

exponents, exactly matched with ACs generated by the latest methods. But, for some

large exponents, there was a very small increase in chain length (at most three).

P. Anuradha Kameswari and B. Ravitheja [123] derived a Lucas AC for any integer n

to obtain Lucas sequence (𝑎, 1) and also proved that the computation of 𝑉𝑛(𝑎, 1) using

this Lucas AC is based on 𝑉𝑥+𝑦(𝑎, 1) for 𝑥, 𝑦, 𝑥–𝑦in the Lucas AC. Stjepan Piceket et

al. [124] derived that the GA approach with an novel encoding using crossover and

mutation operators to minimize the length of the ACs with respect to a given

exponent. Aaron Hutchinson and Koray Karabina implemented algorithms [125], for

multidimensional differential ACs and applied these chains to ECC. This algorithm

has the unique key features using n dimension. With key efficiency cum security

features like uniformity, parallelized, and differential addition formulas were adopted

by allowing speed using precomputation cost and storage requirements.

Dustin Moody and Amadou Tall [126] derived minimal chains with low Hamming

weight using addition-subtraction chains with Lucas addition-subtraction using ℓ(𝑛)

the minimal length 𝑛, and proved that |ℓ−(2𝑛) − ℓ−(𝑛)| ≤ 1 for all integers 𝑛 of

Hamming weight ≤ 4 to have arrived a conclusion that minimal addition- subtraction

chains for low Hamming weight integers, with the consideration of odd integers. In

[127], the authors implemented a new parallel algorithm to obtain minimal AC for 𝑛.

The experimental studies on multicore systems revealed that this algorithm's run time

worked faster than the sequential one and obtained the maximum speed up of 2.5

times than the best known sequential algorithm.

39

Narendra Mohan [128] discussed in wireless sensor networks (WSNs) to enhance the

network lifetime and minimize the energy consumption in sink nodes contained

additional resources like long-range antenna, powerful batteries, large memory. This

should be achieved using Enhanced Emperor Penguin Optimization (EEPO)

algorithm. Bacteria foraging is one of the optimization and evolutionary algorithms.

Kevin M. Passino proposed it in 2000, and it has been widely accepted as a new

nature- inspired optimization algorithm.

2.6 Chapter Summary

From the above literature, it is understood that there is a need to develop enhanced

supportive method to protect from hackers. Moreover, the devices have limited

battery power, storage and have some security threats while transferring sensitive

information's through mobility as well as wireless devices like mobile devices. Hence,

the five parameters have been taken in this research viz., encryption, decryption time,

encryption, decryption power and security. This is possible only with AC. Even

though, too many methods exist in literature for generating AC it is found from the

literature that ACs were not generated by BIAs viz., PSO, SSO, BFO with

incorporation into RSA and ECC. These motivate me to select these methods to

generate the ACs and they are discussed in the subsequent chapters.

40

CHAPTER – III

OVERVIEW OF ADDITION CHAIN AND MOBILE

CRYPTOGRAPHY

3.1 Background

Mobile computing works on the principle of broadcasting so that the information is

radiated to everyone within the wave range to increase the security threats and cyber

attacks replicated quickly and easily. Thus, care must be taken in handling for those

types of attacks to provide information security while the user roams through different

networks with heterogeneous security infrastructure. For that several cryptographic

techniques are employed in mobile devices. Among them, the public-key

cryptographic algorithms like RSA and ECC play a vital role in performing security.

The basic building blocks of ECC are scalar point multiplication k[P] where k is a

scalar and P is a point on EC. Similarly, in RSA, the encryption and decryption is of

the form 𝑥 𝑒𝑚𝑜𝑑 𝑛 where e is encryption/decryption key. Normally, exponentiation

operation takes more time than multiplication which takes more time than addition

and subtraction. To reduce the time, exponentiations and multiplications are

performed by repeated multiplications (RMs) and repeated additions (RAs)

respectively. To reduce the time further AC is used.

3.2 Mathematical Definitions of Addition Chain

This section describes some important definition of AC.

3.2.1 Definition (Addition Chain)

An AC for a positive integer n is a sequence, 1 = 𝑎0 ≤ 𝑎1 ≤ ⋯ ≤ 𝑎𝑟 = 𝑛 such

that each member after 𝑎0 is the sum of two earlier (not necessarily distinct) ones.

The number 𝑙(𝑛) is called the length of the AC. It is noted that if the value of 𝑛 is

41

relatively small, the exact value of 𝑙(𝑛) is known. But, for large n, it is known that

 𝑙 𝑛 = log2 𝑛 + log2 𝑛 (1 + 𝜎 1)/ log2(log2 𝑛) ... (3.1)

An AC also defined as a finite sequence of positive integers called elements,

 𝑙 = 𝑎0 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑟 = 𝑒 ... (3.2)

with the property that for all i > 0 there exist 𝑎𝑗 , 𝑘 with

 𝑎𝑖 = 𝑎𝑗 + 𝑎𝑘 𝑎𝑛𝑑 𝑟 ≥ 𝑖 ≥ 𝑗 ≥ 𝑘 ≥ 0 ... (3.3)

3.2.2 Definition (Optimal AC)

An optimal AC is the one which has the shortest possible length denoted by l(n) and

it is a strictly increasing sequence as duplicate chain elements could be removed to

shorten the chain. For example, 1–2–3–6–12-13 is one of the optimal chains for 13,

and its 𝑙(13) = 5.

The construction of each element of an AC [24] is called a step.

For an AC, 𝑙 = 𝑎0 ≤ 𝑎1 ≤ ⋯ ≤ 𝑎𝑟 = 𝑛, the following steps are involved.

Doubling step: 𝑎𝑖 = 2𝑎𝑖−1, 𝑖 > 0.

Non-doubling step: 𝑎𝑖 = 𝑎𝑗 + 𝑎𝑘 , 𝑖 > 𝑗 > 𝑘 ≥ 0.

The steps of the form 𝑎𝑖 = 2𝑎𝑗 , 𝑗 ≤ 𝑖 − 2 are defined as non-doubling steps.

Big step: λ(𝑎𝑖) = 𝜆(𝑎𝑖−1) + 1.

Small step: λ(𝑎𝑖) = 𝜆(𝑎𝑖−1).

Thus, length of the AC, 𝑙(𝑛) can be split into two components as 𝑙(𝑛) = 𝜆(𝑛) + 𝛿(𝑛)

From the above, it is understood that the first step is always a doubling step. A

doubling step is always a star step and never a small step. A doubling step must be

followed by a star step. If step 𝑖 is not a small step, then step 𝑖 + 𝑙 is either a small

step or a star step, or both. It is noted that, not all doubling steps are big steps but big

42

steps are always doubling. Because 𝑙 (𝑛) is fixed for a given positive integer, finding

optimal ACs amounts to minimizing the number of small steps across all possible

chains. It is noted that for the given integer 𝑛, more number of ACs are possible.

But, for finding at least one of the shortest AC is an NP-hard problem. For example,

n=170, all possible optimum ACs are listed in fig. 3.1.

1-2-3-5-10-20-40-45-85-170 1-2-3-5-10-20-40-80-85-170 1-2-3-5-10-20-40-80-90-170

1-2-3-5-10-20-40-80-160-170 1-2-4-5-10-20-40-45-85-170 1-2-4-5-10-20-40-80-85-170

1-2-4-5-10-20-40-80-90-170 1-2-4-5-10-20-40-80-160-170 1-2-4-6-10-20-40-80-90-170

1-2-4-6-10-20-40-80-160-170 1-2-4-8-9-17-34-51-85-170 1-2-4-8-9-17-34-68-85-170

1-2-4-8-9-17-34-68-102-170 1-2-4-8-9-17-34-68-136-170 1-2-4-8-10-20-40-80-90-170

1-2-4-8-10-20-40-80-160-170 1-2-4-8-16-17-34-51-85-170 1-2-4-8-16-17-34-68-85-170

1-2-4-8-16-17-34-68-102-170 1-2-4-8-16-17-34-68-136-170 1-2-4-8-16-18-34-68-102-170

1-2-4-8-16-18-34-68-136-170 1-2-4-8-16-32-34-68-102-170 1-2-4-8-16-32-34-68-136-170

 Fig. 3.1: Optimum Addition Chains for n = 170

3.2.3 Definition (Brauer Chain)

A Brauer chain is an AC that always uses the previous value for the next one. In

other words, it is a sequence of integers 𝑎0, 𝑎1, … , 𝑎𝑟 with 𝑎0 = 1, 𝑎𝑟 = 𝑛, such that

𝑎𝑖 = 𝑎𝑗 + 𝑎𝑖−1 , i.e., a Brauer chain is an AC in which every member after the first

is the sum of the immediately preceding element and a previous element (possibly

the same element). For example, 1 − 2 − 3 − 6 − 7 − 13 is a Brauer chain for 13.

3.3 Need for Evolutionary Algorithms Based Addition Chains

To generate the ACs for an integer n, two algorithms are broadly used. They are

deterministic and evolutionary algorithms (EAs). In deterministic algorithms, since

everything is deterministic and the optimal AC may not be obtained at all time.

Binary method, factor method, window method, sliding window method, Fibonacci

method, Lucas method, continuous fraction method etc., are some examples of

43

deterministic algorithm. EAs or Bio-Inspired Algorithm (BIAs) are inspired by the

idea of either natural evolution or social behavior of insects or birds [29][30]. The

optimal ACs produced by EAs are not obtained by a single run. Many more runs are

needed to obtain optimal AC which will eventually take more run. Some examples of

EAs are Genetic Algorithm (GA), Artificial Immune System (AIS), Ant Colony

Optimization (ACO), Particle Swarm Optimization (PSO), Simplified Swarm

optimization (SSO). Bacteria Foraging Optimization (BFO) etc. In this thesis, three

popular BIAs viz., PSO, SSO and BFO algorithm concepts are taken and they are

discussed in next chapters.

3.4 Reason for Taking RSA and ECC

The usage of mobile devices are growing rapidly is the urge of today's scenario. The

applications of smart mobile phones are also increasing which lead to many security

issues too. The security features can be taken and applied on these devices. Mobile

devices deal with heterogeneity of networks and also in ubiquitous intelligent

environment with embedded computers everywhere and reliable services to the user

in an easy way. Even though, they have more offerings to the user, lot of challenges

like disconnection, low/ high bandwidth variability, low power and resources, security

risks, wide variety of devices with different capabilities and to fit more functionality

into single, smaller devices. There are many famed cryptography procedures

used for mobile security [36][37]. The public-key algorithms like RSA and ECC are

taken in this thesis. They are used for digital data security in a great extend. RSA is a

procedure of computational simplicity whereas ECC provides greater security. Large

prime numbers are used as security keys in these methods.

44

ECC gets popularity due to its shorter key length which produces same security as in

RSA with larger key length. It is noted that if a cryptographic algorithm takes more

time in performing operational time (where the operational time includes both

encryption and decryption) which causes customer impatience and dissatisfaction.

Thus, to minimize the operational time in RSA and ECC, AC is incorporated in

performing 𝑥𝑒𝑚𝑜𝑑 𝑛 𝑜f RSA and k[P] of ECC where the AC is generated using PSO,

SSO and BFO.

3.4.1 RSA

RSA is one of the most used asymmetric cryptographic algorithms. It was developed in

1977 by Ronald-Alan Rivest, Adi Shamir, and Leonard Adleman. RSA is a popular

algorithm because it is a simple, easy to understand and to implement. The only

disadvantage is, it works slower than symmetric block ciphers. Most systems use RSA

for the generation of digital signature and distribution of the symmetric keys. Recently

key lengths of 4096 bits have been used in most system. Developers have organized

into RSA Laboratories to define the syntax of different structures related to public-key

cryptography and private-keys. These guidelines are de facto standards and are known

as Public-Key Cryptography Standards (PKCS) RSA algorithm consists of three

components viz., key generation, performing encryption and performing decryption

and they are shown in algorithms 3.1, 3.2 and 3.3 respectively. It is noted that in 𝑅𝑆𝐴,

Alice (𝐴) is receiver and Bob (𝐵) is sender.

 Algorithm 3.1: RSA Cryptosystem: RSA-Key generation

Each entity creates an RSA public-key and a corresponding private-key.

Each entity A should do the following:

45

 Generate two large random (and distinct) primes p and q, each roughly the

same size.

 Compute 𝑛 = 𝑝 x 𝑞 and ɸ (𝑛) = (𝑝 − 1) x (𝑞 − 1).

 Select a random integer 𝑒, 1 < 𝑒 < ɸ(𝑛) such that 𝑔𝑐𝑑 (𝑒, ɸ(𝑛)) = 1.

 Use the extended Euclidean algorithm to compute the unique integer

𝑑, 1 < 𝑑 < ɸ(𝑛), such that 𝑒 ∗ 𝑑 ≡ 1 (𝑚𝑜𝑑 𝜑(𝑛)).

 A’s public-key is (n, e).

 A’s private-key is (n, d).

Algorithm 3.2: RSA- Encryption

𝐵 encrypts a message 𝑚 for 𝐴, which 𝐴 decrypts.

 Encryption: 𝐵 should do the following:

 Obtain 𝐴’𝑠 authentic public-key (𝑛, 𝑒).

 Represent the message 𝑚 as an integer m in the interval {0, 1, 2, 𝑛 − 1}.

 Compute the ciphertext 𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑛

 Send the ciphertext 𝑐 to 𝐴.
[

 __

Algorithm 3.3: RSA -Decryption

To recover plaintext 𝑚 from 𝑐, 𝐴 should do the following:

 Use the private-key 𝑑 to recover 𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑛.
 --- ---

 RSA Cryptosystem – An Example

Let Entity 𝐴 chooses the two primes 𝑝 = 2357, 𝑞 = 2551. Then n is computed as

𝑛 = 𝑝𝑞 = 6012707 and ɸ(𝑛) = (𝑝 − 1) (𝑞 − 1) = 6007800 . Let 𝐴 chooses

𝑒 = 3674911 because 𝑔𝑐𝑑(3674911, 6007800) = 1. Using Extended Euclidean

algorithm 𝑑 is computed as 𝑑 = 422191 . Now, 𝐴’𝑠 public-key is the pair (𝑛 =

 6012707; 𝑒 = 3674911) , while 𝐴’𝑠 private-key is (𝑛 = 6012707; 𝑑 =

 422191). Suppose 𝐵 wants to send the message 𝑚 = 5234673 to 𝐴. Then, 𝐵 uses

an algorithm for modular exponentiation to compute

46

𝑐 = 𝑚𝑒𝑚𝑜𝑑 𝑛 = 52346733674911 𝑚𝑜𝑑 6012707 = 3650502 and sends this to 𝐴 .

After receiving c, c is decrypted by 𝐴 by computing

𝑐𝑑 𝑚𝑜𝑑 𝑛 = 3650502422191 𝑚𝑜𝑑 6012707 = 5234673 = 𝑚.

3.5 Mathematical Preliminaries of ECC

The following mathematical preliminaries are required to understand the concept of

EC and ECC.

Theorem 3.5.1: Primitive Root

Let 𝑝 be a prime number. Then there exists an element 𝐺 ∈ 𝐹𝑝
∗ whose powers give

every element of 𝐹𝑝
∗, (i.e.) 𝐹𝑝

∗ = {1, 𝐺, 𝐺2 , 𝐺3, … , 𝐺𝑝−2} ... (3.4)

Elements with this property are called primitive roots of 𝐹𝑝 or generators of 𝐹𝑝
∗. They

are the elements of 𝐹𝑝
∗ having order 𝑝 − 1.

Theorem 3.5.2: Euler’s Criterion

Let 𝑝 be an odd prime and 𝑎 be an integer. Then

 𝑎
(𝑝 −1)

2 ≡ 1 𝑚𝑜𝑑 𝑝 ... (3.5)

3.5.3 Definition (Discrete Logarithm Problem)

Let G be the primitive root for finite field 𝐹𝑝 and let be a nonzero element of .

The DLP is the problem of finding an exponent such that

 ... (3.6)

The number is called as DLP of .

3.5.4 Definition (Quadratic Residue)

Let be an odd prime and . If the quadratic congruence

has a solution, then is said to be quadratic residue of 𝑝 i.e., 𝑄𝑅(p), otherwise is

called quadratic- non residue of i.e., Q NR(p).

47

3.6 Need for ECC

ECC is an approach to public-key cryptography based on the algebraic structure of

EC over finite fields. It allows smaller keys compared to non – EC cryptography to

provide equivalent security. ECC, an alternative technique to RSA, is a powerful

cryptography approach. It generates the security between key pairs for public-key

encryption by using the mathematics of EC. ECC creates keys that are more difficult

and mathematically crack. For this reason, it also makes sense to adopt ECC to

maintain high levels of both performance and security. ECC provides the same

security as RSA, with the fewer number of bits i.e., keys that are bits or longer

used in RSA makes the process slow and it also means that key size is important.

Size is a serious advantage of ECC, because it translates into more power for smaller,

mobile devices. In devices with limited memory and computing power, ECC could

become alternatives to other public-key systems. In a world where mobile devices

must do more and more cryptography with less computational power, ECC offers

high security with faster, shorter keys compared to RSA.

3.7 Concepts of ECC

It is noted that the security of RSA algorithm depends on large key values viz.,

or bits. To provide the same security, ECC is normally used with smaller key

length i.e., a 256 bits ECC is considered to be equivalent to 3072 bits RSA. The

concept of ECC was developed by two mathematicians Neal Koblitz and V.S. Miller

independently [99-104]. It is based on algebraic structure of over the finite field

and has the two variables. The cubic EC is of the form

 ... (3.7)

48

 together with point at infinity 𝑂. The point of O is similar to the number 0 as in

normal addition where and define the shape of the curve and is a modulo 𝑝

prime for fixing the range of the curve. Also 𝑎 and 𝑏 are selected in such a way that it

must satisfy the Weistrass equation

EC over the finite field is the set of points satisfying the

Weiestrass equation. ECC is frequently discussed in the context of the RSA

cryptographic algorithm. RSA achieves one-way encryption of things like emails,

data, and software using prime factorization. EC is shortly denoted as 𝐸𝑝 (𝑎, 𝑏).

3.7.1 Generation of EC Points

To generate the points of EC, consider with and value is

taken as and prime . To generate the points of E31(1,1), first find QR(31).

Then, generate the points for EC. Table 3.1 shows the EC points for the curve

Table 3.1: Generations of Points for

x x
3
+x+1 b=x

3
+x+1mod31 b

15
mod31 y

2
ϵQ31 E31(1,1) Points

0 1 1 1 Y (0,1) (0,30)

1 3 3 30 N -

2 11 11 30 N -

3 31 0 0 N -

4 69 7 1 Y (4,10),(4,21)

5 131 7 1 Y (5,10),(5,21)

6 223 6 30 N -

7 351 10 1 Y (7,14),(7,17)

8 521 25 1 Y (8,5),(8,26)

9 739 26 25 N -

10 1011 19 1 Y (10,9),(10,22)

11 1343 10 1 Y (11,14),(11,17)

49

12 1741 5 1 Y (12,6),(12,25)

13 2211 10 1 Y (13,14),(13,17)

14 2759 0 0 N --

15 3391 12 30 N -

16 4113 21 25 N -

17 4931 2 1 Y (17,8),(17,23)

18 5851 23 14 N -

19 6879 28 1 Y (19,11),(19,20)

20 8021 23 14 N -

21 9283 14 1 Y (21,13),(21,18)

22 10671 7 1 Y (22,10),(22,21)

23 12191 8 1 Y (23,15),(23,16)

24 13849 23 14 N -

25 15651 27 24 N -

26 17603 26 25 N -

27 19711 26 25 N -

28 21981 2 1 Y (28,8),(28,23)

29 24419 22 30 N -

30 27031 30 16 N -

The said points are plotted and the E31(1,1) is obtained. It is shown in fig. 3.2.

Fig. 3.2: Graph Showing E31(1,1)

3.7.2 Elliptic Curve Arithmetic

 Addition of Points

Let and be the two points on EC. The sum of two points

, where is calculated as follows.

50

Case 1:

 If , then

 ... (3.8)

 ... (3.9)

 ... (3.10)

Case 2:

 If , then

 ... (3.11)

 ... (3. 12)

 ... (3.13)

 Scalar point Multiplication

The central operation of ECC is the scalar point multiplication , where is an

integer and is a point on EC The 𝑘 𝑃 is the result of adding 𝑃 to itself times,

where 1 ≤ 𝑘 ≤ 𝑜𝑟𝑑(𝑃).

3.8 Embedding the Plaintext

In order to embed the plaintext into points, the value of should be

Let , is the individual characters of To embed , it must

satisfy the condition of the . Once the condition is checked

using . where should be embed into points and

they are used for encryption and decryption with any one of the cryptosystems viz.,

RSA, ECC, ElGamal etc.

For example, let is taken as and is taken as .

The points for are generated and they are shown in appendix To

51

embed , let or worst case 0, then 𝑚 + 1 30 < 539039. Suppose,

ASCII encoding is used for each 𝑚𝑖 ∈ 𝑀 then 𝐴𝑆𝐶(𝑚𝑖) =

{75,65,78,78,65,08,66,65,66, 65}. To embed i.e., , in , it

satisfies (𝑚𝑖 + 1)30 < 539039 . Further, , . For example, to

embed , then . From EC points, when .

Thus, =). Other , are embedded in EC points

in this manner and they are shown in table 3.2.

Table 3.2: Embedding into

i MI ASC(mi) (ASC(mi)+1)30<p xi=mi(30)+j

1 K 75 2280 2250 (2252,226996)

2 A 65 1980 1950 (1950, 246296)

3 N 78 2370 2340 (2340,153325)

4 N 78 2370 2340 (2340,153325)

5 A 65 1980 1950 (1950,292743)

6 N 78 2370 2340 (2340,385714)

7 blank 08 270 240 (240,102442)

8 B 66 2010 1980 (1981,74914)

9 A 65 1980 1950 (1950,246296)

10 B 66 2010 1980 (1981,48955)

11 A 65 1980 1950 (1950,282743)

3.9 ElGamal Public-key Cryptosystem with EC

In order to understand the EC with any cryptosystem, ElGamal proposed a public-key

cryptosystem which is based on the Discrete Logarithm Problem (DLP) in .

This system is presented in ElGamal Public-key Cryptosystem in . Let be a

52

prime such that the DLP in is reliable, and let be a primitive

element. Let , and define

𝐾 = { 𝑝, 𝛼, 𝑎, 𝛽 : 𝛽 ≡ 𝛼𝑎(𝑚𝑜𝑑 𝑝) … (3.14)

The values of and are the public-key, and 𝛼 is the private-key. For

, and for a (secret) random number , define

 … (3.15)

where and … (3.16)

 For and ϵ , define

 … (3.17)

3.9.1 ElGamal Encryption with EC - An Example

 Let the primitive element and . Now,

 … (3.18)

 Let and are ciphertexts and the decryption operation is

 … (3.19)

Suppose, Alice wishes to send the message (here x) , say to

Bob. Now, Alice encrypts the character one by one. Now,

 To encrypt , from table 3.2, it is

embedded into as Using eqn. (3.15) and eqn. (3.16)

𝑦1 and 𝑦2 are computed as

 y2 = (2252, 226996) + 3(533025, 57088)

 = (2252, 226996) + (77065, 118651) = (80907, 94455)

 To decrypt), Bob must do as

53

 …

(3.20)

 =

 =

 =

 =

Similar computations can also be performed for other characters too to encrypt and

decrypt them using ElGamal with .

3.10 Diffie Helman Key Exchange Protocol with ECC

1. 𝐴 selects an integer 𝑛𝐴 less than 𝑛 . This is 𝐴 's private-key. 𝐴 then generates a

public-key 𝑃𝐴 = 𝑛𝐴 𝑋 𝐺; the public-key is a point 𝐸𝑞(𝑎, 𝑏).

2. 𝐵 similarly selects a private-key 𝑛𝐵 and computes a public-key 𝑃𝐵.

3. 𝐴 generates the secret key 𝑘 = 𝑛𝐴 𝑋 𝑃𝐵 . 𝐵 generates the secret key 𝑘 = 𝑛𝐵 𝑋 𝑃𝐴.

 Global Public Elements

𝐸𝑞 𝑎, 𝑏 EC parameters a, b and q, where q is a prime or an integer of

the form 2𝑚 .

G point on EC whose order is large value n

 User A Key Generation

Select private 𝑛𝐴 𝑛𝐴 < 𝑛

Calculate public 𝑃𝐴 𝑃𝐴 = 𝑛𝐴 𝑋 𝐺

 User B Key Generation

Select private 𝑛𝐵 𝑛𝐵 < 𝑛

Calculate public 𝑃𝐴 𝑃𝐵 = 𝑛𝐵 𝑋 𝐺

 Calculation of Secret Key by User A

𝑘 = 𝑛𝐴 𝑋 𝑃𝐵

 Calculation of Secret Key by User B

 𝑘 = 𝑛𝐵 𝑋 𝑃𝐴

54

The two calculations in step 3 produce the same result because

𝑛𝐴 𝑋 𝑃𝐵 = 𝑛𝐴 𝑋 𝑛𝐵 𝑋 𝐺 = 𝑛𝐵𝑋 𝑛𝐴 𝑋 𝐺 = 𝑛𝐵 𝑋 𝑃𝐴

3.11 Mobile Operating Systems

In order to functioning the mobile devices MOS are normally used. This section

describes an overview of MOS.

Smart phones are not only used to make calls but also used for other operations like

video calls, multimedia messages, take pictures, play media files, browse World Wide

Web (WWW), run web applications i.e., multiple tasks run on the device. Powerful OS

has become an essential part and available in various forms depends on the

sophistications of the device level [53]. It can do two things viz., (i) managing the

resources (camera, speaker, keyboard, and screen) (ii) providing different interfaces

(user of the device and also several devices with networks) .

3.12 Constraints of MOS

The special constraints of MOS are:

 Severely limited energy stored in a tiny battery

 Limited memory space

 Limited screen size

 Miniature keyboard

 Limited processing power

 Limited battery power

 Limited and fluctuating bandwidth of the wireless medium and

 Real-time data streaming etc.

The MOS is designed to run on mobile devices such as mobile phones, smartphones,

tablet and other handheld devices. Even though, different types of MOS include Apple

55

iOS, Google Android, BlackBerry OS, Nokia’s Symbian and Microsoft’s Windows

Phone OS exist. In this thesis, Android OS and Windows OS will be taken for the test

cases because they are based on Linux OS and Microsoft OS respectively.

3.13 Android and Window OS Emulators

In this thesis, to implement the proposed algorithms only Android (A) and Windows

(W) emulators are taken. Android is one of the popular OSs developed by Google. It is

based on the Linux environment. It is a free open source software. Samsung, HTC,

Micromax, Motorola and many other top manufacturers are using android in their

devices. Windows OS is proprietary mobile OS developed by Microsoft for

Smartphone. It was very popular among people who were used to it. Windows OS

provide colourful and user-friendly interface so currently in demand all over the world.

Fig. 3.3 shows the GUI of Android and Windows emulators.

Fig. 3.3: GUI - Android/ Windows Emulator Launching

3.14 Need for Security

Mobile security or mobile device security is becoming more notable within modern

technology. The personal information is that it can be found on smart phone

nowadays. More users are using smart phones to communicate, organize their

56

schedule and their lives. There is a need for confidentiality, integrity, authenticity,

authorization and non-repudiation in database security. Among the additional

challenges for multi-location database is the constant mobility of its users and the

portability of handheld devices and wireless links. Some security issues due to mobile

users, hackers and viruses are vulnerable nowadays. In order to secure database,

authentication mechanism is provided, control access scheme and strong encryption

technique must be implemented [57].

Public-key algorithms like RSA and ECC have become much more widely utilised

than symmetric key systems. ECC gets creditability because the same security level is

produced by the shorter key length. This algorithm's lack of performance causes

customer discontent. Because it requires more operational time (where operational

time includes time taken for encryption and decryption) which leads to customer’s

impatience and dissatisfaction.

In RSA, for encryption and decryption, exponentiation operation is involved which

takes more time. To reduce the time, exponentiation operation is performed by RMs.

For example, to compute 𝑥5, the proposed RMs are 𝑥 ∗ 𝑥 ∗ 𝑥 ∗ 𝑥 ∗ 𝑥. In general, for

performing 𝑥𝑒 , (𝑒 − 1) multiplications are required. Similarly, in ECC, to perform

𝑘[𝑃], (𝑘 − 1) RAs are required which take somewhat less time when it is compared

with classical multiplications used in ECC.

3.15 Experimental Set up

Two different types of mobile emulators A and W are used in this work. The T-

Engine A emulator and W emulator 6.1.4 are used to set up the A and W - OS mobile

infrastructure respectively. The User Interface (UI) is designed using Visual C++ to

upload files for A and W emulators. UI and emulator executions are carried out on a

57

Windows 8.1 64-bits Intel i5 2.4 GHz processor-4GB RAM computer. To load and

execute various encryption algorithms, each emulator is individually used. In order to

test the proposed algorithms, the experiments are not stopped until either 500

iterations or it reaches optimal AC and the maximum swarm size is taken as 180.

3.16 Parameters Taken in the Work

There are five parameters mainly used in mobile emulators viz., Encryption Time

(ET), Decryption Time (DT), Encryption Power (EP), Decryption Power (DP) and

Security (SE). ET and DT are the time taken for converting M into C and vice versa

respectively. It includes the time taken for all arithmetic computation of key

generation and encoding of M. Without compromising the security, a good

cryptography algorithm should be able to encrypt the data more quickly. In measuring

the quality of a cryptography algoithm, this DT parameter gets equal priority to the

ET. Shorter DT refers to the quality of cryptography algorithm is high.

The energy consumed by encoding and encrypting M into C and C into M is called EP

and vice versa EP and DP respectively. Mobile devices are battery-powered devices

that enable greater mobility with careful consumption of power. Without

compromising security strength, a successful cryptography algorithm should be

capable of processing with acceptable power consumption.

Producing the security is an another target of cryptography algorithms. Without using

a lot of computing resources, the best cryptography algorithm can provide high

security. The cryptography algorithm should operate with greater power-awareness,

especially in the architecture of mobile devices. With the assistance of key sizes, key

revocations and procedural complexity, security strength can be measured

58

mathematically. Security strength can be calculated using certain crypt-analysis

methods that can use different attacks to attempt to breach security. The ultimate goal

of an ideal cryptography algorithm is to achieve higher security with less operational

time and energy consumption. The security level produced by the existing and the

proposed algorithms are measured by All Block Ciphers (ABC) Universal Hackman

tool which uses dictionary attack.

3.17 Results and Discussion

The regular RSA and ECC, RM-RSA and RA-ECC are implemented using VC++.

The results obtained are tabulated. Tables 3.3 to 3.12 show the time taken for ET, DT,

EP, DP and SE with and without using RM and RA in RSA and ECC respectively

with A and W emulators. Their corresponding graphical representation of said tables

are shown in fig. 3.4 to 3.13.

Table 3.3: Encryption Time (mS) using Android Emulator

File Size

(MB)
ET-RSA-A ET-ECC-A ET-RM-RSA-A ET-RA- ECC-A

1 1660 2447 1227 1820

2 3237 4790 2377 3555

4 6494 9553 4788 7173

8 13689 20179 10077 15130

16 27426 40415 20199 30326

Total 52506 77384 38668 58004

Avg. 10501.2 15476.8 7733.6 11600.8

59

 Fig. 3.4: Graph Showing Encryption Time using Android Emulator

 ET-RSA-A is 1.474 times faster than ET-ECC-A

 ET-RM-RSA-A is 1.500 times faster than ET-RA- ECC-A

 ET-RM-RSA-A is 1.358 times faster than ET-RSA-A

 ET-RA- ECC-A is 1.334 times faster than ET-ECC-A

Table 3.4: Decryption Time (mS) using Android Emulator

File Size

(MB)
DT-RSA-A DT-ECC-A DT-RM-RSA-A DT-RA- ECC-A

1 1616 2330 1205 1789

2 3193 4519 2352 3519

4 6490 9209 4776 7171

8 13645 19375 10066 15082

16 27399 38936 20193 30294

Total 52343 74369 38592 57855

Avg. 10468.6 14873.8 7718.4 11571

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 4 8 16 Total Avg.

ENC.
TIME (mS)

FILE SIZE(MB)

ET-RSA-A

ET-ECC-A

ET-RM-RSA-A

ET-RA-ECC-A

60

Fig. 3.5: Graph Showing Decryption Time using Android Emulator

 DT-RSA-A is 1.421 times faster than DT-ECC-A

 DT-RM-RSA-A is 1.499 times faster than DT-RA- ECC-A

 DT-RM-RSA-A is 1.356 times faster than DT-RSA-A

 DT-RA- ECC-A is 1.285 times faster than DT-ECC-A

Table 3.5: Encryption Power (mW) using Android Emulator

File Size

(MB)
EP-RSA-A EP-ECC-A EP-RM-RSA-A EP-RA- ECC-A

1 554 817 421 613

2 1102 1621 806 1197

4 2171 3208 1612 2410

8 4569 6731 3364 5042

16 9156 13510 6735 10134

Total 17552 25887 12938 19396

Avg. 3510.4 5177.4 2587.6 3879.2

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 8 16 Total Avg.

Dec. Power
(mW)

File Size (MB)

DT-RSA-A

DT-ECC-A

DT-RM-RSA-A

DT-RA-ECC-A

61

Fig. 3.6: Graph Showing Encryption Power (mW) using Android Emulator

 EP-RSA-A is 1.475 times less than EP-ECC-A

 EP-RM-RSA-A is 1.499 times less than EP-RA- ECC-A

 EP-RM-RSA-A is 1.357 times less than EP-RSA-A

 EP-RA- ECC-A is 1.335 times less than EP-ECC-A

Table 3.6: Decryption Power using Android Emulator

File Size

(MB)
DP-RSA-A DP-ECC-A DP-RM-RSA-A DP-RA- ECC-A

1 562 815 411 602

2 1081 1506 802 1178

4 2175 3072 1608 2417

8 4548 6463 3357 5035

16 9148 12995 6743 10109

Total 17514 24851 12921 19341

Avg. 3502.8 4970.2 2584.2 3868.2

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Enc.Power
(mW)

File Size(MB)

EP-RSA-A

EP-ECC-A

EP-RM-RSA-A

EP-RA-ECC-A

62

Fig. 3.7: Graph Showing Decryption Power using Android Emulator

 DP-RSA-A is 1.419 times less than DP-ECC-A

 DP-RM-RSA-A is 1.497 times less than DP-RA- ECC-A

 DP-RM-RSA-A is 1.355 times less than DP-RSA-A

 DP-RA- ECC-A is 1.285 times less than DP-ECC-A

Table 3.7: Security (%) using Android Emulator

File Size

(MB)
SE-RSA-A SE-ECC-A SE-RM-RSA-A SE-RA- ECC-A

1 89 93 92 94

2 88 89 89 92

4 87 88 88 90

8 85 88 87 90

16 85 86 87 89

Avg. 86.8 88.8 88.6 91

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Dec.Power (mW)

File Size (MB)

DP-RSA-A

DP-ECC-A

DP-RM-RSA-A

DP-RA-ECC-A

63

Fig. 3.8: Graph Showing Security using Android Emulator

 SE-ECC-A is 1.023 times more than SE-RSA-A

 SE-RA- ECC-A is 1.027 times more than SE-RM-RSA-A

 SE-RM-RSA-A is 1.021 times more than SE-RSA-A

 SE-RA- ECC-A is 1.025 times more than SE-ECC-A

Table 3.8: Encryption Time (mS) using Windows Emulator

File Size

(MB)
ET-RSA-W ET-ECC-W ET-RM-RSA-W ET-RA- ECC-W

1
1654 2441 1204 1728

2
3233 4748 2378 3362

4
6490 9559 4775 6753

8
13670 20174 10082 14252

16
27432 40443 20214 28603

Total
52479 77365 38653 54698

Avg.
10495.8 15473 7730.6 10939.6

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 Avg.

Security
(%)

File Size(MB)

SE-RSA-A

SE-ECC-A

SE-RM-RSA-A

SE-RA-ECC-A

64

Fig. 3.9: Graph Showing Encryption Time using Windows Emulator

 ET-RSA-W is 1.474 times faster than ET-ECC-W

 ET-RM-RSA-W is 1.415 times faster than ET-RA-ECC-W

 ET-RM-RSA-W is 1.358 times faster than ET-RSA-W

 ET-RA- ECC-W is 1.414 times faster than ET-ECC-W

Table 3.9: Decryption Time using (mS) Windows Emulator

File Size

(MB)
DT-RSA-W DT-ECC-W DT-RM-RSA-W DT-RA- ECC-W

1
1616 2322 1205 1708

2
3184 4530 2366 3336

4
6496 9212 4778 6755

8
13657 19396 10050 14240

16
27401 38958 20210 28571

Total
52354 74418 38609 54610

Avg.
10470.8 14883.6 7721.8 10922

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 4 8 16 Total Avg.

Enc. Time

(mS)

File Size (MB)

ET-RSA-W

ET-ECC-W

ET-RM-RSA-W

ET-RA-ECC-W

65

Fig. 3.10: Graph Showing Decryption Time using Windows Emulator

 DT-RSA-W is 1.421 times faster than DT-ECC-W

 DT-RM-RSA-W is 1.414 times faster than DT-RA-ECC-W

 DT-RM-RSA-W is 1.356 times faster than DT-RSA-W

 DT-RA-ECC-W is 1.363 times faster than DT-ECC-W

Table 3.10: Encryption Power (mW) using Windows Emulator

File Size

(MB)
EP-RSA-W EP-ECC-W EP-RM-RSA-W EP-RA- ECC-W

1 571 840 421 592

2 1100 1582 796 1146

4 2179 3228 1604 2263

8 4577 6750 3361 4765

16 9165 13496 6738 9559

Total 17592 25896 12920 18325

Avg. 3518.4 5179.2 2584 3665

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 8 16 Total Avg.

Dec.Time
(mS)

File Size (MB)

DT-RSA-W

DT-ECC-W

DT-RM-RSA-W

DT-RA-ECC-W

66

Fig. 3.11: Graph Showing Encryption Power using Windows Emulator

 EP-RSA-W is 1.362 times less than EP-ECC-W

 EP-RM-RSA-W is 1.413 times less than EP-RA- ECC-W

 EP-RM-RSA-W is 1.362 times less than EP-RSA-W

 EP-RA- ECC-W is 1.413 times less than EP-ECC-W

Table 3.11: Decryption Power (mW) using Windows Emulator

File Size

(MB)
DP-RSA-W DP-ECC-W DP-RM-RSA-W DP-RA- ECC-W

1
541 785 415 584

2
1086 1536 805 1140

4
2192 3088 1604 2275

8
4579 6496 3368 4761

16
9133 12997 6742 9529

Total
17531 24902 12934 18289

Avg.
3506.2 4980.4 2586.8 3657.8

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Enc. Power
(mW)

File Size(MB)

EP-RSA-W

EP-ECC-W

EP-RM-RSA-W

EP-RA-ECC-W

67

Fig. 3.12: Graph Showing Decryption Power using Windows Emulator

 DP-RSA-W is 1.420 times less than DP-ECC-W

 DP-RM-RSA-W is 1.414 times less than DP-RA- ECC-W

 DP-RM-RSA-W is 1.355 times less than DP-RSA-W

 DP-RA- ECC-W is 1.362 times less than DP-ECC-W

Table 3.12: Security (%) using Windows Emulator

File Size

(MB)
SE-RSA-W SE-ECC-W SE-RM-RSA-W SE-RA- ECC-W

1
91 92 92 94

2
88 89 89 92

4
86 89 88 91

8
86 88 88 89

16
85 87 87 89

Avg.
87.2 89 88.8 91

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Dec.Power

(mW)

File Size (MB)

DP-RSA-W

DP-ECC-W

DP-RM-RSA-W

DP-RA-ECC-W

68

Fig. 3.13: Graph Showing Security using Windows Emulator

 SE-ECC-W is 1.021 times more than SE-RSA-W

 SE-RA- ECC-W is 1.025 times more than SE-RM-RSA-W

 SE-RA- ECC-W is 1.022 times more than SE-ECC-W

 SE-RM-RSA-W is 1.018 times more than SE-RSA-W

[

3.18 Chapter Summary

The concepts and mathematical preliminaries used in RSA, ECC, RM-RSA and RA-

ECC are discussed elaborately in this chapter. From the experimental results, it is

observed that ECC takes more time than RSA for both operational time and power

consumption. This is because lot of computations like generation of points for EC,

addition of points in performing k[P] are involved in ECC. Normally, regular RSA

and ECC takes more time. To reduce the operational time, the conventional RMs and

RAs are used in RSA and ECC respectively. To reduce the operational time further, in

both cryptographic algorithms which are used in mobile devices, ACs are

incorporated. To generate the AC for the given integer, the BIAs viz., PSO, SSO and

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 Avg.

Security
(%)

File Size (MB)

SE-RSA-W

SE-ECC-W

SE-RM-RSA-W

SE-RA-ECC-W

69

BFO are taken in this thesis. If the energy required for the same gets reduced, the

operational time too will come down which ultimately increases the life-time of the

battery. They are discussed in the upcoming chapters.

70

CHAPTER - IV

GENERATION OF ADDITION CHAIN USING PARTICLE

SWARM OPTIMIZATION

4.1 Background

On mobile or handheld computers, security is the key concern since the internet

community can do its job anywhere at any time. To encrypt information on mobile

devices, various cryptographic algorithms such as RSA, ECC etc., can be used today.

But, they take some battery power, OS, memory size, processing speed, screen size,

resolution, etc. Providing security for mobile devices with limited power and

increasing the operational speed are difficult job. In order to have the security,

cryptographic algorithms are being used. To minimize the operational time, the

computation involved in encryption and decryption operations should be eased. Even

though, many methods exist in literature to reduce the said time, ACs are more

predominant one. This is because, it reduces the number of multiplications in RSA

and the number of additions in ECC.

There are several methods exist in literature to generate the ACs for the given integer,

the bio-inspired or Evolutionary Algorithms (EA) are taken in this work. The term

computer intelligence or computational intelligence frequently used to refer to EAs.

EAs are inspired by the idea of either natural evolution or social behaviour of insects,

birds, animals etc. In this chapter, ACs are generated using PSO termed as AC-PSO

and they are used in RSA and ECC with two different emulators for performing

encryption and decryption operations where the said cryptosystems are used in mobile

devices. They are used in encryption and decryption phases of RSA and ECC. Also,

71

the time taken for the said phases and the power consumption for the same are also

evaluated.

4.2 Need for PSO Algorithm

PSO algorithm is a computational method that optimizes the solution by iteratively

trying to improve the candidate solution. In PSO, each individual (particle) xi is

moving with some velocity through the search space which is the essence of PSO. As

a PSO, individual moves through the search space, it has some inertia and so it tends

to maintain its velocity. However, its velocity can change due to a couple of different

factors viz., (i) it remembers its best position in the past, and it would like to change

its velocity to return that position. Also, in PSO, an individual travels through the

search space and its position in the search spaces changes from one generation to the

next. However, the individual remembers its performance from past generations, and

it remembers the search space location at which it is obtained its best performance in

the past (ii) An individual knows the best position of its neighbours at the current

generation. It requires the definition of neighbourhood size and it requires that all of

the neighbours communicate with each other about their performance of the

optimization problem [30]. It has no evolution operators.

It is noted that in AC, the first two numbers in AC is always 1 and 2, i.e., 1-2. From 2,

there are 2 numbers viz., 3 and 4. Since there are two numbers, the search space also

consists of two numbers. On the other hand, if the current number is 10, the search

space consists of 10 numbers starting from 1 to 10 where the next number after 10 is

obtained either using addition step or doubling step depending on the velocity. Since

the velocity determines the neighbour or next number, the optimal AC is determined

based on it. Since, finding optimal AC is an NP-hard, it is possible only using PSO.

72

An AC is said to be an optimal, its length should be minimum and also the time taken

for encryption and decryption and the power consumption for the above said

operations are less.

4.3 Concepts Used in PSO

In computational science, PSO is a computational method that optimizes a problem by

iteratively trying to improve a candidate solution with regard to a given measure of

quality. It is a population-based optimization technique inspired by the motion of bird

flocks and schooling fish. In PSO, all the birds do not know where food is but they

know how they in each iteration. In PSO, each member of the population is called

particle and the population is called swarm. PSO shares many similarities with

evolutionary computation techniques. The system is initialized with a population of

random solutions, and the search for the optimal solution is performed by updating

generations. PSO has no evolution operators, such as crossover and mutation. In PSO,

the potential solutions, called particles, move in the problem space by following the

current optimum particles. It is computationally more efficient in terms of both speed

and memory requirements.

Dr. Eberhart and Dr. Kennedy [32][33] proposed PSO in 1995 on the basis of flocking

birds' social activity and fish schooling. It is a meta-heuristic algorithm. With a

population of multiple random solutions, it is initialised. The effects are refined for

the best outcome by iterations and by tiding generations it acquires an optimal

solution. Although, a group of birds in an area are looking for food, their initial

locations are random. The birds initially do not know the location of the food. But

after a set of movements, which are iterations, they get closer to the food. Following

the direction of the bird that is closest to food is the fastest way to reach food. All

particles are modified on the basis of the two best values after each iteration. The first

73

best value called 𝑝𝐵𝑒𝑠𝑡 is already obtained by a particle. The second-best value called

𝑔𝑏𝑒𝑠𝑡 is the best value achieved for the fitness function tracked by the particle swarm

optimizer by the general population.

When the entire group is searching for a certain target, for one individual, the

individual in the current optimal position of the group and the optimal position that it

has reached is often referenced to adjust the next search. Eberhart and

Kennedy modified the model of this simulated group interaction and designed it as a

general method to solve optimization problems; they called it as PSO algorithm.

There is no parameter controlling the progression of pbest values in general flow of

PSO. In other words, there exists the need of a parameter regenerating the insufficient

particles that cannot improve their individual best position value (pbest). On the other

hand, velocity and position concepts perform the update of particles as much as

employed. Since each parameter tries to modify the position by using the information

viz., (i) the current position, (ii) the current velocity (iii) the distance between the

current position and pbest (iv) the distance between the current position and 𝑔𝑏𝑒𝑠𝑡 .

The new velocity and new positions are calculated using eqn. (4.1) and eqn. (4.2)

respectively.

∀ⅈ ∈ 1, 𝑛 : 𝑉𝑖 = 𝑉𝑖 + 𝑐1 × 𝛾1 × 𝑃𝑏𝑖 − 𝑃𝑖 + 𝑐2 × 𝛾2 × 𝐺𝑏𝑖 − 𝑃𝑖 ... (4.1)

where

𝑛 : number of maximum permitted iterations

𝑉 : velocity of the particle

𝑃𝑏: pbest (Particle best)

𝑃: present position

𝐺𝑏: gbest (Global best)

74

 𝑐1𝑖 , 𝑐2 : learning factors or accelerating factors related to 𝑝𝑏𝑒𝑠𝑡 , and 𝑔𝑏𝑒𝑠𝑡

respectively. In general 𝑐1 = 𝑐2 selected from the range of 0 to 1.

𝛾1,𝛾2: random numbers between 0 to 1.

 𝑃 = 𝑃 + 𝑉 ... (4.2)

PSO emulates the interaction between members to share information. It has been

applied to numerous areas in optimization and in combination with other existing

algorithms. This method performs the search of the optimal solution through agents,

referred to as particles, whose trajectories are adjusted by a stochastic and a

deterministic component. Each particle is influenced by its ‘best’ achieved position

and the group ‘best’ position, but tends to move randomly. A particle 𝑖 is defined by

its position vector, 𝑥𝑖 , and its velocity vector, 𝑉𝑖 . Every iteration, each particle

changes its position according to the new velocity as in eqn.(4.1) where

𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 denote the best particle position and best group position and the

parameters 𝑐1, 𝑐2, 𝑟1 and 𝑟2 are respectively inertia weight, two positive constants

and two random parameters within [0, 1]. Usually maximum and minimum velocity

values are also defined and initially the particles are distributed randomly to

encourage the search in all possible locations.

One of the advantages of PSO over other derivative-free methods is the reduced

number of parameters to tune and constraints acceptance. A 2D representation of one

particle, ‘𝑖’, movement between two positions. It can be observed how the particle best

position, 𝑝𝑏𝑒𝑠𝑡 , and the group best position, 𝑔𝑏𝑒𝑠𝑡 , influence the velocity of the

particle at the next iteration. Nevertheless, the stochastic properties of the algorithm

allow for solution variability to guarantee the solution space exploitation. Fig. 4.1

shows the movement of the particle ‘𝑖’ in the solution space during

75

iterations 𝑘 and 𝑘 + 1. The evolution of the particle movement is influenced by the

particle best position, 𝑝𝑏𝑒𝑠𝑡 , and the group best position, 𝑔𝑏𝑒𝑠 𝑡 .

Fig. 4.1: Movement of the particle ‘𝒊’ in the solution space during

iterations 𝒌 and 𝒌 + 𝟏.

In this work, particle represents the AC. Velocity Vi represents the number to be

added to the current number xi so that the next number xi+1 is obtained. Vi is obtained

eqn. (4.2). It corresponds to either by using addition step or doubling step used in AC

depending on the random number chosen. Further, fitness function is taken as length

of AC denoted as l(xi+1). In this work, c1=c2=0.7 where 0.7 is a uniform random

number. Similarly, other random numbers r1, r2 are taken from RAND corporation

table. When RSA and ECC are considered, the key is taken very large, and AC of the

key is generated according to the proposed AC- PSO. The steps involved in PSO are

shown in Pseudo code 4.1.

__

Pseudo Code 4.1: PSO

a. Initialize all particles

b. Calculate fitness value for each particle

c. If the calculated fitness value 𝑝𝑏𝑒𝑠𝑡 is better than existing 𝑝𝑏𝑒𝑠𝑡 , then update

𝑝𝑏𝑒𝑠𝑡

d. Find the particle with best fitness value 𝑔𝑏𝑒𝑠𝑡 from overall population

76

e. For all particles, calculate velocity and position based on the equations and

update values

f. Repeat from Step b until maximum number of iterations achieved or optimum

result achieved.

4.4 Proposed AC-PSO Methodology

In order to generate the AC for the given integer 𝑛, it is noted that the first number is

always . Let it be 𝑥1. The next number in AC is . Let it be 𝑥2. This is because 2 is

obtained from either by using addition or doubling step of 𝑥1. Let it be 𝑥2. From ,

the number 3 (2 + 1 = 3) is obtained by using addition step and is obtained either

addition step (3 + 1) or doubling step 2(2) = 4) . Thus 𝑥3 ∈ {3,4} and the

corresponding 𝐴𝐶 is 1 − 2 − 3 or 1 − 2 − 4 and its 𝑙(𝑥3) = 2. From , the numbers

4(3 + 1), 5(3 + 2) 𝑎𝑛𝑑 6(3 + 3) are obtained and the ACs are (i) 1 − 2 − 3 − 4 (ii)

1 − 2 − 3 − 5 (iii) 1 − 2 − 3 − 5 with length 4. But, the AC is not considered as

optimal length AC because the AC for has been generated previously with length .

Similarly, from , the next numbers 5 (1 − 2 − 4 − 5) , 6 (1 − 2 − 4 − 6) and

8 (1,2,4,8). Let it be 𝑥4. Thus, 𝑥4 ∈ {5,6,8}.

To generate, the next number from 𝑥4 = 5, they are 6(5 + 1), 7(5 + 2), 8(5 + 3)

with their lengths , i.e., the ACs are 1 − 2 − 3 − 5 − 6, 1 − 2 − 3 − 5 − 7, 1 − 2 −

3 − 5 − 8, 1 − 2 − 3 − 5 − 10. But, the AC 1 – 2 – 3 – 5 - 6 is not considered due to

increasing its length. The numbers in 𝑥𝑖 , 𝑖 = 5, … , 𝑛 − 1 are generated in this manner

and they are shown fig. 4.1. From fig. 4.1, it is observed that in general if the number

is say 𝑖, if i ∈ 𝑥𝑛 , then 𝑙 𝑖 = 𝑛 − 1. For example, if 𝑖 = 76, then 𝑙(76) = 9 − 1 =

8. This concept is very useful in generating the AC for any number n. Fig. 4.2

shows the numbers occur in 𝑃𝑖
𝑡ℎ position.

