19. Simplify Boolean (a) the equation Y=AB + A(B+C) + B(B+C) using Boolean laws.

Or

- Explain the working of a multiplexer circuit with neat diagram.
- Enumerate the working principle of a SR 20. latch with neat truth table.

Or

Design a sequential circuit using PAL.

SECTION C — $(3 \times 10 = 30)$

Answer any THREE questions.

- Explain the construction features of depletion and enhancement type MOSFET.
- Explain a Colpitts oscillator and derive an equation for its output frequency.
- Derive an equation to find the gain of an Instrumentation amplifier.
- 24. Simplify the using K-Map $Y = \sum (0,1,2,3,4,5,6,7,8,9,10,13,15)$
- Design a decade counter and explain it.

S.No. 6401

P 22 ELCC 11

(For candidates admitted from 2022–2023 onwards)

M.Sc. DEGREE EXAMINATION, NOVEMBER 2023

Electronics

ANALOG AND DIGITAL CIRCUITS DESIGN

Time	e : Th	ree hours		Maximum	: 75 mark	
	٠. ,	SECTION A -	- (20	marks)		
· ·		Answer ALL	ques	stions		
I. •	(A)	Multiple Choice qu	estic	ns:	$(5\times 1=5$	
1.	In a transistor if $\beta = 100$ and collector current is 10mA, then I_E is ———					
	(a)	100 mA	(b)	100.1 mA		
	(c)	110 mA	(d)	110.1mA		
2.	An RC network provides — degree phase shift.					
	(a)	60	(b)	90		
	(c)	45	(d)	30		
3.	The ideal OP-AMP is supposed to have					
	(a)	Zero input impedance				
	(b)	infinite bandwidth				
	(c)	zero gain				

all the above

4.	The expression of identity law is ———	13. I			
	(a) A+0=A (b) A+A=A	14.			
	(c) A+B=A (d) A+AB=A	15. V			
5.	The inputs in the PLD is given through ————				
	(a) NAND gates (b) OR gates				
	(c) NOR gates (d) AND gates	Ar			
	(B) Fill in the blanks questions: $(5 \times 1 = 5)$	16. (
6.	A MOSFET uses the electric field of a ————to control the channel current.				
7.	The negative feedback amplifier ————voltage gain.	, , , , , , , , , , , , , , , , , , , ,			
8.	The pin numbers ————————————————————————————————————	17. (
9.	number of OR gates are required for Octal to Binary encoder.				
10.	The output of the ————— circuit depends upon Present input and present state.				
II.	Descriptive type questions: $(5 \times 2 = 10)$				
11.	Define a in a transistor.	· • · · · · · · · · · · · · · · · · · ·			
12.	State Barkhausen criteria.				
	9 C No 6401				

- 13. Define CMRR of an OP-AMP.
- 14. State Duality's theorem.
- 15. What is synchronous counter?

SECTION B —
$$(5 \times 5 = 25)$$

Answer ALL questions, choosing either (a) or (b)

16. (a) Compare the BJT and FET.

Or

- (b) Explain the working of FET as a variable resistor.
- 17. (a) Explain the Darlington amplifier circuit with neat diagram.

Or

- (b) Derive an equation to find the output frequency of a Wien bridge oscillator.
- 18. (a) How the offset voltage is nullified in an op-amp?

Or

(b) Explain Voltage follower circuit with neat circuit diagram.