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ABSTRACT
Paddy is a crucial food crop providing essential nutrients and energy and
serving more than half the global population. Diagnosing and preventing
plant diseases at an early stage is crucial for the health and productivity
of crops. Automated disease diagnosis eliminates the need for experts and
delivers accurate outcomes. This research will diagnose paddy leaf diseases
with Deep Learning technology. The diseases such as bacterial blight, blast,
tungro, brown spot, and healthy leaf classes are diagnosed and classified in
this study. The dataset contains 160 images from each class with 800 im-
ages. Our proposed model is an ensemble of transfer- learned InceptionV3
and VGG16 architectures, which utilizes the strength of individual mod-
els to improve overall performance. The use of transfer-learned ensemble
deep learning architectures achieved impressive accuracy rates of 97.03%,
94.97%, and 98.87% for training, validation and testing respectively. The
results indicating that model is not overfit and generalizes well to unseen
data. The model’s performance is evaluated with confusion matrix with
the parameters like precision, recall, F1-score, and support. We also tested
the model’s performance against other proposed deep learning techniques
with and without transfer learning techniques. Moreover, this research ad-
vances reliable automated disease detection systems, fostering sustainable
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agriculture and enhancing global food security.
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1. INTRODUCTION

Rice is an important crop of the world, consumed
everyday by half of the world’s population. It also
supplies 20% of dietary energy. It is one of the most
strategic commodities worldwide. The key challenge
in combating hunger and malnutrition is the fast
growing population. It is expected that the popu-
lation will reach 8.5 billion by 2030 [1]. India plays
a prominent role in agriculture and ranks second in
holding the largest agricultural land area. In addi-
tion, 55% of the Indian farmers contribute to the agri-
cultural sector. It is predicted that the Indian agricul-
tural sector will increase to US$ 24 billion by 2025,
as of FY22, India has already captured nearly 50%
of the world market for rice [2]. Biotic and abiotic
factors can both significantly impact paddy plants,

potentially resulting in detrimental consequences for
their growth and survival. Plant pathogens, drought,
over-irrigation, nutrient deficiencies, excessive fertil-
izers, and high salinity significantly decrease global
crop yields by over 50%, posing a severe threat to
sustainable agriculture [3]. Although symptoms are
visible throughout the plant, leaf images are valuable
for detecting plant diseases, nutrient deficiencies, and
water scarcity, as they reveal crucial clues through
changes in shape, color, and overall leaf health. This
information aids farmers in making timely and in-
formed decisions to enhance crop health and yield
[4].

Despite the availability of advanced technologies,
farmers generally rely on naked-eye observation for
disease detection. However, this manual approach
brings about several issues, including inaccurate pre-
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dictions, time-consuming processes, and increased
costs [5]. Automated disease detection helps farmers
and plant pathologists by providing reliable obser-
vations of leaf diseases overcoming complexities and
misconceptions in optical diagnosis and enhancing
agricultural practices [6]. The rapid global popula-
tion growth and decline in rice farmers threaten this
affordable staple food. Early and accurate diagno-
sis of diseases is crucial to prevent plant damage and
ensure its usefulness, safeguarding the availability of
this vital food source [7]. Plant disease identifica-
tion benefits from computer vision technologies, such
as Machine Learning (ML) [8], Convolutional Neu-
ral Networks (CNN) [9], and Deep Learning (DL)
[10]. These advancements enable accurate and ef-
ficient detection of plant diseases. Researchers uti-
lize DL for disease diagnosis when feature extraction
is complex. DL, a subset of ML, automates feature
extraction with enhanced accuracy and visualization
[11]. Linear classifiers and other traditional ML al-
gorithms may have difficulty effectively dealing with
the non-linear complexities present in plant pheno-
typing tasks. DL models are skilled at automatically
identifying complex patterns, resulting in improved
representation and comprehension of plant attributes
[12]. This study aims to create a deep learning sys-
tem based on ensemble of deep learning models with
a transfer-learning approach. The goal is to diagnose
diseases accurately and cost-effectively, even without
expert involvement. By ensembling models, we aim
to develop a robust and dependable system that can
provide accurate diagnoses, revolutionizing the field
of disease detection and ultimately benefiting farm-
ers. The contributions of this study include:

e Ensembling deep convolutional neural networks,
incorporating pretrained architectures such as
InceptionV3 and VGG16 with transfer-learning,
to identify the paddy classes including bacterial
blight, blast, brown spot, tungro and healthy
leaf.

e Stacking of base models, later their predictions
are combined using another model (called the
meta-model or combiner) to make the final pre-
diction.

e Evaluating the performance of the proposed
model in contrast to other advanced proposed
models such as MobileNet, ResNet, etc., both
with and without transfer learning techniques.