77

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8

Fig. 4.2: Numbers Occur in 𝑷𝒊 , i = 1, 2, ...8 Without Duplication

4.5 Generation of AC-PSO - An Example

In order to generate the AC using PSO, let 𝑤 = 0.9, 𝑐1 = 𝑐2 = 1.5 and 𝑟1, 𝑟2 are

taken from RAND table, and fitness function is 𝑙(𝑥𝑖), 𝑖 = 0,1,2,3, …. . For example,

to generate AC for the integer 20 i.e., 𝑛 = 20. Since 𝑥1 = 1; 𝑥2 = 2. To generate

the numbers for 𝑥3 , Now 𝑣𝑘 , 𝑘 = 3,4 are computed using eqn. (4.1) as

78

𝑣33 = 0.9(0.1116) + 1.5 (0.4363) (3 − 2) + 1.5 (0.1875) (3 − 2) = 1.0361
= ⌊1.0361 ⌋ = 1

𝑥4 = 3 + 1 = 4 ∈ 𝑥4. Thus, the AC for is 1 − 2 − 3 − 5 and fitness value 𝑙(5) = 3.

𝑣34 = 0.9(0.0613) + 1.5(0.7674)(4 − 2) + 1.5(0.2632)(4 − 2) = 3.14697

= ⌊ 3.14697⌋ = 3

 𝑥4 = 4 + 3 = 7 ∈ 𝑥4 .

Thus, the AC for is 1 − 2 − 4 − 7 and fitness value 𝑙(7) = 3.

Table 4.1 shows the generation of AC for the integer 𝑛 = 10 based on PSO. Only for

illustration purpose small integer is taken. But, when RSA and ECC are considered,

the key is taken very large, and AC of the key is generated according to the proposed

PSO-AC.

Table 4.1: Generation of AC for n=10 Using AC-PSO

𝒊 𝒙𝒊 𝑨𝑪(𝒙ᵢ) 𝒍[𝑨𝑪(𝒙𝒊)]
Random Nos Taken for Computation

of 𝑽ᵢ using

eqn. (4.1)

𝑰𝑽ᵢ

= {⌊𝑽𝒊⌋. ⌈𝑽𝒊⌉} 𝒓𝒗𝒊 𝒓𝟏 𝒓𝟐

3
3 1-2-3 2 0.1116 0.4363 0.1875 1.0361 {1,2}

4 1-2-4 2 0.1116 0.4363 0.1875 1.9719 {1,2}

4

5 1-2-3-5 3 0.0613 0.7674 0.2632 3.1290 {3,4}

5 1-2-4-5 3 0.0613 0.7674 0.2632 1.6018 {1,2}

6 1-2-4-6 3 0.0613 0.7674 0.2632 3.1287 {3,4}

5
7 1-2-3-5-7 4 0.0751 0.0010 0.4312 1.3642 {1,2}

10 1-2-4-6-10 4 0.0751 0.0010 0.4312 2.6608 {2,3}

5
7 1-2-3-5-7 4 0.0418 0.1922 0.8917 3.2893 {3,4}

10 1-2-4-6-10 4 0.0418 0.1922 0.8917 6.5412 {6,7}

.

.

.

79

[[[[4.6 Proposed AC-PSO Based Cryptosystem

In order to speed up the operational time, reducing the power consumption and higher

security, ACs for the given integer are generated based on PSO and they are

incorporated into RSA and ECC.

4.6.1 AC-PSO-RSA and AC-PSO-ECC Methodology

The main operations of RSA are encryption/decryption which consists of modular

exponentiation (ME). They involve raising to the powers. This process involves many

multiplications (M) which make it time consuming. For example, to compute 𝑥𝑒

based on the process of adding and multiplying, it needs (𝑒 − 1) RMs of 𝑥. Similarly,

in ECC, scalar point multiplication 𝑘[𝑃] mod m, where 𝑃 is a point on EC, 𝑘 is an

arbitrary integer, and 𝑚 is a modulus which plays a crucial role. To perform 𝑘[𝑃], i.e.,

(𝑘 − 1) RAs of 𝑃 are needed.

 Proposed AC-PSO-RSA Methodology - An Example

 In order to fully understand the topic under study using RSA, discussed in section

3.4.1 of Chapter III. Let 𝑝 = 13, 𝑞 = 17 and 𝑒 = 11 , then 𝑛 = 13 17 =

𝒙𝒊+𝟏

= 𝒙𝒊 + 𝒗𝒊
Is 𝒙𝒊+𝟏 ∈ 𝒑𝒊 [𝒙𝒊+𝟏] 𝑨𝑪(𝒙𝒊+𝟏)

𝑨𝑪(𝒙𝒊+𝟏)

Is valid 𝒍[𝑨𝑪 𝒙𝒊+𝟏]

𝒙𝒐𝒍𝒅
𝒊+𝟏

ɸ
𝒃𝒆𝒔𝒕
𝒊+𝟏

𝒈𝒃𝒆𝒔𝒕
𝒊+𝟏

{4,5}

{5,6}

4∉{5,6,8}

5ϵ{5,6,8}

5ϵ{5,6,8}

6ϵ{5,6,8}

-

1-2-3-5

1-2-4-5

1-2-4-6

-

Y

Y

Y

-

3

3

3

-

3

4

4

-

5

5

6

-

5

5

6

{8,9}

{6,7}

{9,10}

8∉{7,9,10,12,16}

9ϵ{7,9,10,12,16}

6∉{7,9,10,12,16}

7ϵ{7,9,10,12,16}

9∉{7,9,10,12,16}

10ϵ{7,9,10,12,16}

-

1-2-3-5-9

-

1-2-4-5-7

1-2-4-6-9

1-2-4-6-10

-

N

-

Y

N

Y

-

-

-

4

-

4

-

-

-

5

-

6

-

-

-

7

-

10

-

-

-

7

-

10

{8,10}

{12,13}

8∉{11,13,14,15,16,17}1

0∉{11,13,14,15,17,19}

12∉{11,13,14,15,17,18}

13ϵ{11,13,14,15,16,18}

-

-

-

1-2-4-6-10-13

-

-

-

N

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

80

 221, 𝑝 − 1 𝑞 − 1 = 12 16 = 192. Then using extended Euclidean algorithm d

is computed as 𝑑 = 133. To encrypt, i.e., 𝐶 = 𝑀11mod 187, which requires 10

RMs. However, if the AC-PSO is used, the AC for 𝑒 = 11 is 1 − 2 − 3 − 5 − 10 −

11; 𝑙(𝑒) = 5 which needs, only 5 Ms.

 Proposed AC-PSO-ECC Methodology - An Example

Consider the EC, 𝑦2 ≡ 𝑥3 + 17𝑥 + 7 𝑚𝑜𝑑 539039 . Using Diffie-Hellman key

exchange protocol as discussed in section 3.10 of Chapter III. A's private key

𝑛𝐴 = 65131 and the base point 𝑝𝐵 = (2,7) . Thus A's public key 𝑃𝐴 = 𝑛𝐴𝑃𝐵 =

65131(2,7). When 𝑃𝐴 is performed by RAs, it requires 65130 additions. To reduce

the number of additions, PSO based AC is used and one of the ACs for 65131

is 1 − 2 − 3 − 5 − 10 − 20 − 40 − 43 − 83 − 166 − 249 − 498 − 996 − 1992 −

2035 − 4070 − 8140 − 16280 − 32560 − 32565 − 65130 − 65131, i. e.,

𝑙 65131 = 21. Thus, it requires only 21 additions. Based on this AC, the addition

of EC points are performed using section 3.7.2 of Chapter III. Let 𝑃 = (2, 7). Then,

2𝑃 = 𝑃 + 𝑃

= (244768, 340039)

3𝑃 = 2𝑃 + 𝑃

= (11724, 249063)

5𝑃 = 3𝑃 + 2𝑃

= (506411, 102155)

10𝑃 = 2 5𝑃

= (219797, 239709)

20𝑃 = 2 10𝑃

= (380891, 525867)

40𝑃 = 2 20𝑃

= (214059, 41583)

43𝑃 = 40𝑃 + 3 𝑃

= (8793, 297511)

83𝑃 = 43𝑃 + 40 𝑃

= (137967, 526592)

166𝑃 = 83𝑃 + 83𝑃

= (382077, 526592)

249𝑃 = 166𝑃 + 83𝑃

= (217586, 32021)

498𝑃 = 2(249𝑃)

= (221645, 21083)

996𝑃 = 2(498𝑃)

= (201219, 179442)

1992𝑃 = 2(996𝑃)

= (84103, 159148)

2035𝑃 = 1992𝑃 + 43𝑃

= (415947, 244729)

4070𝑃 = 2(2035𝑃)

= (48695, 28739)

8140𝑃 = 2(4070𝑃)

= (11378, 429659)

16280𝑃 = 2(8140𝑃)

= (3661662, 126957)

32560𝑃 = 2(32560𝑃)

= (6996, 35500)

32565𝑃 = 32560𝑃 + 5𝑃

= (314717, 375063)

65130𝑃 = 2(32560𝑃)

= (104163, 454622)

65131𝑃 = 65130𝑃 + 𝑃

= (350818, 39982)

81

4.7 Results and Discussion

The proposed methodology is implemented in VC++ with Android and Windows

emulator for varying file sizes using RSA and ECC. The ET, DT (in mS), EP, DP (in

mW) are computed and SE (in %) is measured by ABC Hackman tool. The results

obtained from the implementation are recorded from table 4.2 to 4.11 and their

corresponding graphical representations are shown from fig. 4.3 to 4.12.

Table 4.2: Encryption Time (mS) using AC-PSO in RSA and ECC with Android

Emulator

File

Size

(MB)

Existing RSA and ECC
Proposed AC-PSO based

RSA and ECC
without RM and RA with RM and RA

ET-RSA-A ET-ECC-A
ET-RM-

RSA-A

ET-RA-

ECC-A

ET-AC-PSO-

RSA-A

ET-AC- PSO-

ECC-A

1 1660 2447 1227 1820 1041 1578

2 3237 4790 2377 3555 2048 3069

4 6494 9553 4788 7173 4099 6150

8 13689 20179 10077 15130 8644 12954

16 27426 40415 20199 30326 17322 25981

Total 52506 77384 38668 58004 33154 49732

Avg. 10501.2 15476.8 7733.6 11600.8 6630.8 9946.4

82

Fig. 4.3: Graph showing the Encryption Time (mS) using AC-PSO in RSA and

ECC with Android Emulator

 ET-AC-PSO-RSA-A is 1.584 times faster than ET-RSA-A and 1.166 times faster

than ET-RM-RSA-A

 ET-AC-PSO-ECC-A is 1.556 times faster than ET-ECC-A and 1.166 times faster

than ET-RA-ECC-A

 ET-AC-PSO-RSA-A is 1.500 times faster than ET-AC- PSO-ECC-A

Table 4.3: Decryption Time(mS) using AC-PSO in RSA and ECC with Android

Emulator

File Size

(MB)

Existing RSA and ECC Proposed AC-PSO

based RSA and ECC
without RM and RA with RM and RA

DT-RSA-A DT-ECC-A
DT-RM -

RSA-A

DT-RA-

ECC-A

DT-AC-PSO-

RSA-A

DT-AC- PSO-

ECC-A

1 1616 2330 1205 1789 1041 1544

2 3193 4519 2352 3519 2011 3040

4 6490 9209 4776 7171 4102 6156

8 13645 19375 10066 15082 8623 12925

16 27399 38936 20193 30294 17301 25954

Total 52343 74369 38592 57855 33078 49619

Avg. 10468.6 14873.8 7718.4 11571 6615.6 9923.8

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 4 8 16 Total Avg.

Enc. Time

(mS)

File Size (MB)

ET-RSA-A

ET-ECC-A

ET-RM-RSA-A

ET-RA-ECC-A

ET-PSO-RSA-AC-A

ET-PSO-ECC-AC-A

83

 Fig. 4.4: Graph showing Decryption Time (mS) using AC-PSO in RSA and

ECC with Android Emulator

 DT-AC-PSO-RSA-A is 1.582 times faster than DT -RSA-A and 1.167 times faster

than DT -RM-RSA-A

 DT -AC-PSO-ECC-A is 1.498 times faster than DT -ECC-A and 1.165 times faster

than DT -RA-ECC-A

 DT -AC-PSO-RSA-A is 1.500 times faster than DT -AC- PSO-ECC-A

Table 4.4: Encryption Power (mW) using AC-PSO in RSA and ECC with Android

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-PSO

based RSA and ECC
without RM and RA with RM and RA

EP-RSA-A EP-ECC-A
EP-RM-

RSA-A

EP-RA-

ECC-A

EP-AC-

PSO-RSA-

A

EP-AC-

PSO-ECC-A

1 554 817 421 613 357 552

2 1102 1621 806 1197 682 1042

4 2171 3208 1612 2410 1372 2073

8 4569 6731 3364 5042 2893 4325

16 9156 13510 6735 10134 5788 8670

Total 17552 25887 12938 19396 11092 16662

Avg. 3510.4 5177.4 2587.6 3879.2 2218.4 3332.4

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 8 16 Total Avg.

Dec. Time

(mS)

File Size (MB)

DT-RSA-A

DT-ECC-A

DT-RM-RSA-A

DT-RA-ECC-A

DT-PSO-RSA-AC-A

DT-PSO-ECC-AC-A

84

Fig. 4.5: Graph showing the Encryption Power (mW) using AC-PSO in RSA and ECC

with Android Emulator

 EP-AC-PSO-RSA-A is 1.582 times less than EP -RSA-A and 1.166 times less than

EP -RM-RSA-A.

 EP -AC-PSO-ECC-A is 1.553 times less than EP -ECC-A and 1.164 times less than

EP -RA-ECC-A

 EP -AC-PSO-RSA-A is 1.502 times less than EP -AC- PSO-ECC-A

Table 4.5: Decryption Power (mW) using AC-PSO in RSA and ECC with Android

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-PSO based

RSA and ECC
without RM and RA with RM and RA

DP-

RSA-A

DP-ECC-

A

DP-RM-

RSA-A

DP-RA-

ECC-A

DP-AC-

PSO-RSA-A

DP-AC-

PSO-ECC-

A

1 562 815 411 602 354 534

2 1081 1506 802 1178 673 1038

4 2175 3072 1608 2417 1375 2066

8 4548 6463 3357 5035 2874 4330

16 9148 12995 6743 10109 5772 8674

Total 17514 24851 12921 19341 11048 16642

Avg. 3502.8 4970.2 2584.2 3868.2 2209.6 3328.4

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Enc. Power
(mW)

File Size (MB)

EP-RSA-A

EP-ECC-A

EP-RM-RSA--A

EP-RA-ECC-A

EP-PSO-RSA-AC-A

EP-PSO-ECC-AC-A

85

Fig. 4.6: Graph showing the Decryption Power (mW) using AC-PSO in RSA and ECC

with Android Emulator

 DP-AC-PSO-RSA-A is 1.585 times less than DP -RSA-A and 1.169 times less than

EP -RM-RSA-A.

 DP -AC-PSO-ECC-A is 1.493 times less than DP -ECC-A and 1.162 times less than

DP -RA-ECC-A

 DP -AC-PSO-RSA-A is 1.506 times less than DP -AC- PSO-ECC-A

Table 4.6: Security (%) using AC-PSO in RSA and ECC with Android Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-PSO based

RSA and ECC
without RM and RA with RM and RA

SE-RSA-A SE-ECC-A
SE-RM-

RSA-A

SE-RA-

ECC-A

SE-AC-PSO-

RSA-A

SE-AC-

PSO-ECC-A

1 89 93 92 94 94 94

2 88 89 89 92 91 93

4 87 88 88 90 90 91

8 85 88 87 90 89 90

16 85 86 87 89 88 90

Avg. 86.8 88.8 88.6 91 90.4 91.6

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Dec. Power
(mW)

File Size (MB)

DP-RSA-A

DP-ECC-A

DP-RM-RSA-A

DP-RA-ECC--A

DP-PSO-RSA-AC-A

DP-PSO-ECC-AC-A

86

Fig. 4.7: Graph showing the Security (%) of AC-PSO in RSA and ECC with Android

Emulator

 SE-AC-PSO-RSA-A is 1.041 times more than SE-RSA-A and 1.020 times more than

SE-RM-RSA-A

 SE-AC- PSO-ECC-A is 1.032 times more than SE-ECC-A and 1.007 times more than

SE-RA-ECC-A

 SE-AC- PSO-ECC-A is 1.013 times more than SE-AC-PSO-RSA-A

Table 4.7: Encryption Time (mS) using AC-PSO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-PSO based

RSA and ECC
 without RM and RA with RM and RA

ET-

RSA-W
 ET-ECC-W

ET-AC-

RSA-W

ET-AC-

ECC-W

ET-AC-PSO-

RSA-W

ET-AC- PSO-

ECC-W

1 1654 2441 1204 1728 1046 1520

2 3233 4748 2378 3362 2050 2984

4 6490 9559 4775 6753 4096 6008

8 13670 20174 10082 14252 8652 12693

16 27432 40443 20214 28603 17318 25402

Total 52479 77365 38653 54698 33162 48607

Avg. 10495.8 15473 7730.6 10939.6 6632.4 9721.4

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 Avg.

Security
(%)

File Size (MB)

SE-RSA-A

SE-ECC-A

SE-RM-RSA-A

SE-RA-ECC-A

SE-PSO-RSA-AC-A

SE-PSO-ECC-AC-A

87

Fig. 4.8: Graph showing the Encryption Time(mS) using AC-PSO in RSA and ECC

with Windows Emulator

 ET-AC-PSO-RSA-W is 1.582 times faster than ET-RSA-W and 1.165 times faster

than ET-RM-RSA-W

 ET-AC-PSO-ECC-W is 1.591 times faster than ET-ECC-W and 1.125 times faster

than ET-RA-ECC-W

 ET-AC-PSO-RSA-W is 1.465 times faster than ET-AC- PSO-ECC-W

Table 4.8: Decryption Time (mS) using AC-PSO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-

PSO based RSA

and ECC
without RM and RA with RM and RA

DT-RSA-W DT-ECC-W
DT-AC-

RSA-W

DT-AC-

ECC-W

DT-AC-

PSO-

RSA-W

DT-AC-

PSO-

ECC-W

1 1616 2322 1205 1708 1027 1517

2 3184 4530 2366 3336 2026 2967

4 6496 9212 4778 6755 4099 6017

8 13657 19396 10050 14240 8616 12647

16 27401 38958 20210 28571 17310 25388

Total 52354 74418 38609 54610 33078 48536

Avg. 10470.8 14883.6 7721.8 10922 6615.6 9707.2

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 4 8 16 Total Avg.

Enc. Time
(mS)

File Size (MB)

ET-RSA-W

ET-ECC-W

ET-RM-RSA--W

ET-RA-ECC--W

ET-PSO-RSA-AC-W

ET-PSO-ECC-AC-W

88

Fig. 4.9: Graph showing the Decryption Time (mS) using AC-PSO in RSA and ECC

with Windows Emulator

 DT-AC-PSO-RSA-W is 1.582 times faster than DT -RSA-W and 1.167 times faster

than DT -RM-RSA-W

 DT -AC-PSO-ECC-W is 1.533 times faster than DT -ECC-W and 1.125 times faster

than DT -RA-ECC-W

 DT -AC-PSO-RSA-W is 1.467 times faster than DT -AC- PSO-ECC-W

Table 4.9: Encryption Power (mW) using AC-PSO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-PSO

based RSA and ECC
without RM and RA with RM and RA

EP-RSA-W EP-ECC-W
EP-AC-

RSA-W

EP-AC-

ECC-W

EP-AC-

PSO-

RSA-W

EP-AC-

PSO-

ECC-W

1 571 840 421 592 348 513

2 1100 1582 796 1146 699 1003

4 2179 3228 1604 2263 1381 2029

8 4577 6750 3361 4765 2893 4246

16 9165 13496 6738 9559 5775 8483

Total 17592 25896 12920 18325 11096 16274

Avg. 3518.4 5179.2 2584 3665 2219.2 3254.8

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 8 16 Total Avg.

Dec. Time
(mW)

File Size (MB)

DT-RSA-W

DT-ECC-W

DT-RSA-RM-W

DT-ECC-RA-W

DT-PSO-RSA-AC-W

DT-PSO-ECC-AC-W

89

Fig.4.10: Graph showing the Encryption Power (mW) using AC-PSO in RSA and

ECC with Windows Emulator

 EP-AC-PSO-RSA-W is 1.585 times less than EP -RSA-W and 1.164 times less than

EP -RM-RSA-W

 EP -AC-PSO-ECC-W is 1.591 times less than EP -ECC-W and 1.126 times less than

EP -RA-ECC-W

 EP -AC-PSO-RSA-W is 1.467 times less than EP -AC- PSO-ECC-W

Table 4.10: Decryption Power (mW) using AC-PSO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-PSO

based RSA and ECC
without RM and RA with RM and RA

DP-RSA-W DP-ECC-W
DP-AC-

RSA-W

DP-AC-

ECC-W

DP-AC-

PSO-

RSA-W

DP-AC-

PSO-

ECC-W

1 541 785 415 584 350 510

2 1086 1536 805 1140 693 1010

4 2192 3088 1604 2275 1368 2008

8 4579 6496 3368 4761 2877 4220

16 9133 12997 6742 9529 5778 8472

Total 17531 24902 12934 18289 11066 16220

Avg. 3506.2 4980.4 2586.8 3657.8 2213.2 3244

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Dec. Power
(mW)

File Size (MB)

DP-RSA-W

DP-ECC-W

DP-RM-RSA--W

DP-RA-ECC-W

DP-PSO-RSA-AC-W

DP-PSO-ECC-AC-W

90

Fig.4.11 : Graph showing the Decryption Power (mW) using AC-PSO in RSA and

ECC with Windows Emulator

 DP-AC-PSO-RSA-W is 1.584 times less than DP -RSA-W and 1.168 times less than

DP -RM-RSA-W

 DP -AC-PSO-ECC-W is 1.535 times less than DP -ECC-W and 1.127 times less than

DP -RA-ECC-W

 DP -AC-PSO-RSA-W is 1.466 times less than DP -AC- PSO-ECC-W

Table 4.11: Security (%) using AC-PSO in RSA and ECC with Windows Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-PSO

based RSA and ECC
without RM and RA with RM and RA

SE-RSA-W
 SE-ECC-

W

SE-AC-

RSA-W

SE-AC-

ECC-W

SE-AC-

PSO-

RSA-W

SE-AC-

PSO-

ECC-W

1 91 92 92 94 92 96

2 88 89 89 92 91 92

4 86 89 88 91 90 91

8 86 88 88 89 89 91

16 85 87 87 89 87 90

Avg. 87.2 89 88.8 91 89.8 92

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Dec. Power
(mW)

File Size (MB)

DP-RSA-W

DP-ECC-W

DP-RM-RSA--W

DP-RA-ECC-W

DP-PSO-RSA-AC-W

DP-PSO-ECC-AC-W

91

Fig.4.12: Graph showing the Security (%) using AC-PSO in RSA and ECC with

Windows Emulator

 SE-AC-PSO-RSA-W is 1.030 times more than SE-RSA-W and 1.011 times more

than SE-RM-RSA-W

 SE-AC- PSO-ECC-W is 1.034 times more than SE-ECC-W and 1.011 times more

than SE-RA-ECC-W

 SE-AC- PSO-ECC-W is 1.024 times more than SE-AC-PSO-RSA-W

From the above results, ECC takes more time than RSA for both operational and

power consumption time. There is because ECC is computationally more intensive

approach than RSA. The operational time and power consumption when using AC-

based PSO is substantially reduced. This shows the efficiency of AC based PSO.

4.8 Chapter Summary

ACs based on PSO are taken into account, integrated into RSA and ECC. They are

implemented successfully. From the experimental results, it is observed that AC-PSO-

RSA takes less operational time, consumes less power than AC-RSA and AC-RM-

RSA when using both emulators. Higher protection levels are achieved by AC-PSO-

ECC when considering security in AC-ECC and AC-RA-ECC. It is also advised to

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 Avg.

Security
(%)

File Size (MB)

SE-RSA-W

SE-ECC-W

SE-RM-RSA-W

SE-RA-ECC-W

SE-PSO-RSA-AC-W

SE-PSO-ECC-AC-W

92

use AC-PSO-RSA when there is a small power source for a mobile device to run. AC-

PSO-ECC offers security of 92% approximately when security parameter is

considered. It is concluded that the experimental findings have clearly shown that the

proposed AC-PSO with RSA and ECC cryptography systems can be used either to

decrease operating power or to achieve enhanced security that are the primary motive

of this work. It is noted that the time taken for all the parameters are decreasing when

PSO is used due to the velocity and position play a vital role to generate the AC. To

reduce the time further for the said parameters without compromising the optimal

length AC for the given integers, an another BIA SSO is considered and it is

discussed in next chapter.

93

CHAPTER – V

GENERATION OF ADDITION CHAIN USING SIMPLIFIED

SWARM OPTIMIZATION

5.1 Background

Mobile device applications have been enhanced its security by using cryptographic

algorithms like RSA and ECC. Even though it has been improved using some EAs

like PSO with AC in the previous chapter, a novel AI based algorithm namely

Simplified Swarm Optimization (SSO) is taken in this chapter to minimize the time

required for encryption and decryption process. SSO algorithm is also used to

generate the optimal AC and it is termed as AC-SSO. In this chapter too, once the AC

is generated using SSO, it is incorporated into RSA and ECC. The results are

compared with existing RM-RSA and RA-ECC.

5.2 Need for AC-SSO

The major difference among SSO and other soft computing algorithms are their

update mechanism (UM). For example, the UM of GA requires genetic operations

like crossover and mutation. The UM of PSO needs to calculate both velocity and

position via functions. But, they are not so in AC-SSO. Here, UM is based on only

random number. Moreover, the UM of SSO is on NP - hard problem. There is no

exact algorithm available to compute on exact solution to the NP - hard problem in

polynomial time, soft computing has been widely used for that [77].

5.3 Concepts Used in SSO

SSO is a population-based, evolutionary, stochastic optimization technique in soft

computing and it was originally designed by Yeh [31]. It has some advantages, such

as fast convergence rate, few parameters, and easy implementation. It has simple

94

procedures and more powerful global searching, prevents from trapping local optimal

procedures.

Let 𝑋 𝑖
𝑡 = (𝑥 𝑖1

𝑡 , 𝑥 𝑖2
𝑡 , 𝑥 𝑖3

𝑡 , . . . , 𝑥 𝑖𝑗
𝑡) be the 𝑖𝑡𝑕 solution at the generation 𝑡, where 𝑐 is

the value of the 𝑗𝑡𝑕 variable of

 𝑋 𝑖
𝑡𝑝𝑖 = (𝑝𝑖1, 𝑝𝑖2, … . 𝑝𝑖𝑗) ... (5.1)

represents the best solution with the best fitness value in its own history, known as

𝑝𝑏𝑒𝑠𝑡. The best solution with the best fitness value among all solutions is called

𝑔𝑏𝑒𝑠𝑡, which is denoted by

 𝑔 = (𝑔1, 𝑝2, … . 𝑔𝑗) ... (5.2)

and 𝑔𝑗 denotes the 𝑗𝑡𝑕 variable in 𝑔𝑏𝑒𝑠𝑡 . 𝑥 is a new randomly generated value

between the lower bound and the upper bound is a uniform random number between

[0, 1]. 𝐶𝑤 , 𝐶𝑝 𝑎𝑛𝑑 𝐶𝑔 are three pre-defined parameters which form four interval

probabilities representing the probabilities of the new variable updated from four

sources, namely, the current solution, 𝑝𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡 and a random movement in the

problem space. The newly generated value is computed using eqn. (5.3).

𝑥𝑖𝑗
𝑡 =

𝑥𝑖𝑗
𝑡−1, 𝑖𝑓 𝑟𝑎𝑛𝑑() ∈ [0, 𝐶𝑤)

𝑝𝑖𝑗
𝑡−1, 𝑖𝑓 𝑟𝑎𝑛𝑑 ∈ 𝐶𝑤 , 𝐶𝑝

 𝑔𝑗 , 𝑖𝑓 𝑟𝑎𝑛𝑑 ∈ 𝐶𝑝 , 𝐶𝑔

𝑥, 𝑖𝑓 𝑟𝑎𝑛𝑑 ∈ 𝐶𝑔 , 1

 ... (5.3)

The primary steps of the SSO are shown in pseudo code 5.1

Pseudo Code: 5.1: SSO

1. Initialize solutions randomly.

2. Evaluate the fitness value for each particle.

3. Update 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 if necessary.

4. Update particle’s position according to (5.3).

5. Stop the algorithm if the predefined number of iterations is met; otherwise, go

back to step 2

95

The flowchart corresponding to pseudo code 5.1 is shown in fig. 5.1.

Fig: 5. 1: Flowchart for SSO Algorithm

5.4 Proposed AC-SSO Methodology

AC-SSO is a strong algorithm in solving discrete problems with good global search

ability. However, its local search ability is weak compared to PSO. Local search

ability is the extent how particles move based on their adjacency. In SSO, Chain

Particle (CP) represents the AC, the CP elements are represented as the numbers used

in AC and the optimal length of AC i.e., 𝑙(𝑛) represents the fitness function, where

the initial value of 𝑙(𝑛) is computed using eqn. (5.4).

Stop

Generate and initialize solution

 Update and

Generate random number

Keep the origin value

Replace value by

Replace value by

Generate new individual randomly

Conduct extending local search

Meet termination

criterion

No

Yes

96

log2(𝑛) + log2(𝑣 𝑛) − 2.13 ≤ 𝑙 𝑛 ≤ log2(𝑛) (1 + 𝑜 1)/ (log2(𝑛))) ... (5.4)

 where is Hamming weight. Therefore, ... (5.5)

The main operations of any public-key algorithm is to perform the

encryption/decryption operations with modular exponentiation. They involve raising

to powers of large field of some group. This process involves multiple multiplications

which makes it time consuming. For example, to compute 𝑥𝑒 based on the process of

adding and multiplying, it needs (𝑒 − 1) RMs of 𝑒 ie., 𝑥1 → 𝑥2 → 𝑥3 → ⋯ →

𝑥𝑒−1 → 𝑥𝑒 . The optimised AC-SSO is carried out in an iterative way. Optimization of

the AC generation begins with small numbers and continues on to large numbers.

Optimization is a one-time operation such that it does not affect the runtime for a

collection of ACs.

Fig. 5.2: The Chain Particles (CP)

In fig. 5.2, elements with minimum AC duration shall be replaced by particles in SSO.

The CP elements are 𝐶𝑃𝑖 , 𝑖 = 1,2, … 𝑛. The search spaces for the elements are often

restricted to simplifying the method of optimization. The first value of the variable is

limited to since all ACs should start with . The second variable is limited to with

a value of doubled. There are no optimization processes involving the first two

97

elements. A 3(2 + 1) or a may be the third variable 2𝑋2 4, 5, 6 or 8 may be the

fourth part. After completing all epochs, particle outputs are optimized for SSO

particles.

There are two possibilities of SSO based ACs achievement in fig. 5.3 and fig.5.4. For

example, AC for using binary method is 1 − 2 − 4 − 8 − 9 − 18 − 19 − 38 −

39 − 78 with length .

Fig. 5.3 and Fig 5.4 : Two different ACs for the Integer 78 Generated Using SSO

While running SSO optimization, some possible ACs for the value with :

1 2 3 5 8 13 26 39 78| 1 2 3 5 8 13 26 52 78| 1 2 3 5 10 13 26 39 78| 1 2 3 5 10 13 26

52 78| 1 2 3 6 7 13 26 39 78| 1 2 3 6 7 13 26 52 78| 1 2 3 6 9 15 24 39 78| 1 2 3 6 9 15

30 39 78| 1 2 3 6 9 18 21 39 78| 1 2 3 6 9 18 36 39 78| 1 2 3 6 9 18 36 42 78| 1 2 3 6 9

18 36 72 78| 1 2 3 6 12 13 26 39 78| 1 2 3 6 12 13 26 52 78| 1 2 3 6 12 14 26 52 78| 1

2 3 6 12 15 24 39 78| 1 2 3 6 12 15 27 39 78| 1 2 3 6 12 18 21 39 78| 1 2 3 6 12 18 30

98

48 78| 1 2 3 6 12 18 30 60 78| 1 2 3 6 12 18 36 39 78| 1 2 3 6 12 18 36 42 78| 1 2 3 6

12 18 36 72 78| 1 2 3 6 12 24 26 52 78| 1 2 3 6 12 24 27 39 78| 1 2 3 6 12 24 27 51 78|

1 2 3 6 12 24 27 54 78| 1 2 3 6 12 24 30 48 78| 1 2 3 6 12 24 30 54 78| 1 2 3 6 12 24

36 39 78| 1 2 3 6 12 24 36 42 78| 1 2 3 6 12 24 36 72 78| 1 2 3 6 12 24 48 54 78| 1 2 3

6 12 24 48 72 78| 1 2 4 5 8 13 26 39 78| 1 2 4 5 8 13 26 52 78| 1 2 4 5 9 13 26 39 78| 1

2 4 5 9 13 26 52 78| 1 2 4 6 7 13 26 39 78| 1 2 4 6 7 13 26 52 78 1 2 4 6 10 16 26 52

78| 1 2 4 6 10 20 26 52 78| 1 2 4 6 12 13 26 39 78| 1 2 4 6 12 13 26 52 78| 1 2 4 6 12

14 26 52 78| 1 2 4 6 12 18 30 48 78| 1 2 4 6 12 18 30 60 78| 1 2 4 6 12 18 36 42 78| 1

2 4 6 12 18 36 72 78| 1 2 4 6 12 24 26 52 78| 1 2 4 6 12 24 30 48 78| 1 2 4 6 12 24 30

54 78| 1 2 4 6 12 24 36 42 78| 1 2 4 6 12 24 36 72 78| 1 2 4 6 12 24 48 54 78| 1 2 4 6

12 24 48 72 78| 1 2 4 8 9 13 26 39 78| 1 2 4 8 9 13 26 52 78| 1 2 4 8 9 17 26 52 78| 1 2

4 8 9 18 26 52 78| 1 2 4 8 10 16 26 52 78| 1 2 4 8 10 18 26 52 78| 1 2 4 8 12 13 26 39

78| 1 2 4 8 12 13 26 52 78| 1 2 4 8 12 14 26 52 78| 1 2 4 8 12 24 26 52 78| 1 2 4 8 16

18 26 52 78| 1 2 4 8 16 24 26 52 78|.

After completing all epochs, SSO Optimized particle (element) values are:

After completing the given epochs, SSO generated optimized particle values in the

element positions. The values of SSO optimized result particle are given in fig. 5.5. It

starts with feature space and continues on until all the features are visited. While

99

comparing AC-SSO generation with binary AC generation method, the output of AC-

SSO is less. The shorter an exponent is, the less time is needed for its calculation.

Fig. 5.5: SSO Optimized Result Particle Values

5.5 Results and Discussion

The proposed methodology is implemented in VC++ with Android and Windows

emulator for varying file sizes using RSA and ECC. The time taken for ET, DT (in

mS), EP, DP (in mW) and SE (in %) are recorded in table from 5.1 to 5.10 and their

corresponding graphical representations are shown in fig. 5.6 to 5.15.

100

Table.5.1: Encryption Time (mS) using AC-SSO in RSA and ECC with Android

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- SSO

based RSA and ECC
without RM and RA with RM and RA

ET-

RSA-A

ET-

ECC-A

ET-RM-

RSA-A

ET-RA-

ECC-A

ET-AC-

SSO-

RSA-A

ET-AC-

SSO-

ECC-A

1 1660 2447 1227 1820 1015 1305

2 3237 4790 2377 3555 2001 2547

4 6494 9553 4788 7173 3997 5122

8 13689 20179 10077 15130 8424 10813

16 27426 40415 20199 30326 16899 21666

Total 52506 77384 38668 58004 32336 41453

Avg. 10501.2 15476.8 7733.6 11600.8 6467.2 8290.6

Fig. 5.6: Graph Showing Encryption Time(mS) using AC-SSO in RSA and ECC with

Android Emulator

 ET-AC-SSO-RSA-A is 1.624 times faster than ET-RSA-A and 1.196 times faster

than ET-RM-RSA-A

 ET-AC- SSO -ECC-A is 1.867 times faster than ET-ECC-A and 1.399 times faster

than ET-RA-ECC-A

 ET-AC- SSO -RSA-A is 1.282 times faster than ET-AC- SSO -ECC-A

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 4 8 16 Total Avg.

Enc.Time
(mS)

File Size(MB)

ET-RSA-A

ET-ECC-A

ET-RM-RSA--A

ET-RA-ECC-A

ET-AC-SSO-RSA-A

ET-AC-SSO-ECC-A

101

Table.5.2: Decryption Time (mS) using AC-SSO in RSA and ECC with Android

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- SSO

based RSA and ECC without RM and RA with RM and RA

DT-

RSA-A

DT-

ECC-A

DT-RM-

RSA-A

DT-RA-

ECC-A

DT-AC-

SSO-

RSA-A

DT-AC-

SSO-

ECC-A

1 1616 2330 1205 1789 1014 1282

2 3193 4519 2352 3519 1974 2533

4 6490 9209 4776 7171 4000 5125

8 13645 19375 10066 15082 8406 10785

16 27399 38936 20193 30294 16877 21646

Total 52343 74369 38592 57855 32271 41371

Avg. 10468.6 14873.8 7718.4 11571 6454.2 8274.2

Fig. 5.7: Graph Showing Decryption Time(mS) using AC-SSO in RSA and ECC with

Android Emulator

 DT-AC- SSO -RSA-A is 1.622 times faster than DT -RSA-A and 1.196 times faster

than DT -RM-RSA-A

 DT -AC- SSO -ECC-A is 1.798 times faster than DT -ECC-A and 1.398 times faster

than DT -RA-ECC-A

 DT -AC- SSO -RSA-A is 1.282 times faster than DT -AC- SSO -ECC-A

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 8 16 Total Avg.

Dec.Time
(mS)

File Size(MB)

DT-RSA-A

DT-ECC-A

DT-RM-RSA-A

DT-RA-ECC-A

DT-AC-SSO-RSA-A

DT-AC-SSO-ECC-A

102

Table.5.3: Encryption Power (mW) using AC-SSO in RSA and ECC with Android

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- SSO

based RSA and ECC
without RM and RA with RM and RA

EP-

RSA-A

EP-

ECC-A

EP-RM-

RSA-A

EP-RA-

ECC-A

EP-AC-

SSO-

RSA-A

EP-AC-

SSO-

ECC-A

1 554 817 421 613 341 424

2 1102 1621 806 1197 673 792

4 2171 3208 1612 2410 1337 1598

8 4569 6731 3364 5042 2820 3374

16 9156 13510 6735 10134 5633 6752

Total 17552 25887 12938 19396 10804 12940

Avg. 3510.4 5177.4 2587.6 3879.2 2160.8 2588

[

Fig. 5.8: Graph Showing Encryption Power (mW) using AC-SSO in RSA and ECC with

Android Emulator

 EP-AC- SSO -RSA-A is 1.625 times less than EP -RSA-A and 1.198 times less than

EP -RM-RSA-A.

 EP -AC- SSO -ECC-A is 2.001 times less than EP -ECC-A and 1.499 times less than

EP -RA-ECC-A

 EP -AC- SSO -RSA-A is 1.198 times less than EP -AC- SSO -ECC-A

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Enc.Pow
(mW)

File Size(MB)

EP-RSA-A

EP-ECC-A

EP-RM-RSA-A

EP-RA-ECC-A

EP-AC-SSO-RSA-A

EP-AC-SSO-ECC-A

103

Table.5.4: Decryption Power (mW) using AC-SSO in RSA and ECC with Android

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- SSO

based RSA and ECC
without RM and RA with RM and RA

DP-

RSA-A

DP-

ECC-A

DP-RM-

RSA-A

DP-RA-

ECC-A

DP-AC-

SSO-

RSA-A

DP-AC-

SSO-

ECC-A

1 562 815 411 602 339 399

2 1081 1506 802 1178 669 799

4 2175 3072 1608 2417 1344 1600

8 4548 6463 3357 5035 2815 3361

16 9148 12995 6743 10109 5634 6739

Total 17514 24851 12921 19341 10801 12898

Avg. 3502.8 4970.2 2584.2 3868.2 2160.2 2579.6

Fig. 5.9: Graph Showing Decryption Power in RSA and ECC with SSO Addition Chain

using Android Emulator

 DP-AC- SSO -RSA-A is 1.622 times less than DP -RSA-A and 1.196 times less than

EP -RM-RSA-A.

 DP -AC- SSO -ECC-A is 1.926 times less than DP -ECC-A and 1.500 times less than

DP -RA-ECC-A

 DP -AC- SSO -RSA-A is 1.194 times less than DP -AC- SSO -ECC-A

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Dec.Pow
(mW)

File Size(MB)

DP-RSA-W

DP-ECC-W

DP-RM-RSA-W

DP-RA-ECC-W

DP-AC-SSO-RSA-W

DP-AC-SSO-ECC-W

104

Table.5.5: Security (%) using AC-SSO in RSA and ECC with Android Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- SSO

based RSA and ECC
without RM and RA with RM and RA

SE-

RSA-A

SE-

ECC-A

SE-RM-

RSA-A

SE-RA-

ECC-A

SE-AC-

SSO-

RSA-A

SE-AC-

SSO-

ECC-A

1 92 93 92 94 93 95

2 90 91 89 92 92 94

4 88 91 88 90 91 92

8 87 90 87 90 90 92

16 86 88 87 89 89 91

Avg. 88.6 90.6 88.6 91 91 92.8

Fig. 5.10: Graph Showing Security (%) using AC-SSO in RSA and ECC with Android

Emulator

 SE-AC- SSO-RSA-A is 1.027 times more than SE-RSA-A and 1.027 times more than

SE-RM-RSA-A

 SE-AC- SSO -ECC-A is 1.024 times more than SE-ECC-A and 1.020 times more

than SE-RA-ECC-A

 SE-AC- SSO -ECC-A 1.020 times more than SE-AC- SSO -RSA-A.

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 Avg.

Security
(%)

File Size(MB)

SE-RSA-A

SE-ECC-A

SE-RM-RSA-A

SE-RA-ECC-A

SE-AC-SSO-RSA-A

SE-AC-SSO-ECC-A

105

Table.5.6: Encryption Time (mS) using AC-SSO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- SSO

based RSA and ECC
without RM and RA with RM and RA

ET-

RSA-W

ET-

ECC-W

ET-RM-

RSA-W

ET-RA-

ECC-W

ET-AC-

SSO-

RSA-W

ET-AC-

SSO-

ECC-W

1 1664 2441 1204 1728 1009 1299

2 3233 4748 2378 3362 1991 2550

4 6490 9559 4775 6753 3995 5119

8 13670 20174 10082 14252 8427 10819

16 27432 40443 20214 28603 16893 21646

Total 52489 77365 38653 54698 32315 41433

Avg. 10497.8 15473 7730.6 10939.6 6463 8286.6

Fig. 5.11: Graph Showing Encryption time in RSA and ECC with SSO Addition Chain

using Windows Emulator

 ET-AC- SSO -RSA-W is 1.624 times faster than ET-RSA-W and 1.196 times faster

than ET-RM-RSA-W

 ET-AC- SSO -ECC-W is 1.867 times faster than ET-ECC-W and 1.320 times faster

than ET-RA-ECC-W

 ET-AC- SSO -RSA-W is 1.282 times faster than ET-AC- SSO -ECC-W

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 4 8 16 Total Avg.

Enc.Time
(mS)

File Size(MB)

ET-RSA-W

ET-ECC-W

ET-RM-RSA-W

ET-RA-ECC-W

ET-AC-SSO-RSA-W

ET-AC-SSO-ECC-W

106

Table.5.7: Decryption Time (mS) using AC-SSO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- SSO

based RSA and ECC
without RM and RA with RM and RA

DT-

RSA-W

DT-

ECC-W

DT-RM-

RSA-W

DT-RA-

ECC-W

DT-AC-

SSO-

RSA-W

DT-AC-

SSO-

ECC-W

1 1616 2322 1205 1708 995 1290

2 3184 4530 2366 3336 1967 2515

4 6496 9212 4778 6755 3990 5127

8 13657 19396 10050 14240 8409 10779

16 27401 38958 20210 28571 16887 21643

Total 52354 74418 38609 54610 32248 41354

Avg. 10470.8 14883.6 7721.8 10922 6449.6 8270.8

Fig. 5.12 : Graph Showing Decryption Time(mS) using AC-SSO in RSA and ECC with

Windows Emulator

 DT-AC- SSO -RSA-W is 1.623 times faster than DT -RSA-W and 1.197 times faster

than DT -RM-RSA-W

 DT -AC- SSO -ECC-W is 1.800 times faster than DT -ECC-W and 1.321 times faster

than DT -RA-ECC-W

 DT -AC- SSO -RSA-W is 1.282 times faster than DT -AC- SSO -ECC-W

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 8 16 Total Avg.

Dec.Time
(mS)

File Size(MB)

DT-RSA-W

DT-ECC-W

DT-RM-RSA-W

DT-RA-ECC-W

DT-AC-SSO-RSA-W

DT-AC-SSO-ECC-W

107

Table.5.8: Encryption Power (mW) using AC-SSO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-SSO

based RSA and ECC
without RM and RA with RM and RA

EP-

RSA-W

EP-

ECC-W

EP-RM-

RSA-W

EP-RA-

ECC-W

EP-AC-

SSO-

RSA-W

EP-AC-

SSO-

ECC-W

1 571 840 421 592 345 406

2 1100 1582 796 1146 669 812

4 2179 3228 1604 2263 1341 1597

8 4577 6750 3361 4765 2824 3374

16 9165 13496 6738 9559 5646 6739

Total 17592 25896 12920 18325 10825 12928

Avg. 3518.4 5179.2 2584 3665 2165 2585.6

Fig. 5.13: Graph Showing Encryption Power (mW) using AC-SSO in RSA and ECC

with Windows Emulator

 EP-AC- SSO -RSA-W is 1.625 times less than EP -RSA-W and 1.194 times less than

EP -RM-RSA-W

 EP -AC- SSO -ECC-W is 2.003 times less than EP -ECC-W and 1.417 times less than

EP -RA-ECC-W

 EP -AC- SSO -RSA-W is 1.194 times less than EP -AC- SSO -ECC-W

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Enc.Pow
(mW)

File Size(MB)

EP-RSA-W

EP-ECC-W

EP-RM-RSA-W

EP-RA-ECC--W

EP-AC-SSO-RSA-W

EP-AC-SSO-ECC-W

108

Table.5.9: Decryption Power (mW) using AC-SSO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- SSO based

RSA and ECC
without RM and RA with RM and RA

DP-

RSA-W

DP-

ECC-W

DP-RM-

RSA-W

DP-RA-

ECC-W

DP-AC-

SSO-

RSA-W

DP-AC-

SSO-

ECC-W

1 541 785 415 584 342 420

2 1086 1536 805 1140 655 784

4 2192 3088 1604 2275 1344 1608

8 4579 6496 3368 4761 2819 3360

16 9133 12997 6742 9529 5641 6739

Total 17531 24902 12934 18289 10801 12911

Avg. 3506.2 4980.4 2586.8 3657.8 2160.2 2582.2

 Fig. 5.14: Graph Showing Decryption Power (mW) using AC-SSO in RSA and

ECC with Windows Emulator

 DP-AC- SSO -RSA-W is 1.623 times less than DP -RSA-W and 1.197 times less than

DP -RM-RSA-W

 DP -AC- SSO -ECC-W is 1.929 times less than DP -ECC-W and 1.417 times less

than DP -RA-ECC-W

 DP -AC- SSO -RSA-W is 1.195 times less than DP -AC- SSO -ECC-W

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Dec. Pow
(mW)

File Size(MB)

DP-RSA-W

DP-ECC-W

DP-RM-RSA-W

DP-RA-ECC-W

DP-AC-SSO-RSA-W

DP-AC-SSO-ECC-W

109

Table.5.10: Security (%) using AC-SSO in RSA and ECC with Windows Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- SSO

based RSA and ECC

without RM and RA with RM and RA

SE-

RSA-W

SE-

ECC-W

SE-RM-

RSA-W

SE-RA-

ECC-W

SE-AC-

SSO-

RSA-W

SE-AC-

SSO-

ECC-W

1 91 92 92 94 93 94

2 88 89 89 92 92 93

4 86 89 88 91 90 91

8 86 88 88 89 89 91

16 85 87 87 89 89 89

Avg. 87.2 89 88.8 91 90 91.6

Fig. 5.15: Graph Showing Security (%) using AC-SSO in RSA and ECC with

Windows Emulator

 SE-AC- SSO -RSA-W is 1.032 times more than SE-RSA-W and 1.014 times more

than SE-RM-RSA-W

 SE-AC- SSO -ECC-W is 1.029 times more than SE-ECC-W and 1.007 times more

than SE-RA-ECC-W

 SE-AC- SSO -ECC-W is 1.017 times more than SE-AC- SSO -RSA-W

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 Avg.

Security
(%)

File Size(MB)

SE-RSA-W

SE-ECC-W

SE-RM-RSA-W

SE-RA-ECC-W

SE-AC-SSO-RSA-W

SE-AC-SSO-ECC-W

110

From the above results, ECC takes more time than RSA for both operational and

power consumption. This is because ECC is computationally more intensive approach

than RSA. The time required for operational and power consumption when using AC-

SSO is substantially reduced compared to without AC.

5.6 Chapter Summary

ACs based on SSO are thought of and incorporated into RSA and ECC. They are

implemented successfully. The experimental results show that AC-SSO-RSA takes

less operational time, consumes less power than RSA, RM-RSA and ECC, RA-ECC

when using both emulators. Higher protection levels are achieved by AC-SSO-ECC

while considering security of AC-SSO-RSA. It is also suggested to use AC-SSO-RSA

when there is a small power source for a mobile device to run. AC-SSO-ECC offers

security of approximately 92% when security parameter is considered. It is concluded

that the experimental findings have clearly shown that the proposed AC-SSO with

RSA and ECC cryptography systems can be used either to decrease operating power

or to achieve enhanced safety levels that are the primary motive of this work. To

reduce the time taken for the said parameters further without compromising the

optimal length AC for the given integers, an another BIA BFO is considered and it is

discussed in next chapter.

111

CHAPTER - VI

GENERATION OF ADDITION CHAIN USING BACTERIA

FORAGING OPTIMIZATION

6.1 Background

In many number theoretic cryptographic algorithms encryption and decryption is of

the form 𝑥𝑛𝑚𝑜𝑑 𝑝, where 𝑥, 𝑛 and 𝑝 are integers. Exponentiation is a fundamental

operation in computational number theory which normally takes more time than any

arithmetic operations. It may be performed by RMs which will reduce the

computational time. To reduce the time further, fewer multiplications are performed

in computing the same exponentiation operation using AC [90]. The problem of

determining correct sequence of multiplications requires in performing modular

exponentiation can be elegantly formulated using the concept of AC. To generate the

optimal ACs for the given integer, there are several methods exist in literature. But

novel Bacteria Foraging Optimization (BFO) algorithm based AC termed as AC-

BFO has been proposed in this chapter. Further, the optimal AC generated for an

integer using the proposed method has been verified with existing state art of AC

method like genetic algorithm, evolutionary programming in this chapter.

6.2 Theoretical Background of Addition Chain

An AC can be thought of as a sequence of integers in which first number is always

and last number is always 𝑛 where 𝑛 is an integer for which ACs are to be generated.

For finite fields, operations such as exponentiations, inversions, or square roots can

be performed efficiently by utilizing an optimal AC, the smallest such AC sequence

to reach 𝑛 . In particular, fast exponentiation and inversion are paramount to the

performance of scalar point multiplication 𝑘[𝑃] where 𝑘 is a scalar and 𝑃 is a point in

112

EC in ECC, pairings in pairing-based cryptosystems and computing isogenies in the

quantum-resistant isogeny-based cryptosystems. In order to get the next number,

there are two steps normally used in AC. They are addition and doubling steps i.e., to

get the next number (intermediate number) in AC, any two previous numbers are

added together in addition step where as in doubling step, the current number is

multiplied by two [92][93]. To generate the AC for given 𝑛, two types of algorithms

are normally used viz., deterministic and stochastic or bio inspired.

