SYNTHESIS, CHARACTERIZATION AND DFT STUDIES OF SOME AZOMETHINE AND β-AMINO DERIVATIVES

Thesis submitted to the
BHARATHIDASAN UNIVERSITY, Tiruchirappalli-620 024
In partial fulfillment of the requirements for the award of the degree of

Doctor of Philosophy in Chemistry

By

K.K. MOHAMMED AMEEN

(Ref. No.: 42969/Ph.D.K2/Chemistry/PT/2012)

Under the Guidance of

Dr. M. SYED ALI PADUSHA

Post Graduate and Research Department of Chemistry JAMAL MOHAMED COLLEGE (Autonomous)

College with Potential for Excellence
Accredited (3rd Cycle) with 'A' Grade by NAAC
DBT Star Scheme & DST-FIST Funded
(Affiliated to Bharathidasan University)
Tiruchirappalli – 620 020
Tamil Nadu, India

MARCH 2022

Dr. M. SYED ALI PADUSHA

Associate Professor Research Advisor and Convener PG & Research Dept. of Chemistry Jamal Mohamed College Tiruchirappalli- 620020

Email: padusha_chem@yahoo.co.in

Short Us The Editor Party

Res. Address:

64-Mohamed Nagar J. K. Nagar Khajamalai Post Tiruchirappalli- 23

Mobile: 9865447289

CERTIFICATE

This is to certify that the thesis entitled "SYNTHESIS,

CHARACTERIZATION AND DFT STUDIES OF SOME AZOMETHINE

AND β-AMINO DERIVATIVES" submitted by Mr. K.K. MOHAMMED

AMEEN is a bonafide record of research work done by him under my

guidance in the PG and Research Department of Chemistry, Jamal

Mohamed College (Autonomous), Tiruchirappalli 620 020 and that the

thesis has not previously formed the basis for the award to the

candidate, of any Degree/Diploma, Associateship, Fellowship or other

similar titles. The thesis as a whole is an independent work of the

candidate.

Place: Tiruchirappalli-20.

Date:

Dr. M. SYED ALI PADUSHA

(Research Supervisor)

K.K. MOHAMMED AMEEN

Research Scholar

PG and Research Department of Chemistry

Jamal Mohamed College (Autonomous)

Tiruchirappalli-620 020

DECLARATION

I hereby declare that the thesis entitled "SYNTHESIS,

CHARACTERIZATION AND DFT STUDIES OF SOME AZOMETHINE

AND β-AMINO DERIVATIVES" which I submit for the award of the

degree of Doctor of Philosophy to the Bharathidasan University is the

original work carried out by me under the guidance and supervision of

Dr. M. SYED ALI PADUSHA, Associate Professor, PG and Research

Department of Chemistry, Jamal Mohamed College (Autonomous),

Tiruchirappalli - 620 020.

I further declare that this work has not been submitted earlier in

full or in parts to any other university for the award of any other degree

or diploma.

Place: Tiruchirappalli-20.

Date:

(K.K. MOHAMMED AMEEN)

Document Information

Analyzed document K.K. MOHAMMED AMEEN - Chemistry - Ref. No. 42969.pdf (D131393247)

Submitted 2022-03-24T13:03:00.0000000

Submitted by Dr.S.Vanitha

Submitter email vanitha@bdu.ac.in

Similarity 5%

Analysis address navitha.bdu@analysis.urkund.com

Sources included in the report

	oos metadea m the report		_
SA	Janani Manuscript.docx		
	Document Janani Manuscript.docx (D67849637)		
SA	Thesis-Sundramoorthy S.pdf		
JA	Document Thesis-Sundramoorthy S.pdf (D40374307)		
2.4	1517030018-S.pdf	ПП	
SA	Document 1517030018-S.pdf (D50997848)		
	Bharathidasan University, Tiruchirappally / (S.Sangeetha Margreat) Thesis.pdf		
A	Document (S.Sangeetha Margreat) Thesis.pdf (D110838983)	00	
	Submitted by: bdulib@gmail.com		i
	Receiver: bdulib.bdu@analysis.urkund.com		
A	chapter 5.pdf		
	Document chapter 5.pdf (D35631008)		•
Λ	1216060011-SSS.doc		
SA	Document 1216060011-SSS.doc (D21279067)		4
	1216060003-S.docx		
A	Document 1216060003-S.docx (D17682077)		
	Tintu K Kuruvilla.pdf		
A	Document Tintu K Kuruvilla.pdf (D43303222)		
	A17MPPH02.docx		
A	Document A17MPPH02.docx (D41026489)		
	09-12-16sathesh Thesis aligned.docx		
A	Document 09-12-16sathesh Thesis aligned.docx (D24163307)		
_	1615799112-thesis-14112019.pdf		
A	Document 1615799112-thesis-14112019.pdf (D58843842)		
•	Abstract and Chapters (1).docx		
A	Document Abstract and Chapters (1).docx (D128637526)		
	Dodament hostidet and empreis (1). does (D12005) 520)		

ACKNOWLEDGEMENT

All Praise to the **Almighty**, the most beneficent and merciful who blessed me with enough strength and mercy to complete this research work successfully.

I express my hearty gratitude to **Dr. M. Syed Ali Padusha,** a dynamic academician and vibrant research advisor, Associate Professor of Chemistry, Jamal Mohamed College (Autonomous), Tiruchirappalli, for his copious guidance throughout my research work. May the almighty bless him and his family with utmost grace.

I express my sincere gratitude to **Dr. A. K. Khaja Nazeemudeen Sahib,** Secretary and Correspondent, **Hajee. M. J. Jamal Mohamed Sahib,**Treasurer, **Dr. K. Abdus Samad,** Assistant Secretary and Directors of Management committee of Jamal Mohamed College (Autonomous), for provided me an opportunity to pursue the research work in this esteemed institution.

I convey my deep sense of gratitude to **Dr. S. Ismail Mohideen,** Principal, Jamal Mohamed College (Autonomous), for his enthusiastic support and motivation.

I whole heartedly thank **Dr. M. Mohamed Sihabudeen,** Additional Vice-Principal, Associate Professor and Head, PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), for his motivation and encouragement throughout the research work.

I express my sincere thanks to the Doctoral committee members **Dr. J. Princy Merlin,** Associate Professor and Head, PG and Research Department of Chemistry, Bishop Heber College (Autonomous), Tiruchirappalli and **Dr. J. Sirajudeen,** Assistant Professor of Chemistry, Jamal Mohamed College (Autonomous) for their valuable suggestions and support throughout the period of research.