The rest of the paper is organized as follows. Sec-

tion 2 covers the related works. Section 3 depicts the
materials and methods. Section 4 comprises exper-
imental results and discussion. Section 5 concludes
the paper.

2. LITERATURE REVIEW

This section discusses various techniques re-
searchers to diagnose plant leaf diseases, with a strong
emphasis on the Deep Learning methodology in the

literature.

The authors investigated the prediction of four
different diseases using ensemble learning paradigm
based on pretrained architectures, including Effi-
cientNetBO0, InceptionV3, MobileNetV2, and VGG19.
They employed bagging and weighted averaging
strategies. The dataset was self-collected. Metrics
like accuracy, recall, precision, and Fl-score were
evaluated [13]. Paymode et al. proposed a model for
multi-crop leaf disease classification. The research
used the PlantVillage dataset for training and self-
collected images for testing. They fine-tuned the
VGG model and reported accuracy of 98.40% for
grapes and 95.71% for tomatoes, respectively [14].
The study introduced a robust approach for pneu-
monia detection by combining deep learning models,
pre-activated ResNet with DenseNet169. The em-
phasis was on stability in performance curves, result-
ing in precision of 98%, AUC of 97%, and a loss of
0.23%. It highlighted the impact of data, optimizer
choice, and simplified model design. The method out-
performed prior research, handling limited data effec-
tively and offering potential applications in COVID-
19 data with integrated models [15]. Gautam et al.
proposed a model for identifying three paddy leaf dis-
eases such as blight, blast, brown spot, and a healthy
class. They collected data from Kaggle and Mende-
ley. After preprocessing, semantic segmentation was
done on the dataset and passed to pre-trained models,
and they applied transfer learning to the models. The
proposed method used InceptionV3, VGG16, ResNet,
SqueezeNet, and VGG19. InceptionV3 outperformed
with 96.43% accuracy. In addition, they checked the
performance of the model with metrics such as F1-
score, precision, and recall [16]. Saleem M. H et al.
reviewed various DL models, discussing their parame-
ters, pros and cons, different visualization techniques,
improved DL architectures and performance metrics
for various plant diseases. In addition, research gaps
were identified [17]. Saleem M.H. et al. employed
DL for plant disease classification by selecting the
optimal model and optimizer for high accuracy on
the PlantVillage dataset. The chosen Xception ar-
chitecture was trained with the Adam optimizer and
achieved a remarkable accuracy of 99.81% and an F1-
score of 0.9978. These results highlighted the poten-
tial of transparent agriculture disease detection with
this approach [18].

Aggarwal M. et al. demonstrated pre-trained mod-
els to detect major diseases and highlighted that seg-
mentation enhances results. The EfficientNet mod-
els with Extra Tree achieved 91% accuracy without
segmentation and 94% with segmentation [19]. Sen-
gupta S. et al. introduced an integrated method for
predicting rice plant diseases within a big data con-
text. They extracted attributes from images, ap-
plied rough set theory-based feature selection, em-
ployed ensemble machine learning classification for
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accurate disease prediction, and implemented the sys-
tem within Hadoop’s MapReduce framework for ef-
ficient large-scale data processing [20]. Ahmad A.
et al. explored the capacity of deep learning mod-
els to detect plant diseases in diverse settings. It
utilized five DNN architectures on corn disease im-
ages from various datasets. DenseNet169 excelled,
achieving up to 81.60% accuracy by training on
background-removed RGBA images. The combina-
tion of lab and field images improved generalization
(up to 80.33%). Background removal and diverse
data enhanced DL model generalization which is rel-
evant for flexible disease management systems in dif-
ferent environments [21]. The authors introduced
ensemble model combining EfficientNetB0O and Mo-
bileNetV2 for plant disease classification employing
the PlantVillage Dataset with 54,305 images. The
model achieved 99.77% accuracy and demonstrated
the ensemble model’s potential in enhancing disease
classification [22]. In the study, the ensemble DEX
model (combining Densenet121, EfficientNetB7, and
XceptionNet) achieved the highest accuracy in rice
disease classification among various models, surpass-
ing both transfer learning and six individual CNN
architectures [23]. Petchiammal A. et al. presented
PaddyNet, a 17-layer model for accurate paddy leaf
disease detection, validated on a dataset of 16,225
samples across 13 categories, including 12 diseases
and a healthy class. The model has achieved 98.99%
accuracy and outperforms other classifiers [24]. Incor-
porating both deep and traditional techniques, this
research integrated the features from the ResNet50
and DenseNet121 architectures, resulted in an accu-
racy of 97.59% and Fl-score 90.50% through data
augmentation. Notably, the ResNet50-Logistic Re-
gression model excelled with a recall of 93.08% and a
peak Fl-score of 93.80%, matching the former accu-
racy [25].

