
Classification of Lipids

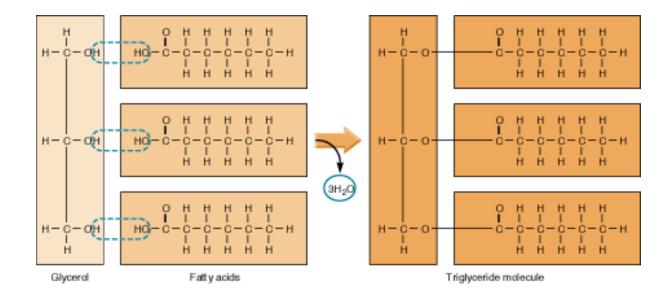
Classification

Simple lipids

- Esters of fatty acids with alcohols
- Fats and oils are ester of fatty acid with triacyl alcohol
- Waxes are esters of fatty acids with mono hydric alcohol

Compound lipids

Esters of fatty acids and alcohols with additional groups


Derived lipids

Derived from hydrolysis of simple and compound lipids

Simple lipids

1. Fats and oils (Triglycerides):

- Most abundant form of all lipids
- Major component of storage

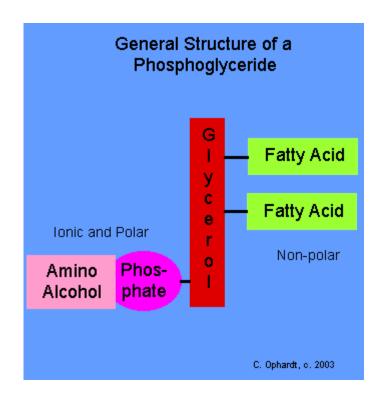
- Esters of glycerol with three fatty acids
- 3 fatty acids may be similar or dissimilar.
- If similar they are simple triglycerides eg: tripalmitin, tristearin and triolein.

• Naturally occurring are $^{\text{H}_2\text{C}}-_0-_{\text{COC}_{15}\text{H}_{31}}$ $^{\text{H}_2\text{C}}-_0-_{\text{COC}_{17}\text{H}_{33}}$ dissimilar eg oleodipalmitin, $^{\text{H}_2\text{C}}-_0-_{\text{COC}_{15}\text{H}_{31}}$ $^{\text{H}_2\text{C}}-_0-_{\text{COC}_{15}\text{H}_{31}}$ $^{\text{H}_2\text{C}}-_0-_{\text{COC}_{15}\text{H}_{31}}$ $^{\text{H}_2\text{C}}-_0-_{\text{COC}_{15}\text{H}_{35}}$ $^{\text{Tripalmitin}}$ $^{\text{Tripalmitin}}$ $^{\text{COleo-$\beta$-palmito-$\alpha'$ stearin}}$

2. <u>Waxes:</u>

• Esters of fatty acids with monohydroxy alcohols.

Secreted by cutaneous gland


3. Compound lipids

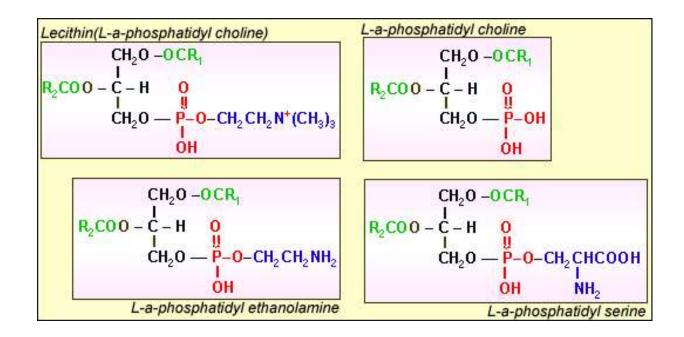
Phospholipids:

- Most abundant membrane lipid.
- Has phosphoric acid in its structure.
- Classified further into phosphoglycerides, phosphoinositides and phosphosipingsides

phosphoglycerides:

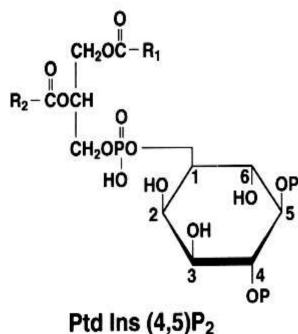
• - are major phospholipids present in membrane

Lecithins


- Also called as phosphatidyl cholines
- Rich in oil seeds, glandular and nervous tissues
- Required for the transport of lipids

Cepahlins

- Present in oil based seeds
- Similar with structure of lecithins
- But choline is replaced by ethanolamine or serine
- Serine is precussor for ethanol amine


Plasmalogens

- Present in brain and muscle tissue
- Structurally resemble lecithins and cephalins
- But one fatty acid replaced with unsaturated ether

Phosphoinositides

- Also called as phosphatidyl inositols.
- Found in brain tissue and soy beans.
- Important for cell signaling.
- Mono , di, triphosphoinositides are their types

Ptd Ins (4,5)P₂

Phosphosphingosides

- Also called as spingomyelins
- Found in myelin sheath of nerve cells
- Lack glycerol but have sphingosine

Glycolipids

- Lipids head group consisist of one or more glucose units.
- Cerebrosides and gangliosides.
- Abundant in brain tissue.
- Similar to the structure of phosphosphingosides but either galactose or glucose is present of choline without phosphoric acid

- Gangliosides found in ganglion cells.
- Structure has ceramides plus carbohydrate moities.
- N- acyl spingosine linked with glucose or galactose and carbohydrate moieties like NAG and NANA

Derived Lipids

- Hydrolysis product of simple and compound lipids.
- Other compounds like steroids, fatty acids, terpenes, alcohols and ketones.