Generating optimal AC for the given integer is an NP-hard problem because too

many optimal ACs are generated for it. For example, different possible optimal ACs

for the integer 21 with length i.e., 𝑙(21) = 6 are:

Fig. 6.1: Optimal ACs for the n= 𝟐𝟏 with l(21)= 𝟔

This is because can be obtained by adding (7 = 3 + 4, 7 = 2 + 5, 7 = 1 +

 6), 8 can be obtained by adding (8 = 4 + 4, 8 = 3 + 5) etc.

6.3 Bacteria Foraging Optimization

It is one of the optimization and evolutionary algorithms. It was proposed by Kevin

M. Passino in 2000 [32][33] and it has been widely accepted as a new nature- inspired

optimization algorithm. It is inspired by the social foraging behaviour of Escherichia

coli i.e., E.coli bacteria present in the human intestine and drawn the attention of

1-2-3-4-7-14-21

1-2-3-5-7 -14 -21

1-2-3-5-8-13 -21

1-2-3-5 -8 -16-21

1-2-3-5-10-11-21

1-2-3-5-10-20-21

1-2-3-6-7-14-21

1-2-3-6- 9-15-21

1-2-3-6-9-18-21

1-2-3-6-12-15-21

1-2-3-6-12-18-21

1-2-4-6-7-14-21

1-2-4-8-16-20-21

1-2-4-8-16-17-21

1-2-4-5-10-20-21

1-2-4-8-9-12-21

1-2-4-8- 9-13-21

1-2-4-8-9-17-21

1-2-4-8-10-11-21

1-2-4-8-10-20-21

1-2-4-8-12-20-21

1-2-3-6-9-12-21

1-2-3-6-9-15-21

1-2-3-6-7-14-21

1-2-3-6-9-12-21

1-2-3-5-8-16-21

1-2-4-8-12-13-21

113

many researchers. The underlying biology behind the foraging is locomotion. It is

achieved by a set of tensile flagella during the foraging of the real bacteria. Foraging

can be modelled as an optimization process where bacterium seeks to maximize the

energy obtained per unit time spent during foraging. If the flagella are rotated in the

clockwise direction by the bacterium, the flagellum pulls on the cells which results

in independent movement of flagella and the bacterium tumbles with lesser numbers

of tumbling. Swimming at a very fast rate of bacterium is performed with the

flagella moving in the counter clockwise direction.

The foraging strategy of E.coli is achieved by four processes viz., chemotaxis,

swarming, reproduction and dispersal. Chemotaxis is a process which simulates the

movement of E.coli cell through swarming and tumbling via flagella. Movement of

E.coli bacterium can be performed in two ways viz.,(i) swim for a period of time in

the same direction or it may tumble (ii) alternate between swim and tumble for the

entire lifetime. In swarming process, a group of E.coli cells arrange themselves in a

travelling ring by moving up the nutrient gradient when placed amidst a semisolid

matrix with a single nutrient chemo-effecter. The healthy bacteria asexually split

into two bacteria, which are then placed in the same location while the least healthy

bacteria eventually die in reproduction process. In elimination and dispersal process,

gradual or sudden changes in the local environment i.e., significant local rise of

temperature or due to unavoidable events all the bacteria in a region are killed or a

group is dispersed into new location.

In BFO, generally the bacteria move for a longer distance in a friendly environment.

When they got sufficient food, their lengths are increased and they break in the

middle to form an exact replica of itself in the presence of suitable environment. The

114

chemotactic progress may be destroyed and a group of bacteria may move to some

other places or some other may be introduced in the swarm of concepts due to

the occurrence of sudden environmental changes. This constitutes the event of

elimination-dispersal in the real bacterial population, where all the bacteria in a

region are killed or a group is dispersed into a new part of the environment.

6.4 Proposed AC-BFO Methodology

In the proposed methodology, the concept of BFO is used to generate the optimum

length AC for an integer 𝑛 which utilizes foraging behaviour of bacteria. In AC-

BFO, each bacterium represents the AC, movement of bacterium towards searching

the food represents the intermediate numbers to be generated in AC and the fitness

function represents the length of AC for the given number 𝑛 i.e., 𝑙(𝑛). In this

optimization, a virtual bacterium called search agent is actually one trial solution that

moves on the functional surface to find the optimal length AC. The cost or fitness

function is computed with minimum length approach based on the nutrient

concentration of the immediate environment of the bacterium searching for numbers

in AC. Swarming step is not considered for the generation of AC in this method. The

notations used in the proposed AC-BFO methodology shown in table 6.1.

In order to generate the AC for any integer 𝑛, first number is always and second

number is 2, i.e., AC starts with 𝑎0 = 1and 𝑎1 = 2 and last number 𝑎𝑟 = 𝑛 . Let

(𝑖, 𝑘, 𝑙) = {(𝑗, 𝑘, 𝑙|𝑖 = 1,2, … , 𝑆) represents each number in the AC in the

population 𝑆 at the 𝑗𝑡ℎ chemotactic step, 𝑘𝑡ℎ reproduction and 𝑙𝑡ℎ elimination-

dispersal step.

115

Table 6.1: Notations Used in AC-BFO

𝑗 Index for the chemotactic step

𝑘 Index for the reproduction step

𝑖 Index for the elimination-dispersal event

𝑆 Total number of bacterium in the population

𝑑 Dimension of the search space. Here, 𝑑 = 1

𝑆𝑤 The swimming length

𝑅𝑃𝑛 Number of reproduction steps

𝐸𝐷𝑛 Number of elimination-dispersal events

𝑃𝑒𝑑 Elimination-dispersal probability

𝐶(𝑖) Magnitude of the next number in the random direction specified by the tumble

It is noted that initially 𝑆 is taken as very large for the given 𝑛. Too many ACs are

generated for 𝑛 but all ACs generated are not necessarily optimum. Moreover,

generation of optimal AC is an NP - hard problem. The prime steps used in BFO related

to generating the AC are as follows.

6.4.1 Search Space

Here, search space is considered as -dimension (𝑖. 𝑒. , 𝑑 = 1). As the numbers

involved in generating AC for any integer 𝑛 and the difference between intermediate

numbers in ACs are finite, the search space is also finite.

6.4.2 Chemotaxis

The movement of an E.coli cell through swimming and tumbling via flagella is

simulated by chemotaxis process. When a bacterium meets a favorable environment

(rich in nutrients, and noxious free), it will continue swimming in the same direction.

When it meets an unfavorable environment, it will tumble, i.e., change its direction.

In BFO E.coli can swim for a period of time in the same direction or it may tumble

and alternate between these two modes of operation for the entire lifetime. It is the

116

most important step in determining the optimal AC for 𝑛 . For AC generation,

swimming and tumbling represent addition and doubling step respectively. The goal

is to move to let the bacterium search for the next number in the AC with minimal

step.

6.4.3 Minimum Intermediate Number in AC

It is noted that the number of intermediate numbers between and 𝑛 should be

minimum and it is obtained by minimum number of steps as far as possible so that

𝑙(𝑛) could be minimized by considering all the directions (previous numbers) from

the current bacterium position (present current number) can be chosen for the next

step. Initially bacterium i is positioned at number , Let 𝑚 = 0 i.e., 𝑎0 = 1. From 1,

then it should move to . Now, 𝑚 = 𝑚 + 1 𝑖. 𝑒. , 𝑎1 = 2, AC ← 1 −

 2; 𝑙(AC) = 1. From , it can move to either 3 𝑜𝑟 4, Now, 𝑚 = 𝑚 + 1

 = 2𝑎𝑚−1 ...(6.3)

 = 𝑎𝑚 + 𝑎0, >> 𝑘 ≥ 0 ... (6.4)

 𝐴𝐶 ← 𝐴𝐶 ǁ 𝑎𝑚 ... (6.5)

 Now, (AC) = AC + 1 𝑜𝑟 (AC) = 𝑚 (6.6)

All the intermediate numbers obtained in this step are added to the minimal set

ɸ
𝑚𝑖𝑛

 𝑖. 𝑒. , ɸ
𝑚𝑖𝑛

= {𝑎𝑚}. A random intermediate number ≤ 𝑎𝑚 is chosen from this

set and it indicates the direction of movement (i.e., from which AC starts) of

bacterium

 𝑖∆(𝑖) = 𝑟𝑎𝑛𝑑 { 𝑥6 ∈ ɸ
𝑚𝑖𝑛

 } …(6.7)

Let, (𝑗, 𝑘, 𝑙) represents 𝑖𝑡ℎ bacterium with 1- dimensional vector represented as,

1,2, … , 𝑆 at 𝑗𝑡ℎ chromatic, 𝑘𝑡ℎ reproductive and 𝑙𝑡ℎ elimination-dispersal step. Let,

𝐶(𝑖) be the step size which is taken as unity because from the current number in AC,

117

only one next number in the AC is generated based on previous numbers. Thus, the

movement of bacterium may be represented in chemotaxis process as

 𝑗 + 1, 𝑘 = ɵi 𝑗 + 𝑘 + 𝐶(𝑖)
∆(𝑖)

 ∆(𝑖)𝑇∆(𝑖)
 ... (6.8)

where ∆ indicates a vector in the random direction whose elements are [1, 𝑥]. The

movement of bacterium is explained with tree diagram shown in fig. 6.2.

Fig. 6.2: The Movement of Bacterium

6.4.4 Reproduction and Dispersal Step

Local search is provided by chemotaxis step and the speed of convergence is

achieved through reproduction process. The bacteria which yields maximal length of

AC for 𝑛 is called least healthy bacteria and it never produces the optimal length AC

which eventually dies. Each of the healthiest bacteria (yields minimum length AC)

asexually split into two bacteria which are placed in random location. The dispersion

process happens after a certain number of reproduction processes. Then, some

bacteria are chosen to be killed according to a present probability 𝑃𝑒𝑑 or moved to

another position within the environment. The steps involved in proposed AC-BFO is

shown in algorithm 6.1.

118

Algorithm: 6.1: AC- BFO

 1. Initialize parameters 𝐷, 𝑆, 𝑐𝑛 , 𝑅𝑛 , 𝐸𝐷𝑛 , 𝜃𝑖 , 𝐶 𝑖 , 𝑖 ← 2,3, … , 𝑆.

 2. Read 𝑟 // 𝑟 is the number for which 𝐴𝐶 is to be found.

 3. 𝑚 ← 1; 𝑎0 ← 0, 𝑎1 ← 1; 𝑖 ← 0.

 4. 𝐴𝐶𝑖 = 𝑎0ǁ𝑎1.

5. (𝐴𝐶𝑖) ← 1 // length of the AC is initialized as 1.

6. 𝑙 ← 𝑙 + 1 // Elimination-Dispersal loop.

7. 𝑘 ← 𝑘 + 1 // Reproduction loop.

8. 𝑗 ← 𝑗 +. 1 // Chemotaxis loop.

8.1. For 𝑖 ← 1,2, … , 𝑆 // Perform the chemotactic step for bacterium 𝑖.

8.2. 𝑚 ← 𝑚 + 1.

8.3. From the initial position of bacterium (i.e. 𝑎0 = 0, 𝑎1 = 1), find all

 the number of 𝐴𝐶𝑖 to reach 𝑎𝑚 ≤ 𝑟 with minimum number of steps.

8.4. Add these numbers in the minimal set ɸ
𝑚𝑖𝑛

.

8.5. Select the number 𝑥 randomly using eqn. (4). Include 𝑥 in 𝐴𝐶𝑖 . It is

 also used to find the next number 𝑎𝑚 in 𝐴𝐶𝑖 .

8.6. (a) Move: let 𝑗 + 1, 𝑘 = ɵi 𝑗 + 𝑘 + 𝐶(𝑖)
∆(𝑖)

 ∆(𝑖)𝑇∆(𝑖)

 (b) Generate a new number 𝑎𝑚 for 𝐴𝐶𝑖 using eqn.(3).

 𝑖, 𝑗, 𝑘 ← 𝑖, 𝑗 − 1, 𝑘 + 𝑎𝑚 .

 𝐴𝐶𝑖← 𝐴𝐶𝑖 ||
′
 − ′||𝑎𝑚 .

 (c) Compute the length of 𝐴𝐶𝑖 (fitness) as (𝐴𝐶𝑖)← (𝐴𝐶𝑖) + 1

 (d) 𝐽𝑙𝑎𝑠𝑡 ← (𝑖, 𝑗, 𝑘).

 (e) if 𝐽 𝑖, 𝑗 + 1, 𝑘 > {𝑗𝑙𝑎𝑠𝑡 } then 𝑟 𝐽𝑙𝑎𝑠𝑡 ← (𝑖, 𝑗 + 1, 𝑘)

 else print 𝐴𝐶𝑖 , 𝑙(𝐴𝐶𝑖)

 (f) update new 𝑎𝑚 and 𝐴𝐶𝑖 for bacterium 𝑖.

9. If 𝑗 < 𝐶𝑛 , go to step 8. In this case continue chemotaxis step since the life of

 the bacterium is not over.

 10. Reproduction and elimination.

The reproduction step increases the number of bacteria for better foraging

whereas the elimination step removes the bacteria that has traversed all the

intermediate numbers.

119

11. If 𝑘 < 𝑅𝑛 , go to step 7. This means that the number of reproduction steps

is not reached. So the next generation of the chemotactic loop is started.

12. Selection of optimal length AC

Now, the length of the ACs are generated by each bacterium has been

calculated, the AC with minimal length is considered as optimal length

AC.

𝑙 ∗ (𝐴𝐶𝑖) ← 𝑖𝑚𝑖𝑛 {𝑙 𝐴𝐶𝑖 }

The flowchart for the proposed AC-BFO is shown in fig. 6.3.

Fig. 6.3: Flowchart for the Proposed AC-BFO

Move bacterium to the next

number using chemostatic step

Set of numbers up

to r

Initialization of parameters

Bacteria positioned at location

(j,k)=1 then move 2

All the

numbers up to

n are reached

Move bacterium to the next

number using chemostatic step

All the

numbers up to

n are reached

Compute l(n)

Select l*(n)

Y

N

Y

N

120

6.4.5 Proposed AC-BFO - An Example

In order to understand the relevance of the work, let, 𝐧 = 𝟏𝟒, 𝐢 = 𝟏, 𝐦 = 𝟎, 𝐚𝐦 =

𝐚𝟎 = 𝟏 and initially bacteria 𝐛𝟏 is positioned at 𝒂𝟎 . With the chemotaxis step, it

moves to 2. Now, 𝒎 = 𝒎 + 𝟏, 𝒊. 𝒆. , 𝒂𝟏 = 𝟐 𝒂𝒏𝒅 𝒍(𝒂𝟏) = 𝟏. From 𝐚𝟏, 𝐛𝟏 moves to

either 3 or 4 because 𝒂𝟐 = 𝒂𝟏 + 𝒂𝟎 = 𝟐 + 𝟏 = 𝟑 or 𝒂𝟐 = 𝟐𝒂𝟏 = 𝟒. Now, 𝐦 = 𝟐.

Thus ɸ
𝒎𝒊𝒏

= {𝟑, 𝟒} . Let the intermediate number in AC randomly selected from

ɸ
𝐦𝐢𝐧

, i.e., ∆ 𝟏 = 𝟑.

Thus, the movement of 𝑏1 is from 3, i.e., 𝑎2 = 3 and the corresponding AC upto

this stage is 1 − 2 − 3 and 𝑙(𝑎2) = 2. From 𝑎2, 𝑏1 moves to either 4 or 5 or

because 𝑎3 = 2𝑎2 = 6 or 𝑎3 = 𝑎2 + 𝑎0 = 3 + 1 = 4 or 𝑎3 = 𝑎2 + 𝑎1 =

 3 + 2 = 5. Now, 𝑚 = 3. Thus, 𝛷 = {4,5,6}. Let is selected randomly

from the set 𝛷𝑚𝑖𝑛 . Thus, ∆(1) = 5. The movement of 𝑏1 is from 5, 𝑖. 𝑒. , 𝑎3 = 5.

Correspondingly, AC up to this stage is 1 − 2 − 3 − 5 and 𝑙(𝑎3) = 3. From

𝑎3, 𝑏1 moves to either 6 𝑜𝑟 7 𝑜𝑟 8 𝑜𝑟 10 because 𝑎4 = 2𝑎3 = 10 𝑜𝑟 𝑎4 = 𝑎3 +

 𝑎0 = 5 + 1 = 6 or 𝑎4 = 𝑎3 + 𝑎1 = 5 + 2 = 7 or 𝑎4 = 𝑎3 + 𝑎2 = 5 +

 3 = 8. Now, 𝑚 = 4. Thus, ɸ
𝑚𝑖𝑛

 = {6,7,8,10}. Let 7 is selected randomly from

the set ɸ
𝑚𝑖𝑛

 . Thus, ∆(1) = 7 . The movement of is from , i.e., 𝑎4 = 7 .

Correspondingly, 𝐴𝐶 up to this stage is 1 − 2 − 3 − 5 − 7 and 𝑙(𝑎4) = 4. From

𝑎4, 𝑏1 moves to either or or 10 or 12 or 14 because 𝑎5 = 2, 𝑎4 = 14 𝑜𝑟 𝑎5 =

 𝑎4 + 𝑎0 = 7 + 1 = 8 𝑜𝑟 𝑎5 = 𝑎4 + 𝑎2 = 7 + 3 = 10, 𝑎5 = 𝑎4 + 𝑎3 =

 7 + 5 = 12. Now, 𝑚 = 5, Thus, ɸ
𝑚𝑖𝑛

 = {8,9,10,12,14}. Let 14 is selected

randomly from the set ɸ
𝑚𝑖𝑛

. Thus, ∆(1) = 14. The process is terminated because it

reaches 𝑛 = 17. Correspondingly, AC up to this stage is 1 − 2 − 3 − 5 − 7 −

 14 and 𝑙(𝑎5) = 5. Suppose, other numbers from ɸ
𝑚𝑖𝑛

 is selected, even though it

121

reaches 14 in the subsequent stages, 𝑙(14) is increased and the corresponding bacteria

will eventually die. Based on different bacteria movement, the ACs are generated with

𝑙∗ 14 = 5.

1-2-3-4-7-14 1-2-3-6-8-14 1-2-4-5-9-14 1-2-4-6-8-14 1-2-4-8-10-14

1-2-3-5-7-14 1-2-3-6-12-14 1-2-4-5-10-14 1-2-4-6-10-14 1-2-4-8-12-14

1-2-3-6-7-14 1-2-4-5-7-14 1-2-4-6-7-14 1-2-4-6-12-14

6.5 Proposed AC-BFO-RSA - An Example

In order to understand the relevance of RSA with AC, let p=2957, q=2551, then n =

pq = 6012707 and ɸ(n)=(p-1)(q-1)=6007800. Let, the private key e=3674911 because

gcd(3674911, 6007800) = 1. Using the extended Euclidean algorithm d is computed

as d=422191. The public key is the pair (n=6012707, e=3674911), and the private-

key pair is n=6012707,d=422191. To encrypt a message 𝑚 = 5234673, Then, c=

5234673
3674911

 mod 6012707 =3650502. To decrypt C, m= c
d
 mod n = 3650502

422191

mod 6012707 = 5234673. It is noted that in the encryption decryption, large numbers

are involved which take more time to perform exponentiation operation. To reduce

the time, 3674910 and 422190 RMs are required for encryption and decryption

respectively when regular RMs are used. To reduce the time further, AC for 3674911

and 422191 are generated using AC-BFO as follows:

1 - 2 - 3 - 6 - 7 - 14 - 28 - 56 - 112 - 224 - 448 - 896 - 1792 - 1795 - 3587 - 7174

-14348 - 28696 - 57392 - 114784 - 229568 - 459136 - 918272 - 918279 - 1836558

-3673116 – 3674911 and l(3674911) = 26 i.e., it requires only 26

multiplications. Similarly, in the case d = 422191, the AC is 1 - 2 - 3 - 5 - 10 - 20 -

40 - 60 - 63 - 103- 206 - 412 - 824 - 1648 - 3296 - 6592 - 13184 - 26368 - 527336 -

105472 - 105532 -211064 - 422128 – 422191 and l(422191) = 23 i.e., it requires only

23 multiplications. In this way time is substantially reduced.

122

6.6 Proposed AC-BFO-ECC - An Example

Let the EC and the embedding of K are taken from table 3. Let k= 65131. Then,

k[P]= 65131[2252,226996]. Since multiplication operation takes more time than

addition, it can be performed by RAs. Thus, it requires 65130 additions. To reduce

the number of additions further, again AC is used. Thus, the AC generated for 65131

using AC-PSO is 1- 2 - 3 - 5 - 10 - 20 - 40 - 80 - 120 - 125 - 130- 131 - 250 - 500 -

1000 - 2000 - 4000 - 8000 - 16000 - 32000 - 64000 - 65000 - 65130 – 65131 which

requires only 23 additions. Here, 1-2-3-5-…- 65130 – 65131 represents P, 2P, 3P,

5P, …, 65130P and 65131P and they are computed using EC arithmetic as discussed

in section 3.7.2.

6.7 Results and Discussion

The proposed methodology is implemented in VC++ with Android and Windows

emulators for varying file sizes using RSA and ECC. The time taken for ET, DT (in

mS), EP, DP (in mW) and SE (in %) are recorded from Table 6.2 to 6.11 and their

corresponding graphical representations are shown in fig. 6.4 to 6.13.

123

Table 6.2: Encryption Time (mS) using AC-BFO in RSA and ECC with Android

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- BFO

based RSA and ECC without RM and RA with RM and RA

ET-RSA-A ET-ECC-A
ET-RM-

RSA-A

ET-RA-

ECC-A

ET-AC-

BFO-

RSA-A

ET-AC-

BFO-

ECC-A

1 1660 2447 1227 1820 996 1219

2 3237 4790 2377 3555 1944 2412

4 6494 9553 4788 7173 3895 4849

8 13689 20179 10077 15130 8214 10241

16 27426 40415 20199 30326 16469 20503

Total 52506 77384 38668 58004 31518 39224

Avg. 10501.2 15476.8 7733.6 11600.8 6303.6 7844.8

Fig. 6.4: Graph Showing Encryption Time (mS) using AC-BFO in RSA and ECC with

Android Emulator

 ET-AC-BFO-RSA-A is 1.666 times faster than ET-RSA-A and 1.227 times faster

than ET-RM-RSA-A

 ET-AC- BFO -ECC-A is 1.973 times faster than ET-ECC-A and 1.479 times faster

than ET-RA-ECC-A

 ET-AC- BFO -RSA-A is 1.244 times faster than ET-AC- BFO -ECC-A

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 4 8 16 Total Avg.

Enc.Time
(mS)

File Size(MB)

ET-RSA-A

ET-ECC-A

ET-RM-RSA--A

ET-RA-ECC-A

ET-AC-BFO-RSA-A

ET-AC-BFO-ECC-A

124

Table 6.3: Decryption Time (mS) using AC-BFO in RSA and ECC with Android

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- BFO

based RSA and ECC
without RM and RA with RM and RA

DT-RSA-

A

DT-ECC-

A

DT-RM-

RSA-A

DT-RA-

ECC-A

DT-AC-

BFO-

RSA-A

DT-AC-

BFO-

ECC-A

1 1616 2330 1205 1789 972 1224

2 3193 4519 2352 3519 1911 2398

4 6490 9209 4776 7171 3897 4850

8 13645 19375 10066 15082 8185 10208

16 27399 38936 20193 30294 16451 20479

Total 52343 74369 38592 57855 31416 39159

Avg. 10468.6 14873.8 7718.4 11571 6283.2 7831.8

Fig. 6.5: Graph Showing Decryption Time (mS) using AC-BFO in RSA and ECC with

Android Emulator

 DT-AC- BFO -RSA-A is 1.666 times faster than DT -RSA-A and 1.288 times faster

than DT -RM-RSA-A

 DT -AC- BFO -ECC-A is 1.899 times faster than DT -ECC-A and 1.477 times faster

than DT -RA-ECC-A

 DT -AC- BFO -RSA-A is 1.246 times faster than DT -AC- BFO -ECC-A

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 8 16 Total Avg.

Enc. Time
(mS)

File Size(MB)

DT-RSA-A

DT-ECC-A

DT-RM-RSA--A

DT-RA-ECC-A

DT-AC-BFO-RSA-A

DT-ACO-BFO-A

125

Table 6.4: Encryption Power (mW) using AC-BFO in RSA and ECC with Android

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- BFO

based RSA and

ECC
without RM and RA with RM and RA

EP-RSA-A EP-ECC-A
EP-RM-

RSA-A

EP-RA-

ECC-A

EP-AC-

BFO-

RSA-A

EP-AC-

BFO-

ECC-A

1 554 817 421 613 341 388

2 1102 1621 806 1197 664 776

4 2171 3208 1612 2410 1303 1566

8 4569 6731 3364 5042 2739 3283

16 9156 13510 6735 10134 5494 6557

Total 17552 25887 12938 19396 10541 12570

Avg. 3510.4 5177.4 2587.6 3879.2 2108.2 2514

Fig. 6.6: Graph Showing Encryption Power in RSA and ECC with BFO AC Using

Android Emulator

 EP-AC- BFO -RSA-A is 1.665 times less than EP -RSA-A and 1.227 times less than

EP -RM-RSA-A.

 EP -AC- BFO -ECC-A is 2.059 times less than EP -ECC-A and 1.543 times less than

EP -RA-ECC-A

 EP -AC- BFO -RSA-A is 1.192 times less than EP -AC- BFO -ECC-A

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Enc. Pow
(mW)

File Size(MB)

EP-RSA-A

EP-ECC-A

EP-RM-RSA-A

EP-RA-ECC-A

EP-AC-BFO-RSA-A

EP-AC-BFO-ECC-A

126

Table 6.5: Decryption Power (mW) using AC-BFO in RSA and ECC with Android

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- BFO

based RSA and

ECC
without RM and RA with RM and RA

DP-RSA-A DP-ECC-A
DP-RM-

RSA-A

DP-RA-

ECC-A

DP-AC-

BFO-

RSA-A

DP-AC-

BFO-

ECC-A

1 562 815 411 602 334 397

2 1081 1506 802 1178 649 783

4 2175 3072 1608 2417 1299 1561

8 4548 6463 3357 5035 2741 3259

16 9148 12995 6743 10109 5494 6544

Total 17514 24851 12921 19341 10517 12544

Avg. 3502.8 4970.2 2584.2 3868.2 2103.4 2508.8

Fig. 6.7: Graph Showing Decryption Power (mW) using AC-BFO in RSA and ECC with

Android Emulator

 DP-AC- BFO -RSA-A is 1.665 times less than DP -RSA-A and 1.229 times less than

EP -RM-RSA-A.

 DP -AC- BFO -ECC-A is 1.981 times less than DP -ECC-A and 1.542 times less than

DP -RA-ECC-A

 DP -AC- BFO -RSA-A is 1.193 times less than DP-AC-BFO -ECC-A

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Dec. Pow
(mW)

File Size(MB)

DP-RSA-W

DP-ECC-W

DP-RM-RSA-W

DP-RA-ECC-W

DP-AC-BFO-RSA-W

DP-AC-BFO-ECC-W

127

Table 6.6: Security (%) using AC-BFO in RSA and ECC with Android Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-

BFO based RSA

and ECC without RM and RA with RM and RA

SE-RSA-A SE-ECC-A
SE-RM-

RSA-A

SE-RA-

ECC-A

SE-AC-

BFO-

RSA-A

SE-AC-

BFO-

ECC-A

1 89 93 92 94 94 96

2 88 89 89 92 91 94

4 87 88 88 90 90 92

8 85 88 87 90 90 91

16 85 86 87 89 89 91

Avg. 86.8 88.8 88.6 91 90.8 92.8

Fig. 6.8: Graph Showing Security (%) using AC-BFO in RSA and ECC with Android

Emulator

 SE-AC- BFO-RSA-A is 1.046 times more than SE-RSA-A and 1.025 times more

than SE-RM-RSA-A

 SE-AC- BFO -ECC-A is 1.045 times more than SE-ECC-A and 1.020 times more

than SE-RA-ECC-A

 SE-AC- BFO -ECC-A is 1.022 times more than SE-AC- BFO -RSA-A

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 Avg.

Security
(%)

File Size(MB)

SE-RSA-A

SE-ECC-A

SE--RM-RSA-A

SE-RA-ECC--A

SE-AC-BFO-RSA-A

SE-AC-BFO-ECC-A

128

Table 6.7: Encryption Time (mS) using AC-BFO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC- BFO

based RSA and

ECC without RM and RA with RM and RA

ET-RSA-W ET-ECC-W
ET-RM-

RSA-W

ET-RA-

ECC-W

ET-AC-

BFO-

RSA-W

ET-AC-

BFO-

ECC-W

1 1654 2441 1204 1728 986 1235

2 3233 4748 2378 3362 1935 2431

4 6490 9559 4775 6753 3888 4846

8 13670 20174 10082 14252 8209 10228

16 27432 40443 20214 28603 16451 20489

Total 52479 77365 38653 54698 31469 39229

Avg. 10495.8 15473 7730.6 10939.6 6293.8 7845.8

Fig. 6.9: Graph Showing Encryption Time (mS) using AC-BFO in RSA and ECC with

Windows Emulator

 ET-AC- BFO -RSA-W is 1.668 times faster than ET-RSA-W and 1.228 times faster

than ET-RM-RSA-W

 ET-AC- BFO -ECC-W is 1.972 times faster than ET-ECC-W and 1.394 times faster

than ET-RA-ECC-W

 ET-AC- BFO -RSA-W is 1.247 times faster than ET-AC- BFO-ECC-W

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 2 4 8 16 Total Avg.

Enc. Time
(mS)

File Size(MB)

ET-RSA-W

ET-ECC-W

ET-RM-RSA-W

ET-RA-ECC-W

ET-AC-BFO-RSA-W

ET-AC-BFO-ECC-W

129

Table 6.8: Decryption Time (mS) using AC-BFO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-

BFO based RSA

and ECC
without RM and RA with RM and RA

DT-RSA-W DT-ECC-W
DT-RM-

RSA-W

DT-RA-

ECC-W

DT-AC-

BFO-

RSA-W

DT-AC-

BFO-

ECC-W

1 1616 2322 1205 1708 998 1226

2 3184 4530 2366 3336 1914 2384

4 6496 9212 4778 6755 3896 4846

8 13657 19396 10050 14240 8187 10192

16 27401 38958 20210 28571 16454 20474

Total 52354 74418 38609 54610 31449 39122

Avg. 10470.8 14883.6 7721.8 10922 6289.8 7824.4

Fig. 6.10: Graph Showing Decryption time in RSA and ECC with BFO AC using

Windows Emulator

 DT-AC- BFO -RSA-W is 1.664 times faster than DT -RSA-W and 1.227 times faster

than DT -RM-RSA-W

 DT -AC- BFO -ECC-W is 1.902 times faster than DT -ECC-W and 1.395 times faster

than DT -RA-ECC-W

 DT -AC-BFO -RSA-W is 1.243 times faster than DT -AC- BFO -ECC-W

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 4 8 16 Total Avg.

Dec. Time
(mS)

File Size(MB)

DT-RSA-W

DT-ECC-W

DT-RM-RSA-W

DT-RA-ECC-W

DT-AC-BFO-RSA-W

DT-AC-BFO-ECC-W

130

Table 6.9: Encryption Power (mW) using AC-BFO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-

BFO based RSA

and ECC
without RM and RA with RM and RA

EP-RSA-W EP-ECC-W
EP-RM-

RSA-W

EP-RA-

ECC-W

EP-AC-

BFO-

RSA-W

EP-AC-

BFO-

ECC-W

1 571 840 421 592 337 410

2 1100 1582 796 1146 662 779

4 2179 3228 1604 2263 1303 1549

8 4577 6750 3361 4765 2745 3270

16 9165 13496 6738 9559 5494 6541

Total 17592 25896 12920 18325 10541 12549

Avg. 3518.4 5179.2 2584 3665 2108.2 2509.8

Fig. 6.11: Graph Showing Encryption Power (mW) using AC-BFO in RSA and ECC

with Windows Emulator

 EP-AC- BFO -RSA-W is 1.699 times less than EP -RSA-W and 1.226 times less than

EP -RM-RSA-W

 EP -AC- BFO -ECC-W is 2.064 times less than EP -ECC-W and 1.460 times less

than EP -RA-ECC-W

 EP -AC- BFO-RSA-W is 1.190 times less than EP -AC- BFO-ECC-W

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Enc. Pow
(mW)

File Size(MB)

EP-RSA-W

EP-ECC-W

EP-RM-RSA-W

EP-RA-ECC-W

EP-AC-BFO-RSA-W

EP-AC-BFO-ECC-W

131

Table 6.10: Decryption Power (mW) using AC-BFO in RSA and ECC with Windows

Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-

BFO based RSA

and ECC
without RM and RA with RM and RA

DP-RSA-W DP-ECC-W
DP-RM-

RSA-W

DP-RA-

ECC-W

DP-AC-

BFO-

RSA-W

DP-AC-

BFO-

ECC-W

1 541 785 415 584 332 410

2 1086 1536 805 1140 641 765

4 2192 3088 1604 2275 1312 1558

8 4579 6496 3368 4761 2741 3253

16 9133 12997 6742 9529 5491 6540

Total 17531 24902 12934 18289 10517 12526

Avg. 3506.2 4980.4 2586.8 3657.8 2103.4 2505.2

Fig. 6.12 : Graph Showing Decryption Power (mW) using AC-BFO in RSA and ECC

with Windows Emulator

 DP-AC- BFO -RSA-W is 1.667 times less than DP -RSA-W and 1.230 times less

than DP -RM-RSA-W

 DP -AC- BFO -ECC-W is 1.988 times less than DP -ECC-W and 1.460 times less

than DP -RA-ECC-W

 DP -AC-BFO -RSA-W is 1.191 times less than DP -AC-BFO-ECC-W

0

5000

10000

15000

20000

25000

30000

1 2 4 8 16 Total Avg.

Dec. Pow
(mW)

File Size(MB)

DP-RSA-W

DP-ECC-W

DP-RM-RSA-W

DP-RA-ECC-W

DP-AC-BFO-RSA-W

DP-AC-BFO-ECC-W

132

Table 6.11: Security (%) using AC-BFO in RSA and ECC with Windows Emulator

File

Size

(MB)

Existing RSA and ECC Proposed AC-

BFO based RSA

and ECC without RM and RA with RM and RA

SE-RSA-W SE-ECC-W
SE-RM-

RSA-W

SE-RA-

ECC-W

SE-AC-

BFO-

RSA-W

SE-AC-

BFO-

ECC-W

1 91 92 92 94 95 96

2 88 89 89 92 91 94

4 86 89 88 91 91 92

8 86 88 88 89 89 91

16 85 87 87 89 88 91

Avg. 87.2 89 88.8 91 90.8 92.8

Fig. 6.13: Graph showing the Security (%) using AC-BFO in RSA and ECC with

Windows Emulator

 SE-AC- BFO -RSA-W is 1.041 times more than SE-RSA-W and 1.023 times more

than SE-RM-RSA-W

 SE-AC- BFO -ECC-W is 1.043 times more than SE-ECC-W and 1.020 times more

than SE-RA-ECC-W

 SE-AC- BFO -ECC-W is 1.022 times more than SE-AC-BFO-RSA-W

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 Avg.

Security
(%)

File Size(MB)

SE-RSA-W

SE-ECC-W

SE-RM-RSA-W

SE-RA-ECC-W

SE-AC-BFO-RSA-W

SE-AC-BFO-ECC-W

133

Table 6.12 shows the generation of AC for some hard exponents where the hard exponent is

the one for which AC is not easily generated.

Table 6.12: AC Generated for Some Hard Exponents Using AC-PSO

Integer (𝒏) Optimal AC 𝒍(𝒏)

2000
1 – 2 – 3 – 6 – 7 – 14 – 15 – 30 – 31 – 62 – 124 – 125 – 250 – 500 –

1000 – 2000.
15

2048 1 – 2 – 4 – 8 – 16 – 32 – 64 – 128 – 256 – 512 – 1024 - 2048. 11

4096 1 – 2 – 4 – 8 – 16 – 32 – 64 – 128 – 256 – 512 – 1024 – 2048 - 4096. 12

65131
1- 2 - 3 - 5 -10-20-40-80-120-130-250-500-1000-2000-4000-8000-

16000--32000-64000-65000-65130-65131
21

196591
1 - 2 - 3 - 5 -10 - 20-30-60-90-180-360-720-1440-1530-3060-6120-

12240- 24480-24570-49140-98280-196560-196590-1966591
23

1176431

1-2-3-6-7-14-28-56-112-224-448-896-899-1792-3584-4483-8966-

17932-35864-36763-73526-147052-294104-588208-588215-1176430-

1176431

26

2211837

1-2-3-6-12-13-26-52-104-208-416-832-1664-3328-3331-6662-9993-

16655-33310-66620-133240-266480-276473-5529466-552959-

1105918-2211836-2211837

27

4169527

1-2-3-6-9-18-36-45-81-162-243-486-972-1017-2034-4068-8136-

16272-32544-65088-130176-260352-260595-521190-1042380-

20847660-2084763-41695266-41669527

28

14143037

1-2-3-5-10-20-40-43-86-172-344-688-1376-1379-2758-5516-6695-

13790-27580-55160-110320-220640-441280-882560-883939-

1767878-3535756-3535759-7071518-141430366-14143037

30

From table 6.13, it is observed that the total length of optimal AC produced by BFO

for integers up to 1024 is 11119. They are almost same as the optimal ACs and their

length produced by EP.

134

Table 6.13 : Comparison of AC upto Integers 1024 - Produced by Existing Algorithms

and the Proposed AC-BFO

Range of

Integers (R)
Opt. AIS GA EP BFO

[1,512] 4924 4924(+) 4924 4924 4924

[1,1000] 10808 10813(+) 10813 10808 10812

[1,1024] 11115 11120(+) - 11115 11119

 Opt - Optimal AIS - Artificial Immune System EP - Evolutionary Programming

 GA - Genetic Algorithm

6.8 Chapter Summary

BFO based AC has been thought of and it is implemented successfully. Optimal AC

produced by some integers are proved by both theoretically and experimentally. It is

observed from the experimental results that upto integers 1024, the proposed AC-BFO

produces the same optimal length AC which are exactly equal to other existing

evolutional algorithms like AIS and EP. Further, the optimal length of AC for some

hard exponents are same as other existing evolutionary methods. The experimental

results show that the AC-BFO-RSA takes less operational time, consumes less power

than RSA, RM-RSA and ECC, RA-ECC when using both emulators. Higher

protection levels are achieved by AC-BFO-ECC while considering security of AC-

BFO-RSA. It is also suggested to use AC-BFO-RSA when there is a small power

source for a mobile device to run. AC-BFO-ECC offers security of almost 93% when

security parameter with windows emulator is considered. It is found that the

experimental findings have clearly shown that the proposed AC-BFO with ECC and

RSA cryptosystems can be used to enhance the security or to decrease the operational

time. As the operational time gets reduced which result in decreasing the operational

power. The comparison of all the proposed models on the basis of ET, DT, EP, DP

and SE in both android and window emulators are analyzed in next chapter.

135

CHAPTER - VII

COMPARISON OF PROPOSED BIO-INSPIRED

ALGORITHMS FOR ADDITION CHAIN GENERATION

WITH RSA AND ECC

From the previous chapters, it is observed that ACs generated by all the proposed

bio-inspired algorithms viz., PSO, SSO and BFO take less operational time, less

power consumption and more security when they are compared with regular RSA,

ECC, RM-RSA and RA-ECC. This chapter provides the comparison of all five

parameters values obtained when the existing and the proposed algorithms are

implemented with different files sizes 1MB, 2MB, 4MB, 8 MB and 16 MB in A and

W emulators.

Table 7.1 to 7.10 show the time taken for ET, DT, EP, DP and SE while using A and

W emulator respectively and their graphical representations are shown from fig.7.1

to 7.10.

Table 7.1: Encryption time using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA with

Android Vs Windows Emulator

FILE

SIZE

(MB)

ET-AC-PSO-

RSA-A

(mS)

ET- AC-PSO-

RSA-W

(mS)

ET-AC-SSO-

RSA-A

(mS)

ET- AC-

SSO-RSA-W

(mS)

ET-AC-

BFO-RSA-A

(mS)

ET- AC-

BFO-RSA-W

(mS)

1 1048 1035 866 865 996 994

2 2053 2008 1694 1673 1949 1950

4 4100 4094 3415 3417 3888 3894

8 8643 8624 7211 7185 8220 8213

16 17326 17310 14436 14424 16459 16452

Total 33170 33071 27622 27564 31512 31503

Avg. 6634 6614 5524.4 5513 6302.4 6301

136

Fig. 7.1: Graph showing the Encryption time using AC-PSO-RSA, AC-SSO-RSA

&AC-BFO-RSA with Android Vs Windows Emulator

 ET-AC-PSO-RSA-A is 1.003 times faster than ET- AC-PSO-RSA-W

 ET-AC-SSO-RSA-A is 1.002 times faster than ET- AC-SSO-RSA-W

 ET-AC-BFO-RSA-A is almost same as ET- AC-BFO-RSA-W

It is found that AC based on PSO, SSO and BFO improves the performance of ET

when the said methods are used in RSA with A and W emulators. Further, ET-AC-

RSA-W takes less ET when they are compared with other proposed methods.

Table 7.2: Encryption time using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC with

Android Vs Windows Emulator

FILE

SIZE

(MB)

ET-AC-PSO-

ECC-A

(mS)

ET- AC-PSO-

ECC-W

(mS)

ET-AC-

SSO-ECC-A

(mS)

ET- AC-

SSO-ECC-W

(mS)

ET-AC-BFO-

ECC-A

(mS)

ET- AC-

BFO-ECC-W

(mS)

1 1571 1533 1299 1302 1222 1228

2 3063 3020 2542 2520 2414 2415

4 6139 6145 5119 5125 4843 4853

8 12970 12918 10819 10767 10221 10232

16 26001 25970 21666 21627 20511 20489

Total 49744 49586 41445 41341 39211 39217

Avg. 9948.8 9917 8289 8268 7842.2 7843

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16 Total Avg.

E
n

c
.T

im
e

(m
S

)

File Size (MB)

ET-AC-PSO-RSA-A

ET- AC-PSO-RSA-W

ET-AC-SSO-RSA-A

ET- AC-SSO-RSA-W

ET-AC-BFO-RSA-A

ET- AC-BFO-RSA-W

137

Fig. 7.2: Graph showing the Encryption time using AC-PSO-ECC, AC-SSO-ECC

&AC-BFO-ECC with Android Vs Windows Emulator

 ET-AC-PSO-ECC-A is 1.003 times faster than ET- AC-PSO-ECC-W

 ET-AC-SSO-ECC-A is 1.003 times faster than ET- AC-SSO-ECC

 ET-AC-BFO-ECC-A is almost same as ET- AC-BFO-ECC-W

It is also found that AC based on PSO, SSO and BFO improves the performance of

ET when the said methods are used in ECC with A and W emulators. Further, ET-

AC-ECC-A and ET-AC-ECC-W take less ET when they are compared with other

proposed methods.

Table 7.3: Decryption time using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA with

Android Vs Windows Emulator

FILE

SIZE

(MB)

DT-AC-PSO-

RSA-A

(mS)

DT- AC-PSO-

RSA-W

(mS)

DT-AC-SSO-

RSA-A

(mS)

DT- AC-SSO-

RSA-W

(mS)

DT-AC-BFO-

RSA-A

(mS)

DT- AC-BFO-

RSA-W

(mS)

1 363 352 302 293 987 967

2 692 673 573 562 1918 1909

4 1381 1374 1141 1144 3897 3888

8 2896 2881 2418 2398 8182 8190

16 5781 5781 4827 4812 16458 16444

Total 11113 11061 9261 9209 31442 31398

Avg. 2222.6 2212.2 1852.2 1841.8 6288.4 6279.6

0

10000

20000

30000

40000

50000

1 2 4 8 16 Total Avg.

E
n

c
.
T

im
e

(m
S

)

File Size (MB)

ET-AC-PSO-ECC-A

ET- AC-PSO-ECC-W

ET-AC-SSO-ECC-A

ET- AC-SSO-ECC-W

ET-AC-BFO-ECC-A

ET- AC-BFO-ECC-W

138

Fig. 7.3: Graph showing the Decryption time using AC-PSO-RSA, AC-SSO-RSA

&AC-BFO-RSA with Android Vs Windows Emulator

 DT-AC-PSO-RSA-A is 1.005 times faster than DT- AC-PSO-RSA-W

 DT-AC-SSO-RSA-A is 1.006 times faster than DT- AC-SSO-RSA-W

 DT-AC-BFO-RSA-A is 1.001 times faster than DT- AC-BFO-RSA-W

It is also found that AC based on PSO, SSO and BFO improves the performance of

DT when the said methods are used in RSA with A and W emulators. Further, DT-

AC-SSO-RSA-W take less DT when they are compared with other proposed

methods.

Table 7.4: Decryption time using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC with

Android Vs Windows Emulator

FILE

SIZE

(MB)

DT-AC-PSO-

ECC-A

(mW)

DT -AC-PSO-

ECC -W

(mW)

DT -AC-

SSO- ECC -A

(mW)

DT-AC-SSO-

ECC -W

(mW)

DT -AC-BFO-

ECC -A

(mW)

DT - AC-BFO-

ECC -W

(mW)

1 543 525 422 422 1229 1218

2 1045 1017 800 792 2401 2381

4 2050 2055 1598 1596 4856 4854

8 4323 4318 3369 3361 10202 10201

16 8694 8681 6743 6734 20496 20476

Total 16655 16596 12932 12905 39184 39130

Avg. 3331 3319.2 2586.4 2581 7836.8 7826

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16 Total Avg.

D
e
c
.T

im
e

(m
S

)

File Size (MB)

DT-AC-PSO-RSA-A

DT- AC-PSO-RSA-W

DT-AC-SSO-RSA-A

DT- AC-SSO-RSA-W

DT-AC-BFO-RSA-A

DT AC-BFO-RSA-W

139

Fig. 7.4: Graph showing the Decryption time using AC-PSO-ECC, AC-SSO-ECC

&AC-BFO-ECC with Android Vs Windows Emulator

 DT-AC-PSO-ECC-A is 1.004 times faster than DT- AC-PSO-ECC-W

 DT-AC-SSO-ECC-A is 1.002 times faster than DT- AC-SSO-ECC-W

 DT-AC-BFO-ECC-A is 1.001 times faster than DT- AC-BFO-ECC-W

It is also found that AC based on PSO, SSO and BFO improves the performance of

DT when the said methods are used in ECC with A and W emulators. Further, DT-

AC-SSO-RSA-W take less DT when they are compared with other proposed

methods.

Table 7.5: Encryption power using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA with

Android Vs Windows Emulator

FILE

SIZE

(MB)

EP-AC-

PSO-RSA-

A

(mW)

EP-AC-

PSO-RSA-W

(mW)

EP-AC-

SSO-RSA-A

(mW)

EP- AC-

SSO-RSA-W

(mW)

EP-AC-

BFO-RSA-

A

(mW)

EP- AC-

BFO-RSA-

W

(mW)

1 1040 1023 865 850 343 336

2 2040 2012 1698 1692 649 666

4 4098 4094 3413 3412 1308 1307

8 8647 8631 7202 7175 2750 2747

16 17317 17308 14436 14422 5489 5489

Total 33142 33068 27614 27551 10539 10545

Avg. 6628 6613.6 5523 5510.2 2108 2109

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16 Total Avg.

D
e
c
.T

im
e

(m
S

)

File Size (MB)

DT-AC-PSO-ECC-A

DT- AC-PSO-ECC-W

DT-AC-SSO-ECC-A

DT- AC-SSO-ECC-W

DT-AC-BFO-ECC-A

DT AC-BFO-ECC-W

140

Fig. 7.5: Graph showing the Encryption power using AC-PSO-RSA, AC-SSO-RSA

&AC-BFO-RSA with Android Vs Windows Emulator

 EP-AC-PSO-RSA-A is 1.002 times faster than EP-AC-PSO-RSA-W

 EP-AC-SSO-RSA-A is 1.002 times faster than EP- AC-SSO-RSA-W

 EP-AC-BFO-RSA-A is is almost same as EP- AC-BFO-RSA-W

It is also found that AC based on PSO, SSO and BFO improves the performance of

EP when the said methods are used in RSA with A and W emulators. Further, EP-

AC-BFO-RSA-A and EP-AC-BFO-RSA-W take less EP when they are compared

with other proposed methods.

Table 7.6: Encryption power using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC

with Android Vs Windows Emulator

FILE

SIZE

(MB)

EP-AC-

PSO-ECC-

A

(mW)

EP-AC-

PSO- ECC-

W

(mW)

EP-AC-

SSO- ECC-

A

(mW)

EP- AC-

SSO- ECC-

W

(mW)

EP-AC-

BFO- ECC-

A

(mW)

EP- AC-

BFO- ECC-

W

(mW)

1 1555 1533 1293 1300 395 401

2 3052 3015 2548 2527 782 777

4 6156 6150 5122 5122 1549 1561

8 12949 12925 10807 10762 3277 3277

16 26001 25952 21664 21643 6563 6544

Total 49713 49575 41434 41354 12566 12560

Avg. 9943 9915 8287 8270.8 2513 2512

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8 16 Total Avg.

E
n

c
.p

o
w

e
r

(m
W

)

File Size (MB)

EP-AC-PSO-RSA-A

EP-AC-PSO-RSA-W

EP-AC-SSO-RSA-A

EP- AC-SSO-RSA-W

EP-AC-BFO-RSA-A

EP- AC-BFO-RSA-W

141

Fig. 7.6: Graph showing the Encryption power using AC-PSO-ECC, AC-SSO-ECC

&AC-BFO-ECC with Android Vs Windows Emulator

 EP-AC-PSO-ECC-A is 1.002 times less than EP-AC-PSO- ECC-W

 EP-AC-SSO- ECC-A is 1.002 times less than EP- AC-SSO- ECC-W

 EP-AC-BFO- ECC-A is is almost same as EP- AC-BFO- ECC-W

It is also found that AC based on PSO, SSO and BFO improves the performance of

EP when the said methods are used in ECC with A and W emulators. Further, EP-

AC-BFO-ECC-A and EP-AC-BFO-ECC-W take less EP when they are compared

with other proposed methods.

Table 7.7: Decryption power using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA with

Android Vs Windows Emulator

FILE

SIZE

(MB)

DP-AC-

PSO-RSA-

A

(mW)

DP-AC-

PSO-RSA-

W

(mW)

DP-AC-

SSO-RSA-A

(mW)

DP- AC-

SSO-RSA-W

(mW)

DP-AC-

BFO-RSA-

A

(mW)

DP- AC-

BFO-RSA-

W

(mW)

1 363 354 288 293 334 322

2 696 676 577 570 654 637

4 1382 1375 1151 1150 1315 1305

8 2887 2894 2410 2394 2729 2740

16 5785 5786 4821 4812 5492 5495

Total 11113 11085 9247 9219 10524 10499

Avg. 2223 2217 1849 1843.8 2105 2099.8

0

10000

20000

30000

40000

50000

1 2 4 8 16 Total Avg.

E
n

c
.
P

o
w

e
r

(m
W

)

File Size (MB)

EP-AC-PSO-ECC-A

EP- AC-PSO-ECC-W

EP-AC-SSO-ECC-A

EP- AC-SSO-ECC-W

EP-AC-BFO-ECC-A

EP- AC-BFO-ECC-W

142

Fig. 7.7: Graph showing the Decryption power using AC-PSO-RSA, AC-SSO-RSA

&AC-BFO-RSA with Android Vs Windows Emulator

 DP-AC-PSO-RSA-A is 1.003 times less than DP-AC-PSO-RSA-W

 DP-AC-SSO-RSA-A is 1.003 times less than DP- AC-SSO-RSA-W

 DP-AC-BFO-RSA-A is 1.002 times less than DP- AC-BFO-RSA-W

It is also found that AC based on PSO, SSO and BFO improves the performance of

DP when the said methods are used in ECC with A and W emulators. Further, DP-

AC-SSO-RSA-W take less DP when they are compared with other proposed

methods.