Turkoglu M. et al. have compared diverse meth-
ods for ensembling deep convolutional networks for
plant disease and pest classification. Utilizing state-
of-the-art networks (AlexNet, GoogleNet, ResNet18,
ResNet50, ResNet101, and DenseNet201) with trans-
fer learning and SVM classifiers yielded varied perfor-
mances. To validate, they curated the Turkey-Plant
Dataset with 4,447 images. The proposed Plant-
DiseaseNetMV and PlantDiseaseNetEF models have
achieved 97.56% and 96.83% accuracy, respectively,
surpassing state-of-the-art approaches. Future plans
involve hybrid models of ML and DL, along with the
implementation of feature reduction techniques to en-
hance overall efficiency [26]. Chen J. et al. approach
involves two components: a pre-trained module for
feature extraction and an auxiliary structure for ac-
curate multi-scale feature map-based detection. The
customized, fully connected Softmax layer at the top
network forms the INC-VGGN model, effectively pre-
dicting plant diseases [27]. Dou S. et al. developed

the CBAM-MobileNetV2 model with transfer learn-
ing for accurate citrus huanglongbing (HLB) diagno-
sis in southern China. It achieved 98.75% accuracy
using attention and convolution modules [28]. Ar-
shad F. et al. proposed a hybrid DL model called the
PLDPNet model. It has combined features of VGG19
and Inception-V3, also incorporating vision trans-
formers for better predictions, and produced 98.66%
accuracy on a dataset of potato leaves. Validat-
ing the model on apple and tomato datasets under-
scores its potential practical application in agriculture
[29]. Liu G. et al. introduced a lightweight network
for precise plant disease classification with an accu-
racy of 99.28%, surpassing other models by almost
6%. Despite comparable FLOPs to ShuffleNetV2,
superior results achieved. Utilizing deep transfer-
learning through JAN and integrating SK blocks into
MobileNet enhances micro-lesion feature recognition
[30].

Nayak A. et al. used smartphones and advanced
cameras for early plant disease detection via CNNs.
They used smartphone images of rice plants and ap-
plied segmentation techniques such as foreground ex-
traction. ResNet50 was suited for cloud usage and
MobileNetV2 was suited for smartphones. The “Rice
Disease Detector” app with MobileNetV2 demon-
strated successful performance. Further research is
required to evaluate its effectiveness across diverse
smartphones [31]. Mahum R. et al. introduced a
new method to categorize potato leaf diseases into
five classes. It modified the DenseNet-201 design by
including a transition layer, making the network more
compact. It recognized four diseases and handled
imbalanced data using a reweighted class-adjusted
cross-entropy loss function. Tested on Plant Village
Dataset and a custom dataset, it achieved 97.2% ac-
curacy and surpassed existing methods [32]. Pavithra
P. et al. highlighted a method using three optimiza-
tion techniques to detect leaf diseases. It started with
noise reduction using a Modified Wiener Filter. Im-
proved Ant Colony Optimization extracted vital fea-
tures. The approach, Hybrid Grasshopper Optimiza-
tion with modified Artificial Bee Colony Algorithm,
classified diseases in leaves. The research achieved
98.53% accuracy on the Plant Village dataset by uti-
lizing evaluation metrics such as accuracy, precision,
recall, false negative rate (FNR), negative predic-
tive value (NPV), and Matthews correlation coeffi-
cient (MCC). [33]. Abd Algani Y. M. et al. used
DL with Ant Colony Optimization — CNN (ACO-
CNN) to diagnose plant leaf diseases accurately us-
ing leaf images. ACO utilized ants’ indirect com-
munication and path-finding behavior to achieve ap-
proximate optimization. This approach improved dis-
ease identification through color, texture, and leaf
arrangement analysis [34]. Panchal A. V. et al
developed a DL model for classification tasks, aid-
ing disease severity detection. Despite limited input
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data, training with diverse network architectures and
fine-tuned popular models (InceptionV3, ResNet50,
VGG19, and VGG16) improved model efficiency. The Tmage
VGG model achieved 93.5% accuracy on validation Acquisition ¥
data [35]. Thakur P. S. et al. presented ‘VGG-
ICNN,’ a lightweight Convolutional Neural Network i v