It is my pleasure to express my gratitude to my teachers **Dr. M. Seeni Mubarak, Dr. A. Jafar Ahamed,** Associate Professors, PG and Research

Department of Chemistry, Jamal Mohamed College (Autonomous) and (Late) **Dr. A. Burkanudeen** for their encouragement and motivation during my research work.

I also thank **Dr. R. Khader Mohideen**, **Dr. A.M. Mohamed Sindhasha** and **Dr. S. Mohamed Salique** Former Principals, Jamal Mohamed College, Tiruchirappalli and **Dr. A. Abdul Jameel and Dr. M.I. Fazal Mohamed** Former Heads, PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous) for their continuous support during the course of study.

I extend my immense thanks to **Dr. F. M. Mashood Ahamed,** Assistant Professor, PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), for his helping hands during this research.

It is a great joy to express my thanks to **Dr. N. Mujafarkani**, Assistant Professor, PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous) and the fellow research scholars, **Dr. T. Chandrasekaran**, **Dr. M. Suresh**, **Mr. D. Parthasarathi** and **Mr. R. Manoj Kumar** for their support during this tenure.

I am grateful to **Mr. Senthil Kumar,** EUMIC Laboratory, Tiruchirappalli, **SAIF IIT** Chennai, **VIT University**, Vellore for the technical support provided.

I wish to record my thanks to all the **Teaching** and **Non-Teaching**Staff Members of the Department for their timely help during my research.

It is my great honor to thank my parents Mr. Aboobacker K.K and Mrs. Rukiyya MT, Uncle Mr. Hamza VK, Aunt Mrs. Jameela VK, my beloved wife Mrs. Saniya VK, Daughters Nihla, Minha and Tamanna, Sister, Haseena KK and Cousin Abul Falal A for their support and encouragement during this research work.

I take this opportunity to thank Manager, **Janab PP. Unneen Kutty Moulavi**, Correspondent **Raheem** and my colleagues of Puliyaparamb Higher Secondary School, Kodunthirapully, Palakkad, Kerala for their help rendered during my research work.

(K.K. MOHAMMED AMEEN)

Content

	Page. No
Chapter-I	1
Introduction	1
Chapter-II	
Synthesis of azomethine compounds via Schiff reaction	42
(MA1-MA5)	
Chapter-III	
Synthesis of azomethine compounds via Schiff reaction	68
(MA6-MA10)	
Chapter-IV	00
Synthesis of β -amino carbonyl compounds	92
Chapter-V	
Synthesis, characterization and DFT studies of MA14 &	106
MA15	
Summary and Conclusion	149
References	152

Introduction

1.1. Schiff Condensation

Imines are the compounds derived from the reaction of an aldehyde or ketone with primary amine in the presence of an acid as catalyst and were first reported by Hugo Schiff. The common structural feature of these compounds is the azomethine group with a general formula RHC=N-R', where R and R' are alkyl, aryl, cyclo alkyl or heterocyclic groups which may be variously substituted. These compounds are also known as anils, imines or azomethines.

Schiff bases are the intermediates in organic reactions and are further explored for their utility. Azomethine group of these compounds has a great attention as precursor in huge organic synthesis due to their biological applications such as antitubercular, anticancer, CNS depressant, antibacterial antimicrobial activity, anti-inflammatory, antico nvulsant, antitumor, antihypertensive activity, anti HIV activity, plant growth inhibitors, and insecticidal properties. The Schiff bases are an intermediate in the biologically important transamination, racemication reactions and amino protective groups in organic synthesis.

They were used as protective agent in natural rubber. An example of a biologically important aldehyde is *pyridoxalphosphate*, which is the active form of the vitamin B6. Vitamin B6 serves as a coenzyme by forming an imine with an amino acid grouping an enzyme. The coenzyme, bound to the enzyme, is involved in transamination reaction, the transfer of the amino group from one amino acid to another, which is important in the metabolism and the biosynthesis of amino acids. In the last step, enzyme-catalyzed hydrolysis cleaves the imine to pyridoxal and the modified amino acid. An imine linkage between the aldehyde derived from vitamin A and the protein opsin in the retina of the eye plays an important role in the chemistry of vision. Vitamins are also called coenzymes, meaning that they are important to the functioning of many enzymes, which are large proteins that catalyze chemical changes in cell.

Moreover the reactions of azomethine involving in ring closure reaction to generate a wide range of five, six and seven members rings of heterocyclic molecules by reacting with 2-aminopyridine, 4-isopropyl benzaldehyde, 3,4,5-trimethoxy benzaldehyde, 3-aminobenzo trifluride derivatives are playing vital role as active substances in biological systems and liquid-crystalline compounds. Therefore the synthesis of such compounds has gained greater importance. A large number of different Schiff base ligands have been used as cation carriers in potentiometric sensors as they have shown excellent selectivity, sensitivity and stability for specific metal ions. Schiff bases have been

studied for their important properties in catalysis. They show catalytic activity in hydrogenation of olefins. They find applications in biomimetic catalytic reactions.

An interesting application of Schiff bases is their use as an effective corrosion inhibitor, which is based on their ability to form a monolayer spontaneously on the surface to be protected. Many commercial inhibitors include aldehydes or amines, but presumably due to the C=N bond the Schiff bases function more efficiently in many cases. The principal interaction between the inhibitor and the metal surface is chemisorption. The inhibitor molecule should have centers capable of forming bonds with the metal surface by electron transfer. In such cases the metal acts as an electrophile and the inhibitor acts as a Lewis base. Nucleophilic centers, such as oxygen and nitrogen atoms, of the protective compound have free electron pairs which are readily available for sharing. Together with the atoms of the benzene rings they create multiple absorption sites for the inhibitor thus enabling stable monolayer formation. Synthesis, characterization and structure activity relationship (SAR) of Schiff bases have been studied worldwide. Several studies showed that the presence of a lone pair of electrons in sp² hybridized orbital of nitrogen atom of the azomethine group is of considerable chemical and biological importance. They involved in normal cell processes by the formation of a hydrogen bond between the

active centers of cell constituents and sp² hybridized nitrogen atom of the azomethine group.

J.Popelis et.al., have reported the synthesis of imines by reacting furylacroleins and amino pyridines. They have employed zeolite molecular sieves as adsorbent. An interesting result revealed from their study was that the zeolites served as good dehydrating agents and catalyst for the synthesis [1]. Adnan dib has reported the synthesis of imines derived from acetyl acetone. The author also carried out computational study to explain the geometry, heat of formation and binding energy [2].