 Table 7.8: Decryption power using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC with

Android Vs Windows Emulator

FILE

SIZE

(MB)

DP-AC-

PSO-ECC-

A

(mW)

DP-AC-PSO-

ECC-W

(mW)

DP-AC-

SSO- ECC-

A

(mW)

DP- AC-

SSO- ECC-

W

(mW)

DP-AC-

BFO- ECC-

A

(mW)

DP- AC-

BFO- ECC-

W

(mW)

1 532 529 414 415 394 405

2 1024 1013 803 786 786 764

4 2066 2064 1598 1594 1559 1551

8 4332 4316 3375 3348 3264 3265

16 8677 8659 6745 6742 6553 6545

Total 16631 16581 12935 12885 12556 12530

Avg. 3326 3316.2 2587 2577 2511 2506

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 Total Avg.

D
e
c
.P

o
w

e
r

(m
W

)

File Size (MB)

DP-AC-PSO-RSA-A

DP- AC-PSO-RSA-W

DP-AC-SSO-RSA-A

DP- AC-SSO-RSA-W

DP-AC-BFO-RSA-A

DP AC-BFO-RSA-W

143

Fig. 7.8: Graph showing the Decryption power using AC-PSO-ECC, AC-SSO-ECC

&AC-BFO-ECC with Android Vs Windows Emulator

 DP-AC-PSO-ECC-A is 1.003 times less than DP-AC-PSO- ECC-W

 DP-AC-SSO- ECC-A is 1.004 times less than DP- AC-SSO- ECC-W

 DP-AC-BFO- ECC-A is 1.002 times less than DP- AC-BFO- ECC-W

It is also found that AC based on PSO, SSO and BFO improves the performance of

DP when the said methods are used in ECC with A and W emulators. Further, DP-

AC-BFO-ECC-A and DP-AC-BFO-ECC-A take less DP when they are compared

with other proposed methods.

Table 7.9: Security using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-RSA with Android

Vs Windows Emulator

FILE

SIZE

(MB)

SE-AC-

PSO-RSA-

A

(%)

SE-AC-

PSO-RSA-

W

(%)

SE-AC-

SSO-RSA-

A

(%)

SE- AC-

SSO-RSA-W

(%)

SE-AC-

BFO-RSA-

A

(%)

SE-AC-

BFO-RSA-

W

(%)

1 95 93 93 93 94 95

2 92 92 92 91 92 91

4 90 91 91 90 91 90

8
89 89 90 89 90 89

16 89 88 89 88 88 89

Total 91 90.6 91 90.2 91 90.8

Avg.
95 93 93 93 94 95

0

10000

20000

30000

40000

50000

1 2 4 8 16 Total Avg.

D
e
c
.
P

o
w

e
r

(m
W

)

File Size (MB)

DP-AC-PSO-ECC-A

DP- AC-PSO-ECC-W

DP-AC-SSO-ECC-A

DP- AC-SSO-ECC-W

DP-AC-BFO-ECC-A

DP- AC-BFO-ECC-W

144

Fig. 7.9: Graph showing the Security using AC-PSO-RSA, AC-SSO-RSA &AC-BFO-

RSA with Android Vs Windows Emulator

 SE-AC-PSO-RSA-A is 1.022 times more than SE-AC-PSO-RSA-W

 SE-AC-SSO-RSA-A is same as SE- AC-SSO-RSA-W

 SE-AC-BFO-RSA-W is 0.989 times more than SE-AC-BFO-RSA-A

It is also found that AC based on PSO, SSO and BFO provides more SE when the said

methods are used in RSA with A and W emulators. SE-AC-PSO-RSA-A, SE-AC-BFO-

RSA-A and SE-AC-BFO-RSA-W provides almost same level of security i.e., 94%

when they are compared with other proposed methods.

Table 7.10: Security using AC-PSO-ECC, AC-SSO-ECC &AC-BFO-ECC with

Android Vs Windows Emulator

FILE

SIZE

(MB)

SE-AC-

PSO-ECC-

A

(%)

SE-AC-PSO-

ECC-W

(%)

SE-AC-

SSO- ECC-

A

(%)

SE- AC-

SSO- ECC-

W

(%)

SE-AC-

BFO- ECC-

A

(%)

SE-AC-

BFO- ECC-

W

(%)

1 95 95 93 97 96 97

2 94 93 92 93 93 93

4 92 93 91 92 93 93

8 91 91 90 92 91 91

16 91 91 89 91 91 91

Total 92.6 92.6 91 93 92.8 93

Avg. 95 95 93 97 96 97

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 Total Avg.

S
e
c
u

r
it

y

(%
)

File Size (MB)

SE-AC-PSO-RSA-A

SE- AC-PSO-RSA-W

SE-AC-SSO-RSA-A

SE-AC-SSO-RSA-W

SE-AC-BFO-RSA-A

SE-AC-BFO-RSA-W

145

Fig. 7.10: Graph showing the Security using AC-PSO-ECC, AC-ECC-RSA &AC-

BFO-ECC with Android Vs Windows Emulator

 SE-AC-PSO-ECC-A is same as SE-AC-PSO- ECC-W

 SE-AC-SSO- ECC-W is 1.021 times more than SE- AC-SSO- ECC-A

 SE-AC-BFO- ECC-W is 0.990 times more than SE-AC-BFO- ECC-A

It is also found that AC based on PSO, SSO and BFO provides more SE when the said

methods are used in ECC with A and W emulators. SE-AC-SSO-ECC-A and SE-AC-

BFO-ECC-W provides almost same level of security i.e., 97% when they are compared

with other proposed methods.

Table 7.11 shows the comparison of ET, DT, EP, DP and SE while using Android

and Windows emulator respectively and their graphical representations are shown in

fig.7.11.

From table 7.11, it is revealed that AC-SSO-RSA-W takes less ET and DT. It is also

found that, AC-SSO-RSA-W consumes less power in both EP and DP. While

considering SE, it is proved that AC-SSO-ECC-A and AC-BFO-ECC-W provides

almost equal i.e., 93%.

84

86

88

90

92

94

96

98

1 2 4 8 16 Avg.

Se
cu

ri
ty

(%
)

File Size (MB)

SE-AC-PSO-ECC-A

SE- AC-PSO-ECC-W

SE-AC-SSO-ECC-A

SE-AC-SSO-ECC-W

SE-AC-BFO-ECC-A

SE-AC-BFO-ECC-W

146

Table 7.11: Android Vs Window OS Emulator

Operation

Existing Method Proposed Methods

RSA ECC AC-PSO-RSA AC-PSO-ECC AC-SSO-RSA AC-SSO-ECC AC-BFO-RSA
AC-BFO-

ECC

A W A W A W A W A W A W A W A W

ET 10501.4 10475 15474 14885 6634 6614 9948.8 9917 5524.4 5513 8289 8268 6302.4 6301 7842.2 7843

DT 3510.6 3499 5194 4973.6 2222.6 2212.2 3331 3319.2 1852.2 1841.8 2586.4 2581 6288.4 6279.6 7836.8 7826

EP 10502 1643 15474 14885.8 6628 6613.6 9943 9915 5523 5510.2 8287 8270.8 2108 2109 2513 2512

DP 3511 3508.8 5174 4975.8 2223 2217 3326 3316.2 1849 1843.8 2587 2577 2105 2099.8 2511 2506

SE 88.6 88.8 90.6 90.8 91 90.6 92.6 92.6 91 90.2 92.8 93 91 90.8 92.8 93

147

ET : Encryption Time DT : Decryption Time EP : Encryption Power DP : Decryption Power SE: Security

Fig. 7.11: Graph Showing the overall performance of Android Vs Window OS Emulator

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

A W A W A W A W A W A W A W A W A W A W

RSA ECC RM-RSA RA-ECC AC-PSO-RSA AC-PSO-ECC AC-SSO-RSA AC-SSO-ECC AC-BFO-RSA AC-BFO-ECC

ET

DT

EP

DP

SE

148

CHAPTER – VIII

CONCLUSION

Mobile computing is a technology which can defined as at anywhere, any time and

any place anybody can access it. In future, all activities can be controlled through

these devices, which allow the user without any physical connection to complete the

tasks. These devices will enable the transmission of voice, video and data between

human and the computer. It always helps to stay connected to the world with a wide

range of users through the internet. Even though, all sensitive informations are

transmitted through these handheld mobile devices but they have limited battery

power, storage and some security threats occur. Hence, the five parameters viz., ET,

DT, EP, DP and SE have been taken in this research. If the said processes take more

time, it will degrade the performance and will eventually decrease the life of mobile

devices. It is noted that there is a directly proportional relationship between

operational time and power consumption.

Thus, it is essential to minimize the operational time. One way of achieving is to use

the optimal AC. To generate the optimal AC for the integer (keys in cryptographic

algorithms), the concepts used in BIAs viz., PSO, SSO and BFO are taken and they

are incorporated into the public-key algorithms RSA and ECC with two different

mobile emulators Android and Windows. The proposed algorithms are termed as AC-

PSO-RSA, AC-PSO-ECC, AC-SSO-RSA, AC-SSO-ECC, AC-BFO-RSA and AC-

BFO-ECC. They are tested for said parameters.

149

8.1 Summary of the Contributions

The contributions made in this research work are summarised as follows:

i) In the first proposed AC-PSO method, each particles represents the AC, and the

fitness function represents the length of AC. Even though, too may ACs are

generated for the encryption and decryption key of RSA and k[P] of ECC, only

optimal length ACs are alone is considered in this method. The generated ACs are

incorporated into RSA and ECC with two different emulators. Experimental result

clearly indicate that (i) ET-AC-PSO-RSA-A takes less ET, and DT-AC-PSO-RSA-A

and DT-AC-PSO-RSA-W take less DT than the existing and the proposed methods.

(ii) when EP is concerned, EP-AC-PSO-RSA-W and DP-AC-PSO-RSA-A take less

EP and DP than the existing and the proposed methods and (iii) regarding the security

parameter, SE-AC-PSO-ECC-A and SE-AC-PSO-ECC-W provide almost same but

more security than the existing and the proposed methods.

ii) In the second proposed AC-SSO method, CPs are taken as ACs and again the

length of the AC is taken as fitness function. Only optimal length ACs generated by

this method are incorporated into RSA and ECC. From the experimental results, it is

observed that (i) ET-AC-SSO-RSA-W takes less time for both encryption and

decryption than the existing and the proposed methods. (ii) when EP is concerned,

EP-AC-SSO-RSA-A takes less EP and DP-AC-SSO-RSA-A and DP-AC-SSO-RSA-

W take less DP than the existing and the proposed methods and (iii) regarding the

security parameter, SE-AC-SSO-ECC-W provides more security than the existing and

the proposed methods.

150

 iii) AC-BFO is the third proposed method in which each bacterium is considered as

AC and the optimal ACs are produced using the processes viz., chemotaxis,

reproduction, and elimination-dispersal. As the ultimate aim of this proposed method

is to reduce the operational speed, energy consumption and enchaining the security,

this method is also used for the same to avoid the customer's impatience and

dissatisfaction. The experimental results clearly show that (i) ET-AC-BFO-RSA-W

takes less ET and DT than the existing and the proposed methods (ii) when EP is

concerned, EP-AC-BFO-RSA-W and DP-AC-BFO-RSA-A take less EP and DP-AC-

BFO-RSA-A and DP-AC-BFO-RSA-W take the same and less DP than the existing

and the proposed methods and (iii) regarding the security parameter, SE-AC-BFO-

ECC-A and SE-AC-PSO-ECC-W take almost same but more security than the

existing and the proposed methods.

 From the three proposed methods, it is concluded that AC-SSO-RSA-W is for ET,

DT, EP and DP are better than others with respect to time. While considering SE, it is

proved that AC-SSO-ECC-A and AC-BFO-ECC-W provides almost same security

level i.e., 93% than others.

8.2 Future Research Directions

This work can be extended in mobile cloud computing due to the serious limitations

of memory space, battery power for energy consumption as well as the resource

optimization without compromising the security in mobile devices.

8.3 End Note

Mobile computing technology can reach at any part of the world to attain its destiny.

Users can feel very comfortable from any location as they are connected to a secure

151

network. This technology acts as a major part of Information Communication and

Technology (ICT). Mobile functionality available today but their performances need

to be safe and secured means this can lead to attain its heights. This research work has

built a new three proposed BIAs based AC methods to enhance the operational speed

while using any cryptographic algorithms. No cryptographic algorithms have proved

to use such methods to enhance the operational speed in any literature. These ideas

used are unique, novel, innovative and original. This work is nonexistent in any

literature and the same is endorsed by a few journals and conferences for its veracity.

152

REFERENCES

[1]. J Jang-accard and Surya Nepal, "A Survey of emerging threats in Cybersecurity",

Journal of Computer and System Sciences, 2014, 80, pp.973-993.

[2]. International Telecommunication Union, CCITT - The International Telegraph and

Telephone Consultative Committee - Security Architecture for Open Systems

Interconnection for CCITT Applications", Recommendation X.800, Geneva, 1991.

[3]. Gurkan Gur et. al., "Security Analysis of Computer Nerworks: Key concepts and

methodologies", Modeling and Simulation of Computer Networks and Systems -

Methodologies and Applications, 2015, pp.861-898.

[4]. William Stallings, "Cryptography and Network Security", 2005, 4th edition, pp.209.

[5]. Rob Stubbs, "Classification of Cryptographic Keys", A Framework for Designing

Cryptographic Key Management Systems, 2018.

[6]. Massoud Sokouti et al., "An approach in improving transposition cipher system",

Indian Journal of Science and Technology, 2009.

[7]. Hans Delf and Helmut Knel, "Introduction to Cryptography - Principles and

Applications, Second Edition, Springer, 2007.

[8]. Neal Koblitz, "A Course in Number Theory and Cryptography", Springer Verlag,

1994.

[9]. Gary C. Kessler, ―An Overview of Cryptography‖, Handbook on Local Area

Networks, 1998

[10]. Britannica, The Editors of Encyclopaedia. "cipher". Encyclopedia Britannica, 14

Jun. 2021.

[11]. Limor Elbaz, ―Using Public Key Cryptography in Mobile Phones‖, White

Paper,Discretix Technologies Ltd., Advanced security solutions for constrained

environments, October 2002.

[12]. Miller V, "Use of elliptic curves in cryptography", Advances in Cryptology -

CRYPTO ’85, Lecture Notes in Computer Science, 1986.

[13]. Evan Dummit, "Cryptography (part 3): Discrete Logarithms in Cryptography

2016", Vol. 1.01, pp. 1-13.

153

[14]. Jayaprakash Kar & Banshidhar Majhi, ―An Efficient Password Security of Multi-

Party key exchange protocol based on ECDLP‖, International Journal of Computer

Science and Security (IJCSS), Vol.1, Issue 5, Sep. 2009.

[15]. Immons, Gustavus J, "RSA encryption", Encyclopedia Britannica, 3 Aug. 2012.

[16]. Koblitz, N, "Ellipti Curve Cryptosystems", Mathematics of Computation, 48 (177):

203-209, doi:10.2307/2007884. JSTOR 2007884.

[17]. Bruno P.S. Rocha et al., ―Adaptive Security protocol selection for mobile

computing‖, Journal of Network and Computer Applications, 33, 2010, pp. 569.

[18]. Bezboruah, Tulshi, "Mobile Computing", The Emerging Technology, Sensing,

Challenges and Applications, 2011, Vol. 4, pp. 165-174.

[19]. David Kleidermacher, Mike Kleidermacher, "Embedded Cryptograph", Embedded

Systems Security, 2012.

[20]. Jyotsna Dei, Anindya Sen, "Investigation on Trends of Mobile Operating Systems",

International Journal of Engineering Research & Technology (IJERT), Vol.4 Issue

07, July 2015.

[21]. Vijay K. Garg, "Wireless Communication & Networking", 2007.

[22]. Mooseeop Kim et al., ―Design of Cryptographic Hardware Architecture for Mobile

Computing‖, Journal of Information Processing Systems, vol. 5, no. 4, Dec. 2009.

[23]. Maurice Mignotte, "A Note on Addition Chains", International Journal of Algebra,

Issue 5(6), 2011.

[24]. Neil Michael Clift, "Calculating Optimal Addition Chains‖, Journal of Computing,

Springer, 91, 2011, pp. 265–284.

[25]. K Mani, M Viswambari, "A New Method of Generating Optimal Addition Chain

Based on Graph, International Journal of Mathematical Sciences and Computing",

Vol. 2, 2017, pp. 37-54.

[26]. P Suradhakameswari and B Ravitheja, Addition Chain for Lucas sequences with Fast

Computation Method, International Journal of Applied Engineering Research, Issue

13(11), 2018, pp. 9413–9419.

[27]. Dustin Moody and Amadou Tall, On Addition-Subtraction Chains of Numbers With

Low Hamming Weight”, Number Theory Mathematics, Vol. 25, 2019, pp. 155-168.

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F2007884
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/2007884

154

[28]. Floreano and Mattiussi, "Bio-inspired artificial intelligence: Theories, methods,

and technologies", 2008.

[29]. Xian-Bing Meng, X.Z. Gao, Lihua Lu, Yu Liu, Hengzhen Zhang. "A new bio-

inspired optimisation algorithm: Bird Swarm Algorithm", Journal of Experimental

& Theoretical Artificial Intelligence, 2016.

[30]. Ke-Lin Du and M. N. S. Swamy. "Particle Swarm Optimization", Search and

Optimization by Metaheuristics, Springer, 2016.

[31]. Wei-Chang Yeh, Wei-Ting Lin, Chyh-Ming Lai, Yen-Chin Lee, Yuk Ying Chung,

Jsen-Shung Lin. "Application of simplified swarm optimization algorithm in

deteriorate supply chain network problem", Evolutionary Computation (CEC) -

IEEE, 2016.

[32]. Swagatam Das, ArijitBiswas, SambartaDasgupta, and Ajith Abraham, ―Bacterial

Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and

Applications‖, Foundations of Computational Intelligence, Springerlink.com,

Springer-Verlag Berlin Heidelberg, 2009, pp. 23–55.

[33]. Kevin M. Paasino, "Bacterial Foraging Optimization", International Journal of

Swarm Intelligence Research, 1(1), 2010, pp.1-16.

[34]. Mavridis I., Pangalos G., ―Security Issues in Mobile computing Paradigm‖. 1997,

http://www.researchgate.net.

[35]. Erik Olson and Woojin Yu, ―Encryption for Mobile computing‖, 2000.

[36]. Wendy Chou, ―Elliptic Curve Cryptography and its applications to Mobile Devices",

2000.

[37]. Limor Elbaz, ―Using Public Key Cryptography in Mobile Phones‖, White

Paper,Discretix Technologies Ltd., Advanced security solutions for constrained

environments, October 2002.

[38]. Dharma P. Agrawal et al., ―Secure Mobile Computing‖, S.R. Das, S.K. Das (Eds.):

IWDC 2003, Springer-Verlag., LNCS 2918, 2003, pp.265- 278.

[39]. WHanping Lufei and Weisong Shi, ―An Adaptive Encryption Protocol in Mobile

Computing‖, Wireless/Mobile Network Security, Springer, 2006.

http://www.researchgate.net/

155

[40]. Abhishek Kumar Gupta, ―Challenges of Mobile computing‖, Proceedings of 2nd

National Conference on Challenges & Opportunities in Information Technology

RIMT – IET, Mandi Gobindgarth, March 29, 2008.

[41]. S. Krishna Mohan Rao and Dr. A Venugopal Reddy, ―Data Dissemination in

Mobile Computing Environment‖, BIJIT, Bharati Vidyapeeth’s Institute of

Computer applications and Management (BVICAM), New Delhi, Vol. 1, No. 1,

January 2009.

[42]. M. Razvi Doomun, and KMS Soyjaudah, ―Analytical Comparison of

Cryptographic Techniques for Resource-Constrained Wireless Security‖,

International Journal of Network Security, Vol.9, No.1, July 2009, pp. 82–94.

[43]. Jayaprakash Kar & Banshidhar Majhi, ―An Efficient Password Security of Multi-

Party key exchange protocol based on ECDLP‖, International Journal of Computer

Science and Security (IJCSS), Vol.1, Issue 5, Sep. 2009.

[44]. Mooseeop Kim et al., ―Design of Cryptographic Hardware Architecture for Mobile

Computing‖, Journal of Information Processing Systems, Vol. 5, No. 4, Dec. 2009.

[45]. Bruno P.S. Rocha et. al., ―Adaptive Security protocol selection for mobile

computing‖, Journal of Network and Computer Applications, 2010, pp. 569.

[46]. Sathish Alampalayam Kumar, ―Classification and Review of Security Schemes in

Mobile Computing‖, Wireless Sensor Network, June 2010, pp.419-440.

[47]. Sameer Hasan Al-Bakri, Gazi Mahabubul Alam et al., ―Securing peer-to-peer

mobile communications using public key cryptography: New security strategy‖,

International Journal of the Physical Sciences, Vol. 6(4), Feb. 2011, pp. 930-938.

[48]. Rahat Afreen and S.C. Mehrotra, ―A Review on Elliptic Curve Cryptography for

Embedded Systems‖, International Journal of Computer Science & Information

Technology, Vol. 3, No 3, June 2011.

[49]. Helena Rifa-Pous and Jordi Herrera-Joancomarti, ―Computational and Energy

Costs of Cryptographic Algorithms on Handheld Devices‖, Future Internet, 2011,

Vol.3, pp.31-48.

[50]. Jagdish Bhatta and Lok Prakash Pandey, ―Performance Evaluation of RSA Variants

and Elliptic Curve Cryptography on Handheld Devices‖, International Journal of

Computer Science and Network Security, Vol. 11, No. 11, Nov. 2011.

156

[51]. K. Sathish Kumar et. al., ―An Experimental Study on Energy Consumption of

Cryptographic Algorithms for Mobile Hand-Held Devices‖, International Journal

of Computer Applications, Vol. 40, No.1, Feb. 2012.

[52]. Masoud Nosrati et. al., ―Mobile and Operating Systems‖, Computing: Principles,

Devices World Applied Programming, Vol. 2, Issue 7, July 2012.

[53]. Ravinder Singh Mann et al., ―A Comparative Evaluation of Cryptographic

Algorithms‖, Int. J. Computer Technology & Applications, Vol. 3(5), Oct. 2012,

pp. 1653-1657.

[54]. Giripunje et al., ―Comprehensive Security System for Mobile Network Using

Elliptic Curve Cryptography over GF (p)", International Journal of Advanced

Research in Computer Science and Software Engineering, Vol. 3, Issue 5, May

2013, pp. 704-713.

[55]. Ameya Nayak, ―Android Mobile Platform Security and Malware Survey‖, IJRET:

International Journal of Research in Engineering and Technology, Vol. 02 Issue

11, Nov. 2013.

[56]. Srikanth Pullela, ―Security Issues in Mobile computing‖, International Journal of

Research in Engineering and Technology, Vol. 02, Issue: 11, Nov. 2013.

[57]. V. Gayoaso Martinez and L. Hernandez Encinas, ―Implementing ECC with Java

Standard Edition 7‖, International Journal of Computer Science and Artificial

Intelligence, Dec. 2013, Vol. 3, Issue. 4, pp. 134-142.

[58]. Muhammad Waseem Khan, ―SMS Security in Mobile Devices: A Survey‖, Int. J.

Advanced Networking and Applications, Vol. 05, Issue 2, 2013, pp. 1873 -1882.

[59]. Ram Ratan Ahirwal and Manoj Ahke, ―Elliptic Curve Diffie-Hellman Key

Exchange Algorithm for Securing Hypertext Information on Wide Area Network‖,

International Journal of Computer Science and Information Technologies, Vol.

4(2), 2013, pp.363 – 368.

[60]. Sathish Kumar et. al., ―An Asymmetric Authentication Protocol for Mobile Hand

held Devices using ECC over Point Multiplication Method‖, International Journal

of Advanced Research in Computer Science & Technology, Vol. 2, Jan.–March

2014.

157

[61]. Hamed Khiabani et. al., ―A Review on privacy, Security and Trust issues in Mobile

Computing‖, Collaborative outcome of University of Malaysia and MIMOS Berhad

– Information Security Cluster, 2014.

[62]. Seema P. Nakhate and R.M. Goudar, ―Secure Authentication Protocol‖,

International Journal of Computer Networks and Communications Security, Vol. 2,

No. 4, April 2014, pp. 142 – 145.

[63]. Vishnu V and Shobha R, ―Dynamic Cluster Head (CH) Node Election and Secure

Data Transaction in CWSNs‖, International Journal of Engineering Research, Vol.

4, Issue Special 4, May 2015.

[64]. Tanmoy Kumar Bishoi et. al., ―An Algorithm on Text Based Security in Modern

Cryptography‖, Journal of Computer Networking, Wireless and Mobile

Communications (JCNWMC), Vol. 5, Issue 1, Jun 2015, pp. 9-14.

[65]. Sujithra M et. al., ―Mobile Data Security: A Cryptographic Approach by

Outsourcing Mobile data to Cloud‖, Procedia Computer Science, 2015, pp. 480-

485.

[66]. Said Bouchkaren and Saiida Lazaar, ―A New Iterative Secret Key Cryptosystem

Based on Reversible and Irreversible Cellular Automata‖, International Journal of

Network Security, Vol. 18, No. 2, Mar 2016, pp. 345-353.

[67]. Arbit and Ashwini Kumar, ―Optimized Elliptic Curve Cryptography as Fine Balance

for Wireless Sensor Network‖, International Journal of Modeling and Optimization,

Vol.1, No. 4, October 2011.

[68]. Ahmed Tariq Sadiq, ―Mutation-Based Particle Swarm Optimization (MPSO) to

Attack Classical Cryptography Methods‖, Journal of Computer Science and

Technology Research, Issue 2, March 2012., pp. 50-65.

[69]. Ahemed A, A. Esmin and Germano Lambert-Torres, "Application of Particle Swarm

Optimization to optimal power systems", International Journal of Innovative

Computing, Information and Control, Vol. 8, No.3(A), March 2012, pp. 1705-1716.

[70]. G.Prakash and Dr. M. Kannan, ―Enhancing Security in Cryptographic in Smart

Cards through Elliptic Curve Cryptography and Optimized Modified Matrix

Encoding Algorithms‖, Journal of Theoretical and Applied Information Technology,

Vol. 58, No.3, December 2013.

158

[71]. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M. A swarm optimization

algorithm inspired in the behaviour of the social-spider, Expert Systems with

Applications, Vol. 40, No. 16, 2013.

[72]. Wilayat Khan, Habib Ullah and Riaz Hussain, ―Energy Efficient Mutual

Authentication Protocol for Handheld devices based on Public Key Cryptography‖,

International Journal of Computer Theory and Engineering, Vol. 5, No. 5,

October 2013.

[73]. Rangit j. Bhosale et al, ―A Survey on Intrusion detection System for Mobile Ad-hoc

Networks‖, (IJCSIT) International Journal of Computer Science and Information

Technologies, Vol. 5, No. 6, 2014.

[74]. Swapna B. Sasi and N. Sivanandam, ―A Survey on Cryptography using

Optimization algorithms in WSNs‖, Indian Journal of Science and Technology, Vol.

8. No. 3, February 2015.

[75]. Dolly U. Jeswani and Swati G. Kale, ―The Particle Swarm Optimization Based

Linear Cryptanalysis of Advanced Encryption Standard Algorithm‖, International

Journal on Recent and Innovation Trends in Computing and Communication, Vol. 3,

April 2015.

[76]. Chia-Ling Huang and Wei-Chang Yeh," Simplified Swarm Optimization Algorithm

for reliability redundancy allocation problems", IEEE Computer Society, 2015.

[77]. Ji Weidong and Zhu Songyu, "A Filtering Mechanism Based Optimization for

Particle Swarm", International Journal of u- and e-Service, Science and Technology,

Vol.9, No. 1, 2016.

[78]. Jin Yang, Fagui Liu, Jianneng Cao and Liangming Wang, "Discrete Particle Swarm

Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile

Sinks", MDPI journals , Sensors 2016.

[79]. Joppe W. Bos, J. Alex Halderman, Nadia Heninger, Jonathan Moore, Michael

Naehrig, Eric Wustrow. ―Elliptic Curve Cryptography in Practice‖, International

Conference on Financial Cryptography and Data Security, Springer, 2014.

[80]. Lijuan Li and Shuguo Li, "Fast inversion in GF(2m) with polynomial basis using

optimal addition chains", Circuits and Systems (ISCAS), IEEE, 2017.

159

[81]. Joost Renes, Craig Costello and Lejla Batina, "Complete Addition Formulas for

Prime Order Elliptic Curves", Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Springer, 2016.

[82]. Ke-Lin Du and M. N. S. Swamy. "Particle Swarm Optimization", Search and

Optimization by Metaheuristics, Springer, 2016.

[83]. Floreano and Mattiussi, Bio-inspired artificial intelligence: Theories, methods, and

technologies, 2008.

[84]. Micael Couceiro, Pedram Ghamisi. "Particle Swarm Optimization", Fractional

Order Darwinian Particle Swarm Optimization - Springer, 2015.

[85]. Wei-Chang Yeh, Cyuan-Yu Luo, Chyh-Ming Lai, Chi-Ting Hsu, Yuk Ying Chung,

Jsen-Shung Lin., "Simplified swarm optimization with modular search for the

general multi-level redundancy allocation problem in series-parallel systems",

Evolutionary Computation (CEC) - IEEE, 2016.

[86]. Fausto Meneses, Walter Fuertes, José Sancho, Santiago Salvador, Daniela Flores,

Hernán Aules, Fidel Castro, Jenny Torres, Alba Miranda, Danilo Nuela. "RSA

Encryption Algorithm Optimization to Improve Performance and Security Level of

Network Messages", International Journal of Computer Science and Network

Security - IJCSNS, 2016.

[87]. Nigel P. Smart. "Elliptic Curves", Cryptography Made Simple - Springer, 2015.

[88]. Nicholas M. Katz and Barry Mazur, "Arithmetic Moduli of Elliptic Curves", Annals

of Mathematic Studies, Princeton University Press, 2016.

[89]. Turner Paul1, Thornton Steve. "Addition chains: A reSolve lesson", Australian

Senior Mathematics Journal, 2017.

[90]. Stjepan Picek, Carlos A. Coello Coello, Domagoj Jakobovic, Nele Mentens.

"Evolutionary Algorithms for Finding Short Addition Chains: Going the Distance",

Evolutionary Computation in Combinatorial Optimization - Springer, 2016.

[91]. Stjepan Picek, Carlos A. Coello Coello, Domagoj Jakobovic, Nele Mentens.

"Finding short and implementation-friendly addition chains with evolutionary

algorithms", Journal of Heuristics, Springer, 2017.

160

[92]. Brian Koziel, Reza Azarderakhsh, David Jao, Mehran Mozaffari-Kermani. "On Fast

Calculation of Addition Chains for Isogeny-Based Cryptography", Information

Security and Cryptology, 2016.

[93]. K.Mani, M.Viswambari."A New Method of Generating Optimal Addition Chain

Based on Graph", I.J. Mathematical Sciences and Computing - MECS, 2017.

[94]. Michal Pluhacek, Jakub Janostik, Roman Senkerik, Ivan Zelinka, Donald Davendra.

"PSO as Complex Network—Capturing the Inner Dynamics—Initial Study",

Proceedings of the Second International Afro-European Conference for Industrial

Advancement , Springer, 2016.

[95]. Xian-Bing Meng, X.Z. Gao, Lihua Lu, Yu Liu, Hengzhen Zhang. "A new bio-

inspired optimisation algorithm: Bird Swarm Algorithm", Journal of Experimental

& Theoretical Artificial Intelligence, 2016.

[96]. Yanmin Liu, Chengqi Li, Xiangbiao Wu, Qingyu Zeng, Rui Liu, Tao Huang.

"Particle Swarm Optimizer with Full Information", Intelligent Computing Theories

and Application, Springer, 2016.

[97]. Wei-Chang Yeh, Wei-Ting Lin, Chyh-Ming Lai, Yen-Chin Lee, Yuk Ying Chung,

Jsen-Shung Lin. "Application of simplified swarm optimization algorithm in

deteriorate supply chain network problem", Evolutionary Computation (CEC) -

IEEE, 2016.

[98]. Shreenath Acharya, Asha Shenoy, Macwin Lewis, Namrata Desai. "Analysis and

Prediction of Application Usage in Android Phones", Advances in Electrical,

Electronics, Information, Communication and Bio-Informatics", IEEE, 2016.

[99]. https://www.microsoft.com/en-us/download/details.aspx?id=53424.

[100]. Neal Koblitz, "A Course in Number Theory and Cryptography", Springer Verlag,

1994.

[101]. Koblitz N, "Elliptic curve cryptosystems", 1987.

[102]. Miller V, "Use of elliptic curves in cryptography", Advances in Cryptology -

CRYPTO ’85, Lecture Notes in Computer Science, 1986.

[103]. N Koblitz, Elliptic Curve Cryptosystems, Mathematics of Computation, 48, 1982,

pp. 203-209.

https://www.microsoft.com/en-us/download/details.aspx?id=53424

161

[104]. I Blake, G Seroussi and NP Smart, Elliptic Curves in Cryptography, Ser. London

Math. Soc. Lecture Note Series, Cambridge Univ. Press, 1999.

[105]. Hugo Volger, "Some Results on Addition/Subtraction Chains", Information

Processing Letter, Elsevier, 1985.

[106]. Y H TsaiandY H Chin,―A Study of Some Addition Chain Problems‖, International

Journal of Computer Mathematics, 22(02), 1987, pp. 117-134.

[107]. F Bergeron, J Berstel, S Brlek, and C Duboc, "Addition Chains Using Continued

Fractions", Journal of Algorithms, Elsevier, 1989, pp. 403-412.

[108]. F Bergeron J Berstel and S Brlek, "Efficient Computation of Addition Chains",

Joumal de Theorie des Nombresde Bordeaux, 6(1), 1994, pp. 21-38.

[109]. Donald E Knuth, "The Art of Computer Programming, Seminumerical Algorithms",

2(3), Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[110]. Gordon DM, "A Survey of Fast Exponentiation Methods", Journal of Algorithms,

1998.

[111]. H Zantema, "Minimizing Sums of Addition Chains", Journal of Algorithms,

Elsevier, 12(2), 1999, pp. 21-38.

[112]. Noboru Kunihiro and Hirosuke Yamamoto, "New Methods for Generation of Short

Addition Chains" , IEICE Transactions Fundamental, 83(1), 2000.

[113]. Nareli Cruz-Cortés, Francisco Rodriguez-Henriquez, RaúlJuárez-Morales and Carlos

A Coello- Coello, "Finding Optimal Addition Chains Using a Genetic Algorithm

Approach", Springer- Verlag, 2005, pp. 208-215.

[114]. Cortés, Nareli & Trejo-Pérez, Daniel & Coello, Carlos. Handling Constraints in

Global Optimization Using an Artificial Immune System, Lecture Notes in

Computer Science, 2005, pp. 234-247.

[115]. Raveen R Goundar, Ken-ichiShiota, M Toyonaga, "New Strategy for Doubling -

Free Short Addition-Subtraction Chain", Mathematics, 2008.

[116]. AlejandroLe'on-Javier, NareliCruz-Cort'es, Moreno-Armend ariz, and Sandra

Orantes - Jim'enesz, Finding Minimal Addition Chains with a Particle Swarm

Optimization Algorithm, Advances in Artificial Intelligence, Springer, 2009, pp.

680-691.

https://www.tandfonline.com/author/Tsai%2C%2BYH
https://www.tandfonline.com/author/Chin%2C%2BYH
https://www.semanticscholar.org/author/Raveen-R.-Goundar/2696467
https://www.semanticscholar.org/author/Ken-ichi-Shiota/52410699
https://www.semanticscholar.org/author/M.-Toyonaga/145629889

162

[117]. MohamedMAbd-Eldayem, EhabTAlnfrawy,andAlyAFahmya, Addition-Subtraction

Chain for 160-bit Integers by using 2’s Complex N Cruz-Cortés, F Rodríguez-

Henríquez and C A Coello-Coello, "Addition Chain Length Minimization With

Evolutionary Programming", Proceedings of Genetic and Evolutionary Computation

Conference (GECCO) ACM digital Library, 2011.

[118]. S Dominguez-Isidro and E Mezura-Montes, "An Evolutionary Programming

Algorithm to Find Minimal Addition Chains", I Congreso Internacionalde

Ingenieria Electronica, Instrumentacion y Computacion, de Juniodel, Minatitlan

Veracruz, Mexico, 2011.

[119]. Maurice Mignotte, "A Note on Addition Chains", International Journal of Algebra,

5(6), 2011.

[120]. Neil Michael Clift, "Calculating Optimal Addition Chains‖, Journal of Computing,

Springer, 2011, pp. 265–284.

[121]. Arturo Rodriguez-Cristerna and Jose Torres-Jimenez, "A Genetic Algorithm for the

Problem of Minimal Brauer Chains for Large Exponents", Soft Computing

Applications in Optimization, Control, and Recognition, Springer, 2013.

[122]. K. Mani, "Generation of Addition Chain using Deterministic Division Based

Method", International Journal of Computer Science & Engineering Technology,

4(05) (2013), pp. 553- 560.

[123]. P Anuradha Kameswari and B Ravitheja, Addition Chain For Lucas Sequences

With Fast Computation Method, International Journal of Applied Engineering

Research, 13(11) (2018), pp. 9413–9419.

[124]. Stjepanpicek, Carlos A Coello Coello, Domagojjakobovic and n elementens, Finding

Short And Implementation - Friendly Addition Chains with Evolutionary

Algorithms, Journal of Heuristics, 24, 2018, 457-481.

[125]. Aaron Hutchinson and koraykarabina, Constructing Multidimensional Differential

Addition Chains and their applications, Springer, Journal of Cryptographic

Engineering, 9, 2019, 1- 19.

[126]. Dustin Moody and Amadou Tall, On Addition-Subtraction Chains of Numbers With

Low Hamming Weight‖, Number Theory Mathematics, 25, 2019, 155-168.

https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/journal/13389
https://link.springer.com/journal/13389
https://link.springer.com/journal/13389

163

[127]. Hazem M. Bahig
,
 and Yasser Kotb, An Efficient Multicore Algorithm for Minimal

Length Addition Chains, Computers, MDBI, 8, 2019.

[128]. Narendra Mohan, Lifetime Enhancement of Sensor Nodes Based on Optimized Sink

Node Placement Approach, International Journal of Engineering Trends and

Technology, 68.10, 2020, pp. 10-23.

https://sciprofiles.com/profile/author/SkpycjFPL2Mxd1BTdTdDcTd5Qldmc2ozZ2NYZkg3WW5QQ0d4b1owdHozbz0%3D
https://sciprofiles.com/profile/587237

APPENDIX - A.1

GENERATION OF 𝑬𝟓𝟑𝟗𝟎𝟑𝟖(17,7) POINTS

Points from 1 to 10000 for A: 17, B: 7, P: 539039

(1,5) (1,539034), (2,7) (2,539032), (7,209384) (7,329655), (10,254036) (10,285003),

(23,192123) (23,346916), (24,207140) (24,331899), (28,187853) (28,351186),

(29,52806) (29,486233), (40,189675) (40,349364), (41,167198) (41,371841),

(42,146230) (42,392809), (45,86800) (45,452239), (46,82678) (46,456361),

(49,31538) (49,507501), (50,101736) (50,437303), (51,203954) (51,335085),

(54,136270) (54,402769), (56,60393) (56,478646), (57,205207) (57,333832),

(61,199701) (61,339338), (62,137992) (62,401047), (64,219222) (64,319817),

(69,75066) (69,463973), (72,158175) (72,380864), (73,3422) (73,535617),

(74,184001) (74,355038), (75,130341) (75,408698), (76,191752) (76,347287),

(79,116748) (79,422291), (81,130515) (81,408524), (83,208693) (83,330346),

(85,125993) (85,413046), (86,232781) (86,306258), (87,237349) (87,301690),

(91,205623) (91,333416), (94,75784) (94,463255), (97,65630) (97,473409),

(98,29893) (98,509146), (100,155858) (100,383181), (104,243678) (104,295361),

(106,181812) (106,357227), (108,258954) (108,280085), (109,212549) (109,326490),

(113,78317) (113,460722), (114,109103) (114,429936), (120,238388) (120,300651),

(121,172234) (121,366805), (123,55452) (123,483587), (124,190117) (124,348922),

(125,247077) (125,291962), (127,241155) (127,297884), (128,30395) (128,508644),

(132,48252) (132,490787), (133,201326) (133,337713), (136,30090) (136,508949),

(137,195904) (137,343135), (138,19228) (138,519811), (141,1675) (141,537364),

(143,182822) (143,356217), (144,114930) (144,424109), (150,149132) (150,389907),

(152,61587) (152,477452), (153,144363) (153,394676), (155,224959) (155,314080),

(157,224524) (157,314515), (162,232469) (162,306570), (163,10691) (163,528348),

(164,180150) (164,358889), (165,97469) (165,441570), (168,87115) (168,451924),

(171,57970) (171,481069), (172,179701) (172,359338), (173,16639) (173,522400),

(174,202726) (174,336313), (175,51346) (175,487693), (176,154894) (176,384145),

(180,32186) (180,506853), (182,223435) (182,315604), (184,134759) (184,404280),

(189,233512) (189,305527), (190,149620) (190,389419), (191,192350) (191,346689),

(193,172667) (193,366372), (197,65067) (197,473972), (201,62121) (201,476918),

(202,198823) (202,340216), (203,100626) (203,438413), (204,106115) (204,432924),

(205,221304) (205,317735), (206,169311) (206,369728), (207,67870) (207,471169),

(211,102927) (211,436112), (212,75403) (212,463636), (218,193638) (218,345401),

(219,68844) (219,470195), (220,194479) (220,344560), (221,59506) (221,479533),

(222,66841) (222,472198), (223,22755) (223,516284), (224,260244) (224,278795),

(228,5734) (228,533305), (229,107057) (229,431982), (232,145313) (232,393726),

(233,246627) (233,292412), (235,118285) (235,420754), (236,169677) (236,369362),

(239,6330) (239,532709), (240,102442) (240,436597), (241,72093) (241,466946),

(242,2468) (242,536571), (243,225094) (243,313945), (247,254933) (247,284106),

(251,64802) (251,474237), (252,221834) (252,317205), (254,120949) (254,418090),

(255,87053) (255,451986), (260,27032) (260,512007), (261,42867) (261,496172),

(262,146468) (262,392571), (263,184694) (263,354345), (264,237008) (264,302031),

(270,91561) (270,447478), (272,142961) (272,396078), (276,3116) (276,535923),

(277,106770) (277,432269), (279,61380) (279,477659), (280,36435) (280,502604),

(284,212558) (284,326481), (286,171819) (286,367220), (295,230570) (295,308469),

(298,267462) (298,271577), (302,184677) (302,354362), (304,123733) (304,415306),

(305,115445) (305,423594), (306,179223) (306,359816), (310,237584) (310,301455),

(311,56226) (311,482813), (312,180041) (312,358998), (313,92639) (313,446400),

(314,14358) (314,524681), (317,138784) (317,400255), (318,35672) (318,503367),

(319,12136) (319,526903), (323,75958) (323,463081), (324,27007) (324,512032),

(326,69761) (326,469278), (327,255366) (327,283673), (328,101988) (328,437051),

(330,266829) (330,272210), (332,237731) (332,301308), (334,184855) (334,354184),

(335,118546) (335,420493), (336,129177) (336,409862), (339,242058) (339,296981),

(340,100611) (340,438428), (344,157661) (344,381378), (349,137117) (349,401922),

(350,121292) (350,417747), (351,239257) (351,299782), (352,222740) (352,316299),

(354,190475) (354,348564), (356,40896) (356,498143), (357,242472) (357,296567),

(358,215919) (358,323120), (360,85588) (360,453451), (361,98347) (361,440692),

(368,25300) (368,513739), (369,233031) (369,306008), (371,213319) (371,325720),

(377,108669) (377,430370), (378,215453) (378,323586), (379,61576) (379,477463),

(380,216107) (380,322932), (382,78488) (382,460551), (383,92068) (383,446971),

(385,88600) (385,450439), (388,241302) (388,297737), (390,218017) (390,321022),

(393,64411) (393,474628), (397,247680) (397,291359), (400,4911) (400,534128),

(403,83202) (403,455837), (404,145098) (404,393941), (406,109020) (406,430019).