for identifying crop diseases from plant-leaf images. T'Im;"i;“\;‘;‘d Lt vch.;mwd
With about 6 million parameters, it was compar- ) i
atively efficient. The evaluation covers five public Compile Compile
datasets, encompassing diverse varieties of crops. It Mocel hods
involves various datasets, including multi-crop sets 'l'f‘
such as PlantVillage and Embrapa (38 and 93 cat- Training of Ensemble Compile Ensemble | | Ensemble using
egories, respectively) and single-crop sets for Apple, Mode! ] Modd [ Stacking
Maize, and Rice and produced 99.16% accuracy on E‘_alu:iouof
the PlantVillage dataset [36]. Deb S.D. et al. pro- Ensemble Model
posed ConvPlant-Net, a CNN-based plant disease de-
tection system, which is a combination of Depth-
Wise Separable Convolutional, 2D Transpose Layer Fig.1: The Proposed Workflow.
and Convolutional Layer that efficiently learns high

and low-level features. The model achieved 98.62%,

99.36%, and 99.60% accuracies on Tomato, Pepper

Bell, and Potato crops from the PlantVillage dataset

Image Dataset Split

|y

P,
S

Train || Test Validate

Results
Prediction

v

with trainable parameters. The classes such as target (

spot, early blight, late blight, healthy, and leaf mold k

were chosen [37]. Malathi V. et al. utilized various 4

machine learning techniques, including SVM, KNN, :

Random Forest, AdaBoost, and neural networks for '

classifying paddy leaf diseases. Accuracy, recall, pre- b. Blast c. Brown Spot

cision, F1 score, and ROC AUC (with different fold
values) were used. The neural network achieved an
AUC of 0.997 and a CA of 0.942 with ten folds. Its
F1- score, precision, and recall also surpassed base-
line classifiers. The study highlighted the superiority
of the neural network and revealed that increasing
the number of folds was associated with progressive
improvement in the model’s performance metrics [38].

\

d. Tungro e. Healthy Leaf

Fig.2: Sample paddy leaves.
3. MATERIALS AND METHODS
The proposed system attempts to create a reli-
able technique for identifying diseases in paddy plants
by ensembling pre-trained Deep Convolution Neural

Networks (DCNNs) with transfer learning. Figure 1 Table 1: Dataset description.
depicts the proposed workflow. Class Dataset | URL Accessibility
This section provides an in-depth explanation of the Bacterial http://dx.doi.or
suggested approach, drawing upon transfer learning blight % | /10.17632/fw
principles and the architecture of the proposed model. Blast i) cj7stb8r.1
>
5
3.1 Materials Brown @
t M .
The research includes 160 image samples with an Fsrpo o Publicly
ungro accessible.

equal distribution of five classes and 800 images. The
images in each class (160 images) are split into three Healthy Kaggle | https://www.k

subsets for classification. The training set comprises aggle.com/dat
60% of the total dataset (96 images), while both the asets/minhhuy
validation and the test sets consist of 20% each (32 2810/rice-
images). Figure 2 depicts the sample images of all diseases-

image-dataset

five classes of paddy images.
Table 1 represents the description of the dataset,
URL of the image, and their accessibility information.
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Table 2 represents dataset partition details, includ-
ing division for training, testing, and validation im-
ages.

Table 2: Dataset partition.

Class Total Train | Validate | Test
name images

Bacterial | 160 96 32 32
Blight

Brown 160 96 32 32
Spot

Blast 160 96 32 32
Tungro 160 96 32 32
Healthy 160 96 32 32
Total 800 480 160 160

Table 3 represents the model’s hyperparameters,
such as epochs, L2_weight, loss function, optimizer,
etc. The choice of hyperparameter has a high impact
on the results of a model.

Table 3: Model’s hyperparameters.

93

AUC = /[07 1JROC(fpr)dfpr (5)

Table 4: Classification metrics.

Hyperparameter | Description Value
input_shape The shape of the | (224, 224, 3)
input images
num_classes Number of 5
classes in the
classification
task
Epochs Number of 30

training epochs

dropout_rate Dropout rate for | 0.5

regularization

L2_weight Weight of L2 0.0001

regularization

Optimizer used Adam
for model

compilation

Optimizer

Categorical
Cross-Entropy

Loss function
used for model
compilation

Loss

The effectiveness of the proposed model is assessed
through a metrics such as accuracy, precision, recall,
Fl-score, and AUC (Area Under the Curve). These
metrics are derived using Formulas 1 through 5. Ta-
ble 4 represents classification metrics.

Accuracy = (TP + TN) / (TP + TN + FP + FN) (1)

Recall =TP/(TP + FN) (2)

Precision = TP/(TP + FP) (3)

Fl-score = 2 * ((precision * recall) / (precision + recall))  (4)

Abbreviation | Full Form Definition

TP True Positive | Correctly identified
positive instances

FN False Negative | Incorrectly labeled as
negative when
positive

FP False Positive | Incorrectly labeled as
positive when
negative

TN True Negative | Correctly identified
negative instances

AUC Area Under Distinguishing

the Curve between positive and

negative instances.