Synthesis of 1-(4-methoxyphenyl)-3-[(1E)-2-(pyrimidin-5-yl) ethylidene]urea and its analogues using phenyl urea derivatives and aisaldehyde were reported by V.R.Nagavolu et.al. The team also reported the in-vitro anti-oxidant activities of the compounds employing hydrogen peroxide free radical inhibition method [3].

Sunita Bhagat et.al, have reported aqueous mediated synthesis of imines by reacting salicylaldehyde and aromatic amines employing microwave irradiations and established that the yield obtained by this method is higher than the conventional method [4]. Jumbad.H. Tomma et.al, have reported the Schiff bases containing pyrimidine units obtained by reacting chalcones with urea/ thio urea [5].

2N-salicylidene-5-(p-nitro phenyl)-1,3,4-thiadiazole was prepared by reacting 4-nitrobenzoic acid and thiosemicarbazide in the presence of phosphorous oxy chloride and its antibacterial activity was reported by Emad yousif et.al, The results showed that the compound was active against *S.aureus*, *S.typhi and E.Coli* [6]. Rishikesh.V.Antre et.al. have reported the microwave irradiated synthesis of imines derived from pyridines attached with pyrazolone moiety [7].

Hina zafar et. al, have reported the synthesis of macrocyclic Schiff base by reacting 1,2-diphenylethane-1,2-dione dihydrazone and dimethyl/diethyloxalate. They also investigated the antimicrobial and anticancer activities of the compounds. The results revealed that the synthesized compounds were possessed good activity against HeLa, MCF7 and Hep3B human cancer cell lines [8]. Wound healing bio materials was synthesized by Y. Dong and W. Wang. The authors have

prepared the Schiff bases as bio active hydrogels and employed it for healing the wounds and in the delivery of stem cells [9].

Hellen et.al, have synthesized the biopolymeric scaffolds using Chitosan and salicylialdehyde derivatives and investigated their antimicrobial and anti-cancer activities. The results showed that the synthesized compounds were potent against MCF-7 human breast cancer cell line [10].

DNA interaction, molecular docking and antitumor activities of the compounds derived from o-vanillin have been reported. The results revealed that the compounds have effective binding via hydrogen bonding with active receptor protein DNA topoisomerase [11]. Anti cancer activity of the compounds derived from 3-aminopyrazole and dialdehydes were reported. The investigation showed that the synthesized compound possessed higher cytotoxicity and suggested that the heterocyclic moiety have effective bio activity [12].

The compounds derived by reacting ethyl amino benzo nitro furan and salicylialdehyde derivatives were reported. The study reveals that the derived compounds are effective scaffolds on combating microbial infections [13].

Antioxidant activity, antihypertensive activity and angiotensin-I converting enzyme inhibition activities of the compounds synthesized by reacting amino triazole and aromatic aldehydes were reported [14].

Aminophenazone and benzaldehyde derived compounds were reported and their analysis and anti-inflammatory activities in mice and antipyretic activity in rabbits were investigated. The results showed that the compounds are effective in reducing fever in rabbits after 3-4 hours [15].

Condensation product of salicylialdehyde and amino phenylmethyl thiazole and its anticancer activity against breast cancer MCF-7, liver cancer HepG2, lung carcinoma A549 and colorectal cancer HCT116 cell lines were evaluated. The results showed that the compound exhibits activity against the cell line in the order HepG2>MCF-7>A549>HCT116 [16]. The compound derived from anisaldehyde and their adsorption properties were reported [17].

The synthesis and pharmacological activity of N-[(1Z)-(substituted aromatic) methylidene] pyridine-4-carbohydrazides and N-[3-chloro-2-

(substituted aromatic)-4-oxoazetidin-1-yl]pyridine-4-carboxamides were reported. The compounds were investigated for their antidepressant activity and in the elevated plus maze test and passive avoidance test in mice for the evaluation of nootropic activity. The compounds exhibited higher antidepressant activity and the compounds with para nitro substitution on the aryl ring showed the highest nootropic activity. The results further confirm the fact that the 2-azetidinone skeleton has potential as a CNS active agent and can be explored for the development of more potent and safe CNS active agents for therapeutic use [18].

The synthetic protocol of 2-Amino-benzimidazole condensation with acetyl acetone, ethyl cyanoacetate and 3, 4-dimethoxy benzaldehyde established to develop Schiff bases was reported. Further the antimicrobial activity of the ligands against bacterial strains and fungal strains were investigated [19]. The Schiff bases derived from the condensation between mono and diacetyl ferrocine and 2-aminobenzenthiol in different molar ratio, lead to series of mono and binuclear complexes was reported. Synthesized Schiff bases were tested for the growth inhibitory activity against phytopathogenic bacteria and

fungi, including some antibiotic resistant, make it interesting for a practical use as antimicrobial agent. It is obvious that the activity become more pronounced when two feroccine rings are coupled and more toxic against bacteria and fungi [20].

The synthesis and structural characterization of mixed ligand 2,6-pyridinedicarboxaldehyde complexes derived from bis(ohydroxyphenylimine), 2,6-pyridine dicarboxaldehyde bis(phydroxyphenylimine) and 2-aminopyridne are reported. The compounds have been screened for their antimicrobial activities and their findings have been reported by comparing with some known antibiotics [21]. Schiff base derived from 2-thiophene carboxaldehyde and 2aminobenzoic acid are reported. The synthesized compounds were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the compounds exhibit potent antimicrobial activity [22].

2-Amino-5-(3-fluoro-4-methoxyphenyl)thiophene-3-carbonitrile was synthesized from 1-(3-fluoro-4-methoxyphenyl)ethanone, malononitrile, a mild base and sulfur powder using Gewald synthesis technique and the intermediate was treated with 1,3-disubstituted pyrazole-4-carboxaldehyde to obtain the Schiff bases. 1,3-disubstituted pyrazole-4-carboxaldehyde derivatives have been synthesized by Vilsmeier-Haack reaction in the course of a multi-step reaction. The

compounds have been screened for their *in vitro* antimicrobial activity and the results showed that the compounds have excellent activity [23].

5-methyl thiophene-2-carboxaldehyde-carbohydrazone was synthesized and evaluated for antioxidant activity employing hydroxyl radical scavenging, DPPH, NO, reducing power methods *in vitro*. The obtained IC₅₀ value of the DPPH activity for the compound was found to be high. Microbial assay values of the above compound against *Staphylococcus aureus*, *Escherichia coli*, *Rhizocotonia bataticola* and *Alternaria alternata* were found to be higher [24].