(407,153750) (407,385289), (408,67017) (408,472022), (415,8063) (415,530976),

(416,213816) (416,325223), (417,253992) (417,285047), (418,143225) (418,395814),

(419,166201) (419,372838), (423,48169) (423,490870), (424,128734) (424,410305),

(426,38322) (426,500717), (427,179656) (427,359383), (428,3239) (428,535800),

(429,179231) (429,359808), (432,78296) (432,460743), (436,120266) (436,418773),

(439,221120) (439,317919), (440,145207) (440,393832), (441,205971) (441,333068),

(442,55761) (442,483278), (450,158669) (450,380370), (451,30005) (451,509034),

(452,237940) (452,301099), (455,28875) (455,510164), (456,178525) (456,360514),

(457,1810) (457,537229), (460,60648) (460,478391), (461,260512) (461,278527),

(463,99537) (463,439502), (465,12341) (465,526698), (467,156012) (467,383027),

(468,47355) (468,491684), (470,25227) (470,513812), (471,199881) (471,339158),

(472,186527) (472,352512), (474,53180) (474,485859), (478,250839) (478,288200),

(479,13476) (479,525563), (480,8409) (480,530630), (484,143655) (484,395384),

(485,129775) (485,409264), (486,260299) (486,278740), (488,171598) (488,367441),

(490,207312) (490,331727), (494,66369) (494,472670), (495,60885) (495,478154),

(497,199804) (497,339235), (498,61309) (498,477730), (499,114427) (499,424612),

(500,265589) (500,273450), (501,105829) (501,433210), (503,85369) (503,453670),

(506,137857) (506,401182), (509,33562) (509,505477), (510,268841) (510,270198),

(513,37969) (513,501070), (517,169877) (517,369162), (518,72186) (518,466853),

(522,239963) (522,299076), (525,160534) (525,378505), (528,99263) (528,439776),

(529,264256) (529,274783), (530,175208) (530,363831), (531,126398) (531,412641),

(532,174760) (532,364279), (534,222904) (534,316135), (535,26726) (535,512313),

(536,15325) (536,523714), (537,213058) (537,325981), (539,31067) (539,507972),

(540,190831) (540,348208), (543,36548) (543,502491), (544,202000) (544,337039),

(545,103821) (545,435218), (546,92863) (546,446176), (547,160739) (547,378300),

(555,102288) (555,436751), (561,33865) (561,505174), (562,47407) (562,491632),

(566,143565) (566,395474), (567,45444) (567,493595), (568,139369) (568,399670),

(572,112935) (572,426104), (574,124447) (574,414592), (577,119494) (577,419545),

(578,118071) (578,420968), (581,104255) (581,434784), (582,46728) (582,492311),

(585,252019) (585,287020), (586,85754) (586,453285), (587,190704) (587,348335),

(588,111230) (588,427809), (589,47740) (589,491299), (591,100892) (591,438147),

(592,216405) (592,322634), (595,77114) (595,461925), (596,211814) (596,327225),

(597,68196) (597,470843), (603,90311) (603,448728), (604,87793) (604,451246),

(607,101148) (607,437891), (608,17727) (608,521312), (610,24539) (610,514500),

(611,244172) (611,294867), (612,100636) (612,438403), (613,198922) (613,340117),

(620,158036) (620,381003), (621,137718) (621,401321), (626,73258) (626,465781),

(629,162040) (629,376999), (630,65717) (630,473322), (633,69184) (633,469855),

(638,171427) (638,367612), (640,19664) (640,519375), (641,110592) (641,428447),

(642,143504) (642,395535), (643,103605) (643,435434), (645,36811) (645,502228),

(646,257391) (646,281648), (647,235705) (647,303334), (648,205247) (648,333792),

(653,86764) (653,452275), (654,32570) (654,506469), (656,186460) (656,352579),

(660,51995) (660,487044), (661,264097) (661,274942), (663,87062) (663,451977),

(666,30352) (666,508687), (668,114917) (668,424122), (670,8530) (670,530509),

(672,48734) (672,490305), (674,114734) (674,424305), (677,131510) (677,407529),

(678,191429) (678,347610), (679,170500) (679,368539), (680,135868) (680,403171),

(682,22432) (682,516607), (683,152938) (683,386101), (685,148031) (685,391008),

(686,194138) (686,344901), (689,196374) (689,342665), (690,20785) (690,518254),

(691,75992) (691,463047), (692,67325) (692,471714), (693,72091) (693,466948),

(694,71202) (694,467837), (696,92215) (696,446824), (700,135407) (700,403632),

(703,104143) (703,434896), (704,236083) (704,302956), (705,219536) (705,319503),

(707,118065) (707,420974), (710,94836) (710,444203), (711,147919) (711,391120),

(719,104716) (719,434323), (720,146799) (720,392240), (722,3761) (722,535278),

(726,260689) (726,278350), (728,9482) (728,529557), (729,154353) (729,384686),

(733,83180) (733,455859), (735,263674) (735,275365), (737,99327) (737,439712),

(738,229775) (738,309264), (739,109140) (739,429899), (741,180432) (741,358607),

(745,128463) (745,410576), (746,147341) (746,391698), (750,188301) (750,350738),

(751,108836) (751,430203), (752,49941) (752,489098), (753,211612) (753,327427),

(754,47327) (754,491712), (755,120978) (755,418061), (756,178124) (756,360915),

(762,212822) (762,326217), (765,84603) (765,454436), (766,170508) (766,368531),

(767,55460) (767,483579), (769,202260) (769,336779), (770,99761) (770,439278),

(771,121378) (771,417661), (772,65535) (772,473504), (773,213165) (773,325874),

(775,134699) (775,404340), (776,102369) (776,436670), (777,41521) (777,497518),

(779,205963) (779,333076), (780,43673) (780,495366), (786,197383) (786,341656),

(788,52054) (788,486985), (792,146691) (792,392348), (796,118218) (796,420821),

(797,260061) (797,278978), (798,109261) (798,429778), (801,194696) (801,344343),

(802,210401) (802,328638), (808,204249) (808,334790), (810,235582) (810,303457),

(811,169485) (811,369554), (812,109203) (812,429836), (813,22521) (813,516518),

(815,44522) (815,494517), (818,78940) (818,460099), (819,163460) (819,375579),

(820,267239) (820,271800), (822,193329) (822,345710), (824,54612) (824,484427),

(825,237614) (825,301425), (829,250463) (829,288576), (832,210367) (832,328672),

(834,201978) (834,337061), (835,259647) (835,279392), (837,256918) (837,282121),

(838,89670) (838,449369), (839,58940) (839,480099), (840,192250) (840,346789),

(841,76889) (841,462150), (842,92054) (842,446985), (843,61231) (843,477808),

(844,265914) (844,273125), (845,262398) (845,276641), (847,160068) (847,378971),

(848,148122) (848,390917), (849,155136) (849,383903), (850,103277) (850,435762),

(852,36247) (852,502792), (853,169712) (853,369327), (855,97765) (855,441274),

(857,75845) (857,463194), (860,117018) (860,422021), (866,234098) (866,304941),

(868,105783) (868,433256), (869,142748) (869,396291), (871,164927) (871,374112),

(872,3678) (872,535361), (874,214258) (874,324781), (880,219697) (880,319342),

(882,76133) (882,462906), (883,260233) (883,278806), (885,103033) (885,436006),

(887,34707) (887,504332), (888,266091) (888,272948), (889,269191) (889,269848),

(890,254570) (890,284469), (891,81135) (891,457904), (892,75016) (892,464023),

(894,178018) (894,361021), (895,171152) (895,367887), (897,226535) (897,312504),

(898,51876) (898,487163), (900,238136) (900,300903), (903,174724) (903,364315),

(904,121443) (904,417596), (907,174604) (907,364435), (908,165550) (908,373489),

(911,142788) (911,396251), (912,142218) (912,396821), (913,71186) (913,467853),

(914,35436) (914,503603), (915,46794) (915,492245), (923,161947) (923,377092),

(925,6413) (925,532626), (927,57954) (927,481085), (928,92920) (928,446119),

(929,207307) (929,331732), (930,92765) (930,446274), (932,63123) (932,475916),

(933,267802) (933,271237), (937,193848) (937,345191), (941,199526) (941,339513),

(944,102828) (944,436211), (947,133858) (947,405181), (948,176583) (948,362456),

(949,187749) (949,351290), (950,36107) (950,502932), (955,120302) (955,418737),

(960,22894) (960,516145), (962,54249) (962,484790), (966,30212) (966,508827),

(967,73219) (967,465820), (968,263141) (968,275898), (969,147819) (969,391220),

(970,229253) (970,309786), (972,125198) (972,413841), (974,51536) (974,487503),

(977,18906) (977,520133), (983,76095) (983,462944), (984,231058) (984,307981),

(985,156445) (985,382594), (987,237834) (987,301205), (988,18793) (988,520246),

(993,74068) (993,464971), (997,230633) (997,308406), (998,205292) (998,333747),

(999,93901) (999,445138), (1000,160226)(1000,378813), (1001,222891) (1001,316148),

(1003,197185)(1003,341854), (1004,142918)(1004,396121), (1005,41083)(1005,497956)

(1006,141106)(1006,397933), (1011,62910)(1011,476129), (1012,24359) (1012,514680)

(1014,52366)(1014,486673), (1015,41900)(1015,497139), (1017,260286)(1017,278753)

(1018,97615)(1018,441424), (1020,132095)(1020,406944), (1021,28582)(1021,510457)

(1023,251612)(1023,287427),(1024,215265)(1024,323774),(1025,210197)(1025,328842)

(1026,31362)(1026,507677),(1027,266379)(1027,272660), (1028,237871)(1028,301168),

(1030,22126)(1030,516913),(1033,127348)(1033,411691),(1035,137725)(1035,401314),

(1039,225105)(1039,313934),(1042,90374)(1042,448665),(1043,148483)(1043,390556),

(1044,265515)(1044,273524), (1045,204107)(1045,334932), (1048,5210)(1048,533829),

(1050,78595)(1050,460444), (1051,38952)(1051,500087), (1055,223241) (1055,315798),

(1056,219350)(1056,319689),(1059,242048)(1059,296991),(1060,121292)(1060,417747)

(1065,166597)(1065,372442),(1067,116775)(1067,422264),(1068,26664)(1068,512375),

(1069,211919)(1069,327120), (1071,6691)(1071,532348), (1073,187085)(1073,351954),

(1074,41812)(1074,497227), (1076,29157) (1076,509882), (1077,43600)(1077,495439),

(1078,2081) (1078,536958), (1079,74983) (1079,464056), (1080,83139) (1080,455900),

(1082,172293)(1082,366746),(1083,45718)(1083,493321), (1086,159933)(1086,379106)

(1088,154347)(1088,384692),(1089,123911)(1089,415128),(1090,114768)(1090,424271)

(1091,85637)(1091,453402), (1092,193629)(1092,345410), (1093,223463)(1093,315576)

(1094,175423)(1094,363616),(1097,120589)(1097,418450),(1098,116623)(1098,422416)

(1099,26426)(1099,512613), (1101,134283)(1101,404756), (1103,214704)(1103,324335)

(1105,240672)(1105,298367), (1107,36722)(1107,502317), (1108,64331)(1108,474708),

(1109,16796)(1109,522243), (1111,78761)(1111,460278), (1112,127956)(1112,411083),

(1113,230142)(1113,308897), (1117,211466)(1117,327573), (1118,82113)(1118,456926)

(1119,236455)(1119,302584), (1120,25053)(1120,513986), (1121,153229)(1121,385810)

(1127,47380) (1127,491659), (1129,40312) (1129,498727), (1130,2302) (1130,536737),

(1131,78829)(1131,460210), (1132,141509)(1132,397530), (1135,118852)(1135,420187)

(1136,268371)(1136,270668), (1137,165498)(1137,373541), (1138,17360)(1138,521679)

(1139,36631)(1139,502408), (1140,128277)(1140,410762), (1141,183960)(1141,355079)

(1142,266094)(1142,272945), (1145,13475)(1145,525564), (1149,62221)(1149,476818),

(1152,28390)(1152,510649), (1153,43588)(1153,495451), (1154,252813)(1154,286226),

(1156,37558)(1156,501481), (1158,216711)(1158,322328), (1159,45480)(1159,493559),

(1161,42553)(1161,496486),(1164,153753)(1164,385286), (1165,102549)(1165,436490)

(1166,135189)(1166,403850),(1167,161149)(1167,377890),(1170,172734)(1170,366305)

(1178,146312)(1178,392727),(1181,34373)(1181,504666),(1183,210308)(1183,328731),

(1184,115570)(1184,423469),(1186,106232)(1186,432807),(1187,16346)(1187,522693),

(1188,123094)(1188,415945),(1189,104512)(1189,434527),(1190,149132)(1190,389907)

(1193,207374)(1193,331665),(1195,229155)(1195,309884),(1197,215615)(1197,323424)

(1199,88791)(1199,450248), (1200,11649)(1200,527390), (1205,101486)(1205,437553),

(1209,256362)(1209,282677), (1210,40264)(1210,498775), (1212,90639)(1212,448400),

(1214,154572)(1214,384467),(1217,181500)(1217,357539),(1218,202531)(1218,336508)

(1220,220877)(1220,318162),(1221,49284)(1221,489755), (1222,122091)(1222,416948),

(1224,47987)(1224,491052), (1225,224017)(1225,315022), (1227,245461)(1227,293578)

(1229,189319)(1229,349720), (1230,180749)(1230,358290), (1233,2703)(1233,536336),

(1235,97187)(1235,441852), (1236,163435)(1236,375604), (1241,123586)(1241,415453)

(1245,118649)(1245,420390), (1246,75052)(1246,463987), (1248,212136)(1248,326903)

(1250,230406)(1250,308633), (1251,22415)(1251,516624), (1252,142486)(1252,396553)

(1254,2466)(1254,536573), (1255,152952)(1255,386087), (1256,45507)(1256,493532),

(1257,130202)(1257,408837),(1259,238903)(1259,300136),(1263,134927)(1263,404112)

(1264,149127)(1264,389912),(1265,168142)(1265,370897),(1266,135126)(1266,403913)

(1269,77714)(1269,461325), (1270,145476)(1270,393563), (1274,51546)(1274,487493),

(1275,196535)(1275,342504),(1276,197933)(1276,341106),(1277,163353)(1277,375686)

(1280,153370)(1280,385669),(1282,168085)(1282,370954),(1283,166521)(1283,372518)

(1284,112447)(1284,426592),(1285,210724)(1285,328315),(1286,264976)(1286,274063)

(1292,54007)(1292,485032),(1298,148287)(1298,390752), (1302,244585)(1302,294454),

(1304,204237)(1304,334802), (1306,55277)(1306,483762), (1310,31137)(1310,507902),

(1311,121320)(1311,417719), (1313,107424)(1313,431615), (1314,45121)(1314,493918)

(1319,1820)(1319,537219), (1320,119077)(1320,419962), (1323,199749)(1323,339290)

(1324,39097)(1324,499942), (1325,5320)(1325,533719), (1326,269385)(1326,269654),

(1332,6327)(1332,532712), (1334,261059)(1334,277980), (1337,214614)(1337,324425)

(1339,162815)(1339,376224),(1340,186909)(1340,352130), (1342,40272)(1342,498767)

(1343,179724)(1343,359315),(1344,255159)(1344,283880), 1347,208441)(1347,330598)

(1349,108748)(1349,430291), (1351,62452)(1351,476587), (1353,27025)(1353,512014),

(1355,245102)(1355,293937),(1356,146074)(1356,392965),(1358,204103)(1358,334936)

(1361,45270)(1361,493769), (1362,254763)(1362,284276), (1363,147391)(1363,391648)

(1368,203311)(1368,335728), (1369,143092)(1369,395947), (1371,30597)(1371,508442)

(1372,96496)(1372,442543), (1374,73262)(1374,465777), (1376,54490)(1376,484549)

(1377,98384)(1377,440655), (1378,7464)(1378,531575), (1380,59163)(1380,479876)

(1383,209172)(1383,329867),(1386,195471)(1386,343568),(1387,193941)(1387,345098)

(1388,63208)(1388,475831), (1393,32534)(1393,506505), (1394,245569)(1394,293470)

(1395,214133)(1395,324906),(1398,218055)(1398,320984),(1399,266042)(1399,272997)

(1400,138045)(1400,400994), (1401,71660)(1401,467379), (1402,138839)(1402,400200)

(1403,38567)(1403,500472), (1404,259585)(1404,279454), (1407,76537)(1407,462502)

(1408,4240) (1408,534799), (1409,88193) (1409,450846), (1410,260373)(1410,278666)

(1413,268367)(1413,270672), (1414,208367)(1414,330672), (1417,98607)(1417,440432)

(1420,229128)(1420,309911), (1421,79524)(1421,459515), (1423,218821)(1423,320218)

(1427,182464)(1427,356575), (1428,124426)(1428,414613), (1429,86206)(1429,452833)

(1431,251520)(1431,287519),(1433,104266)(1433,434773),(1435,222298)(1435,316741)

(1437,36370)(1437,502669), (1441,104573)(1441,434466), (1442,226088)(1442,312951)

(1444,198244)(1444,340795), (1445,180400)(1445,358639), (1446,13338)(1446,525701)

(1447,185425)(1447,353614), (1450,50695)(1450,488344), (1451,260952)(1451,278087)

(1454,65843)(1454,473196), (1457,64917)(1457,474122), (1459,205850)(1459,333189)

(1462,224344)(1462,314695),(1469,173968)(1469,365071),(1473,214637)(1473,324402)

(1475,92550)(1475,446489), (1476,158149)(1476,380890), (1477,182165)(1477,356874)

(1478,196970)(1478,342069), (1479,181543)(1479,357496), (1480,72815)(1480,466224)

(1482,75830)(1482,463209), (1483,184583)(1483,354456), (1485,81188) (1485,457851)

(1487,95749)(1487,443290), (1489,170088)(1489,368951), (1491,126226)(1491,412813)

(1494,227773)(1494,311266),(1495,119443)(1495,419596),(1496,165259)(1496,373780)

(1497,224485)(1497,314554), (1498,52597)(1498,486442), (1501,234752)(1501,304287)

(1508,27821)(1508,511218), (1512,66304)(1512,472735), (1513,89395)(1513,449644)

(1516,155702)(1516,383337), (1518,45905)(1518,493134), (1520,104969)(1520,434070)

(1522,68105)(1522,470934), (1523,25829)(1523,513210), (1524,167778) (1524,371261)

(1526,42262)(1526,496777), (1527,180794)(1527,358245), (1529,55873) (1529,483166)

(1530,193506)(1530,345533),(1531,208197)(1531,330842),(1533,172722)(1533,366317)

(1535,101801)(1535,437238), (1538,20898)(1538,518141), (1543,94298) (1543,444741)

(1545,201360)(1545,337679),(1548,167294)(1548,371745),(1550,146142)(1550,392897)

(1551,221992)(1551,317047), (1553,257605)(1553,281434), (1555,98905)(1555,440134)

(1556,42986)(1556,496053), (1557,218330)(1557,320709), (1558,41304) (1558,497735)

(1560,157947)(1560,381092), (1561,203805)(1561,335234), (1563,43359)(1563,495680)

(1566,24056)(1566,514983), (1567,47304)(1567,491735), (1570,223411)(1570,315628)

(1573,41594)(1573,497445), (1574,26899)(1574,512140), (1575,245674)(1575,293365)

(1577,41976)(1577,497063), (1582,44955)(1582,494084), (1584,24218)(1584,514821)

(1585,165939)(1585,373100),(1586,143162)(1586,395877),(1588,119957)(1588,419082)

(1589,63702)(1589,475337),(1590,237149)(1590,301890), (1592,209882)(1592,329157)

(1594,149389)(1594,389650), (1596,190490)(1596,348549),1600,186023)(1600,353016)

(1604,171114)(1604,367925), (1605,95024)(1605,444015), (1613,14415)(1613,524624)

(1618,253588)(1618,285451),(1619,246778)(1619,292261),(1621,240478)(1621,298561)

(1623,70019)(1623,469020), (1624,99170)(1624,439869), (1625,83867)(1625,455172)

(1631,164415)(1631,374624),(1632,121528)(1632,417511),(1637,197266)(1637,341773)

(1639,57305)(1639,481734), (1641,77359)(1641,461680), (1643,66743)(1643,472296)

(1644,172279)(1644,366760), (1646,41286)(1646,497753), (1648,152942)(1648,386097)

(1649,267544)(1649,271495), (1652,56198)(1652,482841), (1653,96521)(1653,442518)

(1655,97969)(1655,441070), (1656,188833)(1656,350206), (1658,42964)(1658,496075)

(1659,4856)(1659,534183), (1660,249375)(1660,289664), (1661,1709)(1661,537330)

(1665,207552)(1665,331487), (1667,231863)(1667,307176), (1669,73382)(1669,465657)

(1674,236938)(1674,302101), (1677,19348)(1677,519691), (1678,54157)(1678,484882)

(1679,192176)(1679,346863),(1682,241594)(1682,297445),(1686,265124)(1686,273915)

(1687,103349)(1687,435690),(1688,125409)(1688,413630),(1690,232654)(1690,306385)

(1695,222767)(1695,316272), (1697,205199)(1697,333840), (1698,45752)(1698,493287)

(1699,98015)(1699,441024), (1700,262357)(1700,276682), (1702,93697)(1702,445342)

(1703,251011)(1703,288028), (1709,170263)(1709,368776), (1710,6239)(1710,532800)

(1713,171704)(1713,367335),(1714,163099)(1714,375940),(1715,173448)(1715,365591)

(1717,192519)(1717,346520), (1719,52757)(1719,486282), (1720,142437)(1720,396602)

(1721,127573)(1721,411466), (1723,12403)(1723,526636), (1725,36991)(1725,502048)

(1728,168358)(1728,370681), (1730,129729)(1730,409310), (1738,37461)(1738,501578)

(1739,28017)(1739,511022), (1740,27383)(1740,511656), (1743,107653)(1743,431386)

(1746,9809)(1746,529230), (1749,214020)(1749,325019), (1753,259877)(1753,279162)

(1759,17323)(1759,521716), (1764,209111)(1764,329928), (1765,19263)(1765,519776)

(1766,37247)(1766,501792), (1770,183165)(1770,355874), (1771,207440)(1771,331599)

(1773,28706)(1773,510333), (1774,146894)(1774,392145), (1775,138892)(1775,400147)

(1777,13110)(1777,525929), (1778,207385)(1778,331654), (1780,238549)(1780,300490)

(1781,177804)(1781,361235), (1782,212570)(1782,326469), (1784,35083)(1784,503956)

(1785,89677)(1785,449362), (1788,169316)(1788,369723), (1790,203138)(1790,335901)

(1792,141883)(1792,397156), (1796,14635)(1796,524404), (1798,16795)(1798,522244)

(1801,82535)(1801,456504), (1802,27855)(1802,511184), (1804,74807)(1804,464232)

(1805,97376)(1805,441663), (1806,105348)(1806,433691), (1807,149397)(1807,389642)

(1812,147936)(1812,391103), (1813,182221)(1813,356818), (1814,58725)(1814,480314)

(1817,246008)(1817,293031), (1818,62657)(1818,476382), (1822,85828)(1822,453211)

(1824,187748)(1824,351291), (1825,228489)(1825,310550), (1826,38787)(1826,500252)

(1835,249689)(1835,289350), (1836,211503)(1836,327536), (1837,45189)(1837,493850)

(1838,21532)(1838,517507), (1840,149593)(1840,389446), (1843,51782)(1843,487257)

(1844,204135)(1844,334904), (1845,20924)(1845,518115), (1850,225036)(1850,314003)

(1851,269489)(1851,269550), (1852,164084)(1852,374955), (1853,24783)(1853,514256)

(1855,73087)(1855,465952), (1857,16871)(1857,522168), (1858,115388)(1858,423651)

(1859,120735)(1859,418304),(1862,184312)(1862,354727),(1863,256628)(1863,282411)

(1869,202750)(1869,336289), (1871,15167)(1871,523872), (1873,159600)(1873,379439)

(1875,128326)(1875,410713), (1876,54248)(1876,484791), (1877,12220)(1877,526819)

(1878,170416)(1878,368623),(1879,126128)(1879,412911),(1882,248456)(1882,290583)

(1883,86582)(1883,452457), (1884,232339)(1884,306700), (1885,34892)(1885,504147)

(1886,173826)(1886,365213), (1888,171007)(1888,368032), (1892,19418)(1892,519621)

(1894,154036)(1894,385003),(1896,169850)(1896,369189),(1898,156747)(1898,382292)

(1900,98260)(1900,440779), (1901,266285)(1901,272754), (1902,117640)(1902,421399)

(1904,137606)(1904,401433), (1910,187194)(1910,351845), (1912,11888)(1912,527151)

(1913,57326)(1913,481713), (1914,263525)(1914,275514), (1915,42913)(1915,496126)

(1918,160146)(1918,378893),(1919,130668)(1919,408371),(1920,122451)(1920,416588)

(1921,56586)(1921,482453), (1922,253095)(1922,285944), (1924,228776)(1924,310263)

(1926,103023)(1926,436016), (1927,210220)(1927,328819), (1930,48617)(1930,490422)

(1931,9812)(1931,529227), (1933,241815)(1933,297224), (1934,150393)(1934,388646)

(1935,140386)(1935,398653),(1937,189055)(1937,349984),(1940,267198)(1940,271841)

(1941,164115)(1941,374924), (1944,130108)(1944,408931), (1945,36461)(1945,502578)

(1946,217885)(1946,321154),(1948,244771)(1948,294268),(1950,246296)(1950,292743)

(1951,74534)(1951,464505), (1954,10216)(1954,528823), (1959,207421)(1959,331618)

(1960,224301)(1960,314738), (1962,52454)(1962,486585), (1964,112099)(1964,426940)

(1965,188291)(1965,350748), (1966,58649)(1966,480390), (1967,9365)(1967,529674)

(1968,184331)(1968,354708),(1972,258546)(1972,280493),(1977,110117)(1977,428922)

(1978,205811)(1978,333228), (1979,49052)(1979,489987), (1981,74914)(1981,464125)

(1983,48955)(1983,490084), (1984,198539)(1984,340500), (1985,18146)(1985,520893)

(1986,115611)(1986,423428), (1987,74218)(1987,464821), (1989,54537)(1989,484502)

(1992,122588)(1992,416451),(1993,197319)(1993,341720),(1995,227044)(1995,311995)

(1996,102961)(1996,436078), (1998,661)(1998,538378), (1999,267753)(1999,271286)

(2002,1777)(2002,537262), (2003,233755)(2003,305284), (2006,116402)(2006,422637)

(2007,98791)(2007,440248), (2008,168465)(2008,370574), (2010,128888)(2010,410151)

(2015,190096)(2015,348943),(2016,263417)(2016,275622),(2017,105251)(2017,433788)

(2019,133793)(2019,405246),(2021,239084)(2021,299955),(2024,182417)(2024,356622)

(2027,254886)(2027,284153), (2030,50841)(2030,488198), (2033,220067)(2033,318972)

(2034,56852)(2034,482187), (2036,58419)(2036,480620), (2037,38293)(2037,500746)

(2038,38350)(2038,500689), (2043,249764)(2043,289275), (2045,208178)(2045,330861)

(2050,7135)(2050,531904), (2052,186468)(2052,352571), (2055,69344)(2055,469695)

(2056,125240)(2056,413799), (2057,170375)(2057,368664), (2059,10737)(2059,528302)

(2060,235538)(2060,303501), (2062,20931)(2062,518108), (2063,119573)(2063,419466)

(2064,28531)(2064,510508), (2065,147258)(2065,391781), (2067,31385)(2067,507654)

(2070,243817)(2070,295222), (2071,214659)(2071,324380), (2075,25961)(2075,513078)

(2077,144437)(2077,394602),(2079,169850)(2079,369189),(2081,268693)(2081,270346)

(2085,7739)(2085,531300), (2086,38152)(2086,500887), (2087,117628)(2087,421411)

(2088,71420)(2088,467619), (2090,147323)(2090,391716), (2091,150215)(2091,388824)

(2093,84459)(2093,454580), (2096,44639)(2096,494400), (2097,102459)(2097,436580)

(2098,167929)(2098,371110), (2099,20884),(2099,518155),(2100,245443)(2100,293596)

(2101,61926)(2101,477113), (2103,266481)(2103,272558), (2104,233794)(2104,305245)

(2105,49533)(2105,489506), (2111,142064)(2111,396975), (2113,221631)(2113,317408)

(2115,185429)(2115,353610), (2117,252145)(2117,286894), (2118,22053)(2118,516986)

(2121,107155)(2121,431884), (2122,37251)(2122,501788), (2124,188083)(2124,350956)

(2127,241460)(2127,297579), (2130,67324)(2130,471715), (2131,238219)(2131,300820)

(2133,266571)(2133,272468), (2141,251664)(2141,287375), (2142,45379)(2142,493660)

(2143,6475)(2143,532564), (2144,252905)(2144,286134), (2152,17479)(2152,521560)

(2154,223393)(2154,315646),(2156,104209)(2156,434830),(2159,222574)(2159,316465)

(2160,48821)(2160,490218), (2165,232064)(2165,306975), (2166,134291)(2166,404748)

(2167,115628)(2167,423411), (2171,228081)(2171,310958), (2172,16614)(2172,522425)

(2174,92446)(2174,446593), (2175,132765)(2175,406274), (2176,251550)(2176,287489)

(2177,164375)(2177,374664),(2178,149975)(2178,389064), 2184,231592)(2184,307447)

(2185,213043)(2185,325996), (2188,25510)(2188,513529), (2190,199882)(2190,339157)

(2191,2575)(2191,536464), (2194,149100)(2194,389939), (2195,127959)(2195,411080)

(2197,34888), (2197,504151), (2199,98247)(2199,440792), (2202,107141)(2202,431898)

(2203,96634)(2203,442405), (2208,183695)(2208,355344), (2212,257422)(2212,281617)

(2213,95250)(2213,443789), (2214,122736)(2214,416303), (2216,71341)(2216,467698)

(2218,41393)(2218,497646), (2219,93790)(2219,445249), (2220,259081)(2220,279958)

(2225,20803)(2225,518236), (2227,10331)(2227,528708), (2232,213764)(2232,325275)

(2234,102545)(2234,436494), (2236,100984)(2236,438055), (2239,84122)(2239,454917)

(2242,223262)(2242,315777), (2247,85731)(2247,453308), (2248,108703)(2248,430336)

(2252,226996)(2252,312043),(2253,240071)(2253,298968),(2254,156080)(2254,382959)

(2256,149723)(2256,389316), (2260,138839)(2260,400200), (2262,34408)(2262,504631)

(2264,34650)(2264,504389), (2266,234384)(2266,304655), (2267,229127)(2267,309912)

(2268,78763)(2268,460276), (2269,204827)(2269,334212), (2270,222596)(2270,316443)

(2271,199492)(2271,339547), (2273,90309)(2273,448730), (2274,159235)(2274,379804)

(2275,137417)(2275,401622), (2277,90238)(2277,448801), (2278,222457)(2278,316582)

(2280,119369)(2280,419670), (2282,5391)(2282,533648), (2283,204521)(2283,334518)

(2285,63621)(2285,475418), (2286,59311)(2286,479728), (2287,202190)(2287,336849)

(2289,234646)(2289,304393), (2291,22852)(2291,516187), (2294,67484)(2294,471555)

(2298,217492)(2298,321547), (2306,9680)(2306,529359), (2311,168740)(2311,370299)

(2312,115158)(2312,423881), (2314,182391)(2314,356648), (2316,3370)(2316,535669)

(2317,253223)(2317,285816), (2318,45584)(2318,493455), (2321,82598)(2321,456441)

(2328,87542)(2328,451497), (2329,90426)(2329,448613), (2331,55783)(2331,483256)

(2332,135253)(2332,403786), (2336,9496)(2336,529543), (2337,197145)(2337,341894)

(2338,151994)(2338,387045),(2340,153325)(2340,385714),(2347,200090)(2347,338949)

(2349,123321)(2349,415718),(2350,113475)(2350,425564),(2351,128674)(2351,410365)

(2352,195587)(2352,343452), (2353,85395)(2353,453644), (2355,1045)(2355,537994)

(2356,53505)(2356,485534), (2359,206377)(2359,332662), (2360,63865)(2360,475174)

(2365,77216)(2365,461823), (2368,158362)(2368,380677), (2369,261101)(2369,277938)

(2372,81335)(2372,457704), (2373,237060)(2373,301979), (2374,132727)(2374,406312)

(2376,124802)(2376,414237), (2377,131788)(2377,407251), (2378,80346)(2378,458693)

(2384,48067)(2384,490972), (2385,158531)(2385,380508), (2386,199890)(2386,339149)

(2387,54997)(2387,484042), (2388,91294)(2388,447745), (2391,258121)(2391,280918)

(2392,110929)(2392,428110),(2393,101910)(2393,437129),(2394,137115)(2394,401924)

(2397,251710)(2397,287329), (2399,97398)(2399,441641), (2403,44918)(2403,494121)

(2406,94829)(2406,444210), (2413,267513)(2413,271526), (2415,265094)(2415,273945)

(2416,102264)(2416,436775),(2417,153268)(2417,385771),(2418,214992)(2418,324047)

(2422,43624)(2422,495415), (2423,179735)(2423,359304), (2424,58172)(2424,480867)

(2427,89878)(2427,449161), (2429,141552)(2429,397487), (2431,160554)(2431,378485)

(2434,181331)(2434,357708), (2437,194614)(2437,344425), (2438,67447)(2438,471592)

(2439,43220)(2439,495819), (2441,91358)(2441,447681), (2442,124821)(2442,414218)

(2444,188555)(2444,350484), (2445,23130)(2445,515909), (2450,84554)(2450,454485)

(2451,25860)(2451,513179), (2452,62225)(2452,476814), (2454,36237)(2454,502802)

(2456,61467)(2456,477572), (2458,158297)(2458,380742), (2459,204966)(2459,334073)

(2462,163562)(2462,375477),(2464,134801)(2464,404238),(2466,152474)(2466,386565)

(2467,21012)(2467,518027), (2468,21505)(2468,517534), (2469,119477)(2469,419562)

(2471,155522)(2471,383517),(2472,236632)(2472,302407),(2475,148094)(2475,390945)

(2476,207809)(2476,331230),(2480,158923)(2480,380116),(2482,250459)(2482,288580)

(2483,203678)(2483,335361),(2484,186544)(2484,352495),(2486,194663)(2486,344376)

(2487,95267)(2487,443772), (2489,103046)(2489,435993), (2490,122925)(2490,416114)

(2492,238734)(2492,300305),(2497,172864)(2497,366175),(2499,202749)(2499,336290)

(2500,84623)(2500,454416), (2501,231965)(2501,307074), (2502,179554)(2502,359485)

(2507,197360)(2507,341679), (2509,41461)(2509,497578), (2511,255022)(2511,284017)

(2512,173189)(2512,365850), (2515,266037)(2515,273002), (2518,4495)(2518,534544)

(2523,130792)(2523,408247), (2524,48165)(2524,490874), (2527,154781)(2527,384258)

(2528,95777)(2528,443262), (2531,161313)(2531,377726), (2532,71229)(2532,467810)

(2533,77696)(2533,461343), (2535,232838)(2535,306201), (2537,63655)(2537,475384)

(2539,264253)(2539,274786), (2542,90077)(2542,448962), (2544,254098)(2544,284941)

(2546,32384)(2546,506655), (2547,213898)(2547,325141), (2550,141935)(2550,397104)

(2552,36684)(2552,502355), (2553,210043)(2553,328996), (2555,35632)(2555,503407)

(2559,21240)(2559,517799), (2560,227400)(2560,311639), (2562,224944)(2562,314095)

(2564,55496)(2564,483543), (2565,73107) (2565,465932), (2567,467) (2567,538572)

(2569,193942)(2569,345097), (2571,31048)(2571,507991), (2575,23571)(2575,515468)

(2578,124045)(2578,414994), (2581,11318)(2581,527721), (2591,235306)(2591,303733)

(2596,64538)(2596,474501), (2597,112649)(2597,426390), (2598,40614)(2598,498425)

(2600,136072)(2600,402967), (2601,53691)(2601,485348), (2602,11714)(2602,527325)

(2606,122708)(2606,416331), (2607,80889)(2607,458150), (2608,126450)(2608,412589)

(2609,110058)(2609,428981), (2610,13929)(2610,525110), (2620,228964)(2620,310075)

(2621,171661)(2621,367378),(2622,222224)(2622,316815),(2624,122387)(2624,416652)

(2626,147969)(2626,391070), (2627,7067)(2627,531972), (2629,268412)(2629,270627)

(2630,207984)(2630,331055),(2633,123660)(2633,415379),(2634,264936)(2634,274103)

(2637,235787)(2637,303252), (2639,3255)(2639,535784), (2640,12662)(2640,526377)

(2643,46521)(2643,492518), (2644,82324)(2644,456715), (2648,232224)(2648,306815)

(2652,13950)(2652,525089), (2653,4768)(2653,534271), (2654,21131) (2654,517908)

(2655,62370)(2655,476669), (2656,131496)(2656,407543), (2657,158283)(2657,380756)

(2659,181369)(2659,357670),(2660,107210)(2660,431829),(2663,138868)(2663,400171)

(2667,46321)(2667,492718), (2670,88309)(2670,450730), (2671,244885)(2671,294154)

(2673,1877)(2673,537162), (2675,211176)(2675,327863), (2677,263900)(2677,275139)

(2682,79424)(2682,459615), (2684,7796)(2684,531243), (2685,218841)(2685,320198)

(2686,105986)(2686,433053), (2693,656)(2693,538383), (2696,217058)(2696,321981)

(2699,26710)(2699,512329), (2701,63717)(2701,475322), (2702,250729)(2702,288310)

(2703,262490)(2703,276549), (2705,249750)(2705,289289), (2706,89749)(2706,449290)

(2707,240165)(2707,298874), (2712,66090)(2712,472949), (2713,266792)(2713,272247)

(2715,182730)(2715,356309),(2717,110320)(2717,428719),(2722,170168)(2722,368871)

(2725,247696)(2725,291343), (2726,31835)(2726,507204), (2727,250971)(2727,288068)

(2728,252815)(2728,286224), (2729,85395)(2729,453644), (2736,46238)(2736,492801)

(2737,127762)(2737,411277),(2738,266126)(2738,272913),(2739,129227)(2739,409812)

(2740,37351)(2740,501688), (2742,81999)(2742,457040), (2743,124881)(2743,414158)

(2745,236455)(2745,302584),(2746,108773)(2746,430266),(2750,208922)(2750,330117)

(2751,137409)(2751,401630),(2753,175392)(2753,363647),(2755,187162)(2755,351877)

(2757,3432)(2757,535607), (2762,248171)(2762,290868), (2763,195917)(2763,343122)

(2767,150725)(2767,388314), (2768,149671)(2768,389368), (2769,40711)(2769,498328)

(2770,212346)(2770,326693), (2774,45694)(2774,493345), (2775,182098)(2775,356941)

(2778,144373)(2778,394666), (2779,138673)(2779,400366), (2781,1641)(2781,537398)

(2782,79242)(2782,459797), (2784,125014)(2784,414025), (2787,177354)(2787,361685)

(2788,114301)(2788,424738),(2791,123591)(2791,415448),(2793,235999)(2793,303040)

(2794,6855)(2794,532184), (2797,1894)(2797,537145), (2798,200054)(2798,338985)

(2800,39588)(2800,499451), (2802,11946)(2802,527093), (2803,152140)(2803,386899)

(2807,250955)(2807,288084), (2811,82004)(2811,457035), (2812,121808)(2812,417231)

(2814,57165)(2814,481874), (2816,132166)(2816,406873), (2818,105097)(2818,433942)

(2823,58262)(2823,480777), (2824,247526)(2824,291513), (2825,209550)(2825,329489)

(2828,147849)(2828,391190), (2829,52999)(2829,486040), (2830,189421)(2830,349618)

(2831,254566)(2831,284473), (2832,20645)(2832,518394), (2833,134109)(2833,404930)

(2834,243533)(2834,295506),(2835,164175)(2835,374864),(2837,154579)(2837,384460)

(2838,90010)(2838,449029), (2840,157374)(2840,381665), (2842,207990)(2842,331049)

(2844,236740)(2844,302299), (2847,96016)(2847,443023), (2849,45550)(2849,493489)

(2850,126727)(2850,412312), (2851,96161)(2851,442878), (2852,17463)(2852,521576)

(2853,188048)(2853,350991), (2854,92713)(2854,446326), (2855,101859)(2855,437180)

(2856,236802)(2856,302237),(2859,148033)(2859,391006),(2861,231164)(2861,307875)

(2862,113717)(2862,425322),(2868,213370)(2868,325669),(2869,146388)(2869,392651)

(2870,18159)(2870,520880), (2873,234677)(2873,304362), (2875,120386)(2875,418653)

(2877,79586)(2877,459453), (2879,3081)(2879,535958), (2880,260755)(2880,278284)

(2881,197641)(2881,341398), (2883,24826)(2883,514213), (2884,70420)(2884,468619)

(2885,133621)(2885,405418), (2887,127377)(2887,411662), (2889,10703)(2889,528336)

(2890,61742)(2890,477297), (2891,168905)(2891,370134), (2892,98135)(2892,440904)

(2894,172024)(2894,367015), (2895,91444)(2895,447595), (2896,53311)(2896,485728)

(2898,200628)(2898,338411), (2900,32895)(2900,506144), (2901,205873)(2901,333166)

(2903,15505)(2903,523534), (2906,101382)(2906,437657), (2907,106998)(2907,432041)

(2908,26985)(2908,512054), (2909,228413)(2909,310626), (2913,13787)(2913,525252)

(2919,147252)(2919,391787),(2921,221430)(2921,317609),(2922,203321)(2922,335718)

(2923,171579)(2923,367460),(2924,239010)(2924,300029),(2926,155103)(2926,383936)

(2927,185200)(2927,353839), (2928,32168)(2928,506871), (2930,152382)(2930,386657)

(2933,29291)(2933,509748), (2934,239406)(2934,299633), (2935,77618)(2935,461421)

(2936,198853)(2936,340186), (2940,13329)(2940,525710), (2944,36785)(2944,502254)

(2945,136553)(2945,402486), (2946,119673)(2946,419366), (2949,54081)(2949,484958)

(2950,55829)(2950,483210), (2952,106499)(2952,432540), (2953,226480)(2953,312559)

(2954,150094)(2954,388945), (2955,30642)(2955,508397), (2962,138026)(2962,401013)

(2963,233993)(2963,305046), (2964,43822)(2964,495217), (2965,175723)(2965,363316)

(2966,231510)(2966,307529), (2967,22262)(2967,516777), (2971,124492)(2971,414547)

(2972,46607)(2972,492432), (2973,228961)(2973,310078), (2974,79273)(2974,459766)

(2977,131482)(2977,407557), (2978,189536)(2978,349503), (2980,249)(2980,538790)

(2981,64394)(2981,474645), (2983,229946)(2983,309093), (2986,120567)(2986,418472)

(2987,231528)(2987,307511), (2992,69681)(2992,469358), (2993,103465)(2993,435574)

(2994,213470)(2994,325569), (2995,33486)(2995,505553), (2996,20703)(2996,518336)

(2997,256266)(2997,282773), (3000,28814)(3000,510225), (3001,185250)(3001,353789)

(3003,71638)(3003,467401), (3005,81717)(3005,457322), (3007,60032)(3007,479007)

(3009,135606)(3009,403433), (3010,51119)(3010,487920), (3011,11912)(3011,527127)

(3012,51617)(3012,487422), (3015,17989)(3015,521050), (3017,245077)(3017,293962)

(3020,130762)(3020,408277), (3021,52316)(3021,486723), (3023,171201)(3023,367838)

(3025,210974)(3025,328065),(3026,179039)(3026,360000),(3028,161407)(3028,377632)

(3029,267935)(3029,271104), (3031,33917)(3031,505122), (3034,210307)(3034,328732)

(3036,265307)(3036,273732),(3044,261736)(3044,277303),(3045,170815)(3045,368224)

(3046,236297)(3046,302742), (3047,229919)(3047,309120), (3049,21138)(3049,517901)

(3050,167015)(3050,372024),(3057,102005)(3057,437034),(3059,228564)(3059,310475)

(3060,79612)(3060,459427), (3063,101946)(3063,437093), (3066,118085)(3066,420954)

(3067,139235)(3067,399804),(3069,194595)(3069,344444),(3071,223183)(3071,315856)

(3072,225226)(3072,313813),(3079,120498)(3079,418541),(3081,119378)(3081,419661)

(3083,133356)(3083,405683), (3084,233895)(3084,305144), (3086,39439)(3086,499600)

(3087,156484)(3087,382555),(3088,100342)(3088,438697),(3089,111115)(3089,427924)

(3091,239971)(3091,299068), (3092,85527)(3092,453512), (3093,39873)(3093,499166)

(3094,101190)(3094,437849), (3096,2576)(3096,536463), (3098,134830)(3098,404209)

(3099,147422)(3099,391617),(3100,156674)(3100,382365),(3102,106501)(3102,432538)

(3104,215728)(3104,323311),(3109,143327)(3109,395712),(3112,205287)(3112,333752)

(3113,73497)(3113,465542), (3115,238545)(3115,300494), (3116,56098)(3116,482941)

(3121,64733)(3121,474306), (3122,206427)(3122,332612), (3123,152299)(3123,386740)

(3124,13509)(3124,525530), (3125,192553)(3125,346486), (3126,227574)(3126,311465)

(3129,233737)(3129,305302),(3131,215446)(3131,323593),(3132,259009)(3132,280030)

(3135,188722)(3135,350317), (3137,89024)(3137,450015), (3139,32231)(3139,506808)

(3140,84263)(3140,454776), (3142,35087)(3142,503952), (3144,256539)(3144,282500)

(3148,30273)(3148,508766), (3149,169179)(3149,369860), (3151,60167)(3151,478872)

(3153,4112)(3153,534927), (3156,155828)(3156,383211), (3159,204795)(3159,334244)

(3163,53899)(3163,485140), (3164,104191)(3164,434848), (3165,210887)(3165,328152)

(3166,209462)(3166,329577),(3168,212939)(3168,326100),(3171,103250)(3171,435789)

(3172,262527)(3172,276512), (3173,26267)(3173,512772), (3184,128342)(3184,410697)

(3185,103755)(3185,435284), (3190,237463)(3190,301576), (3191,31169)(3191,507870)

(3192,60743)(3192,478296), (3193,18584)(3193,520455), (3194,267843)(3194,271196)

(3195,220039)(3195,319000), (3199,6640)(3199,532399), (3201,86469)(3201,452570)

(3202,171978)(3202,367061), (3203,238897)(3203,300142), (3207,23014)(3207,516025)

(3209,80855)(3209,458184), (3210,132337)(3210,406702), (3211,231274)(3211,307765)

(3212,56448)(3212,482591), (3213,203940)(3213,335099), (3215,221133)(3215,317906)

(3216,16038)(3216,523001), (3217,64891)(3217,474148), (3218,46332)(3218,492707)

(3220,44778)(3220,494261), (3221,193719)(3221,345320), (3222,45021)(3222,494018)

(3224,223105)(3224,315934),(3228,115552)(3228,423487),(3229,124911)(3229,414128)

(3230,31421)(3230,507618), (3232,64118)(3232,474921), (3233,8006)(3233,531033)

(3236,211899)(3236,327140), (3237,55191)(3237,483848), (3240,137825)(3240,401214)

(3241,105265)(3241,433774), (3242,262414)(3242,276625), (3251,85831)(3251,453208)

(3253,82689)(3253,456350), (3254,1552)(3254,537487), (3255,100698)(3255,438341)

(3256,188458)(3256,350581),(3257,102009)(3257,437030),(3258,120487)(3258,418552)

(3260,127867)(3260,411172), (3263,25138)(3263,513901), (3264,205559)(3264,333480)

(3266,135961)(3266,403078),(3270,156402)(3270,382637),(3277,258799)(3277,280240)

ISSN(Online): 2320-9801

ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 2, February 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0402186 2406

A Survey on the Security Features of

Cryptographic Techniques in Mobile Devices

Dr. Mani
1,
 A. Mullai

2

Associate Professor, Department of Computer Science, Puthanampatti, Affiliated to Bharathidasan University,

Trichy, Tamil Nadu, India
1

PhD Research Scholar, Department of Computer Science, Puthanampatti, Affiliated to Bharathidasan University,

Trichy, Tamil Nadu, India
2

ABSTRACT: A revolution of technological advancement has taken place in the field of Communication Technology

with the introduction of Wireless Mobile Devices by introducing multifunctional applications embedded in a small

device by replacing the traditional and fixed wired technology. Mobile devices play a vital role in everyday life since

they provide variety of ubiquitous services. In recent years, the availability of these devices and their ubiquitous

services has increased significantly. This is because various forms of connectivity such as Global System for Mobile

Communications (GSM), General Packet Radio Service (GPRS), Bluetooth and Wi-Fi (Wireless Fidelity) etc. are

provided to them. Even though some challenges in mobile computing devices cater the needs of the users, the

transmission of information can be done very easily, quickly without having any previous knowledge because they are

user friendly. The information transmitted through the air by the mobile devices may sometimes being hacked by the

hackers. To avoid hacking Security plays a vital role in transmitting the information and it can be achieved by using

various cryptographic algorithms to prevent from such attacks. This paper gives a comprehensive survey of

cryptographic algorithms and techniques which are being used in mobile devices.

KEYWORDS: Mobile Devices, challenges, hackers, Cryptographic algorithms, techniques.

I. INTRODUCTION

Mobile Computing Portable devices like laptop, palmtop etc. gives an easy access to the people with diverse sources of

global information instantaneously anywhere at any place and at any time. It is a technology constantly developing

towards the needs of human expectations by using the concept of Bring Your Own Device – Bring Your Own

Technology (BYOD – BYOT). A mobile device may be a Personal Digital Assistant (PDA), a handy Cell phone or

Web phone, a laptop, or any one of the above numerous devices that allow the user to complete the tasks without being

tethered, or connected, to a network. The environment of wireless and mobile bring about different challenges to the

users and service providers. The physical constraints like the weight of the device, the battery, the size of the screen,

portability, quality of radio transmission, and error rates become more important. Even though the facility of the

devices include the mobility of the user, the device, the network, the service provider and also some additional

uncertainties, they give opportunities to the users the provision of new services and supplementary information. The

major challenges in mobile computing are low bandwidth, high error rate, power restrictions, security, limited

capabilities, disconnection and the problems created due to the mobility of the client. Inspite of these challenges

security becomes a major concern, because they are connected anonymously. By the application of cryptographic

algorithms in mobile computing, the hackers don’t get the chance to access the mobile units. Various cryptographic

algorithms have been used to maintain security in mobile devices and they provide confidentiality, integrity,

availability, non-repudiation, authorization and trust and accounting (CIANATA). This paper gives an overview of

various cryptographic techniques which are used to provide such security services in mobile devices.

II. RELATED WORKS

Mavridis I., Pangalos G. [1], in their paper, have discussed the operational and security issues of
mobile components in distributed environments. Further they illustrated to eliminate the intrinsic problem of wireless

A.2

ISSN(Online): 2320-9801

ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 2, February 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0402186 2407

networking using the mobile agents. They applied some security mechanism in their model which is to be

implemented in a healthcare paradigm, with some special conditions.

In 2000, Erik Olson and Woojin Yu, [2] surveyed various symmetric key algorithms viz., RC5, RC6, Twofish, and

Triple-DES and their usage in mobile computing, specifically in the Palm Pilot, which uses Motorola’s Dragon Ball-EZ

processor. They illustrated that the architecture used in the processor is similar to the 68K processor and it does not

provide the power and versatility of current processors.

In 2000, Wendy Chou [3], surveyed the explosive growth in the usage of mobile and wireless devices

demands a new generation of Public Key Cryptography (PKC) schemes, and the limitations on power, bandwidth to

provide security in mobile devices, use of Elliptic Curve Cryptography (ECC), its security, performance and also its

applications.

In 2002, Limor Elbaz [4], implemented PKC in security of wireless devices and the use of Public Key

Infrastructure (PKI) in current as well as in the future applications of mobile phones. Further he showed that the

Discretix Crypto Cell implementation of cryptographic algorithms which enable wireless devices to become PKI-

enabled cum efficient, lightweight and standard-compliant.

In 2003, Dharma P. Agrawal et al.[5], discussed the technology in mobile computing users by combining
wireless networking and mobility which serves anytime and anywhere with of various new applications and also

services. They had also analyzed some security issues and various threats in the existing countermeasures. They
concluded that encryption plays an important role for secured communication in mobile computing environments.

In 2006, Hanping Lufei and Weisong Shi [6], discussed the emergence of heterogeneous devices and diverse

networks, and the difficulty in using a one-size-fits-all encryption algorithm. They also explained the deployment of

encryption algorithms to choose an appropriate encryption algorithm from multiple algorithms based on the

characteristics of heterogeneous mobile computing environments. They proposed an adaptive encryption protocol, to

choose a proper encryption algorithm dynamically which enhances security from the candidate algorithms, and

minimizes the time overhead.

In 2008, Abhishek Kumar Gupta [7], discussed the need for information as a driving force for the incoming

growth in Web technology, wireless communication, and portable computing devices and also explained the field of

mobile computing (computing and communication) with the aim of providing seamless computing environment for

mobile users, which are all dependent on information and it is available only by accessing a network. Further they

discussed that the mobility can also cause wireless connections to be lost or degraded when the users travel beyond the

limitations of network transceivers or enter areas of high interference.

In [2009], S. Krishna Mohan Rao and Dr. A Venugopal Reddy [8], discussed Data dissemination in

asymmetrical communication environment, where the capacity of the downlink communication is much greater than

the uplink communication capacity and it is best suited for mobile environment. The important issue discussed in this

paper is that the data dissemination which illustrates quickly access of the data item in mobile devices with minimum

access time so that the mobile clients save the precious battery power while they are moving from one place to another.

In [2009], widespread growth in applications for resource-limited Wireless Sensor Networks (WSN), and also

the need for reliable and efficient security mechanisms using two potential block ciphers, namely the RC5 and AES-

Rijindael discussed and analyzed the suitability of the algorithm for resource-limited wireless network security by M.

Razvi Doomun, and KMS Soyjaudah [9].

In [2009], Kar and Banshidhar Majhi[10], proposed an efficient password security of Multi-Party key

exchange protocol based on elliptic curve discrete logarithm problem (ECDLP), and these protocols allow a group of

parties communicating over a public network to establish a common secret key called Session Key and also build

protocol for password authentication model, where group members were assumed to hold an individual password rather

than a common password and two one-way hash functions to build the security level high.

ISSN(Online): 2320-9801

ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 2, February 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0402186 2408

In [2009], Mooseeop Kim et.al. [11], proposed a compact architecture for a cryptographic engine on a mobile

platform, which has very stringent limitations with respect to the circuit area and the consuming power .It is highly

effective to implement the scalable RSA and unified SHA algorithms with a minimum resource usage. The combined

performance results of circuit area, power efficiency, throughput, and functionality strongly indicate that the proposed

architecture for cryptographic hardware is suitable for mobile computing systems.

In [2010], Bruno P.S. Rocha et. al [12], demonstrated a security service, which works as a middleware, to

dynamically change the security protocols used between two peers and these changes can occur based on variations on

wireless medium parameters, system resource usage, available hardware resources, application-defined Quality of

Service (QoS) metrics, and desired data security levels. They provide the solution to some static security protocols and

adaptability of middleware in different conditions of medium and system, and shows performance gain in the execution

of cryptographic primitives, through the use of data semantics.

In [2010], Sathish Alampalayam Kumar [13], suggested a mobile agent based mobile computing system, the

classification of various types of security attacks, the security solutions for those types of attacks proposed by various

schemes and the open research issues in providing security for mobile agent based computing systems.

In [2011], Sameer Hasan et. al. [14], proposed a non-server (that is P2P) architecture PKC to secure the

mobile communications. They have discussed and implemented various security services needed for mobile

communication. Compared with server based architecture, this architecture has low risk and the security has been

improved to avoid many attacks. They used NTRU algorithm for public key cryptography in non-server architecture

and tested on real equipment, the solution security and potential risks.

In [2011], Rahat Afreen and S.C. Mehrotra [15], discussed the ECC emerged in its proper implementation in

various directions to analyze in hardware as well as software platforms. Helena Rifa-Pous and Jordi Herrera-

Joancomarti [16], discussed the performances of different cryptographic algorithms in PDAs and compared it with

device’s basic costs in terms of operating system, screen, and network interfaces to determine the overhead and the

results were used to estimate the costs of network security protocols design.

In [2011], Jagdish Bhatta and Lok Prakash Pandey [17], proposed a software level cryptographic protocol

implementations to measure the energy level through the device’s serial port, running them and measuring their power

consumption. The results show that the proposed cryptographic protocol provides a guaranteed better security and

acquires very less consumption of energy than the existing cryptographic protocols. The performance analysis are

compared and proved that the proposed scheme is to be more simple, secure and efficient.

In [2012], K. Sathish Kumar et. al. [18], explained the mobile hand-held device in an efficient way to deliver

real time data to users. They designed and implemented an energy efficient authentication protocol that accomplishes a

high level security with minimum energy consumption for mobile devices.

In [2012], Masoud Nosrati et. al. [19], proposed an algorithm for security mechanism in different types of

mobile devices and the operation systems. This security mechanism uses some algorithms to scramble data into

unreadable text which can be only decoded or decrypted by those who possess the associated key and these algorithms

consume a significant amount of computing resources such as CPU time, memory, battery power and computation

time.

In [2012], Ravinder Singh Mann et. al. [20], presented the comparative analysis of ECC, AES and RSA

algorithms experimentally with parameters such as computation time and complexity of the algorithms. Based on the

result it was concluded that ECC has more complexity when compared to AES and RSA in mobile devices.

In [2013], Giripunje et al. [21], discussed many differences in mobile devices, their capabilities, computational
powers and security requirements in networking environments. The security of mobile communication is concerned

with mobile confidentiality, authentication, integrity and non-repudiation. They have mentioned that the currently
available network security mechanisms are inadequate. They provided effective security solution using PKC and its

ISSN(Online): 2320-9801

ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 2, February 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0402186 2409

implementation in two parts: first, design for API for ECC which generates shared key for secure communication and

secondly, a web service is created which distributes this key to validate the mobile user.

In [2013], Ameya Nayak [22], discussed the growing android community, its malware attacks, security

concerns, aid in serving as the continuous challenges of identifying current, future vulnerabilities as well as

incorporating security strategies against them and this focus on mobile devices.

In [2013], Srikanth Pullela [23], discussed the performance issues like handoffs, routing etc. Then he further

addressed that security is another key issue, which needs to be considered when the communication channel is set up.
Also protocols are being proposed for different applications like wireless application protocol, 802.11 etc. Most of

them are based on the public and private key cryptography.

In [2013], V. Gayoaso Martinez and L. Hernandez Encinas [24], have discussed the ECC, one of the best

options for protecting sensitive information. The latest version of the JAVA platform includes a cryptographic provider

- SunEC which implements EC operations and protocols. They have explained the complete code of three applications

to generate key pairs, perform key exchanges, and produce digital signatures with EC in JAVA.