3.2 Materials

The overall architecture of the proposed model’s
approach is depicted in Figure 3.

Input Pre-processing Ensemble and classify Predict
e X Model Ensemble

Blight

IIiHiHEIII

Healthy

Image resize
—
Normalization

Pre-trained
InceptionV3

Pre-trained
VGG16

Fig.3: The Proposed model’s approach.

3.2.1 Preprocessing

Preprocessing is essential for enhancing image
quality and is a crucial step for neural networks to
achieve effective learning and generalization. All the
images have been resized to 224*224 pixels. The
dataset is normalized to a range of 0 to 1 before be-
ing input into the neural network model. The nor-
malization of the dataset is achieved by dividing the
values by 255. Both the training and the testing sets
are preprocessed using the same method. Together,
the processes of resizing and normalization will mod-
ify the visual attributes and qualities of the images
to prepare them for input into a neural network for
training and evaluation purposes. Eq. 6 and Eq. 7
represents the formula for resizing and normalization.

224
e B
origunal_width

Yij =

Xij (6)
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Where Y;; is the pixel value at position (i,j) in the
resized image, and Xj; is the pixel value at the cor-
responding position in the original image.

Y, .
Z; ;= 2 7
sJ 255 ( )

Where Z;; represents the normalization of image,
which has undergone resizing.

3.2.2 Classification using Proposed Transfer learn-
ing based ensemble InceptionV3 and VGG16

Ensemble learning is a machine learning strategy
where multiple base models are combined to tackle a
problem. Various techniques such as Bagging, Boost-
ing, and Stacking exist for ensemble modeling [13]. In
this research, we have focused on Stacking. In stack-
ing, multiple base models are trained individually on
the same dataset, then their predictions are combined
using another model (called the meta-model or com-
biner) to make the final prediction. Figure 4 depicts
the proposed ensemble model steps.

Ensemble Model Steps

Input Layer
Fully Connected '& Output Layers
|ndividue;l Models
Compile lndi\}idual Models
Ensembie Model
Compile Ens;amble Model
Train Enser'nble Model
Evaluate Ens'emble Model

predict results

Fig.4: Steps of the Proposed Ensemble Model.

Stacking enhances predictions by using different
models together, which helps understand complex
patterns better. Transfer learning for training deep
learning models on small datasets lead to enhanced
accuracy and faster training times compared to train-
ing models from the scratch [40].

The algorithm of the proposed ensemble model us-
ing Inception V3 and VGG16:

Step 1: Define the input layer for the ensemble
model.

Step 2: Define the fully connected layers and output
layers for each base model.

Step 3: Create individual models for each base
model.

Step 4: Compile the individual models.

Step 5: Define the ensemble model by averaging the
outputs of the individual models.

Step 6: Compile the ensemble model.

Step 7: Train the ensemble model using the training
data.

Step 8: Evaluate the ensemble model on the test
data.

Our ensemble DCNN incorporates transfer learned
architectures of InceptionV3 and VGG16. Incep-
tionV3 is a DCNN architecture designed for image
classification. It features inception modules that en-
able efficient multi-level feature extraction. With 48
convolutional layers and 24 million parameters, In-
ceptionV3 is pretrained on large-scale datasets such
as ImageNet for transfer learning. It has achieved re-
markable performance on image classification bench-
marks, demonstrating its ability to handle complex
visual patterns [41]. Due to its robust feature extrac-
tion capabilities and high accuracy in visual recog-
nition tasks, InceptionV3 is widely used as a base
architecture in various computer vision tasks, includ-
ing object detection and image segmentation. More-
over, the InceptionV3 architecture proved to be more
efficient when compared to the VGGNet family of ar-
chitectures [21].

Let N = {InceptionV3,VGG16} is the set of the
transfer learned CNNs architectures. Each network
n € N was trained on five different classes in the
dataset (M3, Si) where M is the number of pictures.
Each image is resized to 224 x 224 x 3 and normal-
ized in the [0, 1] interval, and S is the relative symp-
toms, that are the labels of images, S = {Bacterial
Blight, Blast, Brown spot, Tungro, healthy}.

Using weighted average method, the final predic-
tion is done. Each model n in the set N gets a
fixed weight, multiplying its prediction from the clas-
sifier. To obtain the final prediction, we average these
weighted predictions. Equation 8 defines the formula
for weighted average method.

P'= Zj:l vy )

Where P’ represents the resulting value, n is the total
number of instances of ensemble CNN, x; denotes the
weight assigned to the i*" instance, and y’ stands for
the predicted value of an instance.