Przybylski P et. al., investigated the wide application of Schiff bases like pigments and dyes, catalysts, intermediates in organic synthesis as polymer stabilisers. Further, biological activities such as antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties have also been studied [25]. Guo Z et. al., reported that Imine or azomethine groups are present in various natural, natural-derived, and non-natural compounds which are responsible for their biological activity [26].

Kobayashi et.al, studied the addition of organometalic reagents or hydride which undergo reduction in the C=N group to form asymmetric carbon-carbon bond [27]. Ueno et.al, concludes that imines are useful in the formation of six member nitrogen containing heterocyclic compounds employing hetero Diel's- Alder reaction [28]. Allen and Tidwell proposed Staudinger reaction with ketene to furnish biologically important β-lactam ring [29].

Malaria is a severe morbidity of humans and other animals.

The imino group of Schiff bases has been found to be valuable

function to confer antimalarial activity. Secondary metabolite produced by plants belonging to the families *Ancistrocladaceae* and *Dioncophyllaceae* features an imine group in its structure. The compound has shown potent activity against *P. falciparum*. Some novel aldimine and hydrazone isoquinoline derivatives prepared by reacting 1-formyl-5-nitroisoquinoline with amines showed activity against a chloroquine-resistant *Plasmodium* falciparum strain (ACC Niger). In particular the compound *N*-[(1*E*)-(5-nitro-1-naphthyl)methylene]-1-[2-(trifluoromethyl)phenyl] methanamine showed an IC₅₀ of 0.7 µg/mL against *P. falciparium* was reported by Rathelot et.al [30].

Misbah ur Rehman et.al., reported the *In-vitro* antimicrobial studies of acetyl acetone derived compounds against *B. subtilis*, *S. aureus*, *E. coli*, *P. aeruginosa*, *C. albicans*, and *A. niger*. All the compounds were reported to exhibit moderate to good antimicrobial activity [31].

Dueke-Eze et.al., reported that 2-amino pyridine derivatives inhibit metabolic growth of *S. aureus* and *E. coli*. The antibacterial activity of the compounds depends on the nature of substituent present on the aldehyde [32].

$$N \rightarrow NH_2$$
 $N \rightarrow NH_2$ $N \rightarrow N$ $N \rightarrow N$

Francis K. Ngounoue et.al, worked on acetyl acetone derivatives and their antimicrobial activitiy against *E. coli*, *P. aeruginosa*, *S. typhi*, *S. aureus* and antifungal activities against *C.albicans* [33]. Prasad A et al., investigated the compounds derived from acetyl acetone with amines such as aniline, 2-amino phenol, para-anisidine and hydrazine hydrate. The compounds exhibit high activity against the Bacterial strains [34].

A series of novel 3-(4-(benzylideneamino) phenylimino) fluoroindolin-2-one derivatives were synthesized and evaluated for analgesic, anti-inflammatory, and ulcerogenic index activities. Results displayed that compounds exhibited significant analgesic activity anti-inflammatory and activity comparable to reference standard diclofenac sodium. Interestingly, the test compounds showed only mild ulcerogenic side effect when compared to aspirin [35]. Schiff base derived from 4-aminoantipyrine (4-amino-1,5-dimethyl-2phenylpyrazole-3-one) and benzaldehyde derivative was tested for its anti-inflammatory activity. The results showed promising antiinflammatory activity which could be use in the of inflammatory diseases. The results of this study may lead to the development of a new therapeutic agent useful in fighting diseases caused by oxidative stress and inflammation [36].

A series of Schiff base derivatives of 4-aminophenazone (4APZ-1,5dimethyl-2-phenyl-1,2-dihydro-3*H*-pyrazol-3-one) with different aldehydes were synthesized. The synthetic compounds were screened for their anti-inflammatory, analgesic and antipyretic activities. Carrageen, an-induced paw oedema (CIPO) and histamine induced paw oedema (HIPO) methods were used to determine the anti-inflammatory activity of commercial sample of 4APZ and its synthesized Schiff bases in mice. The anti-inflammatory activity was in the order of 4APZAB > 4APZBB > 4APZCB > 4APZVn and all the test compounds exhibited considerable dose dependent inhibition of the paw oedema. The effect of the compounds on membrane stabilization was also determined which showed that compounds 4APZ (120 and 240 mg/kg doses), 4APZAB (160 mg/kg) and 4APZVn (600 mg/kg) produced highly significant inhibition (P < 0.001) of hypotonicity-induced haemolysis. Further, it was also observed that 4APZ (120 and 240 mg/kg doses), 4APZBB (500 mg/kg) and APZCB (150, 300 and 600 mg/kg dose) produced highly significant inhibition (P < 0.001) of albumin denaturation; a consistent dose dependent anti-inflammatory effect of test compounds was compared to the standard drug. Analgesic activity of the compounds was investigated by formalin-induced paw licking (FIPL) and acetic acidinduced writhing (AIW) methods in mice. It was observed that 4APZ (240 mg/kg), 4APZAB (160 mg/kg), 4APZBB (500 mg/kg), 4APZCB (600 mg/kg) and 4APZVn (600 mg/kg) showed analgesic effect with highly significant (P < 0.001) reduction of paw licking and writhing activity in the treated mice. The order of analgesic effect of the

compounds was 4APZAB > 4APZBB > 4APZVn > 4APZCB. Moreover, phenobarbitone-induced sleeping time (PIST) in mice was also studied but only 600 mg/kg of 4APZVn significantly increased the duration of induced sleep which also suggested its sedative property. Brewer's yeast was used to induce fever in rabbits and analyzed the compounds for their antipyretic activity. Different doses of 4APZ for different time durations (240 mg/kg-after 1 h, 120 and 240 mg/kg doses-after 2 h) produced highly significant (P < 0.001) inhibition of hyperpyrexia. Other compounds showed good antipyretic activity after 2, 3 and 4 h [37].

Although there are many therapeutic options for viral infections, currently available antiviral agents are not yet fully effective, probably due to the high rate of virus mutation. They may also cause any of a number of side effects. Salicylaldehyde Schiff bases of 1-amino-3hydroxy-guanidine tosylate are a good platform for the design of new antiviral agents. In fact, from a set of different 1-amino-3hydroxyguanidine tosylate-derived Schiff bases, 2-(3-allyl-2hydroxybenzylidene)-N-hydroxyhydrazine carboxi-midamide derivative was shown to be very effective against mouse hepatitis virus(MHV), inhibiting its growth by 50% when employed at concentrations as low as 3.2 µM [38].