In [2013], Muhammad Waseem Khan [25], explained that short message service (SMS) is one of the

frequently used mobile services with universal availability in all GSM networks but the SMS facility has not achieved

secure transmission of plaintext between different mobile phone devices. However, SMS does not have its own built-in

mechanism to secure the transmitted data because security is not considered as a priority application for mobile

devices. The existing schemes provide room for the secure SMS message communication. The effect of each security

scheme on mobile device’s performance was also observed. Finally summary of all security schemes with their

limitations was presented.

In [2013], Ram Ratan Ahirwal and Manoj Ahke [26], explained the Diffie-Hellman scheme as one of the key

exchanging cryptosystem, and no messages are involved in this scheme and using this key and ECC for encryption and

decryption. Two different methods to encrypt and decrypt the message were proposed by them. They pointed out that

the second method supports the system with more security than the first method because the sender computes the

exponentiation function between the coordinates of the encryption algorithm and the receiver computes the inverse of

the exponentiation function between the coordinates of the key in the decryption algorithm, While in the first method,

the sender compute the multiplication between the coordinates of the key in the encryption algorithm, the receiver

compute the multiplication between the coordinates of the key in decryption algorithm and forward secrecy in HTTPS

protocol.

In [2014], Sathish Kumar et. al. [27], have discussed about the mobile hand-held device are used in an

efficient way to deliver real time data to the users in the battle field military applications and the use of security

features in military applications such as data confidentiality, authentication etc., which are not readily offered by

mobile environment. The energy expenditure in such an environment poses bottleneck while achieving privacy. Hence

it is necessary to design and implement an energy efficient authentication protocol that accomplishes a high level of

security with minimum energy consumption. They have proposed the implementation of energy efficient authentication

protocol for mobile devices.

In [2014], Hamed Khiabani et. al. [28], explained the extensive deployment of wireless networking, mobile

and embedded devices, other pervasive computing technologies that are prone to security threats for which nobody will

be prepared for. Security and privacy are the main concerns in mobile computing which can be observed from several

perspectives including hardware, operating systems, networks, databases, user interfaces, and applications.

In [2014], Seema P. Nakhate, and R.M. Goudar [29], have implemented a secured password based mutual

authentication protocol for client-server computing using ECC framework which provides secure communication

between client and server with the help of user email-id and mobile phone authentication device for mobile handheld

device. The proposed protocol is best suited for constrained environments where the resources such as computational

power, storage capacity are extremely limited. Such devices are Mobile phones, PDA’s, Palmtops and Smart cards.

ISSN(Online): 2320-9801

ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 2, February 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0402186 2410

In [2015], Vishnu V and Shobha R [30], discussed the security in Wireless Sensor Networks (WSN). They

have applied dynamic election of Cluster Head (CH) mechanism and two evolutionary approaches SET-IBS and SET-

IBOOS, since it provides security in data transmission and reduces data losses due to nodes failure, less residual energy

selected in CH. It improves the lifetime of network by increasing time of FND (First Node to die).

In [2015], Tanmoy Kumar Bishoi et. al. [31], proposed an algorithm to encrypt the data using symmetric key

encryption technique and now it can be improved by using variable length key.

In [2015], Sujithra M et. al. [32], due to high performance computing techniques, cryptographic algorithms are

implemented and tested in Local as well as Cloud environment. They have revealed that storing mobile data in cloud

increases efficiently and AES algorithm performs better when compared with other algorithms in Mean processing time

but the combination of MD5+ECC+AES algorithms qualify better than Speed-Up ratio.

In [2016], Said Bouchkaren and Saiida Lazaar [33], discussed secure data transmission through Internet. They

have designed and implemented a new secret key cryptosystem due to a number of iterations of encryption and

decryption of data in blocks, using cellular automata and compared them with AES algorithm and also they proved that

the new algorithm resists against statistical attacks, faster than AES-256, achieved good confusion and diffusion tests.

III. CONCLUSION

Mobile Computing is a new technological development due to the magnificent growth of internet community

for various applications and variety of tasks that can be performed at the requirement of the users. But the requirement

is that the data must be transferred in a very fast, quick and secured manner. Hence the Cryptographic tools and

techniques will be more useful to achieve this. An eavesdropper or intruder can catch the information/data during the

transmission. In order to prevent this, various types of cryptographic algorithms have been used. From the findings,

Elliptic Curve Cryptography (ECC) is more useful and it produces more security with less number of bits compared to

RSA algorithm. It has been proved that the ECC can be applied in various levels of applications and hand - held

devices.

REFERENCES

1. Mavridis I., Pangalos G., “Security Issues in Mobile computing Paradigm”. 1997, http://www.researchgate.net.

2. Erik Olson and Woojin Yu, “Encryption for Mobile computing”, 2000.
3. Wendy Chou, “Elliptic Curve Cryptography and Its applications to Mobile Devices,2000.
4. Limor Elbaz, “Using Public Key Cryptography in Mobile Phones”, White Paper,Discretix Technologies Ltd., Advanced security solutions

for constrained environments, October 2002.

5. Dharma P. Agrawal et al., “Secure Mobile Computing”, S.R. Das, S.K. Das (Eds.): IWDC 2003, Springer-Verlag., LNCS 2918, pp.265-
278.

6. WHanping Lufei and Weisong Shi, “An Adaptive Encryption Protocol in Mobile Computing”, Wireless/Mobile Network Security,

Springer, 2006.

7. WWWWAbhishek Kumar Gupta, “Challenges of Mobile computing”, Proceedings of 2nd National Conference on Challenges &

Opportunities in Information Technology RIMT – IET, Mandi Gobindgarth, March 29, 2008.

8. S. Krishna Mohan Rao and Dr. A Venugopal Reddy, “Data Dissemination in Mobile Computing Environment”, BIJIT – BVICAM’s

International Journal of Information Technology, Bharati Vidyapeeth’s Institute of Computer applications and Management (BVICAM),

New Delhi, Vol. 1, No. 1, January 2009.
9. M. Razvi Doomun, and KMS Soyjaudah, “Analytical Comparison of Cryptographic Techniques for Resource-Constrained Wireless

Security”, International Journal of Network Security, Vol.9, No.1, July 2009, pp. 82–94.

10. Jayaprakash Kar & Banshidhar Majhi, “An Efficient Password Security of Multi-Party key exchange protocol based on ECDLP”,
International Journal of Computer Science and Security (IJCSS), Vol.1, Issue 5, Sep. 2009.

11. Mooseeop Kim et.al., “Design of Cryptographic Hardware Architecture for Mobile Computing”, Journal of Information Processing

Systems, Vol. 5, No. 4, Dec. 2009.

12. Bruno P.S. Rocha et. al., “Adaptive Security protocol selection for mobile computing”, Journal of Network and Computer Applications 33,
2010, pp. 569.

13. Sathish Alampalayam Kumar, “Classification and Review of Security Schemes in Mobile Computing”, Wireless Sensor Network, June

2010, 2, pp.419-440.

14. Sameer Hasan Al-Bakri, Gazi Mahabubul Alam et. al., “Securing peer-to-peer mobile communications using public key cryptography:

New security strategy”, International Journal of the Physical Sciences Vol. 6(4), Feb. 2011, pp. 930-938.

http://www.researchgate.net/

ISSN(Online): 2320-9801

ISSN (Print) : 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 2, February 2016

Copyright to IJIRCCE DOI: 10.15680/IJIRCCE.2016. 0402186 2411

15. Rahat Afreen and S.C. Mehrotra, “A Review on Elliptic Curve Cryptography for Embedded Systems”, International Journal of Computer

Science & Information Technology Vol. 3, No 3, June 2011.

16. Helena Rifa-Pous and Jordi Herrera-Joancomarti, “Computational and Energy Costs of Cryptographic Algorithms on Handheld Devices”,
Future Internet 2011, 3, 31-48; doi: 10.3390/fi3010031, ISSN 1999-5903, www.mdpi.com/journal/futureinternet.

17. Jagdish Bhatta and Lok Prakash Pandey, “Performance Evaluation of RSA Variants and Elliptic Curve Cryptography on Handheld

Devices”, IJCSNS International Journal of Computer Science and Network Security, Vol. 11, No. 11, Nov. 2011.

18. K. Sathish Kumar et. al., “An Experimental Study on Energy Consumption of Cryptographic Algorithms for Mobile Hand-Held Devices”,
International Journal of Computer Applications, Vol. 40, No.1, Feb. 2012.

19. Masoud Nosrati et. al., “Mobile and Operating Systems”, Computing: Principles, Devices World Applied Programming, Vol. 2, Issue 7,
July 2012.

20. Ravinder Singh Mann et al., “A Comparative Evaluation of Cryptographic Algorithms”, Int. J. Computer Technology & Applications, Vol

3(5), Oct. 2012, pp. 1653-1657.

21. Giripunje et al., International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 3, Issue 5, May 2013,
pp. 704-713.

22. Ameya Nayak, “Android Mobile Platform Security and Malware Survey”, IJRET: International Journal of Research in Engineering and

Technology, Vol. 02 Issue 11, Nov. 2013.

23. Srikanth Pullela, “Security Issues in Mobile computing”, International Journal of Research in Engineering and Technology, Vol. 02, Issue:

11, Nov. 2013.

24. V. Gayoaso Martinez and L. Hernandez Encinas, “Implementing ECC with Java Standard Edition 7”, International Journal of Computer
Science and Artificial Intelligence, Dec. 2013, Vol. 3 Issue. 4, pp. 134-142.

25. Muhammad Waseem Khan, “SMS Security in Mobile Devices: A Survey”, Int. J. Advanced Networking and Applications, Vol. 05, Issue

2, pp. 1873 -1882.
26. Ram Ratan Ahirwal and Manoj Ahke, “Elliptic Curve Diffie-Hellman Key Exchange Algorithm for Securing Hypertext Information on

Wide Area Network”, International Journal of Computer Science and Information Technologies, Vol. 4(2), 2013, pp.363 – 368.

27. Sathish Kumar et. al., “An Asymmetric Authentication Protocol for Mobile Hand held Devices using ECC over Point Multiplication
Method”, International Journal of Advanced Research in Computer Science & Technology, Vol. 2, Jan.–March 2014.

28. Hamed Khiabani et. al., “A Review on privacy, Security and Trust issues in Mobile Computing”, Collaborative outcome of University of
Malaysia and MIMOS Berhad – Information Security Cluster.

29. Seema P. Nakhate and R.M. Goudar, “Secure Authentication Protocol”, International Journal of Computer Networks and Communications

Security, Vol. 2, No. 4, April 2014, pp. 142 – 145.

30. Vishnu V and Shobha R, “Dynamic Cluster Head (CH) Node Election and Secure Data Transaction in CWSNs”, International Journal of
Engineering Research, Vol. 4, Issue Special 4, May 2015.

31. Tanmoy Kumar Bishoi et. al., “An Algorithm on Text Based Security in Modern Cryptography”, Journal of Computer Networking,

Wireless and Mobile Communications (JCNWMC), Vol. 5, Issue 1, Jun 2015, pp. 9-14.
32. Sujithra M et. al., “Mobile Data Security: A Cryptographic Approach by Outsourcing Mobile data to Cloud”, Procedia Computer Science

47 (2015), pp. 480-485.

33. Said Bouchkaren and Saiida Lazaar, “A New Iterative Secret Key Cryptosystem Based on Reversible and Irreversible Cellular Automata”,
International Journal of Network Security, Vol. 18, No. 2, pp. 345-353, Mar 2016.

BIOGRAPHY

Dr. K. Mani is working as an Associate Professor in the Department of Computer Science, Nehru Memorial

College, Puthanampatti, Tamil Nadu since 1989. After did his MCA, he got his Graduation in Operations Research

from Operational Research Society of India, Kolkatta and obtained his MTech in Advanced Information Technology

from Bharathidasan University, Trichy, Tamil Nadu. He has completed his Ph. D degree from Bharathidasan

University relating to enhancing security and optimizing the run time in cryptographic algorithms. His current research

area includes cryptography, data mining and coding theory. He has published a number of research papers in national

and international journals and conferences.

Mrs. A. Mullai is working as an Associate Professor in the Department of Computer Science, Seethalakshmi

Ramaswami College, Bharathidasan University, Trichy, Tamil Nadu, India since 2000. She has 15 years of experience

in teaching. After did her M.Sc in Physics, MCA in Computer Applications, she got her M.Phil in Computer Science at

Bharathidasan University, Trichy, Tamil Nadu. She has cleared National Level Eligibility Test (NET) conducted by

University Grants Commission (UGC), New Delhi. She is currently pursuing doctor of philosophy programme at

Nehru Memorial College (Autonomous), Puthanampatti and her current area of research is Cryptography in Mobile

Computing. She has published research papers in national and international conferences.

http://www.mdpi.com/journal/futureinternet

2016 World Congress on Computing and Communication Technologies

Optimizing the Run Time in Mobile Devices

K. MANI
1
, A. MULLAI

2

1Associate Professor, Department of Computer Science, Nehru Memorial College (Autonomous), Puthanampatti, Affiliated to
Bharathidasan University, Trichy, Tamil Nadu, India

email:nitishmanik@gmail.com
2
Associate Professor, Department of Computer Science, Seethalakshmi Ramaswami College(Autonomous), Affiliated to

Bharathidasan University, Trichy, Tamil Nadu, India
email: mullai_a@yahoo.com

Abstract: Mobile computing works on the principle of

broadcasting so that the information is radiated to everyone

within the wave range which increases security threats and cyber

attacks replicated quickly and easily. Thus, care must be taken in

handling those types of attacks to provide information security

while the user roams through different networks with

heterogeneous security infrastructure. For that several

cryptographic techniques are employed in mobile devices. Among

them the public key cryptographic algorithms like RSA and ECC

play a vital role in performing security. The basic building blocks

of ECC is scalar point multiplication k[P] where k is a scalar and

P is a point on elliptic curve. Similarly, in RSA the encryption

and decryption is of the form x
e
 mod n where encryption

/decryption key. Normally exponentiation operation takes more

time than multiplication which takes more time than addition and

subtraction. To reduce the time, exponentiations and

multiplications are performed by repeated multiplications and

additions respectively. To reduce the time further addition chain

is used. In order to generate the addition chain nature inspired

based algorithms like PSO and SSO are considered in this paper.

Using them, the addition chains for exponent of RSA and K[P] of

ECC are generated. The encryption/decryption time and energy

required for encryption/decryption are also computed and the

performance of the cryptographic algorithms in mobile devices

are analyzed with and without the incorporation of addition

chain.

Keywords: Decryption, ECC, Encryption, Optimization and RSA.

I. INTRODUCTION

Mobile devices deal with heterogeneity of networks and also

in ubiquitous intelligent environment with embedded

computers everywhere and reliable services to the user in an
easy way. Even though they have more offerings to the user,

lot of challenges like disconnection, low/ high bandwidth

variability, low power and resources, security risks, wide

variety of devices with different capabilities and to fit more

functionality into single, smaller devices. Various public key

algorithms like RSA and ECC (Elliptic Curve Cryptography)

are more popular to provide security in mobile devices but

they may take more time for encryption and decryption. ECC

gets popularity due to its shorter key length which produces

same security as in RSA with larger key length. It is noted that
if a cryptographic algorithm takes more time in performing

operational time (where the operational time

includes both encryption and decryption) which causes customer

impatience and dissatisfaction. Thus, to increase the operational

time in RSA and ECC, addition chain is incorporated in

performing x
e
 mod n of RSA and K[P] of ECC where the

addition chain is generated using PSO (Particle
Swarm Optimization) and Simplified Swarm

Optimization(SSO). Further, if the operational time gets
reduced, the energy required for the same is reduced too

which ultimately increases the life time of battery.

The PSO is a robust, stochastic, population-based meta-heuristic

optimization algorithm that was developed by James Kennedy

and Russell Eberhart in 1995. It is based on the movement and

intelligence of swarms by applying the concept of social

interaction with problem solving. It uses a number of agents

(particles) that constitute a swarm moving around in the search

space looking for the best solution. Each particle is treated as a

point in a N -dimensional space which adjusts its “flying”

according to its own flying experience as well as the flying

experience of other particles. Each particle keeps track of its

coordinates in the solution space which are associated with the

best solution (fitness) that has achieved so far by that particle.

The SSO algorithm is based on the simulation of cooperative
behaviour of social -spiders. In the proposed algorithm,

individuals emulate a group of spiders which interact to each

other based on the biological laws of the cooperative colony.

The algorithm considers two different search agents (spiders):

males and females. Depending on gender, each individual is

conducted by a set of different evolutionary operators which

mimic different cooperative behaviours that are typically

found in the colony and it is compared to other well-known

evolutionary methods. The comparison examines several

standard benchmark functions that are commonly considered
within the literature of evolutionary algorithms. The outcome

shows a high performance of the proposed method for

searching a global optimum with several benchmark

functions.

The rest of the paper is organized as follows. Section 2

describes the various cryptographic algorithms that already

exist in the literature with respect to mobile devices. A brief

explanation of RSA, ECC and addition chain are discussed in

section 3. The proposed addition chain based on PSO and

978-1-5090-5573-9/16 $31.00 © 2016 IEEE 55
DOI 10.1109/WCCCT.2016.23

SSO are presented in section 4. Experimental results are

discussed in section 5. Finally, section 6 ends with conclusion.

II. RELATED WORK

Arbit and Ashwini Kumar [1], suggested Optimized ECC (O-

ECC) to assist more secure and improved protocol design with

easy computation mathematically. In [2],Ahmed Tariq

Sadiq,discussed the Particle Swarm Optimization (PSO). The

benefit of mutation in PSO (MPSO) was used as momentum

and diversity tool in the population. Experimental results

clearly showed that the amount of recovered key of classical

ciphers and fitness function values were better than PSO.

Ahmed A.A.Esmin and Germano Lambert-Torres[3], have

proposed a methodology which was used to determine the

control variable settings for real power loss minimization in

the transmission system employs the PSO algorithm for the

optimal setting of optimal power flow (OPF) based on loss

minimization (LM) function has examined, tested on IEEE 14,

30, 118 Bus systems and the results were compared.

In[4],G.Prakash and Dr.M.Kannan, discussed that the

cryptographic smart cards were used for most of the online

transactions. They designed a secure technique by integrating

both cryptography and steganography which could be used for

smart card security. Initially, user’s confidential details were

encrypted using the most secure ECC technique and then the

encrypted cipher was embedded into the users 'photographic

image using steganography named Optimized Modified

Matrix Encoding (OMME) algorithm.

Cuevas, E. Cienfuegos et al. [5], proposed the swarm

intelligence models with collective behaviour in swarms of

insects or animals called the social spider optimization for

solving optimization tasks. The outcome showed a high

performance for searching a global optimum with several

benchmark functions. In [6], Wilayat Khan et al. discussed the

mobility which was one of the major features of wireless
communication systems and handheld devices form a major

part of the systems. The limited resources like battery,

memory, and computational power of these devices was a

bottle neck in the security of such devices were also discussed.

Rangit j. Bhosale et al. [7], proposed the mobile ad-hoc

networks (MANET) in wireless technology, having features

like dynamic topology and self-configuring ability of nodes.

They surveyed Intrusion detection system (IDS) that was one

of the most active fields of research in MANET. Swapna B.

Sasi and N. Sivanandam[8]analyzed the performance of the

different methods and compared with various parameters such

as maximum number of keys stored, battery capacity, runtime.

They also concluded that high storage and energy was

required for storing the keys.

In[9], Dolly U. Jeswani et al., discussed the cryptographic

algorithms which were the key factor of the security

mechanisms used for data storage and uninterrupted network

transmissions. To identify the security risk associated with

AES algorithm, a computational intelligence based approach

for known cryptanalysis was used. A PSO oriented

cryptanalysis technique for breaking the key used in Advance

Encryption Standard (AES) algorithm was also introduced.

The key used in AES was detected effectively with PSO.

Swarm Intelligence based Cryptanalysis provided a best and

optimized solution.

In [10], Chia-Ling Huang and Wei-Chang Yeh, demonstrated

to optimize the reliability redundancy allocation problems

(RRAP) for the series-parallel system, the complex (bridge)

system, and the over speed protection of gas turbine system.

Their objective of the RRAP was to maximize the system

reliability for numerous decades. For that number of

redundant components and the reliability of corresponding

components in each subsystem with nonlinear constraints was

considered simultaneously but it was more difficult for the
RRAP. Hence, the RRAP was the mixed-integer programming

problem with the nonlinear constraints that belongs to the NP-

hard problem. To solve the RRAP, SSO algorithm was

proposed to improve the computation efficiency and found

that it outperforms the previously best-known solutions.

In [11], Ji Weidong and Zhu Songyu discussed and PSO

which was one of the most common algorithms for

optimization because of its simple, convenient and good

robustness. They have proposed a new particle swarm

algorithm as improved cut PSO algorithm based on filtering

mechanism (ELPSO) to improve its operation speed and more

accurate.

In [12], Jin Yang et. al. discussed that the Mobile sinks that
could achieve load -balancing and energy-consumption

balancing across the wireless sensor networks (WSNs).

However, the frequent change of the paths between source
nodes and the sinks caused by sink mobility introduces

significant overhead in terms of energy and packet delays.

They have presented the enhanced version of the network

performance of WSNs with mobile sinks (MWSNs), in an
efficient routing strategy using PSO to build the optimal

routing paths. A novel greedy discrete particle swarm

optimization with memory (GMDPSO) was introduced to
improve the greedy forwarding routing, a greedy search

strategy was designed to drive particles to find a better

position quickly, searching history was memorized to
accelerate convergence. Simulation results demonstrated that

the new protocol significantly improved the robustness and

adapted to rapid topological changes with multiple mobile

sinks, while efficiently reducing the communication overhead
and the energy consumption.

III. CONCEPT OF ECC, RSA AND ADDITION CHAIN

This section includes the definition of EC, point addition on

EC, k[P], working principle of RSA and addition chain.

56

A. EC Definition Over GF(P):

Let p be a prime greater than 3 and a and b be two integers

such that 4a
3
+27b

2
≠0(mod p). EC over the finite field Fp is

the set of points (x, y) ϵ Fp×Fp satisfying the Weiestrass
equation

E: y
2
≡ x

3
+ax+b …(1)

together with point at infinity O. The point of infinity is
similar to the number 0 as in normal addition. Thus, for all
points in EC, P + O = P and P+(-P)= 0 [14]. An abelian group
is formed by the point on E with the addition operation. –P=

(x1,-y1) is the inverse of the point P= (x1, y1).

Point Addition on EC
Let P= (x1, y1) Q=(x2, y2) be points in EC, given in affine

coordinates. Assume P, Q ≠ O and P ≠ -Q. The sum R=(x3, y3)
= P+Q is computed as

if P≠Q, i.e., point addition,

λ = (y2-y1) ÷ (x2-x1) …(2)

x3= λ
2
-x1-x2, y3 = (x1-x3)λ-y1

The cost required for computing point addition is

(1I+3M)

If P=Q, i.e., point doubling,

λ = (3x1
2
-y1) ÷2y1 , …(3)

x3= λ
2
-2x1, y3 = λ (x1-x3) -y1

The cost required for computing point doubling is (1I+4M)

Scalar Point Multiplication

The k[P] is similar to the exponentiation operation in other

public- key cryptosystems like RSA. It is noted that

exponentiation operation normally takes more time than

multiplication and hence the exponentiation operation may be

performed as repeated multiplication. Similarly, in ECC, k[P]

is performed by adding p to itself k times [14]. Thus,, for

integer the computation k[P] is given by

k[P] = P+P+… +P for k>0

k times

0 for k=0 ...(4)

[-k] –P for k<0

It is one of the public-key cryptography based on the algebraic

structure of elliptic curves over finite fields and also it gets

popularity due to its shorter key length. Further it reduces

space for key storage, arithmetic cost, and time during the

transmission of keys.

B. RSA
RSA was proposed by Rivest et.al. The private key of a user

consists of two prime p and q and an exponent (decryption

key) d. The public-key consists of the modulus n = pq, and an

exponent e such that d = e
-1

 mod (p-1) × (q-1). To encrypt a

plaintext M the user computes C = M

e
 mod n and decryption

is done by calculating M = C
d
 mod n.

C. Addition Chain
An addition chain is a finite sequence of positive integers called

elements, 1= a0 ≤ a 1≤ a2 ≤ …≤ ar = e with the property that for

all i>0 there exist aj, k with a i=aj+a k and r ≥ i ≥ j ≥ k
≥ 0. This is called an addition chain of length r for the target e.

An optimal addition chain is the one which has the shortest

possible length denoted by l(e)and it is a strictly increasing

sequence as duplicate chain elements could be removed to
shorten the chain. It is noted that for the given integer e, more

number of addition chains are possible. But for finding at least

one of the shortest addition chain is an NP-hard problem. For

example, n=170. All possible optimum addition chains are
1-2-3-5-10-20-40-45-85-170 1-2-3-5-10-20-40-80-85-170

1-2-3-5-10-20-40-80-90-170 1-2-3-5-10-20-40-80-160-170
1-2-4-5-10-20-40-45-85-170 1-2-4-5-10-20-40-80-85-170
1-2-4-5-10-20-40-80-90-170 1-2-4-5-10-20-40-80-160170 1-

2-4-6-10-20-40-80-90-170 1-2-4-6-10-20-40-80-160-170

IV. PROPOSED METHODOLOGY

Most of the public-key cryptosystems like RSA, ElGamal,
etc., modular exponentiation is the cornerstone operation
which plays a vital role in performing encryption/decryption
operations. They often involve raising large elements of some
group fields to large powers. Successive multiplication is
normally used to perform modular multiplication but it is a

time-consuming process. For example, to compute x
e
 based on

paper-and pencil method, it requires (e-1) multiplication of x.

i.e., x
1
 x

2
 x

3
 … x

e-1
 x

e
. Similarly, in ECC to perform

encryption/ decryption, scalar point multiplication k[P]mod m,
where P is a elliptic curve point, k is an arbitrary integer in the
range 1< k <ord(p), and m is a modulus plays a vital role. To
reduce the number of multiplications further in public key
cryptography like RSA and number of additions in k[P] of
ECC addition chain is used.

To generate the addition chain for an integer using PSO, the
particle represents the addition chain and N represents the
number of addition chains (particle’s population). Before
finding the optimal addition chain, the addition chain for e is
tentatively taken and its corresponding length l(e) is termed as

pbest. Thus, the i
th

 particle represents i
th

 addition chain and it

is represented as Xi=(ai1, a i2, …., ain), i=1,2,…,N. It is noted
that for the given integer e,N number of addition chains are
generated and the optimal addition chains are always the
subset of N. Also,pbest (global best particle) represents the
optimal addition chain. The velocity of the particle is the next
number to be selected in the addition chain called intermediate

numbers aij,where 3≤j≤l-1, where l is the last number in the
addition chain. This is because in any addition chain the first

number ai1=1; ai2=2 and ain= e. These numbers are generated
either from addition or doubling steps from the previous
numbers occur in the addition chain.

57

In order to generate the intermediate numbers, the random
numbers rand1 and rand2are used to select the addition or

doubling steps respectively and they indicate the maximum

range of uniform random number. Suppose the selected

random number is <rand1, to generate the next number
addition step is considered otherwise doubling step is

considered. It is noted that more than one numbers are

generated using addition step, to select the next number from
the current number the maximum range specified in rand1 is

divided into number of numbers generated using addition step.

For example, if the current number is 5, from 5 the numbers 6,

7, 8, 9 are generated using addition step and the range of
random number is selected as rand1/4 . Suppose rand1=0.5,

then the probability of selecting each number is 5/4=.125.

Thus, if the uniform random number U is in the
range0.000≤U< 0.125, then the next number selected in the

addition chain is 6 from 5, if0.125≤U<0.250, then the next

number selected is 7. Similarly, if 0.250≤U<0.375, then 8 is

selected and if 0.375≤U<0.5 Once the next number of
addition chain is generated the process is recursively

performed till it reaches e and its l(e) is found called as new

l(e). Then the newl(e) is compared with pbest. If it is <pbest,
now pbest= new l(e). Otherwise, previous value of pbest is

retained. Similarly, for all the numbers obtained from current

numbers, the said process is repeated till the optimal addition
chain and its corresponding length is found. The concept used

in SSO is also used for generating the optimal addition chain

for an integer e.

A. Proposed Methodology- RSA-PSO Based Addition Chain-

An Example

In order to get a proper understanding of the subject matter of

this paper using RSA, let p=13, q=17 and e=11, then n=
13(17)=221, (p-1)(q-1)=12(16)=192. Now d = 133. To

encrypt, C = M
11

mod 187 and to decrypt M = C
133

mod 187.
As e=11, the conventional repeated multiplication requires 10
multiplications. But, if the PSO based addition chain is used,

the addition chain for e=11 is 1-2-3-5-10-11; l(e)=5 which

requires only 5 multiplications. Similarly, for d=133,

conventional process requires 132multiplications whereas it
requires only 10 multiplications if PSO based addition chain is

used because the addition chain for d=133is 1-2-3-5-10-20-

30-50-100-130-133 and l(d)=10.

B. Proposed Methodology- ECC-PSO Based Addition Chain-

An Example

To encrypt the message using ECC, Diffie-Hellman key
exchange protocol is used in this paper. For that let p=211;

and Ep(0, -4) and G=(2,2). A’s private key is nA=121, so A’s

public key is PA=121(2,2)=(115,48). B’s private key is

nB=203, so B’s public key is PB= 203(2,2)=(130,203), The
shared secret key is 121(130,203)=203(115,48)=(161, 169). It

is noted that in PA, k=121. If the conventional repeated
addition chain is used, it requires 120 additions whereas ECC-
PSO based addition chain, it requires only 10 additions
because, the addition chain for k=121 is 1-2-3-5-10-20-40-50-

100-120 -121 and l(k)=10. Similarly, for P B, k=203, which

requires only 10 multiplications because its addition chain is

1-2-3-5-10-20-40 -50 -100-200-203; l(k)=10.which is far less

than202 number of addition if the conventional repeated

addition chain is used.

V. EXPERIMENTAL RESULTS
The proposed methodology is implemented in VC++ with

android emulator for varying file sizes using RSA and ECC.

Table 1 and Table 2 show the encryption/decryption time and
encryption/decryption power using RSA and ECC without

addition chain respectively and also their corresponding

graphical representations of encryption/decryption time and

energy required for encryption and decryption operations are
shown in Fig. 1, Fig. 2, Fig. 3 and Fig. 4 respectively.

Table 1: Operational Time and Power Consumption using

RSA without Addition Chain

 FS(in MB) Time (in Ms) Power (in mW)

 E D E D
 1 1664 1643 571 570

 2 3233 3190 1096 1090

 4 6492 6484 2177 2181

 8: 13672 13666 4569 4569

 16 27417 27420 9163 9148

FS- File Size E-Encryption Time D-Decryption Time

Table 2: Operational Time and Power Consumption using

ECC without Addition Chain

FS(in MB)
Time (in Ms) Power (in mW)

E D E D

1 2419 2313 848 777

2 4788 4517 1596 1506

4 9562 9225 3192 3075

8: 20182 19377 6734 6466

16 40434 38939 13504 13000

Fig. 1. Encryption Time Using RSA without addition chain

58

Fig. 2. Decryption Time Using RSA without addition chain

Fig. 3 Encryption Power TimeUsing ECC without addition chain

Fig. 4. Decryption Time Using ECC without addition chain

After incorporating PSO addition chain in RSA and ECC, the

time taken for encryption/decryption operation and the power

consumption for the same operations are shown in Table 3

and Table 4 respectively.

Table.3:Operational Time and Power Consumption using

RSA with PSO Addition Chain

FS(in MB) Time (in Ms) Power(in MW)

E D E D

1 1034
1022 361 349

2 2036
2010 679 669

4 4102
4100 1384 1378

8 8654
8619 2902 2888

16 17326
17311 5792 5781

Table. 4: Operational Time and Power Consumption using ECC

with PSO Addition Chain

FS(in MB)
Time(in mS) Power(mW)

 E D E D

1 1580 1555 541 536

2 3079
3013 1036 1013

4 6148
6143 2052 2050

8 12979
12920 4350 4309

16 25997
25968 8686 8656

Table. 5:Operational Time and Power Consumption using RSA

with SSO Addition Chain

FS(in MB) Time(mS) Power(mW)

 E D E D

1 869 864 294 291

2 1696 1680 575 564

4 3420 3416 1144 1147

8 7206 7182 2416 2397

16 14442 14424 4827 4809

After incorporating SSO addition chain in RSA and ECC, the

time taken for encryption/decryption operation and the power

consumption for the same operations are shown in Table 5

and Table 6 respectively.

59

Table. 6:Operational Time and Power Consumption

using ECC with SSO Addition Chain

FS(inMB) Time(mS) Power(mW)

 E D E D

1 1291 1291 408 417

2 2560 2515 813 785

4 5119 5118 1593 1604

8 10818 10789 3367 3369

16 21664 21633 6739 6731

From Table 1 and Table 2, it is observed that ECC takes more

time than RSA for both operational and power consumption.

This is because lot of computations like generation of points

on EC, addition of points in performing k[P] are involved in

ECC when it is compared with RSA. It is evident from Table
3 and Table 4 that the time required for operational and power

consumption time is substantially reduced using RSA and

ECC with PSO based addition chain when the same is

compared without addition chain. It is observed from table 5

and table 6, same is also happening in the case of RSA and

ECC with SSO based addition chain. But SSO based addition

chain always takes less time when it is compared with PSO if

they are incorporated in RSA and ECC. This is because in

PSO based addition chain, computations of velocity and
inertia weight take more time than SSO because based on

random number alone the next number in the addition chain is

determined.

VI. CONCLUSION

PSO and SSO based addition chain for the integers are

thought of and they are incorporated in public key

cryptographic algorithms like RSA and ECC which play a

vital role in optimizing the runtime in mobile devices. To
implement the proposed algorithms Android emulator has

been chosen for the experimental setup. The proposed

algorithms significantly reducing the encryption and

decryption time in both RSA and ECC because the said

algorithms minimize the number of multiplications and

additions in exponentiation and k[P] respectively which will

eventually result in minimizing the energy required for both

encryption and decryption.

REFERENCES

[1]. Arbit and Ashwini Kumar, “Optimized Elliptic Curve Cryptography as

Fine Balance for Wireless Sensor Network”, International Journal of

Modeling and Optimization, Vol.1, No. 4, October 2011.

[2]. Ahmed Tariq Sadiq, “Mutation-Based Particle Swarm Optimization

(MPSO) to Attack Classical Cryptography Methods”, Journal of
Computer Science and Technology Research 2 (2012) 50-65, ISSN:2231-

8852, March 2012.
[3]. Ahemed A. A.Esmin and Germano Lambert-Torres, "Application of

Particle Swarm Optimization to optimal power systems", International

Journal of Innovative Computing, Information and Control, Vol. 8, No.
3(A), pp. 1705-1716, March 2012.

[4]. G.Prakash and Dr.M.Kannan, “Enhancing Security in Cryptographic in

Smart Cards through Elliptic Curve Cryptography and Optimized

Modified Matrix Encoding Algorithms”, Journal of Theoretical and
Applied Information Technology, Vol. 58, No.3, December 2013.

[5]. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M. A swarm

optimization algorithm inspired in the behaviour of the social-spider,

Expert Systems with Applications, Vol. 40, No. 16, 2013.

[6]. Wilayat Khan, Habib Ullah and Riaz Hussain, “Energy Efficient Mutual

Authentication Protocol for Handheld devices based on Public Key

Cryptography”, International Journal of Computer Theory and
Engineering, Vol. 5, No. 5, October 2013.

[7]. Rangit j. Bhosale et al, “A Survey on Intrusion detection System for

Mobile Ad-hoc Networks”, (IJCSIT) International Journal of Computer

Science and Information Technologies, Vol. 5, No. 6, 2014.

[8]. Swapna B. Sasi and N. Sivanandam, “A Survey on Cryptography using

Optimization algorithms in WSNs”, Indian Journal of Science and

Technology, Vol. 8. No. 3, February 2015.

[9]. Dolly U. Jeswani and Swati G. Kale, “The Particle Swarm

Optimization Based Linear Cryptanalysis of Advanced Encryption
Standard Algorithm”, International Journal on Recent and Innovation

Trends in Computing and Communication, Vol. 3, April 2015.

[10]. Chia-Ling Huang and Wei-Chang Yeh," Simplified Swarm Optimization

Algorithm for reliability redundancy allocation problems", IEEE

Computer Society, 2015.
[11]. Ji Weidong and Zhu Songyu, "A Filtering Mechanism Based

Optimization for Particle Swarm", International Journal of u- and e-

Service, Science and Technology Vol.9, No. 1, 2016.

[12]. Jin Yang, Fagui Liu, Jianneng Cao and Liangming Wang, "Discrete

Particle Swarm Optimization Routing Protocol for Wireless Sensor

Networks with Multiple Mobile Sinks", MDPI journals , Sensors 2016.

60

1 23

International Journal of Information
Technology
An Official Journal of Bharati
Vidyapeeth's Institute of Computer
Applications and Management

ISSN 2511-2104
Volume 13
Number 2

Int. j. inf. tecnol. (2021) 13:551-564
DOI 10.1007/s41870-019-00413-8

Enhancing the security in RSA and elliptic
curve cryptography based on addition
chain using simplified Swarm Optimization
and Particle Swarm Optimization for
mobile devices
A. Mullai & K. Mani

1 23

Your article is protected by copyright

and all rights are held exclusively by

Bharati Vidyapeeth's Institute of Computer

Applications and Management. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

ORIGINAL RESEARCH

Enhancing the security in RSA and elliptic curve cryptography
based on addition chain using simplified Swarm Optimization
and Particle Swarm Optimization for mobile devices

A. Mullai1 • K. Mani2

Received: 15 November 2018 / Accepted: 16 December 2019 / Published online: 7 January 2020

� Bharati Vidyapeeth’s Institute of Computer Applications and Management 2020

Abstract Security is the major concern in mobile or

portable devices because the internet community can do

their work at any time at any place at anywhere. Today

various cryptographic algorithms like RSA, Elliptic Curve

Cryptography (ECC), etc., can be used to protect the

information in mobile devices. But, they have some limi-

tations viz., energy, battery power, processing speed,

operating systems, screen size, resolution, memory size,

etc. Providing security for limited power mobile devices is

a challenging task. RSA and ECC are normally used in

mobile devices. In RSA, both encryption and decryption

are of the form xe mod n and in ECC, the scalar point

k[P] where k is a scalar and P is a point in EC plays a vital

role in performing encryption and decryption. The point

arithmetic involved in ECC is a power starving process. To

speed up the operations in both cryptographic algorithms,

addition chains (AC) are normally used. If the encryption

and decryption time get reduced, it ultimately reduces the

power consumption. There are several AC algorithms exist

in the literature. But, ACs are generated using Particle

Swarm Optimization and Simplified Swarm Optimization

are proposed in this paper and they are used in the said

processes of RSA and ECC with two android and window

emulators. The processing time, power consumption taken

for encryption, decryption process and security of the said

algorithms are also analysed.

Keywords RSA � ECC � Addition chain � PSO and SSO

1 Introduction

Mobile devices are primarily battery powered. The power

has to be utilized optimally to improve the mobility and life

time of the mobile node. Data involved in today’s mobile

communications are diverged in sensitivity from insensi-

tive public social media data to highly confidential delicate

private data. Ensuring security in present mobile network is

a critical task because high security protocols have to be

used and the power consumption of the security architec-

ture is to be kept in control. Current security algorithms in

practice are having a general nature in common wherever

security is improved and their power utilization may be

high. Computing and updating of security keys are taking

more power consumption which are directly proportional

to the size of the security keys. Larger size keys provide

higher security and they consume more computational

power as well. There are many famed cryptography pro-

cedures are used for mobile security. RSA [1] and ECC are

used for digital data security in a great extend. RSA is a

procedure of computational simplicity whereas ECC pro-

vides greater security. Large prime numbers are used as

security keys in these methods. At present while comparing

many cryptography methods, ECC [2, 3] provides more

security even with lesser key sizes. In ECC, k[P] [4, 5]

plays a vital role in performing encryption and decryption

process. Similarly in RSA, the encryption and decryption

are of the form xe mod n. Since the exponentiation

& A. Mullai

mullai_a@yahoo.com

K. Mani

nitishmanik@gmail.com

1 Department of Computer Science, Seethalakshmi

Ramaswami College (Autonomous), Affiliated to

Bharathidasan University, Trichy, Tamil Nadu, India

2 Department of Computer Science, Nehru Memorial College

(Autonomous), Affiliated to Bharathidasan University,

Puthanampatti, Trichy, Tamil Nadu, India

123

Int. j. inf. tecnol. (April 2021) 13(2):551–564

https://doi.org/10.1007/s41870-019-00413-8

Author's personal copy

http://orcid.org/0000-0002-9825-2358
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-019-00413-8&domain=pdf
https://doi.org/10.1007/s41870-019-00413-8

operation takes more time than any other arithmetic oper-

ations, to minimize the time, exponentiations are per-

formed by repeated multiplication. Similarly, in the case of

k[P] of ECC, the multiplications should be performed by

repeated addition. To reduce the number of multiplications

in RSA and number of additions in k[P] further, ACs are

used. The k[P] calculations involved in ECC makes it

perplexed to use in limited power mobile nodes.

AC [6] is a sequence of integers in which each suc-

ceeding element should be the sum of two preceding ele-

ments or the doubled value of a preceding element. In

general, ACs are started with the positive integers 1 and 2

where the third element may be 1 ? 2 = 3 or 2 ? 2 = 4.

Most of the public-key cryptography procedures operate in

the basis of computing of modular exponentiations.

The construction [7, 8] of each element of an AC is

called a step. For an AC,

1 ¼ a0 � a1 � � � � � ar ¼ n: ð1Þ

The following steps are involved.

Doubling step:

ai ¼ 2ai�1; i[0: ð2Þ

Non-doubling step:

ai ¼ aj þ ak; i[j[k� 0: ð3Þ

The steps of the form ai = 2a j, j B i -2 are defined as

non-doubling steps.

Big step:

k aið Þ ¼ k ai�1ð Þ þ 1: ð4Þ

Small step:

k aið Þ ¼ k ai�1ð Þ: ð5Þ

Finding minimal length ACs helps in diluting the

complexity of modular exponentiations. Minimal length

ACs [9, 10] can be calculated either using brute force

method or some clever algorithm. Brute force method is

not recommended because of its high computational cost.

A few intelligent procedures are in use to calculate mini-

mal length ACs.

There is no defined procedure available to produce

minimal length AC for all numbers. These methods are

consuming different computational powers to calculate

minimal length ACs. A new procedure is presented in this

paper to generate it using Swarm Optimizations [11] like

Particle Swarm Optimization (PSO) [8, 12] and Simplified

Swarm Optimization (SSO) [13]. Generated ACs by both

methods are used in RSA and ECC to measure the standard

crypt-analyse parameters like encryption time, decryption

time, power consumption and security levels. They are

termed as RSA-Particle Swarm Optimization based AC

(RSA-PSOAC), ECC-Particle Swarm Optimization based

AC (ECC-PSOAC) and RSA-Simplified Swarm Opti-

mization based AC (RSA-SSOAC) and ECC-Simplified

Swarm Optimization based AC (ECC-SSOAC). Files with

different sizes are encrypted and decrypted in android and

windows mobile operating environments to measure the

said metric parameters.

The rest of the paper is organized as follows: Sect. 2

describes the concepts involved in RSA, ECC, PSO and

SSO. Existing works are given in Sect. 3. The proposed

methodology for generating AC using PSO and SSO are

discussed in Sect. 4. The experimental set up is shown in

Sect. 5. The results obtained after incorporating AC into

RSA and ECC encryptions in two different OS are dis-

cussed in Sect. 6. Finally, Sect. 7 ends with conclusion

with future extension of this work.

2 Concepts of RSA, ECC, PSO and SSO

This section explains the concepts involved in RSA, ECC,

PSO and SSO.

2.1 RSA

RSA is a public key cryptography and it was proposed by

Rivest et al. [6, 14]. The public-key of a user consists of

two prime p and q and an exponent (encryption key) e. The

private-key consists of the modulus n = pq, and an expo-

nent d such that d = e-1 mod (p - 1) (q - 1). To encrypt

a plaintext M, the user computes C = Me mod n and

decryption is done by calculating M = Cd mod n. This

asymmetric crypto-procedure is widely used in the digital

age to secure delicate data because of its simplicity.

2.2 ECC

ECC was proposed in 1985 by Neal Koblitz and Victor

Miller [15–17]. It is an alternative to the established

cryptosystems like RSA, ElGamal, Rabin, etc. It guaran-

tees all the security services with the shorter keys. The use

of shorter length implies less space for key storage, less

arithmetic cost and time saving when keys are transmitted.

ECC produces same level of security with 160-bit keys as

other methods security with 1024-bit keys.

2.2.1 Definition (elliptic curve)

Let p be a prime greater than 3 and a and b be two integers

such that 4a3 ? 27b2
= 0 (mod p).

EC over the finite field Fp is the set of points (x, y) [
Fp 9 Fp satisfying the Weiestrass equation

E : y2 � x3 þ axþ b ð6Þ

552 Int. j. inf. tecnol. (April 2021) 13(2):551–564

123

Author's personal copy

together with point at infinity O. The point of infinity [18]

is similar to the number 0 as in normal addition.

2.2.2 Point addition and doubling on EC

Let P = (x1, y1) and Q = (x2, y2) be two points in EC, given

in affine coordinates. Assume P, Q = 0 and P = - Q.

The sum R = (x3, y3) = P ? Q is computed as if P = Q,

i.e., point addition,

k ¼ y2 � y1ð Þ= x2 � x1ð Þ; x3 ¼ k2 � x1 � x2;

y3 ¼ x1 � x3ð Þk� y1:
ð7Þ

If P = Q, i.e., point doubling,

k ¼ 3x2
1 � y1

� �
=2y1; x3 ¼ k2 � 2x1;

y3 ¼ k x1 � x3ð Þ:
ð8Þ

In ECC, k[P] is performed by adding p to itself k times

[19]. Thus, for integer the computation

k P½ � is given by k P½ � ¼ Pþ Pþ � � � þ P|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
k times

; for k[0: ð9Þ

2.3 Particle Swarm Optimization (PSO)

PSO was developed in 1995 by Dr. Eberhart and Dr.

Kennedy based on the social behaviour of flocking birds

and fish schooling [20, 21]. It is initialized with a popu-

lation of multiple random solutions. The results are opti-

mized through iterations towards the best result and it

acquires an optimum solution by tiding generations. While

a group of birds searching for food in an area, their initial

locations are random. The birds do not know the place of

the food initially. But they get closer to the food after a set

of movements that is iterations. The best way to reach food

is following the way of the bird which is nearest to food.

All particles are updated after each iteration based on two

best values. The first best value pBest is achieved by a

particle as yet. Second best value gBest is the best value

achieved by the overall population towards the fitness

function trailed by the particle swarm optimizer [22]. There

are two equations defined to determine the velocity and the

position of the particles.

Velocity equation:

8 2 1; nf g : vi
¼ vi þ c1 þ y1x pbi � pið Þ þ c2 � y2 � Gbi � Pið Þ;

ð10Þ

where, n is the number of maximum permitted iterations, v

is the velocity of the particle, pb is the pbest (particle best),

p is the present position, G is the gbest (global best), c1, c2

is the learning factors.

In general c1 = c2 selected from the range of 0–4 y1, y2:

Random numbers between 0 and 1,

Position Equation : P ¼ Pþ V : ð11Þ

The steps involved in PSO algorithm are:

1. Initialize all particles

2. Calculate fitness value for each particle

3. If the calculated fitness value pBest is better than

existing pBest, then update pBest

4. Find the particle with best fitness value gBest from

overall population

5. For all particles, calculate velocity and position based

on the equations and update values

6. Repeat from Step ii until maximum number of

iterations achieved or optimum result achieved.

2.4 Simplified Swarm Optimization (SSO)

SSO was proposed by Wei-Chang Yeh. It is an evolu-

tionary computational swarm based intelligence method

and it is used in many recent research fields because of its

efficiency and flexibility. SSO procedure is commenced

with initial population of particles embedded with a pair or

finite-length encoded string and a fitness value. In this

process, each individual particle refers a solution. An

updating mechanism (UM) [23] is defined to improve the

solutions through iterations. The UM of SSO is declared as,

Xt
ij ¼

Xt �1
ij if p 2 0; Cw½ �

Pt �1
ij if p 2 Cw; Cp

� �

gi if p 2 Cp; Cg

� �

x if p 2 Cg; 1
� �

8
>><

>>:
ð12Þ

where Xt
ij refers the position of ith particle with respect to

jth variable of the solution space at tth generation.

pi ¼ Pi1; Pi2; . . .Pidð Þ ð13Þ

where d refers total number of variables in the problem. Pi

is otherwise referred as particle best value. pBest is the best

solution with best fitness value of its own history.

The overall best solution of entire population is repre-

sented as global best value gBest which is referred as g,

g ¼ g1; g2; . . .gdð Þ ð14Þ

where gi refers jth variable in gBest, x is a random value

between the lower bound and upper bound of jth variable, q
is a consistent random number between 0 and 1, cw, cp and

cg are predetermined parameters.

The steps involved in SSO are:

1. Initialize X0,i = Pi randomly

2. Let g = Number of maximum solutions

3. Let t = 1 and i = 1, 2,…g

Int. j. inf. tecnol. (April 2021) 13(2):551–564 553

123

Author's personal copy

4. Calculate F(X0,i) and find gBest

5. Initialize i = 1

6. Calculate Xt,i from Xt-1,i based on UM

7. If F (Xt,i) is better than F (Pi), then Pi = Xt,i, else go to

Step ix

8. If F (Pi) is better than F(PgBest), then gBest = i

9. If i\g then let i = i ? 1 and go to step iv.

SSO differs from PSO by its updating mechanism UM

which is used to maintain population diversity and to

reduce the local optimum lockouts.

3 Related works

The major challenges in mobile computing are low band-

width, high error rate, power restrictions, security, limited

capabilities, disconnection and the problems created due to

the mobility of the user. Applying cryptographic algo-

rithms to the mobile units would not be accessed by the

hackers. The existing works in this area are listed as

follows.

Mavridis I and Pangalos G, discussed the operational

and security issues of mobile components in distributed

environments in wireless networking using the mobile

agents and applied some security mechanism in a health-

care paradigm [24]. Erik Olson and Woojin Yu, surveyed

various symmetric key algorithms and their usage in

mobile computing, and proposed the architecture used in

the processor is similar to 68K processor [25]. Wendy

Chou, surveyed the explosive growth in the usage of

mobile and wireless devices demands a new generation of

public key cryptography (PKC) schemes, their limitations

due to power, bandwidth for providing security in mobile

devices [26].

Limor Elbaz, implemented PKC in security of wireless

devices and the use of Public Key Infrastructure (PKI) in

current and future applications of mobile phones [27].

Dharma P. Agrawal et al., analyzed some security issues,

various threats in the existing countermeasures and con-

cluded that encryption plays an important role for secured

communication in mobile computing environments [28].

Hanping Lufei and Weisong Shi, proposed an adaptive

encryption protocol to choose a proper encryption algo-

rithm dynamically which enhances security and minimizes

the time overhead [29]. Abhishek Kumar Gupta, explained

the field of mobile computing (computing and communi-

cation) dependent on information, it is available only by

accessing a network and discussed that the mobility can

also cause wireless connections to be lost or degraded [30].

S. Krishna Mohan Rao and A. Venugopal Reddy, dis-

cussed the data dissemination which illustrates quickly

access of the data item in mobile devices with minimum

access time so that the mobile clients save the precious

battery power while they are moving from one place to

another [31]. The resource-limited wireless sensor net-

works (WSN) needs reliable and efficient security mecha-

nisms using two block ciphers, namely the RC5 and AES,

the suitability of the algorithm for resource-limited wire-

less network security is analyzed by M. Razvi Doomun,

and K.M.S. Soyjaudah [32].

Kar and Banshidhar Majhi proposed an efficient pass-

word security of multi-party key exchange protocol based

on elliptic curve discrete logarithm problem (ECDLP),

when communicating over a public network to establish a

common secret key called session key and also build pro-

tocol for password authentication model for group mem-

bers to hold an individual password rather than a common

password and two one-way hash functions to build the

security [33].