The proposed model creates an ensemble model by
choosing pre-trained InceptionV3 model and VGG16
as the base models. Their predictions are averaged.
The top layers of base models are frozen to retain
their learned features and prevent them from being
trained during the ensemble model training. We add
GlobalAveragePooling2D layer on top of each base
model, to convert the 2D feature maps into a 1D vec-
tor, which serve as fully connected layer. We add
a dense layer with 128 units and a ReLU activation
function to each base model. These layers help cap-
ture high-level features and patterns from the base
model’s outputs. Finally, we add a dense layer with
softmax activation to produce class predictions. We
compile the base models separately using the Adam
optimizer and categorical cross-entropy loss function.
The base and ensemble models are trained using the
training data and validated using the validation data.
We store the training history in the "history’ variable.

We evaluate the ensemble model on the test
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dataset. The test loss and accuracy are calculated
and printed. We plot the training loss, validation
loss, training accuracy, and validation accuracy us-
ing Matplotlib. During the training, learning rate
scheduling adjusts the learning rate and controls gra-
dient descent step sizes. Its goal is to enhance model
convergence by gradually lowering the learning rate
over time [22]. Table 5 shows the architecture of the
proposed ensemble model.

Table 5: Architecture of the proposed Ensemble
model.
Layer (type) | Output Paramf Connected to
Shape
input_4 [(None, 0 i
(InputLayer) | 224, 224,
3)]
model (None, 5) | 22065701 | ['input4[0][0]']
(Functional)
Model; (None, 5) | 14780997 | ['mnput4]0][0]]
(Functional)
average (None, 5) | 0 ['model[0][0]’,
(Average) ‘model; [0][0]']
Total params: 36846698 Trainable-params: 329226
Non-trainable params: 36517472

Figure 5 depicts the visualization of the proposed
ensemble model, depicting the testing and averaging
of the individual models, as well as clearly illlustrat-
ing the stacking of the ensemble model.

input_8 input: | [(None, 224, 224, 3)]

[(None, 224, 224, 3))

InputLayer | output

model_2 | input: | (None, 224, 224, 3) model_3 | input: | (None, 224, 224, 3)
Functional | output: (None, 5) Functional | output: (None, 5)
average_1 | input: | [(None, 5), (None, 5)]
Average | output: (None, 5)

Fig.5: Visualization of stacked ensemble models.

4. EXPERIMENTAL RESULTS
CUSSION

AND DIS-

We represent the outcomes of the experiments ac-
cording to the fundamental structures of the original
individual neural networks, the application of trans-
fer learning, and the utilization of ensemble meth-
ods. The achieved outcomes aim to address the sub-
sequent inquiries: Does the incorporation of transfer
learning contribute to an enhancement in accuracy?
Can the implementation of ensemble techniques fur-
ther enhance accuracy?

4.1 Experimental Setup

The proposed system utilizes an Intel(R) Core(TM)
i3-5005U CPU with 4GB of RAM and a 64-bit pro-
cessor. We develop the proposed model with Google

Colab, a cloud platform. It provides rich support with
pre-built packages like Keras, Tensorflow, etc. It has
a rich set of tools for the development and implemen-
tation.

4.2 Experimental Results

After fine-tuning through several runs with varying
epochs, dropout rates, L2 _weights, optimizers, and
loss functions, we adjusted the hyperparameters as
detailed in Table 3. The code was run multiple times,
each time for a specific number of epochs. The model
was trained and evaluated in each run to calculate
accuracy and loss. We regularly recorded metrics
to track progress. From epochs 1 to 30, the model
steadily improved accuracy and decreased loss.
Training Accuracy

This metric shows how accurately the model pre-
dicts the training data labels. It begins at 96.88% and
fluctuates between 88.91% and 99.22% over epochs.
A higher value is better, indicating the model fits well
to the training data.

Training Loss

The training loss quantifies the difference between
predicted values and actual in the training dataset. It
starts at 0.2233 and varies between 0.0888 and 0.4633.
Smaller values imply a better fit to the training data.
Validation Accuracy

Reflecting the model’s performance on unseen
data, it starts at 87.42% and ranges between 84.91%
and 96.86%. An upward trend is positive, showing
the model generalizing better to new data.
Validation Loss

The validation loss measures the difference be-
tween model predictions and actual values in the val-
idation dataset. It initiates at 0.431 and fluctuates
between 0.1641 and 0.5561. Smaller values indicate
better generalization ability. Figure 6 and 7 depict
the loss and accuracy curves on the proposed ensem-
ble model for 30 epochs.

Train and Validation Loss

—— Train
Validation
0.5

0.1

o 5 10 15 20 25 30
Epoch

Fig.6: The Proposed model’s loss.