A new series of 3-(benzylideneamino)-2-phenylquinazoline-4(3H)-ones were prepared through Schiff base formation of 3-amino-2-phenyl quinazoline-4H-one with various substituted carbonyl compounds and their cytotoxicity and antiviral activity were evaluated against herpes simplex virus-1(KOS), herpes simplex virus-2 (G), vaccinia virus, vesicular stomatitis virus, herpes simplex virus-1 TK-KOS ACVr, para influenza-3 virus, reovirus-1, Sindbis virus, Coxsackie virus B4, Punta Toro virus, felinecorona virus (FIPV), feline herpes virus, respiratory syncytial virus, influenza A H1N1 subtype, influenza A H3N2 subtype and influenza B virus. Compounds showed better antiviral activity against the entire tested virus [39].

Reactions aromatic amines with 3,3'-bithiophene-2,2'of dicarbaldehyde and 3,3'-bithiophene-4,4'-dicarbaldehyde gave the 2,2'-(*N*-(aryl)diimino)-3,3'-bithiophene 4,4'-(N-(aryl)diimino)-3,3'and bithiophene good Orthophenylenediamine in vields. with dicarbaldehyde dithieno[3,4-c;4',3'-e]azepino[1,2to give a|benzimidazole and dithieno[2,3-c;3',2'-e]azepino[1,2-a]benzimidazole and their characterization were reported [40].

Three new Schiff-base compounds were synthesized by treating 4,4'-diaminodiphenyl sulfide and pyrrole/thiophene/furan-2-carboxaldehyde in ethanol. The in vitro antibacterial and antifungal activities of the synthesized compounds were investigated using disc diffusion method. Schiff bases synthesized individually exhibited varying degrees of inhibitory effects on the growth of the tested microbial species [41].

$$X \rightarrow HC = N \rightarrow S \rightarrow N = CH \rightarrow X$$

Some new Schiff bases have been synthesized by the condensation of 2-aminophenol, 2-amino-4-nitrophenol/2-amino-4-methylphenol/2-amino benzimidazole with thiophene-2-carboxaldehyde/pyrrole-2-carboxaldehyde. The *in-vitro* antibacterial activity of the synthesized compounds has been tested against *Salmonella typhi*, *Bacillus coagulans*, *Bacillus pumills*, *Escherichia coli*, *Bacillus circulans*,

Pseudomonas, Clostridium and Klebsilla pneumonia by disc diffusion method. The quantitative antimicrobial activity of the test compounds evaluated using resazurin based microtiter dilution was assay. Ampicillin was used as standard antibiotics. Schiff bases individually exhibited varying degrees of inhibitory effects on the growth of the tested bacterial species. The antioxidant activity of the synthesized compounds was determined by the 1,1-diphenyl-2-picrylhydrazyl(DPPH) method. IC₅₀ value of synthesized Schiff bases were calculated and compared with standard BHA [42]. An inexpensive and efficient catalyst, P₂O₅/SiO₂ was employed to synthesize Schiff bases in higher yield was reported. The reaction was carried out at solvent-free condition and with simple synthetic procedure [43]. A new Schiff base, 3,5-dihydroxy-N'-(2,4,5-trimethoxybenzylidene)benzohydrazide hydrate (DTBH) synthesized and characterized by elemental analysis and X-ray single crystal diffraction. The compound crystallized in a monoclinic system. The antibacterial activities, cytotoxicities and effects of the compound on the contractility of isolated jejunal smooth muscle (IJSM) of rats were evaluated. The compound showed no antibacterial activity. No cytotoxic effects were found on Caco-2 cell line within 360 µM. However, it indicated significant inhibitory effect on the contractility of isolated jejunal smooth muscle in a dose dependent manner. The inhibitory effects are related to the activation of α and β -adrenoceptors [44].

1.2. Mannich Reaction

Mannich Reaction is a multi componet reaction (MCR) reported by Carl Mannich in 1912 which involves the reaction of non-enolizable aldehydes, amines, and enolizable ketones produced β-amino carbonyls also known as Mannich base. They have gained importance due to their applications in pharmaceutical industry and other applications including as agro chemicals and plant growth regulators. The chemistry of the amino alkylation of aromatic substrates by the Mannich reaction is of great interest for the synthesis and modification of biologically active compound having physical and chemical importance as well as physiological properties because the amino group can be easily converted into a variety of other functionalities. Mannich reaction offers a judicious method for introduction of basic amino alkyl chain in various drugs/compounds. Owing to its special features, a serious attention has been focused by several researchers on the synthesis and development of new Mannich bases.

One-pot Mannich reaction of vanillin, aniline and cyclohexanone catalyzed by ionic liquid triethanol ammonium chloroacetate was reported. Mechanism of the reaction was investigated using the density functional theory. The reaction started with a nucleophilic attack of aniline nitrogen at the carbonyl group of vanillin. The intermediate *a*-amino alcohol formed in this way was further subjected to protonation by the triethanol ammonium ion yielding the iminium ion. Theoretically, the obtained iminium ion and the enol form of cyclohexanone can build the protonated Mannich base via the *anti* and syn pathways. The

chloroacetic anion spontaneously abstracts the proton yielding the final product of the reaction *anti* 2-[1-(*N*-phenylamino)-1-(4-hydroxy-3-methoxyphenyl)]methyl cyclohexanone. The syn pathway requires lower activation energy but the *anti* pathway yields a thermodynamically more stable product, which implies that the examined Mannich reaction is thermodynamically controlled [45].

Subrahmanian Supriya et al. have reported Mannich amino methylation reactions of a series of bis(α-aminoacidato)metal(II) complexes and their Single crystal XRD studies. One of the amino methylated product has been employed as a catalyst in the colour removal of the pyrocatechol violet dye [46]. Two series of *N,N'*-bis[aryl-(2-hydroxynaphthalen-1-yl)-methyl]-piperazines and *N,N'*-bis(arylmethyl)-*N,N'*-bis(2-hydroxynaphthalen-1-yl-methyl)-ethylenediamines were synthesized under solvent free conditions using micro wave irradiation and their X-ray diffraction studies have also been reported by Po-Jung J. Huang et al. [47].

Chew Hee Ng et al. have reported the effect of different a-substituents in the reaction of copper (II) chelated amino acids with formaldehyde and acetamide [48]. Scott K. Bur and Stephen F. Martin have investigated the stereoselectivity and synthetic utility of some vinylogous derivatives synthesized by the addition of a dienol into an iminium ion [49].