Steroids

- Most abundant biological compound associated with fat.
- Does not contain fatty acids so cannot be hydrolyzed.
- Structure has saturated cyclohexane and hexagonal rings

Cholesterol

- Important component of of living system.
- 27 carbon molecule.
- Reduced forms are coprostanol, cholestanol, Ergosterol, lanosterol

Bile acids

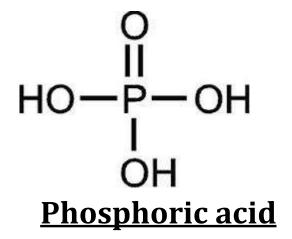
- Important end product of cholesterol
- 24 carbon molecule
- Cholic acid and chenodeoxycholic acid are chief bile acids

Nucleic acids

- Entirely different from carbohydrate, protein and lipids.
- Location is in the nucleus and having acidic properties so it named as nucleic acids.
- Hereditary determinants of living system.
- Present in free form or bound to proteins.
- Like proteins nucleic acids are polymers with nucleotide units.

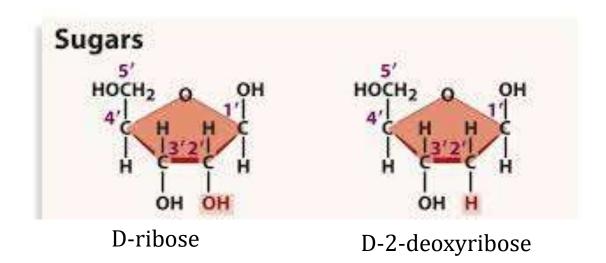
• Carbon, hydrogen, oxygen, nitrogen and strangely phosphorus.

• Two kinds of nucleic acids.


• Deoxyribonucleic acid and ribonucleic acid.

• DNA present in cell nucleus RNA in cytoplasm.

• Upon hydrolysis yields phosphoric acid, pentose sugar and nitrogenous base.

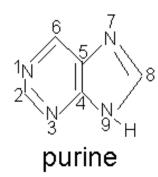

Phosphoric acid

- Mol formula H₃Po₄
- Has 3 monovalent hydroxyl group and 1 monovalent oxygen atom
- Linked to pentavelent phosphorous atom

Pentose sugar

- Two nucleic acids distinguished promarly on present of pentose or ketose sugar.
- Deoxyribose sugar or ribose sugar

Important property of pentoses sugar is ability to form esters with phosphoric aicd

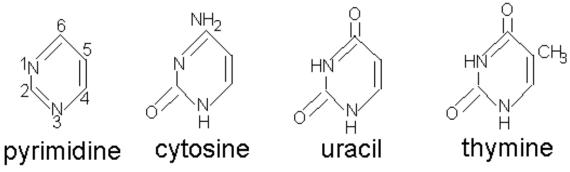

Nitrogenous bases

- Two types of nitrogenous bases are found in all nucleic acids.
- Purine and pyrimidine.

<u>purine</u>

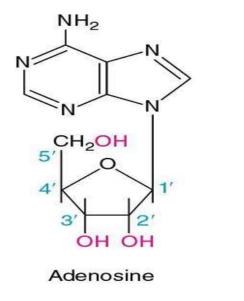
- Contains six member pyrimidine ring fused with imidazole ring.
- Adenine and Guanine are pruine derivatives present in nucleic acids

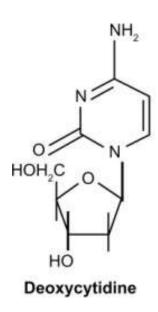
Purines



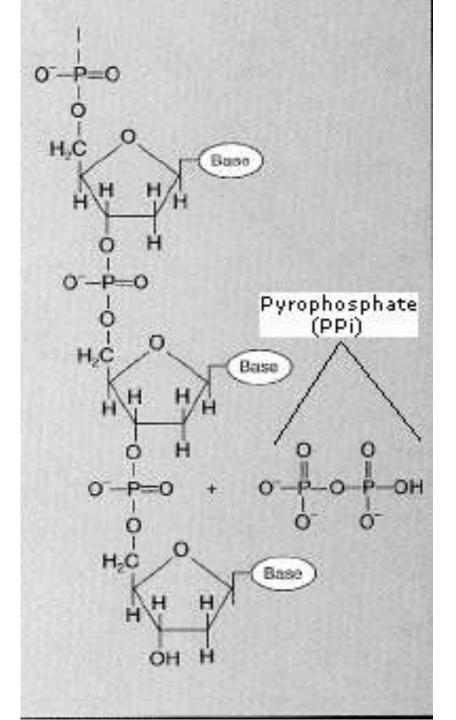
Pyrimidine

• Derived from hetrocyclic pyrimidine rings.


Pyrimidine derivatives are uracil, thymine and cytosine


Pyrimidines

Nucleosides


- Are the structures by which nitrogenous bases linked to pentose sugar.
- Beta glycosidic linkage.

Nucleotides

• Phosphoric acid esters of nucleosides.