Figure 8 shows the ROC curve of the confusion
matrix, which represents the performance of the clas-
sification model. The ROC curve is a graphical rep-
resentation of the performance of a model. We plot
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Train and Validation accuracy

—— Train accuracy
Validation accuracy

o S 10 15 20 25 30
Epochs

Fig.7: The Proposed model’s accuracy.

True positive rate and false positive rate for diverse
threshold values.

Receiver Operating Characteristic (ROC) Curve

True Positive Rate
o
o

o
=

= ROC curve of class 0 (area = 0.99850586)
= ROC curve of class 1 (area = 0.99853516)
= ROC curve of class 2 (area = 0.99913086)
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—— Micro-average ROC curve (area = 1.00)
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Fig.8: The Proposed model’s ROC Curve.

Figure 9 depicts the confusion matrix of the pro-
posed method with correctly classified instances in
the range of 155-160.

Confusion Matrix

Bacterialblight

Blast -

Brownspot -

True Label

Healthy -

Tungro -

Bacterialblight -

Blast -

Brownspot -
Healthy
Tungro

Predicted Label

Fig.9: Confusion matriz.

Table 6 provides the classification report of the
proposed model.

We analyze the effectiveness of a classification
model by analyzing a confusion matrix, which com-

Table 6: Classification report of proposed model.
Precision | Recall | Fl-score | Support

Bacterial

blight 0.96 0.99 0.98 160

Blast 1 0.97 0.98 160

Brown

spot 0.98 0.97 0.98 160

Tungro 1 1 1 160

Healthy | 1 1 1 160

Accuracy 0.99 800

macro 0.99 0.99 0.99 800

avg

weighted | 0.99 0.99 0.99 800

avg

pares the predicted outcomes of the ensemble model
with the actual desired outcomes. Table 7 shows
the results of the proposed model in comparison with
other models.

From Table 7, we discuss the findings. In essence,
the model begins with high accuracy on training data
and gradually improves. During training, the loss
decreases, implying better alignment with training
data. Similarly, the model learns to generalize better
as validation accuracy improves and validation loss
reduces, though there are fluctuations. The overall
goal is to lower the loss and improve accuracy for
both the training and validation datasets. The re-
sult of model performance varies across different ap-
proaches. The ”Ensemble InceptionV8 and VGG16”
achieve the highest testing accuracy, indicating strong
generalization. “TL + MobileNetV2” and “TL + In-
ceptionV3” show high training accuracy but slightly
lower validation and testing performance. The “TL +
Ensemble ResNet50 + VGG16” maintains balanced
accuracy. Notably, the “TL + Ensemble ResNet50 +
MobileNetV2” model has high training but lower val-
idation/testing accuracy, suggesting overfitting. “En-
sembling InceptionV3+Vggl6 (No TL)” overfits sig-
nificantly, while “TL + ResNet50” lags. The pro-
posed ensemble model achieves 97.03% of training
accuracy, 94.97% of validation, and 98.87% of test-
ing accuracy. Figure 10 depicts the training accuracy
comparison with other models.

Figure 11 depicts the validation accuracy compar-
ison with other models.

Figure 12 depicts the testing accuracy comparison
with other models.

Table 8 depicts metrics such as precision, recall,
F1-score for comparison with other models. We com-
pare the proposed ensemble model with other deep
learning classifiers, both with and without transfer
learning techniques. The proposed ensemble archi-
tecture outperforms the other DL architectures used
for comparison.
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Table 7: Accuracy Comparison of the Proposed Ensemble Model with Other DL Models.
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Model Train Validation | Testing Total Trainable | Non-trainable
Accuracy | Accuracy | Accuracy | params params params

TL+InceptionV3 99.06 88.68 98.25 2,20,65,701 | 2,62,917 2,18,02,784

TL+ResNet50 71.72 56.25 70.63 2,38,50,629 | 2,62,917 2,35,87,712

TL+Ensemble

ResNet50 + VGG16 95.16 90.62 95.13 3,86,31,626 | 3,29,226 3,83,02,400

TL+MobileNetV2 100 94.38 98.75 3,86,31,626 | 3,29,226 3,83,02,400

TL+Ensemble

ResNet50+ 99.53 95.63 98.87 3,65,17,472 | 3,68,46,698 | 3,29,226

mobileNetV2

Ensemble

InceptionV3+ VGG16 | 98.75 74.37 74.87 3,68,46,698 | 3,68,12,266 | 34,432

(No TL)