Three-component Mannich reaction of ketones, aromatic aldehydes and aromatic amines catalyzed by four Bronsted acidic ionic liquids comprising of iodide and borate was reported. Ionic liquids have been used as catalyst and solvent to produce some Mannich bases in high yield (75%) and shorter reaction time (20 minutes). Work up has been facilitated by simple extraction with water to recover ionic liquid for recycling up to four times without any significant loss in activity [50].

3-hydroxy-2-methyl-5-(piperidin-1-ylmethyl)pyridin-4(1H)-one, 3-hydroxy-2-methyl-1-propylpyridin-4(1H)-one and their analogues have been reported by Ahshin Fassihi et al. Further it is revealed from the antimicrobial evaluation, multiple linear regression analysis and QSAR studies of the synthesized compounds that are active against *C. albicans* and *S. aureus* [51].

A new end-off type acyclic ligand possessing highly reactive aldehyde group and two N-methyl piperazine arms, 2,6-bis[(4-methyl piperazin-1-yl)]-4-formyl phenol which may lead to the extention of its structure in to a supramolecular moiety have been reported by K. Shanmuga Bharathi et al. [52].

Zhi-Liang Yuan et al. have reported a series of trimethyl siloxyfuran derivatives via asymmetric vinylogous Mannich reaction involving aldimines and trimethylsiloxyfuran using silver acetate as catalyst [53].

Regioselective synthesis of 2-[(4-methylpiperzine-1-yl)methyl]-2H-1,2,4-triazole-3(4H)-thiones and their pharmacological properties have been reported by Arun M. Isloor et al. Further they have studied that the compounds possessing p-chloro, p-methoxy and p-methyl substituents in phenyl ring exhibits potent antimicrobial activity [54].

Cyclization of N-substituted thiosemicabazides resulted in pyrazoline derivatives with two chelating arms possessing in-vitro antiamoebic activities have been reported by Kakul Husain et al. [55].

A series of pyrazinamide derivatives were synthesized by Chaluvaraju K C and Ishwar Bhat K and their antimicrobial screenings were evaluated against *E. coli, B. substilis, S. aures, A. Niger* and *C. albicans* using amoxicillin, ciprofloxacin and ketoconazole as standard drugs [56].

Cerium Chloride catalysed reaction and solvent free microwave irradiation methods were employed to synthesize 2-((2,4-difluorophenylamino)(4-fluorophenyl)methyl)cyclohexanone and its analogous and their X-ray diffraction studies have been reported by U. Sankappa Rai et al. Further the antimicrobial evaluation of the synthesized compounds show that the compounds bearing halogen substitution, pyridine and indole substitution and methoxy substitution possess enhanced activity [57].

M. Lakshmi Kantam et al. have reported the nano crystalline magnesium oxide catalyzed synthesis of Ethyl-3-{[(4-methylphenyl)sulfonyl]amino}-2-(methyl-sulfanyl)-3-phenylpropanoate, N-[2-Cyano-2-(methylsulfanyl)-1-phenylethyl]-4-methyl-1-benzenesulfonamide and their analogues by reacting N-sulfonyl aldimines with sulfonium salts. Further was reported that the synthesized compounds bearing sulphur atom possess diverse biological activities [58].

Trupti S. Chitre et al. have reported the synthesis, molecular docking studies and antimycobacterial evaluation of 1,3,4-(thiadiazol-2-ylamino)methyl-5-(pyridin-4-yl)-1,3,4-oxadiazol-2-thiones. It is revealed from the study that the compound having methoxy group exhibit significant antimycobacterial activity [59].

Ahlam J. Abdul ghani and Nada M. Abbas have reported the synthesis of (Z)-N1-(1-(morpholinomethyl)-2-oxoindolin-3-ylidene)ethane bis(thioamide), (Z)-N1-(1-((diphenylamino)methyl)-2-oxoindolin-3-ylidene)ethane bis(thioamide) and their antimicrobial and cytotoxicity studies against human epidermoid larynx carcinoma (Hep-2) cell line. [60]

Synthesis of acetophenone and 2-acetyl thiophene derivatives via conventional heating method and microwave irradiation method was reported by Ebru Mete et al. From the study it has been found that the compounds bearing unsaturated ketones show potent biological activity [61].

QSAR studies of quinoline derivatives have been reported by Arthur Y. Shaw et al. They have examined the variation in the anticancer activity by replacing some subtituents. It is revealed that the replacement of sulfonyl group with methylene group or the replacement of piperazine ring with ethylenediamine group increase the potency. On the other hand, as 8-hydroxyquinoline was replaced with phenol, 3-hydroxypyridine and 1-naphthol, a dramatic decrease in activity was observed. These results indicating that 8-hydroxyquinoline is a crucial scaffold for activity [62].

2-hydroxy-3-(phenyl((pyridin-2-ylmethyl)amino)methyl)
naphthalene-1,4-dione¹⁵ and its derivatives exhibiting various biological
and pharmacologic properties were reported by Amanda P. Neves et al
[63].

Elizabeth Malamidou-Xenikaki et al. have reported the synthesis of 9-(ω -nitroalkyl)-4,9-dihydro-3Hb-carbolines using 2-[1-(ω -Nitroalkyl)-1H-indol-3-yl]ethylformamides through a diastereoselective intramolecular N-acyliminium cyclization reactions. Further they have investigated the improvement of the diastereoselectivity of the reactions using chiral tryptamine substrates and chiral acylating agents [64].

Elena Maria Mosoarca et al. have reported the synthesis of N,N-tetra-(4-antipyrylmethyl)-1,2-diaminoethane their cytotoxic evaluation against human tumor cell lines, glioblastoma multiforme, breast cancer, hepatoma and lung carcinoma and nontumor cell lines MDBK and BALB/c 3T3 clone 31 [65].

Nanocrystalline MgO catalysed synthesis of Betti bases (1-(a-aminoalkyl)-2-naphthols) via Mannich pathway involving the condensation of napthol, aldehyde and alkylamine was reported by Bikash Karmakar and Julie Banerji. The report reveals that the metal oxide catalyst employed in the synthesis find excellent applications such as active adsorbent for gases and for destruction of hazardous chemicals [66].