Mooseeop Kim et al., proposed a compact architecture

for a cryptographic engine on a mobile platform, is highly

effective to implement the scalable RSA and unified SHA

algorithms with a minimum resource usage. The combined

performance results of circuit area, power efficiency,

throughput, and functionality is suitable for mobile com-

puting systems [34]. Bruno P.S. Rocha et al., demonstrated

a security service, which works as a middleware, to

dynamically change the security protocols used between

two peers and provide the solution for performance gain in

the execution of cryptographic primitives [35].

Sathish Alampalayam Kumar, suggested the security

solutions for various types of attacks proposed by various

schemes and the open research issues in providing security

for mobile agent based computing systems [36]. Sameer

Hasan et al., proposed a non-server architecture PKC to

secure the mobile communications and implemented vari-

ous security services needed for mobile communication.

Compared with server based architecture, this has low risk

and the security has been improved. They used NTRU

algorithm for public key cryptography in non-server

architecture [37].

Rahat Afreen and S.C. Mehrotra, discussed the ECC

implementation in hardware as well as software platforms

analysis and Helena Rifa-Pous and Jordi Herrera-Joanco-

marti discussed the performances of different crypto-

graphic algorithms in PDAs and compared in terms of

device cost, operating system, screen, and network inter-

faces to determine the overhead and the results were used

to estimate the costs of network security protocols design

[38, 39].

Jagdish Bhatta and Lok Prakash Pandey, proposed a

software level cryptographic protocol to measure the

energy level through the device’s serial port and their

power consumption which provides better security and

acquires very less consumption of energy than the existing

554 Int. j. inf. tecnol. (April 2021) 13(2):551–564

123

Author's personal copy

cryptographic protocols [40]. K. Sathish Kumar et al.,

designed and implemented an energy efficient authentica-

tion protocol that accomplishes a high level security with

minimum energy consumption for mobile devices [41].

Masoud Nosrati et al., proposed an algorithm for secu-

rity mechanism in different types of mobile devices use

some algorithms to scramble data into unreadable text

which can be only decoded or decrypted by those who

possess the associated key and these algorithms consume a

significant amount of computing resources such as CPU

time, memory, battery power and computation time [42].

Ravinder Singh Mann et al., presented the comparative

analysis of ECC, AES and RSA algorithms experimentally

with parameters such as computation time and complexity

of the algorithms. Based on the result, it was concluded that

ECC has more complexity when compared to AES and

RSA in mobile devices [43]. Giripunje et al., provided

effective security solution using PKC and its implementa-

tion in two parts: first, design for API for ECC which

generates shared key for secure communication and sec-

ondly, a web service is created which distributes this key to

validate the mobile user [44].

Ameya Nayak discussed the growing android commu-

nity, its malware attacks, security concerns, aid in serving

as the continuous challenges of identifying current, future

vulnerabilities as well as incorporating security strategies

against them and this focus on mobile devices [45]. Sri-

kanth Pullela discussed the performance issues of handoffs,

routing, etc. Then, he further addressed that security is

another key issue, which needs to be considered when the

communication channel is set up. Most of them are based

on the public and PKC [46].

V. Gayoaso Martinez and L. Hernandez Encinas, have

discussed the ECC, one of the options for protecting sen-

sitive information. The latest version of the JAVA platform

includes a cryptographic provider—SunEC which imple-

ments EC operations and protocols [47]. Muhammad

Waseem Khan explained that short message service (SMS)

is one of the frequently used mobile services with universal

availability in all GSM networks. However, SMS does not

have its own built-in mechanism to secure the transmitted

data because security is not considered as a priority

application for mobile devices and provides room for the

secure SMS message communication [48].

Ram Ratan Ahirwal and Manoj Ahke have explained

two different methods to encrypt and decrypt the message.

They pointed out that the second method supports the

system with more security than the first method because the

sender computes the exponentiation function between the

coordinates of the encryption algorithm and the receiver

computes the inverse of the exponentiation function

between the coordinates of the key in the decryption

algorithm [49].

Sathish Kumar et al., discussed the usage of mobile

hand-held devices that are used in an efficient way to

deliver real time data to the users in the battle field military

applications such as data confidentiality, authentication,

etc., which are not readily offered by mobile environment.

It is necessary to design and implement an energy efficient

authentication protocol that accomplishes a high level of

security with minimum energy consumption and proposed

an energy efficient authentication protocol for mobile

devices [50].

Hamed Khiabani et al., explained the wireless net-

working, mobile and embedded devices, other pervasive

computing technologies to provide security. Security and

privacy are the main concerns in mobile computing [51].

Seema P. Nakhate and R.M. Goudar have implemented a

secured password based mutual authentication protocol for

client–server computing using ECC framework which

provides secure communication with the help of user

email-id and mobile phone authentication device for

mobile handheld device Such devices are mobile phones,

PDA’s, Palmtops and Smart cards [52].

V. Vishnu and R. Shobha discussed the security in

WSN. They have applied dynamic election of Cluster Head

(CH) mechanism and two evolutionary approaches SET-

IBS and SET-IBOOS which provide security in data

transmission and reduce data losses due to nodes failure,

less residual energy selected in CH [29]. Tanmoy Kumar

Bishoi et al., proposed an algorithm to encrypt the data

using symmetric key encryption technique and can be

improved by using variable length key [53].

M. Sujithra et al., has explained that the cryptographic

algorithms are implemented and tested in Local as well as

cloud environment, verified that the mobile data in cloud

increases efficiently and AES algorithm performs better

when compared with other algorithms in mean processing

time but the combination of MD5 ? ECC ? AES algo-

rithms qualify better than speed-up ratio [54].

Said Bouchkaren and Saiida Lazaar discussed secure

data transmission via Internet and also they have designed

and implemented a cryptosystem due to a number of iter-

ations of encryption and decryption of data in blocks, using

cellular automata and compared them with AES algorithm

and proved that the new algorithm resists against statistical

attacks, faster than AES-256, achieved good confusion and

diffusion tests [55].

4 Proposed methodology

SSO based AC generation procedure is proposed here to

use with RSA and ECC cryptographic algorithms. SSO

based optimized AC is performed in iterative basis. The

AC generation optimization starts with small numbers and

Int. j. inf. tecnol. (April 2021) 13(2):551–564 555

123

Author's personal copy

then move on towards the large numbers. Optimization is

one time process so it will not affect the runtime while

generating ACs for a set of numbers. Applying SSO to

generate ACs require the following initializations.

Let s ¼ l nð Þ ð15Þ

where l(n) is the smallest length AC for a number n and

log2 nð Þ þ log2 v nð Þð Þ
� 2:13� l nð Þ� log2 nð Þ 1 þ 0 1ð Þð Þ= log2ðlog2ðnÞÞ ð16Þ

where v(n) is Hamming weight.

Therefore,

l 2nð Þ� l nð Þ þ 1: ð17Þ

The elements of the minimum length AC are substituted

for particles in SSO as explained in Fig. 1.

The elements of CP are CPi, i = 1, 2,… n. The elements’

search spaces also limited to simplify the optimization

process. The first element CP1 value is restricted with the

value 1 because all AC should start with 1. The second

element CP2 is restricted to 2 as the doubled value of 1.

The first two elements are not involved in optimization

process at all. The third element CP3 can be either 3

(2 ? 1) or 4 (2 ? 2). The fourth element CP4 can be 4, 5, 6

or 8. Then, completing all epochs, SSO Optimized particle

(element) values are: CP1 = {1}, CP2 = {2}, CP3 = {3, 4},

CP4 = {4, 5, 6, 8}, CP5 = {6, 7, 8, 9, 10, 11, 12},

CP6 = {8,9,10,11,12,13,14,15,1,17,18,19,20,22,24}

Two possibilities of SSO ACs accomplishment are

shown in Fig. 2. For example, AC for 78, using binary

method is 1 ? 2 ? 4 ? 8 ? 9 ? 18 ? 19 ? 38 ?
39 ? 78 with ln (78) = 9. While running SSO optimiza-

tion, some possible ACs for the value 78 with l(n) = 8 are:

1 2 3 5 8 13 26 39 78| 1 2 3 5 8 13 26 52 78| 1 2 3 5 10

13 26 39 78| 1 2 3 5 10 13 26 52 78| 1 2 3 6 7 13 26 39 78| 1

2 3 6 7 13 26 52 78| 1 2 3 6 9 15 24 39 78| 1 2 3 6 9 15 30

39 78| 1 2 3 6 9 18 21 39 78| 1 2 3 6 9 18 36 39 78| 1 2 3 6 9

18 36 42 78|.

After completing given epochs, SSO generates an opti-

mized particle values in the element positions. The SSO

optimized result particle values are given in Fig. 3. In SSO

the optimization is started from the element CP3 = {3,4}

and it continues up to the element CPn-1. While comparing

SSOAC generation with binary AC generation method,

SSO takes a little more processing time but the target of

minimal length AC is achieved by SSOAC. The minimal

length AC saves more time while calculating exponents in

RSA and k[P] in ECC procedures so compromising a little

more time. The AC for an integer n based on PSO is

generated in this manner using the steps involved in PSO

algorithm.

The flow diagram of the proposed methodology is

shown in Fig. 4. First the emulator which is used for the

choice of the device and then select the RSA/ECC for

cryptographic algorithm. Then, finally select PSO/SSO

with Addition Chain with RSA/ECC. This process can be

repeatedly executed and stop when the final result (opti-

mum solution) has been obtained.

5 Experimental set up

Two different types of mobile emulators are used in this

work to measure the performance of various cryptography

procedures. Widely used android and windows mobile

devices are taken into experiment. To establish android OS

and Windows OS mobile infrastructure [19], T-Engine

Android emulator (A) and Windows Mobile (W) emulator

6.1.4 [56] respectively are used. A user interface (UI) is

designed using Visual C?? to upload files and to measure

emulator performance parameters for both Android and

Windows Emulators. The UI and emulators executions are

carried out in a 2.4 GHz Intel i5 processor-4 GB RAM

computer with Windows 8.1 64-bit OS. Each emulator is

launched individually to load and execute different

encryption algorithms. The sample screenshots of UI,

Android Emulator and Windows Mobile Emulator are

shown in Figs. 5, 6, 7 respectively.

6 Results and discussions

Processing time, power consumption and security levels

are the prime parameters to determine the quality of a

cryptography algorithm. Encryption and decryption time

refers the time taken to convert the plaintext into ciphertext

and vice versa respectively. Both parameters get equal

priority to measure the quality of a cryptography proce-

dure. Lesser encryption and decryption time refers higherFig. 1 The chain particles (CP)

556 Int. j. inf. tecnol. (April 2021) 13(2):551–564

123

Author's personal copy

quality of the cryptography algorithm. Similarly, power

consumed to encode a plaintext into ciphertext is called

encryption power consumption. Mobile devices are battery

powered devices and they provide greater mobility of the

power is consumed cautiously. A good cryptography

algorithm should be capable of processing with reasonable

power consumption without compromising the security

strength. Powers consumed by different cryptography

methods for different file sizes are measured in android

(A) and windows mobile (W) environment are compared.

Achieving higher security levels with lesser time and

power consumption is the ultimate aim of an ideal cryp-

tography procedure. Different file sizes 1 MB, 2 MB,

4 MB, 8 MB and 16 MB are used in this work to measure

these parameters like encryption time, decryption time,

power consumed for encryption, decryption and security

levels are measured using All Block Cipher (ABC)

Universal Hackman tool for RSA, ECC, RSA-PSOAC,

ECC-PSOAC, RSA-SSOAC and ECC-SSOAC in both

Android and Windows mobile. Measured results are

recorded in tables. Table 1 shows encryption and decryp-

tion time using RSA in two different OS. Table 2 shows

the time taken by their corresponding power consumption

parameters.

Table 3 shows encryption and decryption time using

ECC in two different OS. Table 4 shows the time taken by

their corresponding power consumption parameters.

Table 5 shows the time taken by encryption and

decryption process after incorporating the AC based on

PSO into RSA in two different OS. Table 6 shows time

taken by their corresponding power consumption

parameters.

Similarly, Table 7 shows the time taken by encryption

and decryption process after incorporating the AC based on

PSO into ECC in two different OS. Table 8 shows time

taken by their corresponding power consumption

parameters.

Table 9 shows the time taken by encryption and

decryption process after incorporating the AC based on

Fig. 2 Two different ACs for the integer 78 generated using SSO

47
53
55
57
58
59
61
62

29 63
31 67
35 69
37 70
38 73
39 74

19 41 75
21 42 76
22 43 77

11 23 44 78
13 25 45 81

7 14 26 46 82
5 9 15 27 49 83

1 2 3 6 10 17 28 50 84
4 8 12 18 30 51 85

16 20 33 52 86
24 34 54 88
32 36 56 90

40
48
64

60 92
65 97
66 98
68 99
72 100
80 102
96 104
128 108

112
120
129
130
132
136
144

Fig. 3 SSO optimized result particle values

Int. j. inf. tecnol. (April 2021) 13(2):551–564 557

123

Author's personal copy

SSO into RSA in two different OS. Table 10 shows time

taken by their corresponding power consumption

parameters.

Similarly, Table 11 shows the time taken by encryption

and decryption process after incorporating the AC based on

SSO into ECC in two different OS. Table 12 shows time

taken by their corresponding power consumption

parameters.

Table 13 shows the security in RSA (Android) Vs RSA

(Windows) and ECC (Android) vs ECC (Windows) and

Table 14 shows the security in RSA-SOAC (Android) vs

No

yes

Choose
PSO/SSO

Choose
PSO/SSO

PSO with
addition chain

SSO with
addition chain

PSO with
addition chain

SSO with
addition chain

Start

Android/
Windows
Emulator

ECC RSA

Minimal
Addition Chain

Length

Stop

Fig. 4 Flow diagram

Fig. 5 User interface

Fig. 6 Android emulator

558 Int. j. inf. tecnol. (April 2021) 13(2):551–564

123

Author's personal copy

RSA-PSOAC (Windows) and ECC-PSOAC (Android) Vs

ECC-PSOAC (Windows).

Table 15 shows the security in RSA-SSOAC (A) Vs

RSA-SSOAC (W) & ECC-SSOAC (A) Vs ECC-SSOAC

(W).

Figures 8 and 9 shows the security strength in Android

as well as Windows environment.

As per the observations, ECC provides more security

than RSA in both PSO and SSO combinations. RSA con-

sumes lesser power than ECC in PSO and SSO combina-

tion. When security is concerned the ECC-SSOAC is

recommended.

7 Results analysis

When transmitting any file securely it should be encrypted

first. Based on two different OS’s based emulators, the

experimental results clearly reveal that the time taken for

encryption and decryption, encryption and decryptionFig. 7 Windows mobile emulator

Table 1 Encryption time,

decryption time (ms) RSA

(A) vs RSA (W)

FS (MB) RSA (A) ET RSA (W) ET RSA (A) DT RSA (W) DT

1 1656 1628 571 541

2 3230 3180 1081 1073

4 6496 6490 2171 2162

8 13,691 13,657 4565 4554

16 27,434 27,422 9165 9165

Avg 10,501 10,475 3511 3499

FS file size, A Android, W Windows, ET encryption time (in ms), DT decryption time (in ms), Avg average

time (in ms)

Table 2 Encryption power,

decryption power (mW) RSA

(A) Vs RSA (W)

FS (MB) RSA (A) EP RSA (W) EP RSA (A) DP RSA (W) DP

1 1658 1643 554 573

2 3218 3207 1081 1083

4 6484 6484 2177 2186

8 13,702 13,659 4577 4554

16 27,447 27,401 9165 9148

Avg 10,502 10,479 3511 3509

EP encryption power (in W), DP decryption power (in W)

Table 3 Encryption time (ms),

decryption time ECC (A) vs

ECC (W)

FS (MB) ECC (A) ET ECC (W) ET ECC (A) DT ECC [W] DT

1 2447 2292 856 791

2 4768 4541 1629 1512

4 9550 9220 3222 3083

8 20,185 19,413 6770 6485

16 40,420 38,961 13,493 12,997

Avg 15,474 14,885 5194 4974

Int. j. inf. tecnol. (April 2021) 13(2):551–564 559

123

Author's personal copy

power of RSA and ECC using Android OS takes more time

than RSA using Windows OS. And the time taken for

encryption, decryption, encryption power and decryption

power of PSO with addition chain of RSA and ECC using

Android OS takes more time than RSA RSA-PSOAC(W).

Similarly the time taken for encryption, decryption,

encryption power and decryption power of SSO with

addition chain of RSA and ECC using Android OS takes

more time than RSA RSA-SSOAC(W). Generally ECC

taken more time than RSA and it is also proved here that

the ECC(A) takes more time than RSA(A) and also the

ECC-PSOAC(A) takes more time than RSA-PSOAC(A).

Table 4 Encryption power,

decryption power (mW) ECC

(A) vs ECC (W)

FS (MB) ECC (A) EP ECC (W) EP ECC (A) DP ECC (W) DP

1 2452 2330 859 788

2 4748 4557 1590 1536

4 9562 9209 3194 3091

8 20,174 19,394 6750 6469

16 40,434 38,939 13,476 12,995

Avg 15,474 14,886 5174 4976

Table 5 Encryption time, decryption time (ms) RSA-PSOAC (A) vs RSA-PSOAC (W)

FS (MB) RSA-PSOAC (A) ET RSA-PSOAC (W) ET RSA-PSOAC (A) DT RSA-PSOAC (W) DT

1 1048 1035 363 352

2 2053 2008 692 673

4 4100 4094 1381 1374

8 8643 8624 2896 2881

16 17,326 17,310 5781 5781

Avg 6634 6614 2223 2212

Table 6 Encryption power,

decryption power (mW) RSA-

PSOAC (A) vs RSA-PSOAC

(W)

FS (MB) RSA-PSOAC (A) EP RSA-PSOAC (W) EP RSA-PSOAC (A) DP RSA-PSOAC (W) DP

1 1040 1023 363 354

2 2040 2012 696 676

4 4098 4094 1382 1375

8 8647 8631 2887 2894

16 17,317 17,308 5785 5786

Avg 6628 6614 2223 2217

Table 7 Encryption time, decryption time (ms) ECC-PSOAC (A) vs ECC-PSOAC (W)

FS (MB) ECC-PSOAC (A) ET ECC-PSOAC (W) ET ECC-PSOAC (A) DT ECC-PSOAC (W) DT

1 1571 1533 543 525

2 3063 3020 1045 1017

4 6139 6145 2050 2055

8 12,970 12,918 4323 4318

16 26,001 25,970 8694 8681

Avg 9949 9917 3331 3319

560 Int. j. inf. tecnol. (April 2021) 13(2):551–564

123

Author's personal copy

And the ECC-SSOAC(A) takes more time than RSA-

SSOAC(A). Hence it is proved that RSA-SSOAC is taking

less time than any of the above method.

8 Conclusion and future extension

PSO and SSO based ACs are thought of incorporated into

RSA and ECC and implemented successfully. Proposed

SSO optimized AC based RSA consumes lower power than

Table 8 Encryption power, decryption power (mW) ECC-PSOAC (A) vs ECC-PSOAC (W)

FS (MB) ECC-PSOAC (A) EP ECC–PSOAC (W) EP ECC–PSOAC (A) DP ECC-PSOAC (W) DP

1 1555 1533 532 529

2 3052 3015 1024 1013

4 6156 6150 2066 2064

8 12,949 12,925 4332 4316

16 26,001 25,952 8677 8659

Avg 9943 9915 3326 3316

Table 9 Encryption time, decryption time (ms) RSA-SSOAC (A) vs RSA-SSOAC (W)

FS (MB) RSA-SSOAC (A) ET RSA-SSOAC (W) ET RSA-SSOAC (A) DT RSA-SSOAC (W) DT

1 866 865 302 293

2 1694 1673 573 562

4 3415 3417 1141 1144

8 7211 7185 2418 2398

16 14,436 14,424 4827 4812

Avg 5524 5513 1852 1842

Table 10 Encryption power,

decryption power (mW) RSA-

SSOAC (A) vs RSA-SSOAC

(W)

FS (MB) RSA-SSOAC (A) EP RSA-SSOAC (W) EP RSA-SSOAC (A) DP RSA-SSOAC (W) DP

1 865 850 288 293

2 1698 1692 577 570

4 3413 3412 1151 1150

8 7202 7175 2410 2394

16 14,436 14,422 4821 4812

Avg 5523 5510 1849 1844

Table 11 Encryption time, decryption time (mS) ECC-SSOAC (A) vs ECC-SSOAC (W)

FS (MB) ECC-SSOAC (A) ET ECC-SSOAC (W) ET ECC-SSOAC (A) DT ECC-SSOAC (W) DT

1299 1302 422 422

2 2542 2520 800 792

4 5119 5125 1598 1596

8 10,819 10,767 3369 3361

16 21,666 21,627 6743 6734

Avg 8289 8268 2586 2581

Int. j. inf. tecnol. (April 2021) 13(2):551–564 561

123

Author's personal copy

any other procedures compared. When considering secu-

rity, SSO optimized AC based ECC provides more security

levels. So, it is recommended to use RSA-SSOAC when a

mobile device has limited power source to operate. When

security is concerned ECC-SSOAC provides more security

level of 97%. Experimental results clearly revealed that the

proposed SSOAC optimization with RSA and ECC

cryptography systems can be used either to reduce opera-

tional power or to achieve improved security levels which

are the prime motive of this paper. This work can be

extended by using this concept in mobile cloud computing

due to the serious limitations of memory space, battery

power for energy as well as resource optimization tech-

niques without compromising the security.

Table 12 Encryption power,

decryption power (mW) ECC-

SSOAC (A) vs ECC-SSOAC

(W)

FS (MB) ECC-SSOAC (A) EP ECC-SSOAC (W) EP ECC-SSOAC (A) DP ECC-SSOAC (W) DP

1 1293 1300 414 415

2 2548 2527 803 786

4 5122 5122 1598 1594

8 10,807 10,762 3375 3348

16 216,664 21,643 6745 6742

Avg 8287 8271 2587 2577

Table 13 Security (%) RSA (A) vs RSA (W) and ECC (A) vs ECC (W)

FS (MB) RSA (A) RSA (W) ECC (A) ECC (W)

1 92 93 93 94

2 90 90 91 92

4 88 88 91 91

8 87 87 90 89

16 86 86 88 88

Avg 88.6 88.8 90.6 90.8

Table 14 Security(%) RSA-

PSOAC(A) Vs RSA-

PSOAC(W) & ECC-

PSOAC(A) Vs ECC-

PSOAC(W)

FS (MB) RSA-PSOAC (A) RSA-PSOAC (W) ECC-PSOAC (A) ECC-PSOAC (W)

1 95 93 95 95

2 92 92 94 93

4 90 91 92 93

8 89 89 91 91

16 89 88 91 91

Avg 91 90.6 92.6 92.6

Table 15 Security (%) RSA-

SSOAC (A) vs RSA-SSOAC

(W) and ECC-SSOAC (A) vs

ECC-SSOAC (W)

FS (MB) RSA-SSOAC (A) RSA-SSOAC (W) ECC-SSOAC (A) ECC-SSOAC (W)

1 93 93 95 97

2 92 91 94 93

4 91 90 92 92

8 90 89 92 92

16 89 88 91 91

Avg 91 90.2 92.8 93

562 Int. j. inf. tecnol. (April 2021) 13(2):551–564

123

Author's personal copy

References

1. Meneses F, Fuertes W, Sancho J, Salvador S, Flores D, Aules H,

Castro F, Torres J, Miranda A, Nuela D (2016) RSA encryption

algorithm optimization to improve performance and security

level of network messages. Int J Comput Sci Netw Secur

2. Bos JW, Halderman JA, Heninger N, Moore J, Naehrig M,

Wustrow E (2014) Elliptic curve cryptography in practice.

International conference on financial cryptography and data

security. Springer, New York. https://eprint.iacr.org/2013/734.pdf

3. Renes J, Costello C, Batina L (2016) Complete addition formulas

for prime order elliptic curves. In: Annual international confer-

ence on the theory and applications of cryptographic techniques.

Springer, New York. https://eprint.iacr.org/2015/1060.pdf

4. Smart NP (2015) Elliptic curves. Cryptography made simple.

Springer, New York

5. Katz NM, Mazur B (2016) Arithmetic moduli of elliptic curves.

Annals of Mathematic Studies. Princeton University Press,

Princeton

6. Paul1 T, Steve T (2017) Addition chains: a reSolve lesson. Austr

Sr Math J. https://search.informit.com.au/documentSummary;dn=

062208249066592;res=IELHSS

7. Li L, Li S (2017) Fast inversion in GF(2m) with polynomial basis

using optimal addition chains. Circuits and systems (ISCAS).

IEEE. https://ieeexplore.ieee.org/document/8050627/

footnotes#footnotes

8. Du KL, Swamy MNS (2016) Particle Swarm Optimization.

Search and optimization by metaheuristics. Springer, New York

9. Picek S, Coello CAC, Jakobovic D, Mentens N (2016) Evolu-

tionary algorithms for finding short addition chains: going the

distance. Evolutionary computation in combinatorial optimiza-

tion. Springer, New York. https://link.springer.com/chapter/10.

1007/978-3-319-30698-8_9

10. Picek S, Coello CAC, Jakobovic D, Mentens N (2017) Finding

short and implementation-friendly addition chains with evolu-

tionary algorithms. J Heuristics. https://dspace.mit.edu/handle/

1721.1/115968

11. Mani K, Viswambari M (2017) A new method of generating

optimal addition chain based on graph. Int J Math Sci Comput

MECS

12. Couceiro M, Ghamisi P (2015) Particle Swarm Optimization.

Fractional Order Darwinian Particle Swarm Optimization.

Springer, New York

13. Yeh WC, Luo CY, Lai CM, Hsu CT, Chung YY, Lin JS (2016)

Simplified swarm optimization with modular search for the

general multi-level redundancy allocation problem in series-par-

allel systems. Evolutionary computation (CEC). IEEE. https://

www.researchgate.net/publication/311254679

14. Stallings W (2006) Cryptography and network security principles

and practices, 4th edn. Pearson Education Inc.,

15. Koblitz N (1994) A course in number theory and cryptography.

Graduate texts in mathematics, 2nd edn. Springer, New York.

https://www.springer.com/gp/book/9780387942933

16. Koblitz N (1987) Elliptic curve cryptosystems. Mathematics of

Computation, vol 48, no 177. http://pages.cs.wisc.edu/*cs812-1/

koblitz87.pdf

17. Miller V (1986) Use of elliptic curves in cryptography. Advances

in Cryptology—CRYPTO’85, Lecture Notes in Computer Sci-

ence. https://link.springer.com/chapter/10.1007/3-540-39799-X_

31

18. Koziel B, Azarderakhsh R, Jao D, Mozaffari-Kermani M (2016)

On fast calculation of addition chains for isogeny-based cryp-

tography. Information Security and Cryptology

19. Acharya S, Shenoy a, Lewis M, Desai N (2016) Analysis and

prediction of application usage in android phones. Advances in

electrical, electronics, information, communication and bio-in-

formatics. IEEE. https://ieeexplore.ieee.org/document/7538346

20. Pluhacek M, Janostik J, Senkerik R, Zelinka I, Davendra D

(2016) PSO as complex network—capturing the inner dynam-

ics—initial study. In: Proceedings of the Second International

Afro-European Conference for Industrial Advancement. Springer,

New York. https://www.springerprofessional.de/en/pso-as-com

plex-network-capturing-the-inner-dynamics-initial-stud/7383416

21. Meng XB, Gao XZ, Lu L, Liu Y, Zhang H (2016) A new bio-

inspired optimisation algorithm: bird Swarm Algorithm. J Exp

Theor Artif Intell. https://www.tandfonline.com

22. Liu Y, Li C, Wu X, Zeng Q, Liu R, Huang T (2016) Particle

Swarm Optimizer with full information. Intelligent computing

theories and application. Springer, New York

23. Yeh WC, Lin WT, Lai CM, Lee YC, Chung YY, Lin JS (2016)

Application of simplified swarm optimization algorithm in dete-

riorate supply chain network problem. Evolutionary computation

(CEC). IEEE. https://ieeexplore.ieee.org/document/7744127

Fig. 8 Security strength (%) (Android)

Fig. 9 Security strength (%) (Windows Mobile)

Int. j. inf. tecnol. (April 2021) 13(2):551–564 563

123

Author's personal copy

https://eprint.iacr.org/2013/734.pdf
https://eprint.iacr.org/2015/1060.pdf
https://search.informit.com.au/documentSummary;dn=062208249066592;res=IELHSS
https://search.informit.com.au/documentSummary;dn=062208249066592;res=IELHSS
https://ieeexplore.ieee.org/document/8050627/footnotes#footnotes
https://ieeexplore.ieee.org/document/8050627/footnotes#footnotes
https://link.springer.com/chapter/10.1007/978-3-319-30698-8_9
https://link.springer.com/chapter/10.1007/978-3-319-30698-8_9
https://dspace.mit.edu/handle/1721.1/115968
https://dspace.mit.edu/handle/1721.1/115968
https://www.researchgate.net/publication/311254679
https://www.researchgate.net/publication/311254679
https://www.springer.com/gp/book/9780387942933
http://pages.cs.wisc.edu/~cs812-1/koblitz87.pdf
http://pages.cs.wisc.edu/~cs812-1/koblitz87.pdf
https://link.springer.com/chapter/10.1007/3-540-39799-X_31
https://link.springer.com/chapter/10.1007/3-540-39799-X_31
https://ieeexplore.ieee.org/document/7538346
https://www.springerprofessional.de/en/pso-as-complex-network-capturing-the-inner-dynamics-initial-stud/7383416
https://www.springerprofessional.de/en/pso-as-complex-network-capturing-the-inner-dynamics-initial-stud/7383416
https://www.tandfonline.com
https://ieeexplore.ieee.org/document/7744127

24. Mavridis I., Pangalos G (1997) Security issues in mobile com-

puting paradigm. https://link.springer.com/chapter/10.1007/978-

0-387-35256-5_5

25. Olson E, Yu W (2000) Encryption for mobile computing

26. Chou W (2000) Elliptic curve cryptography and its applications

to mobile devices. https://www.semanticscholar.org/paper

27. Elbaz L (2002) Using public key cryptography in mobile phones.

White Paper, Discretix Technologies Ltd., Advanced security

solutions for constrained environments. https://www.scribd.com/

document/55521438/

28. Agrawal DP et al (2003) Secure mobile computing. In: Das SR,

Das SK (eds) WDC. Springer, LNCS, New York. https://link.

springer.com/chapter/10.1007/978-3-540-24604-6_26

29. Lufei H, Shi W (2006) An adaptive encryption protocol in mobile

computing. Wireless/mobile network security. Springer, New

York

30. Gupta AK (2008) Challenges of mobile computing. In: Pro-

ceedings of 2nd National Conference on Challenges & Oppor-

tunities in Information Technology RIMT—IET, Mandi

Gobindgarth

31. Rao SKM, Reddy AV (2009) Data dissemination in mobile

computing environment, vol 1, no 1. BIJIT, Bharati Vidyapeeth’s

Institute of Computer applications and Management (BVICAM),

New Delhi. http://bvicam.ac.in/bjit/downloads/pdf/issue1/10.pdf

32. Doomun MR, Soyjaudah KMS (2009) Analytical comparison of

cryptographic techniques for resource-constrained wireless

security. Int J Netw Secur 9(1):82–94. http://ijns.jalaxy.com.tw/

contents/ijns-v9-n1/ijns-2009-v9-n1-p82-94.pdf

33. Kar J, Majhi B (2009) An efficient password security of multi-

party key exchange protocol based on ECDLP. Int J Comput Sci

Secur 1(5):405–413

34. Kim M et al (2009) Design of cryptographic hardware architec-

ture for mobile computing. J Inf Process Syst 5(4):187–196

35. Rocha BPS et al (2010) Adaptive security protocol selection for

mobile computing. J Netw Comput Appl 33:569–587

36. Kumar SA (2010) Classification and review of security schemes

in mobile computing. Wirel Sens Netw 24:419

37. Al-Bakri SH, Alam GM et al (2011) Securing peer-to-peer

mobile communications using public key cryptography: new

security strategy. Int J Phys Sci 6(4):930–938

38. Afreen R, Mehrotra SC (2011) A review on elliptic curve cryp-

tography for embedded systems. Int J Comput Sci Inf Technol

3(3)

39. Rifa-Pous H, Herrera-Joancomarti J (2011) Computational and

energy costs of cryptographic algorithms on handheld devices.

Future Internet. https://doi.org/10.3390/fi3010031. https://www.

mdpi.com/1999-5903/3/1/31 (ISSN: 1999-5903)
40. Bhatta J, Pandey LP (2011) Performance evaluation of RSA

variants and elliptic curve cryptography on handheld devices.

IJCSNS Int J Comput Sci Netw Secur 11(11):8

41. Kumar KS et al (2012) An experimental study on energy con-

sumption of cryptographic algorithms for mobile hand-held

devices. Int J Comput Appl 40(1):1–7

42. Nosrati M et al (2012) Mobile and operating systems. Comput

Princ Dev World Appl Progr 2(7)

43. Mann RS et al (2012) A comparative evaluation of cryptographic

algorithms. Int J Comput Technol Appl 3(5). https://pdfs.seman

ticscholar.org/9d7a/5ba194b3aafaf55e8db42e699b2a09832a4c.

pdf

44. Giripunje L, Nimbhorkar S (2013) Comprehensive security sys-

tem for mobile network using elliptic curve cryptography over

GF (p). Int J Adv Res Comput Sci Softw Eng 3(5). https://www.

semanticscholar.org/paper/

45. Nayak A (2013) Android mobile platform security and malware

survey. IJRET 2(11). https://www.academia.edu/

46. Pullela S (2013) Security issues in mobile computing. Int J Res

Eng Technol 2(11). https://pdfs.semanticscholar.org/2035/

f3a467dcc3523c6c2454605c021aff9a353d.pdf

47. Martinez G, Encinas LH (2013) Implementing ECC with Java

Standard Edition 7. Int J Comput Sci Artif Intell 3(4):134. http://

www.academicpub.org/ijcsai/paperInfo.aspx?paperid=14496

48. Khan MW (2013) SMS security in mobile devices: a survey. Int J

Adv Netw Appl 5(2):1873

49. Ahirwal RR, Ahke M (2013) Elliptic curve Diffie-Hellman key

exchange algorithm for securing hypertext information on wide

area network. Int J Comput Sci Inf Technol 4(2):363–368

50. Sathish K et al (2014) An asymmetric authentication protocol for

mobile hand held devices using ECC over point multiplication

method. Int J Adv Res Comput Sci Technol 2:393–399

51. Khiabani H et al (2014) A review on privacy, security and trust

issues in mobile computing. Collaborative outcome of University

of Malaysia and MIMOS Berhad, Information Security Cluster

52. Nakhate SP, Goudar RM (2014) Secure authentication protocol.

Int J Comput Netw Commun Secur 2(4)

53. Vishnu V, Shobha R (2015) Dynamic cluster head (CH) node

election and secure data transaction in CWSNs. Int J Eng Res

4(4). https://www.academia.edu/27582814/

54. Bishoi TK et al (2015) An algorithm on text based security in

modern cryptography. J Comput Netw Wirel Mobile Commun

5(1)

55. Sujithra M et al (2015) Mobile data security: a cryptographic

approach by outsourcing mobile data to cloud. Procedia Comput

Sci 47:480–485

56. (2019) Emulator available at: https://www.microsoft.com/en-us/

download/details.aspx?id=53424

57. Bouchkaren S, Lazaar S (2016) A new iterative secret key

cryptosystem based on reversible and irreversible cellular auto-

mata. Int J Netw Secur 18(2):345–353

564 Int. j. inf. tecnol. (April 2021) 13(2):551–564

123

Author's personal copy

https://link.springer.com/chapter/10.1007/978-0-387-35256-5_5
https://link.springer.com/chapter/10.1007/978-0-387-35256-5_5
https://www.semanticscholar.org/paper
https://www.scribd.com/document/55521438/
https://www.scribd.com/document/55521438/
https://link.springer.com/chapter/10.1007/978-3-540-24604-6_26
https://link.springer.com/chapter/10.1007/978-3-540-24604-6_26
http://bvicam.ac.in/bjit/downloads/pdf/issue1/10.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v9-n1/ijns-2009-v9-n1-p82-94.pdf
http://ijns.jalaxy.com.tw/contents/ijns-v9-n1/ijns-2009-v9-n1-p82-94.pdf
https://doi.org/10.3390/fi3010031
https://www.mdpi.com/1999-5903/3/1/31
https://www.mdpi.com/1999-5903/3/1/31
https://pdfs.semanticscholar.org/9d7a/5ba194b3aafaf55e8db42e699b2a09832a4c.pdf
https://pdfs.semanticscholar.org/9d7a/5ba194b3aafaf55e8db42e699b2a09832a4c.pdf
https://pdfs.semanticscholar.org/9d7a/5ba194b3aafaf55e8db42e699b2a09832a4c.pdf
https://www.semanticscholar.org/paper/
https://www.semanticscholar.org/paper/
https://www.academia.edu/
https://pdfs.semanticscholar.org/2035/f3a467dcc3523c6c2454605c021aff9a353d.pdf
https://pdfs.semanticscholar.org/2035/f3a467dcc3523c6c2454605c021aff9a353d.pdf
http://www.academicpub.org/ijcsai/paperInfo.aspx?paperid=14496
http://www.academicpub.org/ijcsai/paperInfo.aspx?paperid=14496
https://www.academia.edu/27582814/
https://www.microsoft.com/en-us/download/details.aspx%3fid%3d53424
https://www.microsoft.com/en-us/download/details.aspx%3fid%3d53424

International Journal of Engineering Trends and Technology Volume 69 Issue 2, 32-38, February 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I2P205 © 2021Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Generation of Addition Chain using Bacteria

Foraging Optimization Algorithm
Dr.K.Mani1, A. Mullai2

1Associate Professor in Computer Science, Nehru Memorial College(Autonomous), Puthanampatti, Affiliated to

Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

2Associate Professor in Computer Science, Seethalakshmi Ramaswami College (Autonomous), Affiliated to
Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

1nitishmanik@gmail.com, 2mullai_a@yahoo.com

Abstract

In many number-theoretic cryptographic algorithms,

encryption and decryption are of the form 𝑥𝑛 𝑚𝑜𝑑 𝑝
where 𝑥, 𝑛 and 𝑝 are integers. When exponentiation

operation is involved in many cryptosystems, it takes

more time than any normal arithmetic operations. The

computation time can be reduced by using repeated

multiplications rather than using exponential operation.

This can also be further reduced by using addition chain.

Modular exponentiation with addition chain is used to

determine the correct sequence of multiplications. There

exist several algorithms in the literature to generate the

optimal addition chain for the given integer. A novel

bacteria foraging optimization algorithm based addition
chain has been proposed and it is verified with the

existing state of art of addition chain algorithms like

genetic algorithm, evolutionary programming etc., in this

paper.

Keywords - Addition Chain, RSA, ECC, PSO, SSO,

BFOA, Optimization.

I. INTRODUCTION

An Addition Chain (AC) can be thought of as a sequence

of integers in which the first number is always 1 and the

last number is always 𝑛, where n is an integer for which

ACs are to be generated. For finite fields, operations such

as square roots or inversions, exponentiations can be

performed efficiently by utilizing an optimal AC, the

smallest such AC sequence to reach n. In particular, fast
exponentiation and inversion are paramount to the

performance of scalar point multiplication k[𝑃] where k is

a scalar and 𝑃 is a point in elliptic curve (EC) in elliptic

curve cryptography (ECC) [1] [2], pairings in pairing-

based cryptosystems, and computing isogenies in the

quantum-resistant isogeny-based cryptosystems [23]. To

get the next number, there are two steps normally used in

AC. They are addition and doubling steps, i.e., to get the
next number (intermediate number) in AC, any two

previous numbers are added together in addition step,

whereas in the doubling step, the current number is

multiplied by two. To generate the AC for given n, two

types of algorithms are normally used viz., deterministic

and stochastic or bio-inspired.

In deterministic algorithms, since everything is

deterministic and the optimal AC may not be obtained at
all times. The binary method, factor method, window

method, sliding window method, Fibonacci method,

Lucas method, continuous fraction method, etc., are

examples of the deterministic algorithm. Evolutionary

algorithms or bio-inspired are inspired by the idea of

either natural evolution or social behavior of insects or

birds. The optimal ACs produced by evolutionary

algorithms are not obtained by a single run. Many more

runs are needed to obtain optimal AC, which will

eventually take more times. Some examples of

evolutionary algorithms are Genetic Algorithm(GA),
Artificial Immune System(AIS), Ant Colony

Optimization(ACO), Particle Swarm Optimization

(PSO), Simplified Swarm Optimization(SSO), etc.

Generating optimal AC for the given integer is an NP-

hard problem because too many optimal ACs are

generated. For example, different possible optimal ACs

for the number 21 with length i.e., l(21) = 6 are:

1-2-3-4-7-14-21

1-2-3-5-7 -14-21

1-2-3-5-8-13-21

1-2-3-5 -8-16-21

1-2-3-5-10-11-21

1-2-3-5-10-20-21

1-2-3-6-9-15-21

1-2-3-6-9-18-21

1-2-3-6-12-15-21

1-2-3-6-12-18-21

1-2-4-6-7-14-21

1-2-4-8-16-20-21

1-2-4-5-10-20-21

1-2-4-8-9-12-21

1-2-4-8-9-13-21

1-2-4-8-9-17-21

1-2-4-8-10-11-21

1-2-4-8-10-20-21

1-2-3-6-9-12-21

1-2-4-8-12-13-21

1-2-4-8-12-20-21

1-2-4-8-16-17-21

1-2-3-6-7-14-21

https://ijettjournal.org/archive/ijett-v69i2p205
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dr.K.Mani & A. Mullai. / IJETT, 69(2), 32-38, 2021

33

This is because 7 can be obtained by adding (7 = 3 + 4, 7

= 2 + 5, 7 = 1 + 6), 8 can be obtained by adding (8 = 4 +

4, 8 = 3 + 5) etc.

Bacteria foraging is one of the optimization and

evolutionary algorithms. Kevin M. Passino proposed it in

2000, and it has been widely accepted as a new nature-

inspired optimization algorithm [15]. It is inspired by the

social foraging behavior of Escherichia Coli, i.e., a

bacteria present in the human intestine and has drawn

many researcher's attention. The underlying biology

behind foraging is locomotion. During the foraging of the

real bacteria, locomotion can be performed by a set of the

tensile flagella and optimization process is achieved by
foraging behaviour of bacteria in bacterium seeks to

maximize the energy obtained per unit time spent during

foraging. Suppose the flagella are rotated in the

clockwise direction by the bacterium. In that case, the

flagellum pulls on the cells, which results in independent

movement of flagella, and the bacterium tumbles with

lesser numbers of tumbling. Swimming at a very fast rate

of the bacterium is performed with the flagella moving in

the counter-clockwise direction.

The foraging strategy of E.coli is achieved by four

processes viz., chemotaxis, swarming, reproduction and

dispersal. Chemotaxis is a process which simulates the

movement of E.coli cell through swimming and tumbling

via flagella. Movement of E.coli bacterium can be

performed in two ways viz., (i) swim for some time in the

same direction or tumble (ii) alternate between the swim

and tumble for the entire lifetime. In the swarming

process, a group of E.coli cells arranged themselves in a

traveling ring by moving up the nutrient gradient when

placed amidst a semisolid matrix with a single nutrient
chemo-effecter. The healthy bacteria asexually split into

two bacteria, which are then placed in the same location

while the least healthy bacteria eventually die in the

reproduction process. In the elimination and dispersal

process, gradual or sudden changes in the local

environment, i.e., the significant local rise of temperature

or due to unavoidable events, all the bacteria in a region

are killed, or a group is dispersed into the new location.

In BFOA, generally, the bacteria can be moved for a long

distance in a friendly environment. When sufficient food

they had, their length also increased and will break in the

middle to form a replica of themselves in the presence of

a suitable environment. In swarm intelligence concept,

this chemotactic progress may be eliminated and also a

group of bacteria can move on to some areas or introduce

some others related to the occurrences environmental

changes like the event of elimination- dispersal done in

the real bacterial population (where all the bacteria in a

region are killed or a group will be dispersed into a new

part of the environment).

II. RELATED WORK

In [3], Hugo Volger presented several results on l(𝑛). In

particular, they determined l(𝑛) for all 𝑛 satisfying l(𝑛)≤3

and proved ⌊𝑙𝑜𝑔𝑛⌋+2≤𝑙(𝑛) for all 𝑛 satisfying 𝑠(𝑛) ≥ 3,

where 𝑠(𝑛) is the extended sum of digits of 𝑛. In [4],

Y.H. Tsai and Y.H. Chin found some mathematical

properties of the shortest-length AC for certain integers

whose binary patterns meet some special forms; and the
correctness of these properties was proved. In [5],

Bergeron et al. proposed generating the shortest AC

based on the continued fraction. They gave a general

upper bound for the complexity of continued fraction

methods as a chosen strategy function. Thus, the total

number of operations required for the generation of an

AC for all integers up to 𝑛 was shown to be (𝑛 𝑙𝑜𝑔2 𝑛𝛾𝑛),

where 𝛾𝑛 is the complexity of computing the set of

choices corresponding to the strategy and proved an

analogy of the Scholz-Brauer conjecture.

In [6], F. Bergeron et al. generated a method of fast

addition chains with a small length of positive integer 𝑛,

using continued fraction up to 1000 obtained with

optimal length, (with 29 exceptions optimal length plus

one). A new algorithm of optimal ACs described in [8]

and also faster than the best-known methods. It is

applicable for single values and slower than the best-

known methods. This does not require any pre-computed
values and is considered suitable for finding optimal ACs

for point values.

Bounds on sums of ACs and properties of optimal ACs

are discussed in [9].The study results that the final step in

an optimal AC of an even number always have doubling,

and also the sum of an optimal AC for an odd number 𝑛is

asymptotically nearly 5𝑛2. In [10], Noboru Kunihiro and

Hirosuke Yamamoto developed two systematic methods

viz., run-length encoding (RLE) and hybrid for

generating short AC. They proved that the hybrid method

was far better than RLE with a reduced 8% of the AC

length.

In[11], Nareli Cruz-Cortéset al. explored the usage of a

GA approach for the problem of finding optimal

(shortest) ACs for optimal field exponentiation
computations. The GA heuristic presented in this work

was capable of finding almost all the optimal ACs for

any given fixed exponent 𝑒with 𝑒< 4096. They found

that our GA strategy's percentage error was within 0.4%

of the optimal for all cases considered. In other words,

for any given fixed exponent 𝑒 with 𝑒< 4096, they found

that strategy was able to find the requested shortest AC in

at least 99.6% of the cases. In [12], N. Cruz- Cortés et al.

proposed an artificial immune system(AIS) to generate

an optimal AC. In that paper, they dealt with the optimal
computation of finite field exponentiation, which is a

well-studied problem with many important applications

in error-correcting codes and cryptography.

In [13], Raveen R. Gounder et al. discussed a new

strategy for doubling-free (SPA-resistant) short addition-

subtraction chain(GRASC) for an arbitrary integer by

using a precise golden ratio. In this, 12% to 28%

reduction was obtained in the average chain length

compared to other doubling-free AC methods. In [14],

Alejandro Le´on-Javier et al. discussed the PSO

algorithm to find short ACs with different exponents.

Dr.K.Mani & A. Mullai. / IJETT, 69(2), 32-38, 2021

34

In[16], Mohamed M. Abd. Eldayamet al. proposed an

algorithm for shorter AC based on the window method

with small width using 2’s complement. They proved

that the proposed algorithm was more efficient than the

last result with a 20% minimum. In[17], S Domínguez-
Isidro and E Mezura-Montes et al. proposed an algorithm

using evolutionary programming to find the minimal

length AC and the results obtained were more promising

than the other nature-inspired metaheuristic approaches

but with a lower number of evaluations per run. The

proposed EP algorithm comprised the solution encoding

with suitable fitness function and initial population, a

mutation operator, and the survivor selection mechanism,

and EP does not use other operators such as crossover nor

additional mechanisms like parent selection in GAs.

In [18], a note an addition chain was presented. Niel
Michael Clift [19] proved the perfect matches in the

Scholz–Brauer conjecture l(2n −1) = l(n) + n − 1 for new

values. The minimal sequence of minimal multiplications

required for performing modular exponentiation using

Brauer Chains' concept by GA discussed in [20].

In [21], K. Mani proposed division based AC to generate

the optimal ACs for the small exponents, exactly

matched with ACs generated by the latest methods. But,
for some large exponents, there was a very small increase

in chain length (at most three).

In [24], a survey of the AC problem for optimizing the

AC was made and effectively applied to implement a

public-key cryptosystem. Mani K and Viswambari M

[25] implemented a new method for the generation of the

AC using graph G(V,E) where in the G's vertices refer to

the numbers in the AC and edges refer to the move from

one to another number in the AC. They have proposed

two methods viz., Graph-Based All Possible AC

(GBAPAC) generated all possible optimum ACs for the
given integer n and Graph-Based Minimal AC

(GBMAC), which generated the minimum number of

optimum ACs by considering mutually exclusive edges

starting from every number and also proved with the

conjectures like Scholz-Brauer.

In [26], P. Anuradha Kameswari and B. Ravitheja derived

a Lucas AC for any integer n to obtain Lucas sequence

𝑉𝑛(𝑎, 1) and also proved that the computation of 𝑉𝑛(𝑎, 1)

using this Lucas AC is based on 𝑉𝑥+𝑦(𝑎, 1) for 𝑥, 𝑦, 𝑥 – 𝑦
in the Lucas AC. In [27], Stjepan Picek et al. derived that

the GA approach with an novel encoding using crossover

and mutation operators to minimize the length of the ACs

with respect to a given exponent. Aaron Hutchinson and

Koray Karabina implemented algorithms[28], for

multidimensional differential ACs and applied these chains

to ECC. This algorithm has the unique key features using n

dimension. With key efficiency cum security features like

uniformity, parallelized, and differential addition formulas

were adopted by allowing speed using precomputation cost

and storage requirements.

Dustin Moody and Amadou Tall [29], derived minimal

chains with low Hamming weight using addition-

subtraction chains with Lucas addition-subtraction in using

ℓ−(𝑛) the minimal length 𝑛, and proved that |ℓ−(2𝑛) −

ℓ−(𝑛)| ≤ 1 for all integers 𝑛 of 𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝑤𝑒𝑖𝑔ℎ𝑡 ≤ 4 to

have arrived a conclusion that minimal addition-
subtraction chains for low Hamming weight integers, with

the consideration of odd integers. In [30], Hazem M. Bahig

and Yasser Kotb implemented a new parallel algorithm to

obtain minimal AC for 𝑛. The experimental studies on

multicore systems revealed that this algorithm's run time

worked faster than the sequential one and obtained the

maximum speed up of 2.5 times than the best known

sequential algorithm.

In [31], A. Mullai and K. Mani proposed Particle Swarm

Optimization (PSO) and Simplified Swarm Optimization
(SSO) with ACs in RSA and ECC with two emulators,

android and window. The processing time, power

consumption was taken for encryption, decryption process,

and security of the above was analyzed and also proved

that the SSOAC optimization with RSA to reduce

operational power and SSOAC optimization with ECC for

more security. Narendra Mohan [32], discussed in

Wireless Sensor Networks (WSNs), to enhance the

network lifetime and minimize the energy consumption in

sink nodes contains additional resources like long-range

antenna, powerful batteries, large memory. This should be
achieved using Enhanced Emperor Penguin Optimization

(EEPO) algorithm.

III. THEORETICAL BACKGROUND

This section describes some mathematical preliminaries

required for AC.

Definition 3.1 (Addition Chain)

An AC [7] for a positive integer n is a sequence, 1 = 𝑎0 ≤

𝑎1≤ ⋯ ≤ 𝑎𝑟 = 𝑛 such that each member after 𝑎0 is the sum

of two earlier (not necessarily distinct) ones. The number

l(𝑛) is called the length of the AC. It is noted that if the

value of 𝑛 is relatively small, the exact value of l(𝑛) is
known.