Proposed

TL+ Ensemble 97.03 94.97 98.87 3,68,46,698 | 3,29.226 | 36517472

InceptionV3 and

VGG16

Training accuracy comparison with Other Proposed DL
Models
100 - 23 9516 9906 100 9875 9703 Table 8: Performance Metrics of Proposed Ensem-
g » ble Model with other Architectures.
; :2 e Method Class | Precision | Recall | Fl-score
B e (%) (%) (%)
g Ensemble 0 0.53 0.85 0.66
e ® InceptionV3 1 0.67 0.04 0.07
: » +VGG16 2 0.78 0.8 | 083
< 0 (No TL) 3 0.94 1 0.97
g2 2 2 g 9 .3 4 0.84 0.97 0.9
s 2, £ K : 8 Ea, Proposed 0 0.96 0.99 0.98
£3 3§ 0§ & 3 9P %ig TL +Ensemble | 1 i 097 | 098
2 F> = 2 = 852 8%° InceptionV3 and | 2 0.98 0.97 0.98
E 2 N .?, - VGG16 3 1 1 1
] 4 1 1 1
TL+InceptionV3 0 0.92 1 0.96
Fig.10: Training Accuracy comparison with other ; (1)'99 83471 833
DL models. 3 1 T T
4 1 1 1
TL+Ensemble 0 0.98 0.99 0.98
ResNet50 1 0.9 0.87 0.88
and VGG16 2 0.89 0.9 0.89
Validation accuracy comparison with Other Proposed DL Models | i (1) 99 1 1
100 . 9563 _— sese 9438 0497 TL+ResNet50 (1) 82; 821 gig
¥ - 73 P 0.76 017 | 0.28
g 7 - 3 0.79 0.86 0.83
Z o 1 0.7 0.54 0.61
T @ TL+MobileNetV2 0 0.99 0.99 0.99
3 % 1 0.95 0.99 0.97
':° :g 2 1 0.95 0.97
s on L " . " - - 3 i 1 1
88 3 0§ 0§ 0§ g % (. T
$: (3 32 % % 5F 333 TL+Ensemble 0 i 0.98 | 0.99
$: a2 2 S E §2 3%% ResNet50 1 0.98 0.98 0.98
Feo 4 1 " K g° &2 and 2 0.97 098 1098
- 2 MobileNetV2 3 1 1 1
4 1 1 1
Fig.11: Validation Accuracy comparison with other

DL models.
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| Testing accuracy comparison with Other Proposed DL Models |
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Fig.12: Testing Accuracy comparison with other DL
models.

Finally, we evaluate our achieved accuracy in com-
parison to accuracy levels conducted by various re-
searchers in the field. The results indicate that our
proposed model outperforms others in terms of ac-
curacy. The answers to research questions dis-
cussed in the beginning of this section (sec-
tion 4) are yes. The incorporation of transfer
learning contributes to an enhancement in ac-
curacy, and the implementation of ensemble
techniques further enhances the accuracy. Ta-
ble 9 displays a comparison of the accuracy of the
proposed model with that of other models.

Table 9: Comparison of the proposed model with
other models.

Reference Accuracy | Architecture Used

Fenu, G. et al. 91.14% EfficientNetB0O+
InceptionV3

Arshad F et al. | 98.66% Inception+VGG19

Qi. H et al. [25] | 97.59% ResNet50 and Logistic
Regression (LR)-
97.59%,

Our proposed | 98.87% Fine-tuned

Ensemble InceptionV3+VGG16

model

5. CONCLUSION

Plant disease diagnosis plays a pivotal role in
agriculture. The proposed ensemble model with
pre trained InceptionV3 and VGGI16 leverages the
strengths of multiple models to improve the overall
performance and generalization. By combining the
predictions of the individual models, better accuracy
and robustness can often be achieved compared to a
single model. The suggested ensemble model deliv-
ers remarkable outcomes, boasting a training accu-
racy of 97.03%, a validation accuracy of 94.97%, and

an impressive testing accuracy of 98.87%. This in-
vestigation revolves around five distinct disease cat-
egories: bacterial blight, blast, tungro, brown spot,
and healthy leaves. The primary advantage of utiliz-
ing DL techniques is their capability to eliminate the
need for labor-intensive manual feature extraction.
Utilizing automatic methods for diagnosing these dis-
eases can benefit farmers by increasing yields and re-
ducing unnecessary pesticide use, which can harm the
soil. Overall, such an automated disease detection
system can be a valuable tool for farmers, empowering
them to make informed decisions and enhance their
productivity and livelihoods. The futuristic work is
to implement with an IOT (Internet-of-Things) setup
and develop a mobile application. It will include sen-
sor networks, image-capturing devices, and real-time
data transmission. We will utilize the cloud storage
for scalability and efficient storage of large datasets.
Such an integrated technology will revolutionize the
plant disease diagnosis process.
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