Resacetophenone derivatives synthesized using three variable electronegative atoms of urea, thiourea and guanidine and their antioxidant activities by DPPH have been reported by Arpit D. shah et al. Further they have reported that the synthesized compounds bearing oxygen and sulphur possess increased activity [67].

of Mannich bases of thiosemicarbazide Synthesis mutual prodrugs was reported. The compounds were screened for antifungal activity using BHI (brain heart infusion) broth dilution method against Candida albicans and Apergillus niger. Docking of synthesized compounds was done on CYP51A1, P45014DM (Lanosterol 14 ademethylase enzyme) using Vlife MDS 3.5 to conform the mechanism of antifungal activity. Docking study showed a strong hydrophobic interaction between amino acid residues Arganine (ARG141), Glutamine (GLU146), Leucine (LEU54), Lycine (LYC227), and Threonine (THR147) with the carbon of ketone, nitrogen of amine and sulfur of thiosemicarbazide. Strong Vander wall's interactions are also observed with the carbon of ketone, nitrogen of amine and sulfur of thiosemicarbazide. Analogs with aromatic and substituted aromatic aldehydes showed least activity, while analogs with aliphatic aldehyde,

ketones and amines showed greater activity in *C. albicans* compared to *A. niger*. Analogs having morpholine as amine showed almost similar activity in both [68].

Recyclable bismuth nitrate catalyzed, environmental pollution free, one pot synthesis was by reported by sheik Mansoor et al. by reacting benzaldehyde, acetophenone and substituted aromatic amines employing simple procedure and mild condition [69].

Pandeya S N and Neha Rajput have reported sulphated zirconia catalyzed synthesis of benzodiazepine derivatives which are having chloro group found to possess anticonvulsant activity and good central and pheripheral analgesic activity [70, 71].

Sindhu T. J et al. have reported the synthesis, comparative molecular docking studies and antibacterial activities of 1, 4-Oxazine and 1, 4- Thiazine derivatives [72]. 1-{(2E) -1-[(2-methylphenyl) amino]-3-phenylprop-2-en-1-yl) thiourea and 1-{(2E)-1-[(2-methylphenyl) amino]-3-phenylprop-2-en-1-yl}urea exhibit antibacterial activity against Staphylococcus aureus, Klebsiella Pneumonia, Salmonella typhi, Escherichia coli and Pseudomonas aeraginosa and anti oxidant activity have been reported by G.Vishnuvardhanaraj et al. [73].

N-[1-piperidinobenzyl] acetamide, N-[1-morpholino(-4-nitrobenzyl)] benzamide³⁶ and their analogues and their antibacterial activity against *Agrobacterium sp* have been reported by Rimpy gupta et al. [74].

Wafaa S. Hamama et.al have investigated the behavior of Mannich reaction towards 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione. Further they have reported a series of cyclized derivatives viz, 6-(4-(6,8-Dimethyl-5,7-dioxooctahydropyrimido[4,5-d]pyrimidin-3(4H)-yl)phenyl)-1,3-dimethyl-5,6,7,8-tetrahydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione employing different pathways with varying yield [75].

Rathi Paresh P et al. have reported the synthesis of 2-[(1, 3-benzothiazol-2-ylamino) methyl]-5-methyl-2, 4-dihydro-3h-pyrazol-3-one and its in-vitro anti-inflammatory activity by bovine serum albumin denaturation inhibition method [76].

A series of N-Mannich bases of benzimidazolyl substituted derivatives were reported. The synthesized compounds were evaluated for their antimicrobial, anthelmintic and insecticidal activities using standard drugs, streptomycin, Nystatin, piperazine hydrochloride and cypermethrin respectively. The result showed that all the compounds possess promising activity against the selected microbes [77].

Baldwin Mathew V et al. have reported the synthesis, antitubercular activities and molecular docking studies of some pyrazine

derivatives. The synthesized compounds were subjected to docking studies against viral protein CFP 10-ESAT6 complex (3FAV) from *Mycobacterium tuberculosis* using Argus lab software. The result indicates that the compounds having sulfadimidine shows best ligand pose energy and potent antitubercular activity [78]. Synthesis of 3-dihydroxanthone derivatives and their molecular docking studies and kinetic studies show their potency as anticholinesterase agents were reported by Jiangke Qin et al. [79].

Dong Ho Park et al. have reported a series of 2,4-diaryl-3-azabicyco[3.3.1]nonan-9-ones and their antioxidant properties [80]. Iodine catalyzed flavanone and tetrahydropyrimidine derivatives were reported by Veerababurao Kavala et al. [80]. Someshwar D. Dindulkar et al. have reported the synthesis of 2-naphthol derivatives employing copper triflates as an efficient catalyst under solvent free conditions [81].

Onkara. P et al. have reported the ionic liquid phase and microwave assisted synthesis of 3-substituted aminophenyl-4-hydroxycoumarins. Further docking studies of the synthesized compounds were carried out using VLife MDS 3.5 software incorporating GA docking method to study their antimicrobial activity. [82].

Suman bala et al. have reported the synthesis of β -amino carbonyl derivatives possessing heterocyclic ring with two/three hetero atoms and their diverse biological and pharmacological activities viz., antimicrobial, anticonvulsant, anti-inflammatory, anthelmintic, anticancer, antioxidant and analgesic activities [83].

M. Sivakami et al. have reported the synthesis, antioxidant and cytotoxic activities of 1-(naphthalein-2-yloxy)(phenyl)(methyl) thiourea using HeLa cell line. Further the report shows that the synthesized compound contains thio urea has enhanced antimicrobial and cytotoxic activities [84]. K. Chakkaravarthi et al. have reported the synthesis of 3-(phenyl(*p*-tolylamino)methyl) naphthalene-2-ol and 3-((1Hbenzo[d]imidazole-1-yl)methyl)naphthalene -2-ol. Further the study reveals that the compound possessing benzimidazole and napthol moiety have excellent antioxidant property [85]. Beena Thomas et al. have 2, 3-bis(4-chlorophenyl)-5-(morpholin-4-ylmethyl)-1,3reported thiazolidin-4-one and its analogues and their antitubercular activities [86].

Synthesis of 1-(3-(5-Chloro-2,4-dihydroxyphenyl)-3-oxopropyl)piperidin-1-ium chloride and their analogues. These compounds are subjected to evaluation of Hsp90 ATPase inhibition activity by the colorimetric Malachite green assay and antiproilferative effect against PC3 pancreatic carcinoma cells have been reported by Sayan Dutta Gupta et al. The activity profiles of the synthesized compounds were correlated well with their docking results [87].

Ionic liquid phase synthesis and antitubercular activities of 1-((5-benzoyl-2,4-dihydroxyphenyl) (2-chloro-6-methoxyquinolin-3-yl) methyl) urea⁵⁷ and its analogues were reported by Hitendra M. Patel et al. [88].