Definition 3.2 (Optimal Addition Chain)

An AC is optimal if its length is the smallest among all

possible ACs. For example, 1− 2 − 3 − 6 − 12 − 13 is one

of the optimal chains for 13, and with l(13) =5.

The construction [20] of each element of an AC is called

a step. For an AC, 1 = 𝑎0 ≤ 𝑎1 ≤ ⋯ ≤ 𝑎𝑟 = 𝑛, the

following steps are involved. Doubling step: 𝑎𝑖 = 2𝑎𝑖−1,

𝑖> 0. Non-doubling step: 𝑎𝑖 = 𝑎𝑗 + 𝑎𝑘, 𝑖>𝑗>𝑘 ≥ 0. The

steps of the form 𝑎𝑖 = 2𝑎𝑗, 𝑗 ≤ 𝑖 − 2 are defined as non-
doubling steps.

Big step: 𝜆 (𝑎𝑖) = 𝜆 (𝑎𝑖−1) + 1.

Small step: 𝜆 (𝑎𝑖) = 𝜆 (𝑎𝑖−1).

Thus, the length of the AC, l(𝑛) can be split into two

components as l(𝑛) = 𝜆(𝑛) +𝑆(𝑛). where 𝑆(𝑛) is the

number of small steps in an optimal AC for n.

Dr.K.Mani & A. Mullai. / IJETT, 69(2), 32-38, 2021

35

IV. BFOA_AC - PROPOSED METHODOLOGY

In the proposed methodology, the concept of BFOA is

used to generate the optimum length AC for an integer n,

which utilizes the foraging behaviors of bacteria. i.e.,

chemotaxis, swarming, reproduction, and elimination
dispersal [15], are the four principal mechanisms used in

BFOA. In this optimization, a virtual bacterium called

search agent is one trial solution that moves on the

functional surface to find the optimal length AC. The

cost or fitness function is computed with a minimum

length approach based on the nutrient concentration of

the bacterium's immediate environment, searching for

numbers in AC. The swarming step is not considered for

the generation of AC in this method. The following

notations are used in generating the optimal AC in this

paper.

𝑗 Index for the chemotactic step

𝑘 Index for the reproduction step

𝑖 Index for the elimination-dispersal

event

𝑆 Total number of the bacterium in the

population

𝑑 The dimension of the search space. Here, 𝑑

= 1

𝑆𝑤 The swarming length

𝑅𝑃𝑛 Number of reproduction steps

𝐸𝐷𝑛 Number of elimination-dispersal events

𝑃𝑒𝑑 Elimination-dispersal probability

𝐶(𝑖) The magnitude of the next number in the

random direction specified by the tumble

To generate the AC for any integer 𝑛, the first number is

always 1, and the second number is 2, i.e., AC starts with

𝑎0 = 1 and 𝑎1 = 2 and last number 𝑎𝑟 = 𝑛. Let (𝑖, 𝑘, 𝑙) =

{(𝑗, 𝑘, 𝑙|𝑖 = 1,2, …, 𝑆) represents each number in the AC

in the population S at the 𝑗th chemotactic, 𝑘th

reproduction, and 𝑙th elimination-dispersal steps. It is

noted that initially, the length of AC is taken as very

large for the given integer 𝑛. Too many ACs are

generated for 𝑛, but all ACs generated are not necessarily

optimum. Moreover, the generation of optimal AC is an

NP-hard problem. The prime steps used in BFOA related
to generating the AC are as follows.

A. Search Space

Here, the search space is taken as one

dimension(i.e.,𝑑=1), and also the integer numbers are

involved in generating AC for any 𝑛. Since the

difference between intermediate numbers in AC is finite,

the search space is also finite.

B. Chemotaxis

The movement of an E.coli cell through swimming and
tumbling via flagella is simulated by the chemotaxis

process. When a bacterium meets a favourable

environment (rich in nutrients and noxious free), it will

continue swimming in the same direction. When it meets

an unfavorable environment, it will tumble, i.e., change

its direction. In BFOA[22], E.coli can swim for a period

of time in the same direction, or it may tumble and

alternate between these two modes of operation for the

entire life time. It is the most important step in

determining the optimal AC for 𝑛. For AC generation,

swimming and tumbling represent addition and doubling
step, respectively. The goal is to move to let the

bacterium search for the next number in the AC with

minimal step.

a) Minimum Intermediate Number in AC

It is noted that the number of intermediate numbers

between 2 and 𝑛 should be minimum and it is obtained by

a minimum number of steps as far as possible so that 𝑙(𝑛)

could be minimized by considering all the directions

(previous numbers) from the current bacterium position

(present current number) can be chosen for the next step.

Initially bacterium i is positioned at number 1, Let m=0

i.e., 𝑎0 = 1. From 1, then it should move to 2. Now, 𝑚 =

𝑚 + 1 i.e., 𝑎1= 2, 𝐴𝐶 ← 1 − 2; 𝑙(𝐴𝐶) = 1. From 2, it can

move to either 3 or 4, Now, 𝑚 =𝑚 + 1

 2𝑎𝑚−1=𝑎𝑚+𝑎0, i>𝑗>𝑘≥0 ...(1)

𝐴𝐶←𝐴𝐶||𝑎𝑚 ...(2)

 Now,

new_l(AC) = old_l(AC) + l or l(AC) = m ...(3)

All the intermediate numbers obtained in this step are

added to the minimal set Φ𝑚𝑖𝑛,i.e., Φ𝑚𝑖𝑛 = {𝑎𝑚}. A

random intermediate number ≤ 𝑎𝑚 is chosen from this set,

and it indicates the direction of movement (i.e., from

which AC starts) of bacterium𝑖.

∆(𝑖) = 𝑟𝑎𝑛𝑑{ 𝑥∈Φ𝑚𝑖𝑛} ...(4)

Let, (𝑗, 𝑘, 𝑙) represents 𝑖th bacterium with 1-dimensional

vector represented as, 1,2, …, 𝑆at 𝑗th chromatic, 𝑘th

reproductive and 𝑙th elimination-dispersal step. Let C(𝑖)
be the step size, which is taken as a unity because, from

the current number in the AC, only one next number in

the AC is generated based on previous numbers. Thus,

the movement of the bacterium may be represented in the

chemotaxis process as

(𝑗 + 1, 𝐾) = 𝜃𝑖(𝑗, 𝑘) + 𝐶(𝑖)
∆(𝑖)

√∆𝑖𝑇∆(𝑖)
 ...(5)

Where ∆ indicates a vector in the random direction

whose elements are [1, 𝑥].

The movement of the bacterium is explained with tree

diagram as shown in fig. 1.

Dr.K.Mani & A. Mullai. / IJETT, 69(2), 32-38, 2021

36

Fig.1: The Movement of Bacterium

C. Reproduction and Dispersal Step

Local search is provided by chemotaxis step, and the
speed of convergence is achieved through the

reproduction process. The bacteria which yields the

maximal length of AC for n is called the least healthy

bacteria, and it never produces the optimal length AC,

which eventually dies. Each of the healthiest bacteria

(yields minimum length AC) is asexually split into two

bacteria, placed randomly. The dispersion process

happens after a certain number of reproduction process.

Depending on the probability, some bacteria were chosen

to be killed or move to another position within the

environment.

V. BFOA_AC – AN EXAMPLE

In order to understand the relevance of the work, let, 𝑛 =

14, 𝑖 = 1, 𝑚 = 0, 𝑎𝑚 = 𝑎0 = 1 and initially bacteria 𝑏1 is

positioned at 𝑎0. With the chemotaxis step, it moves to 2.

Now, 𝑚 = 𝑚 + 1, i.e., 𝑎1 = 2 and l(𝑎1) = 1. From 𝑎1, 𝑏1

moves to either 3 or 4 because 𝑎2 = 𝑎1 + 𝑎0 = 2 + 1 = 3 or

𝑎2 = 2𝑎1 = 4. Now, 𝑚 = 2. Thus, Φ𝑚𝑖𝑛={3,4}. Let the

intermediate number in AC randomly selected from Φ𝑚𝑖𝑛,

i.e., ∆(1) = 3, Thus, the movement of 𝑏1 is from 3, i.e.,

𝑎2=3 and the corresponding AC up to this stage is 1 − 2 −

3 and 𝑙(𝑎2) = 2. From 𝑎2, 𝑏1 moves to either 4 or 5 or 6

because 𝑎3 = 2 𝑎2 = 6 or 𝑎3 = 𝑎2 + 𝑎0 = 3 + 1 = 4 or

𝑎3 = 𝑎2 + 𝑎1= 3 + 2 = 5.Now, 𝑚 = 3. Thus, Φ ={4,5,6}.

Let 5 is selected randomly from the set Φ𝑚𝑖𝑛. Thus, ∆(1)

= 5. The movement of 𝑏1 is from 5, i.e., 𝑎3 = 5.

Correspondingly, AC up to this stage is 1 − 2 − 3 − 5 and

l(𝑎3) = 3. From 𝑎3, 𝑏1 moves to either 6 or 7 or 8 or 10

because 𝑎4 = 2𝑎3 = 10 or 𝑎4 =𝑎3 + 𝑎0 = 5 + 1 = 6 or 𝑎4

= 𝑎3 + 𝑎1= 5 + 2 = 7 or 𝑎4 = 𝑎3 + 𝑎2 = 5 + 3 = 8. Now, 𝑚

= 4. Thus, Φ𝑚𝑖𝑛 = {6,7,8,10}. Let 7 is selected randomly

from the set Φ𝑚𝑖𝑛. Thus, ∆(1) =7. The movement of b1 is

from 7, i.e., 𝑎4 = 7. Correspondingly, AC up to this stage

is 1 − 2 − 3 − 5 − 7 and 𝑙(𝑎4) = 4. From 𝑎4, 𝑏1 moves to

either 8 or 9 or 10 or 12 or 14 because 𝑎5 = 𝑎4 + 𝑎0 = 7 +

1 = 8 or 𝑎5 = 𝑎4 + 𝑎1 = 7+2 = 9 or 𝑎5 = 𝑎4 + 𝑎2 = 7+3 = 10

or 𝑎5 = 𝑎4 + 𝑎3 = 7 + 5 = 12 or 𝑎5 = 2(𝑎4) =2(7) = 14.

Now, 𝑚 = 5, Thus, Φ𝑚𝑖𝑛 = {8,9,10,12,14}. Let 14 is

selected randomly from the set Φ𝑚𝑖𝑛. Thus, ∆(1) = 14.

The process is terminated because it reaches 𝑛 = 17.

Correspondingly, AC up to this stage is

1 − 2 − 3 − 5 − 7 − 14 and l(𝑎5) = 5.

Suppose, other numbers from Φ𝑚𝑖𝑛 are selected, even

though it reaches 14 in the subsequent stages, l(14) is

increased, and the corresponding bacteria will eventually

die. Repeat the said process for other numbers, and the

other ACs for 14 with l*(14) are given below.

VI. IMPLEMENTATION

The proposed methodology is implemented in VC++ and

AC for the numbers up to 1024 are generated. It is shown
in table 1. In table 1, l(r) indicates the sum of all optimal

addition chains up to r. Table 1 exhibits the total l (up to

1024).

TABLE 1 TOTAL LENGTH OF OPTIMAL ADDITION CHAIN UPTO 1024

1-2-3-4-7-14 1-2-4-5-7-14 1-2-4-6-8-14

1-2-3-5-7-14 1-2-4-5-9-14 1-2-4-6-10-14

1-2-3-6-7-14 1-2-4-5-10-14 1-2-4-6-12-14

1-2-3-6-8-14 1-2-4-6-7-14 1-2-4-8-10-14

1-2-3-6-12-14 1-2-4-8-12-14

r 001-

100

101-

200

201-

300

301-

400

401-

500

501-

600

601-

700

701-

800

801-

900

901-

1000

1001-

1024

l(r) 663 918 1011 1071 1121 1148 1183 1205 1230 1262 307

Total 4784 6028 307

Grand Total:11119

Dr.K.Mani & A. Mullai. / IJETT, 69(2), 32-38, 2021

37

Table 2 reveals AC generated for some hard exponents

by BFOA where the hard exponent is the one for which

AC is not easily found. Table 3 compares the optimal AC

up to integers 1024 produced by the existing algorithms

and the proposed BFOA.

TABLE 2 AC FOR HARD EXPONENTS BY BFOA

Exponents

(E)

Optimal length (E)

2000 1 – 2 – 3 – 6 – 7 – 14 – 15 – 30 – 31 – 62 – 124 –

125 – 250 – 500 – 1000 – 2000.

2048 1 – 2 – 4 – 8 – 16 – 32 – 64 – 128 – 256 – 512 –

1024 - 2048.

4096

1 – 2 – 4 – 8 – 16 – 32 – 64 – 128 – 256 – 512 –

1024 – 2048 - 4096.

65131 1 – 2 – 3 – 5 – 7 – 11 – 19 – 29 – 47 – 71 – 127 –

191 – 379 – 607 – 1087 – 1903 – 3583 – 6271 –

11231 – 18287 – 34303 - 65131.

196591 1 - 2 - 3 - 5 - 7 - 11 - 19 - 29 - 47 - 71 - 127 - 191 -

379 - 607 - 1087 - 1903 - 3583 - 6271 - 11231 -

18287 - 34303 - 65131 - 110591 – 196591.

1176431 1 - 2 - 3 - 5 - 7 - 11 - 19 - 29 - 47 - 71 - 127 - 191 - 379 - 607 -

1087 - 1903 - 3583 - 6271 - 11231 - 18287 -

34303 - 65131 - 110591 - 196591 - 357887 -

685951 – 1176431.

2211837 1 - 2 - 3 - 6 - 9 - 15 - 30 - 60 - 120 - 126 - 252 -

504 - 1008 - 2016 - 4032 - 8062 - 16128 - 16143

- 32286 - 64572 - 129144 - 258288 - 516576 -

1033152 - 2066304 - 2195448 - 2211591 -

2211717 – 2211837.

4169527 1 - 2 - 3 - 5 - 7 - 11 - 19 - 29 - 47 - 71 - 127 - 191 -

379 - 607 - 1087 - 1903 - 3583 - 6271 - 11231 -

18287 - 34303 - 65131 - 110591 - 196591 -

357887 - 685951 - 1176431 - 2211837 – 4169527.

14143037 1 - 2 - 3 - 5 - 7 - 11 - 19 - 29 - 47 - 71 - 127 - 191 -

379 - 607 - 1087 - 1903 - 3583 - 6271 - 11231 -

18287 - 34303 - 65131 - 110591 - 196591 -

357887 - 685951 - 1176431 - 2211837 - 4169527 -

7624319 – 14143037.

From table 3, it is observed that the total length of optimal

AC produced by BFOA with integers up to 1024 is 11119.

They are almost the same as the optimal addition chains

and their length produced by EP.

TABLE 3 COMPARISON OF AC UPTO

INTEGERS 1024(PRODUCED BY EXISTING

ALGORITHMS AND THE PROPOSED BFOA)

VII. CONCLUSION

BFOA based AC has been thought of and it is

implemented successfully. In this paper, ACs produced by

some integers are proved both theoretically and

experimentally. From the experimental results, up to

integers 1024, the proposed BFOA algorithm produces the

same optimal length AC which is almost equal to other

existing evolutionary algorithms like AIS, GA, and EP.

Further, the optimal length of AC for some hard exponents

are the same as other existing evolutionary algorithms.

This paper also provides an idea about the generation of

AC based on BFOA. In future, this concept may be

incorporated into public-key algorithms like RSA and
ECC to reduce the encryption and decryption time because

the said algorithms are used in mobile devices.

REFERENCES

[1] N Koblitz, Elliptic Curve Cryptosystems, Mathematics of

Computation, 48(1982) 203-209.

[2] I Blake, G Seroussi and NP Smart, Elliptic Curves in

Cryptography, Ser. London Math. Soc. Lecture Note Series,

Cambridge Univ. Press,1999.

[3] Hugo Volger, Some Results on Addition/Subtraction Chains,

Information Processing Letter, Elsevier, 1985.

[4] Y H TsaiandY H Chin, “A Study of Some Addition Chain

Problems”, International Journal of Computer Mathematics, 22(02)

(1987) 117-134.

[5] R Begeron, J Berstel, S Brlek, and C Duboc, Addition Chains

Using Continued Fractions, Journal of Algorithms, Elsevier,

10(1989) 403-412.

[6] Bergeron, JBerstel and S Brlek, Efficient Computation Of Addition

Chains”, Journalde Théorie des Nombresde Bordeaux, 6(1)(1994)

21-38.

[7] Donald E Knuth, The Art of Computer Programming,

Seminumerical Algorithms, 2(3), Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA,1997.

[8] Gordon DM, A Survey of Fast Exponentiation Methods, Journal of

Algorithms, 27(1998).

[9] H Zantema, Minimizing Sums of Addition Chains, Journal of

Algorithms, Elsevier, 12(2) (1999) 281-307.

[10] Noboru Kunihiro and Hirosuke Yamamoto, New Methods for

Generation of Short Addition Chains, IEICE Transactions

Fundamental, 83(1)(2000).

[11] Nareli Cruz-Cortés, Francisco Rodriguez-Henriquez, RaúlJuárez-

Morales and Carlos A Coello- Coello, Finding Optimal Addition

Chains Using a Genetic Algorithm Approach, Springer- Verlag,

(2005) 208-215.

[12] N Cruz-Cortes, F Rodriguez-Henriquez, and C A Coello-Coello,

An Artificial Immune System Heuristic for Generating Short

Addition Chains, IEEE Transactions on Evolutionary Computation,

6(2005) 252–280.

[13] Raveen R Goundar, Ken-ichiShiota, M Toyonaga,New Strategy for

Doubling - Free Short Addition-Subtraction Chain,

Mathematics,2008.

[14] AlejandroLe´on-Javier,NareliCruz-Cort´es,MarcoAMoreno-

Armend´ariz,andSandraOrantes- Jim´enez, Finding Minimal

Addition Chains with a Particle Swarm Optimization Algorithm,

Advances in Artificial Intelligence, Springer, (2009) 680-691.

[15] Swagatam Das, ArijitBiswas, Sambarta Dasgupta, and Ajith

Abraham, “Bacterial Foraging Optimization Algorithm:

Theoretical Foundations, Analysis, and Applications”, Foundations

of Computational Intelligence, Springerlink.com, Springer-Verlag

Berlin Heidelberg, 3SCI 203(2009) 23–55.

[16] Mohamed M Abd-Eldayem, EhabT Alnfrawy, and AlyA Fahmya,

Addition-Subtraction Chain for 160-bit Integers by using 2’s

Complex N Cruz-Cortés, F Rodríguez-Henríquez,and C A Coello-

Coello, Addition Chain Length Minimization With Evolutionary

Programming, Proceedings of Genetic and Evolutionary

Computation Conference (GECCO) ACM digital Library, (2011).

R Opt. AIS GA EP BFOA

[1,512] 4924 4924(+) 4924 4924 4924

[1,1000] 10808 10813(+) 10813 10808 10812

[1.1024] 11115 11120(+) - 11115 11119

https://www.tandfonline.com/author/Tsai%2C%2BYH
https://www.tandfonline.com/author/Chin%2C%2BYH
https://www.semanticscholar.org/author/Raveen-R.-Goundar/2696467
https://www.semanticscholar.org/author/Ken-ichi-Shiota/52410699
https://www.semanticscholar.org/author/M.-Toyonaga/145629889

Dr.K.Mani & A. Mullai. / IJETT, 69(2), 32-38, 2021

38

[17] S Domínguez-Isidro and E Mezura-Montes, An Evolutionary

Programming Algorithm to Find

MinimalAdditionChains,ICongresoInternacionaldeIngenieríaElectr

ónica,Instrumentación y Computación, de Juniodel, Minatitlán

Veracruz, México,2011.

[18] Maurice Mignotte, A Note on Addition Chains, International

Journal of Algebra, 5(6)(2011).

[19] Neill Michael Clift, Calculating Optimal Addition Chains”, Journal

of Computing, Springer, 91 (2011) 265–284.

[20] Arturo Rodriguez-Cristerna and Jose Torres-Jimenez, A Genetic

Algorithm for the Problem of Minimal Brauer Chains for Large

Exponents, Soft Computing Applications in Optimization, Control,

and Recognition, Springer, (2013) 27-5.

[21] K. Mani, Generation of Addition Chain using Deterministic

Division Based Method, International Journal of Computer Science

& Engineering Technology, 4(05) (2013) 553- 560.

[22] Om PrakashVerma, Rashmi Jain, and Vindhya Chhabra, Solution of

Travelling Salesman Problem Using Bacteria Foraging

Optimization Algorithm, International Journal of Swarm

Intelligence, Inderscience publisher, 1(2) (2014).

[23] BrianKoziel, Reza Azarderakhsh, David Jaoand Mehran Mozaari-

Kermani, On Fast Calculation of Addition Chains for Isogeny -

Based Cryptography, Inscrypt 2016, IACR Cryptology, 2016.

[24] Adamu Muhammad Noma, Abdullah Muhammed, Mohamad

Afendee Mohamed, and Zuriati Ahmad Zulkarnain. A Review on

Heuristics for Addition Chain Problem: Towards Efficient Public-

Key Cryptosystem, Journal of Computer Science, 13(2017) 275-

289.

[25] K Mani, M Viswambari, A New Method of Generating Optimal

Addition Chain Based on Graph, International Journal of

Mathematical Sciences and Computing, 2(2017) 37-54.

[26] P Anuradha Kameswari and B Ravitheja, Addition Chain For Lucas

Sequences With Fast Computation Method, International Journal of

Applied Engineering Research, 13(11) (2018) 9413–9419.

[27] Stjepan Picek, Carlos A CoelloCoello, Domagoj Jakobovic and

Nele Mentens, Finding Short And Implementation - Friendly

Addition Chains With Evolutionary Algorithms, Journal of

Heuristics, 24 (2018) 457-481.

[28] Aaron Hutchinson and Koray Karabina, Constructing

Multidimensional Differential Addition Chains and Their

Applications, Springer, Journal of Cryptographic Engineering,

9(2019) 1- 19.

[29] Dustin Moody and Amadou Tall, On Addition-Subtraction Chains

of Numbers With Low Hamming Weight”, Number Theory

Mathematics, 25(2019) 155-168.

[30] Hazem M. Bahig, and Yasser Kotb, An Efficient Multicore

Algorithm for Minimal Length Addition Chains, Computers,

MDBI, 8(2019).

[31] A Mullai and K Mani, Enhancing The Security In RSA and Elliptic

Curve Cryptography Based on Addition Chain Using Simplified

Swarm Optimization and Particle Swarm Optimization For Mobile

Devices, International Journal of Information Technology,

Springer, (2020).

[32] Narendra Mohan Lifetime Enhancement of Sensor Nodes Based

On Optimized Sink Node Placement Approach, International

Journal of Engineering Trends and Technology 68.10(2020):10-23.

https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/book/10.1007/978-3-642-35323-9
https://link.springer.com/journal/13389
https://sciprofiles.com/profile/author/SkpycjFPL2Mxd1BTdTdDcTd5Qldmc2ozZ2NYZkg3WW5QQ0d4b1owdHozbz0%3D
https://sciprofiles.com/profile/587237

APPENDIX - A.3

SAMPLE CODING

// ACC.h: interface for the ACC class.

//Advanced C 8.1 [15052015]

//

#if

!defined(AFX_ACC_H__FCCA8395_1892_4D17_AC1A_31C3FB2135A2__INCLU

DED_)

#define

AFX_ACC_H__FCCA8395_1892_4D17_AC1A_31C3FB2135A2__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

//HASH

#define DEF 0x00

#define SHA32 0x01

#define SHA64 0x02

#define SHA128 0x03

#define KHA 0x04

class AFX_EXT_CLASS ACC

{

public:

 void es(char s[1000],char t[2000],char x[10],int l);

 void GetProcessMessage(char me[200]);

 char gps[100];

 void BrowseAllFiles(char _fname[1000]);

 void BrowseAllFolders(char _fold[1000]);

 void BulkCopy(char _src[1000],char _des[1000]);

 void FindBrowser(char _bname[1000]);

 void FindAssociatedApplication(char _fn[1000],char _app[1000]);

 bool fbc(char _ofn[1000],char _nfn[1000]);

 void WaitDelete(char _fn[1000]);

 long TimeDifference(SYSTEMTIME _t1,SYSTEMTIME _t2);

 void ClosePrinterDC();

 void StopPrinter();

 bool StartPrinter();

 bool SetPrinterDC(void);

 CDC PrinterDC;

 CDC *gwdc;

 void ShowComboBox(CComboBox &_ccb);

 void HideComboBox(CComboBox &_ccb);

 void HideEditBox(CEdit &_ce);

 void ShowEditBox(CEdit &_ce);

 void DisableEditBox(CEdit &_ce);

 void EnableEditBox(CEdit &_ce);

 bool IsFilePresent(char _fn[1000]);

 void SetFileToPath(char _fn[1000],char _path[1000],char _res[1000]);

 bool CreateDumpFile(char _fn[1000],char _msg[1000]);

 void RunAsApplication();

 void RunAsService();

 bool IsRunning(char _classname[50],char _windowname[150]);

 CWnd* GetApplication(char _classname[50],char _windowname[150]);

 void RGBtoColors(COLORREF _rgb,unsigned char &_r,unsigned char

&_g,unsigned char &_b);

 UINT CreateGraph();

 bool bc(char _ofn[1000],char _nfn[1000]);

 void Play(char _fn[1000],unsigned char _mode=0);

 void PlayTime();

 UINT CreateBluetooth();

 UINT CreateDynamicHandle();

 UINT CreateESP();

 char RegisterInf(char fn[1000],char uid[50]);

 void SetCalendar(CStatic &_cs);

 void InitClock();

 bool l1,l2,release;

 void StopClock();

 void SetClock(CStatic &_cs,char _m);

 void SetClock(CStatic &_cs);

 void EnableButton(CButton &_cb);

 void DisableButton(CButton &_cb);

 void ShowButton(CButton &_cb);

 void HideButton(CButton &_cb);

 void ShowStatic(CStatic &_cs);

 void HideStatic(CStatic &_cs);

 void GetTimeString(char _s[15],bool _h12);

 void GetTimeString(char _s[15]);

 void GetDateString(char _s[15]);

 bool GetFileSize(char fn[1000], unsigned long long &fsize);

 bool CHash(unsigned char pro, char fname[1000], char hash[100]);

 SYSTEMTIME st;

 char s[500];

 ACC(HWND _hw);

 void Show();

 void Hide();

 void SetHandle(HWND _hw);

 ACC();

 virtual ~ACC();

private:

 DOCINFO gpdi;

 char gem[200];

 bool acr;

 HWND hw;

public:

 void SetGWDC(CDC* wdc);

 HICON LoadAppIconRes(UINT ICONRES);

 bool ExePro(char file[1000]);

 bool ExeProEx(char file[1000], char arg1[1000], char arg2[1000]);

};

#endif //

!defined(AFX_ACC_H__FCCA8395_1892_4D17_AC1A_31C3FB2135A2__INCLU

DED_)

// BCCC.h: interface for the BCCC class.

// REV: AAZGAZBD

// REV: ZFZFAZBI

//

// This header file has methods for the following technologies

// Cryptography

// Data Security

// Data Compression

// Network Security

// Cloud Security

// Cloud offloading

// Mobile Cloud Offloading

// Data Integrity

// Grid Computing

// Parallel Processing

// Processor Scheduling

// Data Mining

// Big Data Analysis

// Optimizations

#if

!defined(AFX_BCCC_H__8B355BA0_920B_4999_83F1_7C8AB544DA29__INCL

UDED_)

#define

AFX_BCCC_H__8B355BA0_920B_4999_83F1_7C8AB544DA29__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

//Cryptographic Procedures

#define RAC 0x00 //Random Access Cryptography : Hardaware Version

#define ECC 0x01 //Elliptic Curve Cryptography

#define ELG 0x02 //ElGamal

#define NAF 0x03 //Non Adjacent Form

#define WNAF 0x04 //Windowed NAF

#define DSA 0x05 //Digital Signature Algorithm

#define SHA 0x06 //Secure Hash Algorithm

#define QCRY 0x07 //Quantum Cryptography : Hardware Version

#define RC4 0x08 //Rivest Cipher 4

#define RC5 0x09 //Rivest Cipher 5

#define RSA 0x0A //Rivest Shamir Adleman

#define BCC 0x0B //Block Cipher Cryptography : PCH version

#define AES_DFA 0x0C //Advanced Encryption Standard Differential Fault

Analysis

#define DES_DFA 0x0D //Data Endryption Standard Differential Fault Analysis

#define SRAC 0x0E //Random Access Cryptography : Software Version

#define GSRAC 0x0F //Genetic Random Access Cryptography : Software

Version

#define ECC_DH 0x10 //ECC with Diffie Hellman

#define GELG 0x11 //Genetic ElGamal

#define GNAF 0x12 //Genetic NAF

#define GWNAF 0x13 //Genetic WNAF

#define GDSA 0x14 //Genetic DSA

#define GSHA 0x15 //Genetic SHA

#define GECDHM 0x16 //Genetic ECC_DH

#define KNAPS 0x17 //Knapsack inherited Cryptography

#define MECC_DH 0x18 //Montgomery ECC_DH

#define MMECC_DH 0x19 //Modified Montgomery ECC_DH

#define AES 0x1A //AES standalone

#define EDSSUMRT 0x1B // Loaded from PCH

#define ECC_AC 0x1C // ECC Addition Chain

#define ECC_ANNAC 0x1D // ECC ANN Addition Chain

#define EVOTSCH 0x1E //Voting Scheme

#define ECCRCV 0x1F //CCRCV

#define ETHCM 0x20//Legacy

#define ECC_EAC 0x21 // ECC Enhanced Addition chain

#define DES 0x22 // Data Encryption Standard

#define PPTDES 0x23 // Primitive pythagorean Triples DES

#define PPTDDES 0x24 // PPTDDES PPT Different Rotating Hamming

Distance

#define BWTELG 0x25 // Burrows Wheeler Transform ElGamal

#define EBWTELG 0x26 // Enhanced Burrows Wheeler Transform ElGamal

#define MRRSA 0x27 // Magic Rectangle RSA

#define MRELG 0x28// Magic Rectangle El-Gamal

#define BWTRSA 0x29 // Burrows Wheeler Transform RSA

#define EBWTRSA 0x2A // Enhanced Burrows Wheeler Transform RSA

#define ECC_1AC 0x2B // ECC 1's Complement Addition Chain

#define HIL 0x2C // Hill Cipher

#define MHIL 0x2D // Modified Hill Cipher

#define UDES 0x2E // U-Matrix DES

#define URDES 0x2F // U-Matrix Random Key DES

#define BFISH 0x30 // Blow Fish

#define AROMON 0x31 // User defined Legacy

#define SKM 0x32 // User defined Legacy

#define ECSRZ 0x33 // ElGamal Encryption using Elliptic Curve Spiral Clockwise

Rotation and Zigzak Encryption Model

#define PPTRSA 0x34 // Primitive pythagorean Triples RSA

#define CLC 0x35 //Configurable Lattice Cryptography

#define CPEL 0x36 //Cantor Pair before ElGamal

#define RPEL 0x37 //Rosenberg Pair before ElGamal

#define EPEL 0x38 //Elegant Pair before ElGamal

#define ELCP 0x39 //ElGamal Cantor Pair

#define ELRP 0x3A //ElGamal Rosenberg Pair

#define ELEP 0x3B //ElGamal Elegant Pair

#define MRSA_2K 0x3C //Modified RSA-based algorithm A double secure

approach 2 Key

#define MRSA_3K 0x3D //Modified RSA-based algorithm A double secure

approach 3 Key

//Compression

#define NONE 0x00 //None

#define ZIP 0x01 //Zip

#define ZIP7 0x02 //7-Zip

#define RAR 0x03 //Real Archieve

#define HUFLAG 0x04 //Huffman Lagrange's

#define HUFFIB 0x05 //Huffman Fibbonacci

#define HUFLUC 0x06 //Huffman Lucas

#define HUFCOL 0x07 //Huffman Collective

#define RLE 0x08 //Run Length Encode

#define OPTRLE 0x09 //Orthogonal Polynomial Transform RLE

//Digital Signature Algorithms

#define DS_DEFA 0x00 //Default Hash Signature

#define DS_RSA 0x01 //Rivest Shamir Adleman

#define DS_ELG 0x02 //ElGamal

#define DS_DSA 0x03 //Digital Signature Algorithm

#define DS_ECDSA 0x04 //Elliptic Curve Digital Signature Algorithm

#define DS_GOST 0x05 //GOST R 34.10 - 2012

#define DS_SSA 0x06 //Schnorr Signature Algorithm

#define DS_RDS 0x07 //Rapid Digital Signature

#define DS_GMR 0x08 //Goldwasser Micali Rivest

#define DS_RCS 0x09 //Robin Crypto System

#define DS_EDDSA 0x0A //Edwards-curve Digital Signature Algorithm

#define DS_ESIGN 0x0B //Electronic Signature Algorithm

#define DS_MECDSA 0x0C //Modified Elliptic Curve Digital Signature Algorithm

//Variables

#define DEF 0x00 //Default

#define FSI 0x01 //File Size

#define KSI 0x02 //Key Size

//Optimizations

#define ACO 0x01 //Ant Colony Optimization

#define PSO 0x02 //Particle Swarm Optimization

#define SSO 0x03 //Simplified Swarm Optimization

#define TTSO 0x04 //Track Trade Spend Optimization

#define GNO 0x05 //Genetic Numeric Optimization

#define NACO 0x06 //Nodal Ant Colony Optimization

#define BFO 0x07 //Bacterial Forage Optimization

#define ADC 0x08 //Addition Chain

//Processor Architecture

#define HASWELL 0x01

#define S_BRIDGE 0x02 //Sandy Bridge

#define I_BRIDGE 0x03 //Ivy Bridge

#define T_BRIDGE 0x04 //Intel T-Bridge

#define X_BRIDGE 0x05 //Intel X-Bridge

#define Q_BRIDGE 0x06 //QualComm Multicore

//Processor Scheduling

#define GANG_FILL 0x01 //Gang-Fill

#define BACK_FILL 0x02 //Back-Fill

#define EEFF_FILL 0x03 //Energy Efficient Fill

#define MAXP_FILL 0x04 //Maximum Performance Fill

//File Types

#define UNKN 0x00

#define TEXTF 0x01

#define BINARY 0x02

// Data Mining

#define DDM 0x00 //DDM

#define APRI 0x01 //Apriori

#define FPTR 0x02 //FP-Tree

#define FPGR 0x03 //FP-Growth

APPENDIX - A.4

SAMPLE REPORTS

 This Report is Generated by REAC App on 14-06-2021 at 12:32:52

 Parameter: Encryption Time (mS) [Android]

 Data Size

(MB) RSA ECC AC-RSA AC-ECC
 1 1660 2447 1227 1820
 2 3237 4790 2377 3555
 4 6494 9553 4788 7173
 8 13689 20179 10077 15130
 16 27426 40415 20199 30326

 Parameter: Decryption Time (mS) [Android]

 Data Size
(MB) RSA ECC AC-RSA AC-ECC

 1 1616 2330 1205 1789
 2 3193 4519 2352 3519
 4 6490 9209 4776 7171
 8 13645 19375 10066 15082
 16 27399 38936 20193 30294

 Parameter: Encryption Power (mW) [Android]

 Data Size
(MB) RSA ECC AC-RSA AC-ECC

 1 554 817 421 613
 2 1102 1621 806 1197
 4 2171 3208 1612 2410
 8 4569 6731 3364 5042
 16 9156 13510 6735 10134

 Parameter: Decryption Power (mW) [Android]

 Data Size
(MB) RSA ECC AC-RSA AC-ECC

 1 562 815 411 602
 2 1081 1506 802 1178
 4 2175 3072 1608 2417
 8 4548 6463 3357 5035
 16 9148 12995 6743 10109

 Parameter: Security (%) [Android]

Data Size
(MB) RSA ECC

 AC-
RSA

 AC-
ECC

 1 89 93 92 94
 2 88 89 89 92
 4 87 88 88 90
 8 85 88 87 90
 16 85 86 87 89

 Parameter: Encryption Time (mS) [Windows]

 Data Size
(MB) RSA ECC

 AC-
RSA

 AC-
ECC

 1 1654 2441 1204 1728
 2 3233 4748 2378 3362
 4 6490 9559 4775 6753

8 13670
2017

4 10082 14252

16 27432
4044

3 20214 28603

 Parameter: Decryption Time (mS) [Windows]

 Data Size
(MB) RSA ECC

 AC-
RSA

 AC-
ECC

 1 1616 2322 1205 1708
 2 3184 4530 2366 3336
 4 6496 9212 4778 6755

8 13657
1939

6 10050 14240

16 27401
3895

8 20210 28571

 Parameter: Encryption Power (mW) [Windows]

 Data Size
(MB) RSA ECC

 AC-
RSA

 AC-
ECC

 1 571 840 421 592
 2 1100 1582 796 1146
 4 2179 3228 1604 2263
 8 4577 6750 3361 4765

16 9165
1349

6 6738 9559

 Parameter: Decryption Power (mW) [Windows]

 Data Size
(MB) RSA ECC

 AC-
RSA

 AC-
ECC

 1 541 785 415 584
 2 1086 1536 805 1140
 4 2192 3088 1604 2275
 8 4579 6496 3368 4761

16 9133
1299

7 6742 9529

 Parameter: Security (%) [Windows]

 Data Size
(MB) RSA ECC

 AC-
RSA

 AC-
ECC

 1 91 92 92 94
 2 88 89 89 92
 4 86 89 88 91
 8 86 88 88 89
 16 85 87 87 89

 Parameter: Encryption Time (mS) [Android]

 Data Size

(MB) RSA ECC
 AC-
RSA

AC-
ECC

 PSO-
AC-RSA PSO-AC-ECC

 1 1660 2447 1227 1820 1041 1578
 2 3237 4790 2377 3555 2048 3069
 4 6494 9553 4788 7173 4099 6150

8 13689
2017

9 10077 15130 8644 12954

16 27426
4041

5 20199 30326 17322 25981

 Parameter: Decryption Time (mS) [Android]

 Data Size

(MB) RSA ECC
 AC-
RSA

AC-
ECC

 PSO-
AC-RSA PSO-AC-ECC

 1 1616 2330 1205 1789 1041 1544
 2 3193 4519 2352 3519 2011 3040
 4 6490 9209 4776 7171 4102 6156

8 13645
1937

5 10066 15082 8623 12925

16 27399
3893

6 20193 30294 17301 25954

 Parameter: Encryption Power (mW) [Android]

 Data Size

(MB) RSA ECC
 AC-
RSA

AC-
ECC

 PSO-
AC-RSA PSO-AC-ECC

 1 554 817 421 613 357 552
 2 1102 1621 806 1197 682 1042
 4 2171 3208 1612 2410 1372 2073
 8 4569 6731 3364 5042 2893 4325

16 9156
1351

0 6735 10134 5788 8670

 Parameter: Decryption Power (mW) [Android]

Data Size
(MB) RSA ECC

 AC-
RSA

AC-
ECC

 PSO-
AC-RSA PSO-AC-ECC

 1 562 815 411 602 354 534
 2 1081 1506 802 1178 673 1038
 4 2175 3072 1608 2417 1375 2066
 8 4548 6463 3357 5035 2874 4330

16 9148
1299

5 6743 10109 5772 8674

 Parameter: Security (%) [Android]

 Data Size

(MB) RSA ECC
 AC-
RSA

AC-
ECC

 PSO-
AC-RSA PSO-AC-ECC

 1 89 93 92 94 94 94
 2 88 89 89 92 91 93
 4 87 88 88 90 90 91
 8 85 88 87 90 89 90
 16 85 86 87 89 88 90

 Parameter: Encryption Time (mS) [Windows]

 Data Size

(MB) RSA ECC
 AC-
RSA

AC-
ECC

 PSO-
AC-RSA PSO-AC-ECC

 1 1654 2441 1204 1728 1046 1520
 2 3233 4748 2378 3362 2050 2984
 4 6490 9559 4775 6753 4096 6008

8 13670
2017

4 10082 14252 8652 12693

16 27432
4044

3 20214 28603 17318 25402

 Parameter: Decryption Time (mS) [Windows]

 Data Size

(MB) RSA ECC
 AC-
RSA

AC-
ECC

 PSO-
AC-RSA PSO-AC-ECC

 1 1616 2322 1205 1708 1027 1517
 2 3184 4530 2366 3336 2026 2967
 4 6496 9212 4778 6755 4099 6017

8 13657
1939

6 10050 14240 8616 12647

16 27401
3895

8 20210 28571 17310 25388

 Parameter: Encryption Power (mW) [Windows]

 Data Size

(MB) RSA ECC
 AC-
RSA

AC-
ECC

 PSO-
AC-RSA PSO-AC-ECC

 1 571 840 421 592 348 513
 2 1100 1582 796 1146 699 1003
 4 2179 3228 1604 2263 1381 2029
 8 4577 6750 3361 4765 2893 4246

16 9165
1349

6 6738 9559 5775 8483

 Parameter: Decryption Power (mW) [Windows]

 Data Size

(MB) RSA ECC
 AC-
RSA

AC-
ECC

 PSO-
AC-RSA PSO-AC-ECC

 1 541 785 415 584 350 510
 2 1086 1536 805 1140 693 1010
 4 2192 3088 1604 2275 1368 2008
 8 4579 6496 3368 4761 2877 4220
 16 9133 12997 6742 9529 5778 8472

 Parameter: Security (%) [Windows]

 Data Size

(MB) RSA ECC AC-RSA AC-ECC
 PSO-
AC-RSA PSO-AC-ECC

 1 91 92 92 94 92 96
 2 88 89 89 92 91 92
 4 86 89 88 91 90 91
 8 86 88 88 89 89 91
 16 85 87 87 89 87 90

 Parameter: Encryption Time (mS) [Android]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA SSO-AC-ECC

 1 1660 2447 1227 1820 1041 1578 1015 1305
 2 3237 4790 2377 3555 2048 3069 2001 2547
 4 6494 9553 4788 7173 4099 6150 3997 5122
 8 13689 20179 10077 15130 8644 12954 8424 10813
 16 27426 40415 20199 30326 17322 25981 16899 21666

 Parameter: Decryption Time (mS) [Android]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA SSO-AC-ECC

 1 1616 2330 1205 1789 1041 1544 1014 1282
 2 3193 4519 2352 3519 2011 3040 1974 2533
 4 6490 9209 4776 7171 4102 6156 4000 5125
 8 13645 19375 10066 15082 8623 12925 8406 10785
 16 27399 38936 20193 30294 17301 25954 16877 21646

 Parameter: Encryption Power (mW) [Android]

 Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC- SSO-AC-ECC

RSA

1 554 817 421 613 357 552 341 424
 2 1102 1621 806 1197 682 1042 673 792
 4 2171 3208 1612 2410 1372 2073 1337 1598
 8 4569 6731 3364 5042 2893 4325 2820 3374
 16 9156 13510 6735 10134 5788 8670 5633 6752

 Parameter: Decryption Power (mW) [Android]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA SSO-AC-ECC

 1 562 815 411 602 354 534 339 399
 2 1081 1506 802 1178 673 1038 669 799
 4 2175 3072 1608 2417 1375 2066 1344 1600
 8 4548 6463 3357 5035 2874 4330 2815 3361
 16 9148 12995 6743 10109 5772 8674 5634 6739

 Parameter: Security (%) [Android]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA SSO-AC-ECC

 1 89 93 92 94 94 94 92 95
 2 88 89 89 92 91 93 91 92
 4 87 88 88 90 90 91 90 92
 8 85 88 87 90 89 90 89 90
 16 85 86 87 89 88 90 88 89

 Parameter: Encryption Time (mS) [Windows]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA SSO-AC-ECC

 1 1654 2441 1204 1728 1046 1520 1009 1299
 2 3233 4748 2378 3362 2050 2984 1991 2550
 4 6490 9559 4775 6753 4096 6008 3995 5119
 8 13670 20174 10082 14252 8652 12693 8427 10819
 16 27432 40443 20214 28603 17318 25402 16893 21646

 Parameter: Decryption Time (mS) [Windows]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA SSO-AC-ECC

 1 1616 2322 1205 1708 1027 1517 995 1290
 2 3184 4530 2366 3336 2026 2967 1967 2515
 4 6496 9212 4778 6755 4099 6017 3990 5127
 8 13657 19396 10050 14240 8616 12647 8409 10779
 16 27401 38958 20210 28571 17310 25388 16887 21643

 Parameter: Encryption Power (mW) [Windows]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA SSO-AC-ECC

 1 571 840 421 592 348 513 345 406
 2 1100 1582 796 1146 699 1003 669 812
 4 2179 3228 1604 2263 1381 2029 1341 1597
 8 4577 6750 3361 4765 2893 4246 2824 3374
 16 9165 13496 6738 9559 5775 8483 5646 6739

 Parameter: Decryption Power (mW) [Windows]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA SSO-AC-ECC

 1 541 785 415 584 350 510 342 420
 2 1086 1536 805 1140 693 1010 655 784
 4 2192 3088 1604 2275 1368 2008 1344 1608
 8 4579 6496 3368 4761 2877 4220 2819 3360
 16 9133 12997 6742 9529 5778 8472 5641 6739

 Parameter: Security (%) [Windows]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA SSO-AC-ECC

 1 91 92 92 94 92 96 93 94
 2 88 89 89 92 91 92 92 93
 4 86 89 88 91 90 91 90 91
 8 86 88 88 89 89 91 89 91
 16 85 87 87 89 87 90 89 89

 Parameter: Encryption Time (mS) [Android]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA

 SSO-
AC-
ECC

 BFO-
AC-
RSA

 BFO-
AC-ECC

1 1660 2447 1227 1820 1041 1578 1015 1305 996 1219
 2 3237 4790 2377 3555 2048 3069 2001 2547 1944 2412
 4 6494 9553 4788 7173 4099 6150 3997 5122 3895 4849

8 13689 20179 10077 15130 8644 12954 8424 10813 8214
1024

1

16 27426 40415 20199 30326 17322 25981 16899 21666
1646

9
2050

3

 Parameter: Decryption Time (mS) [Android]

 Data Size RSA ECC AC-RSA AC-ECC PSO- PSO- SSO- SSO- BFO- BFO-

(MB) AC-RSA AC-ECC AC-
RSA

AC-
ECC

AC-
RSA

AC-ECC

1 1616 2330 1205 1789 1041 1544 1014 1282 972 1224
 2 3193 4519 2352 3519 2011 3040 1974 2533 1911 2398
 4 6490 9209 4776 7171 4102 6156 4000 5125 3897 4850

8 13645 19375 10066 15082 8623 12925 8406 10785 8185
1020

8

16 27399 38936 20193 30294 17301 25954 16877 21646
1645

1
2047

9

 Parameter: Encryption Power (mW) [Android]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA

 SSO-
AC-
ECC

 BFO-
AC-
RSA

 BFO-
AC-ECC

1 554 817 421 613 357 552 341 424 341 388
 2 1102 1621 806 1197 682 1042 673 792 664 776
 4 2171 3208 1612 2410 1372 2073 1337 1598 1303 1566
 8 4569 6731 3364 5042 2893 4325 2820 3374 2739 3283
 16 9156 13510 6735 10134 5788 8670 5633 6752 5494 6557

 Parameter: Decryption Power (mW) [Android]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA

 SSO-
AC-
ECC

 BFO-
AC-
RSA

 BFO-
AC-ECC

1 562 815 411 602 354 534 339 399 334 397
 2 1081 1506 802 1178 673 1038 669 799 649 783
 4 2175 3072 1608 2417 1375 2066 1344 1600 1299 1561
 8 4548 6463 3357 5035 2874 4330 2815 3361 2741 3259
 16 9148 12995 6743 10109 5772 8674 5634 6739 5494 6544

 Parameter: Security (%) [Android]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA

 SSO-
AC-
ECC

 BFO-
AC-
RSA

 BFO-
AC-ECC

1 89 93 92 94 94 94 92 95 94 96
 2 88 89 89 92 91 93 91 92 91 94
 4 87 88 88 90 90 91 90 92 90 92
 8 85 88 87 90 89 90 89 90 90 91
 16 85 86 87 89 88 90 88 89 89 91

 Parameter: Encryption Time (mS) [Windows]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA

 SSO-
AC-
ECC

 BFO-
AC-
RSA

 BFO-
AC-ECC

1 1654 2441 1204 1728 1046 1520 1009 1299 986 1235
 2 3233 4748 2378 3362 2050 2984 1991 2550 1935 2431
 4 6490 9559 4775 6753 4096 6008 3995 5119 3888 4846

8 13670 20174 10082 14252 8652 12693 8427 10819 8209
1022

8

16 27432 40443 20214 28603 17318 25402 16893 21646
1645

1
2048

9

 Parameter: Decryption Time (mS) [Windows]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA

 SSO-
AC-
ECC

 BFO-
AC-
RSA

 BFO-
AC-ECC

1 1616 2322 1205 1708 1027 1517 995 1290 988 1226
 2 3184 4530 2366 3336 2026 2967 1967 2515 1914 2384
 4 6496 9212 4778 6755 4099 6017 3990 5127 3896 4846

8 13657 19396 10050 14240 8616 12647 8409 10779 8187
1019

2

16 27401 38958 20210 28571 17310 25388 16887 21643
1645

4
2047

4

 Parameter: Encryption Power (mW) [Windows]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA

 SSO-
AC-
ECC

 BFO-
AC-
RSA

 BFO-
AC-ECC

1 571 840 421 592 348 513 345 406 337 410
 2 1100 1582 796 1146 699 1003 669 812 662 779
 4 2179 3228 1604 2263 1381 2029 1341 1597 1303 1549
 8 4577 6750 3361 4765 2893 4246 2824 3374 2745 3270
 16 9165 13496 6738 9559 5775 8483 5646 6739 5494 6541

 Parameter: Decryption Power (mW) [Windows]

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA

 SSO-
AC-
ECC

 BFO-
AC-
RSA

 BFO-
AC-ECC

1 541 785 415 584 350 510 342 420 332 410
 2 1086 1536 805 1140 693 1010 655 784 641 765
 4 2192 3088 1604 2275 1368 2008 1344 1608 1312 1558
 8 4579 6496 3368 4761 2877 4220 2819 3360 2741 3253
 16 9133 12997 6742 9529 5778 8472 5641 6739 5491 6540

Data Size
(MB) RSA ECC AC-RSA AC-ECC

 PSO-
AC-RSA

 PSO-
AC-ECC

 SSO-
AC-
RSA

 SSO-
AC-
ECC

 BFO-
AC-
RSA

 BFO-
AC-ECC

1 91 92 92 94 92 96 93 94 95 96
 2 88 89 89 92 91 92 92 93 91 94
 4 86 89 88 91 90 91 90 91 91 92
 8 86 88 88 89 89 91 89 91 89 91
 16 85 87 87 89 87 90 89 89 88 91

 end of report

APPENDIX - A.5

SAMPLE SCREENSHOTS

 A.5

	Enhancing the security in RSA and elliptic curve cryptography based on addition chain using simplified Swarm Optimization and Particle Swarm Optimization for mobile devices
	Abstract
	Introduction
	Concepts of RSA, ECC, PSO and SSO
	RSA
	ECC
	Definition (elliptic curve)
	Point addition and doubling on EC

	Particle Swarm Optimization (PSO)
	Simplified Swarm Optimization (SSO)

	Related works
	Proposed methodology
	Experimental set up
	Results and discussions
	Results analysis
	Conclusion and future extension
	References

	Abstract
	I. INTRODUCTION
	II. RELATED WORK
	III. THEORETICAL BACKGROUND
	Definition 3.1 (Addition Chain)
	Definition 3.2 (Optimal Addition Chain)
	A. Search Space
	B. Chemotaxis
	a) Minimum Intermediate Number in AC
	C. Reproduction and Dispersal Step
	V. BFOA_AC – AN EXAMPLE

	VI. IMPLEMENTATION
	BFOA based AC has been thought of and it is implemented successfully. In this paper, ACs produced by some integers are proved both theoretically and experimentally. From the experimental results, up to integers 1024, the proposed BFOA algorithm produc...
	REFERENCES