Sheela Joshi et al. have reported the synthesis and LD₅₀ test of derivatives of 2-amino-9 [{(1,3 di hydroxy propane-2yl) oxy} methyl] 6-9 dihydro-3H-purine-6-one (Ganciclovir derivatives). This study reveals that the compounds are potential source with less side effect [89]. Gheorghe Roman have investigated the chemistry of electron-rich, monocyclic five-membered heterocycles with one heteroatom, thiophene and furan derivatives and their reactivity and applications [90].

Synthesis of azomethine compounds via Schiff reaction (MA1-MA5)

Materials and Methods

Melting points were measured in an open capillary on Mel-Temp apparatus and are uncorrected. IR spectra were recorded on Perkin Elmer spectrometer using KBr pellets. H and H and KBr spectra were recorded on a Bruker AM-400 spectrometer for solution in DMSO-d6 with tetramethyl silane (TMS) as an internal standard. All the chemical shifts values were recorded as δ ppm. Mass spectra were recorded by EI method and HRMS was measured on a JEOL GC mate II mass spectrometer. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with silica gel-G coated plates.

2.1. Synthesis of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)amine (MA1)

To the ethanolic solution of 1-phenylethanamine (12.8 mL, 0.1 M), 2, 3-dichlorobenzaldehyde (17.5 g, 0.1 M) was added and refluxed for 6 h. The mixture was poured into a beaker contain crushed ice. The solid separated out was washed, filtered and dried over vacuum and recrystallized using ethanol. (Colour: Deep Brown solid; M.P: 171 °C)

Scheme: 2.1- Synthesis of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)

2.1.1. FTIR spectrum of (2, 3-Dichloro-benzylidene)-(1-phenylethyl)-amine (MA1)

The FT-IR spectrum of MA1 is presented in the Fig. 2.1. Aromatic C-H stretching in phenyl ring exhibits a band at 3068 cm⁻¹. A strong absorption band appeared at 2964 cm⁻¹ is due to C-H stretching. An absorption band at 1562 cm⁻¹ indicates C=N stretching. A band appeared at 719 is due to C-Cl stretching.

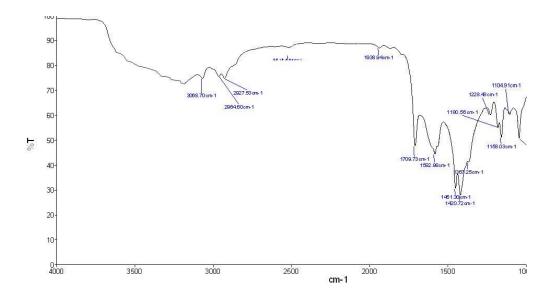


Fig. 2.1. FTIR spectrum of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)

2.1.2. ¹H-NMR spectrum of (2, 3-Dichloro-benzylidene)-(1-phenylethyl)-amine (MA1)

¹H- NMR spectrum of MA1 in the Fig 2.2 has peaks ranges from 7.2-7.5 are due to aromatic protons. Presence of azomethine and methine protons revealed from the peaks exhibited at 6.9 ppm and 5.9 ppm respectively. Methyl protons exhibited peak at 1.5 ppm.

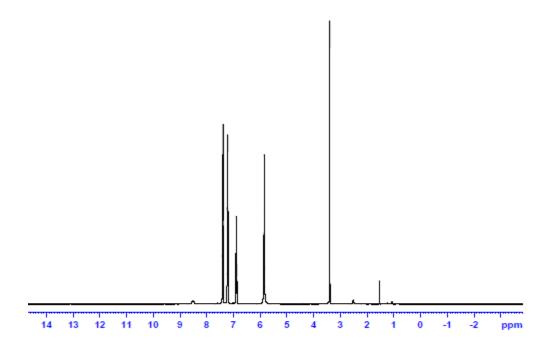


Fig.2.2. ¹H-NMR spectrum of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)

2.1.3. ¹³C-NMR spectrum of (2, 3-Dichloro-benzylidene)-(1-phenylethyl)-amine (MA1)

Fig. 2.3 represents the ¹³C-NMR spectrum of MA1. Azomethine carbon exhibits a peak at 162 ppm. Aromatic carbons show signals from 120 to 128 ppm. A peak appeared at 72 ppm shows the presence of methine carbon. A peak obtained at 22 ppm is due to methyl carbon.

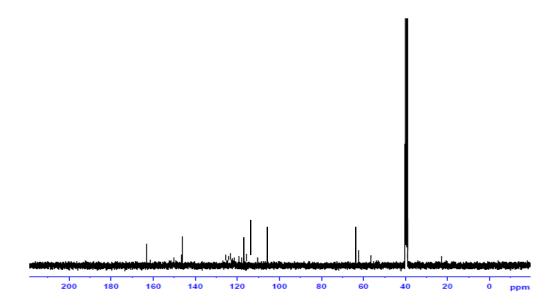


Fig.2.3.¹³C-NMR spectrum of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)

2.1.4. Mass spectrum of (2, 3-Dichloro-benzylidene)-(1-phenylethyl)-amine (MA1)

The Mass spectrum of MR4 is shown in the Fig 2.4. Exact mass of MA1 has been confirmed by its m/z appeared at 277.04.

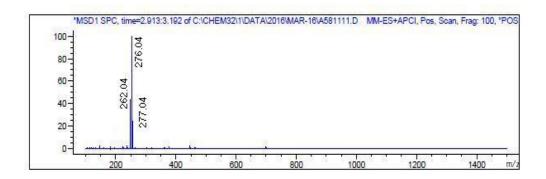


Fig.2.4. Mass spectrum of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)

2.1.5. Antimicrobial Screening

Materials and Methods

Bacterial cultures were obtained from Eumic analytical Lab and Research Institute, Tiruchirappalli. Bacterial strains were maintained on Nutrient agar slants (Hi media) at 4°C. Oflaxacin and Amphotericin B are positive standards for bacteria and fungi strains respectively.

Inoculum Preparation

Bacterial cultures were sub cultured in liquid medium (Nutrient broth) at 37°C for 8 h and further used for the test (10⁵-10⁶ CFU/mL). These suspensions were prepared immediately before the test was carried out.

Preparation of Culture Media

Muller Hinton Agar (MHA) medium

Muller Hinton agar medium is exclusively used for diffusion oriented Bacteriological experiments.

Ingredients	Grams / Liter			
Beef infusion	300 g			
Casein acid hydrolysate	17.50 g			
Starch	1.50 g			
Agar-agar	20 g			

The ingredients were added into the distilled water and boiled until the medium dissolve completely and the same was sterilized by autoclaving at 15 lb psi pressure (121°C) for about 15 minutes. The nutrient broth was prepared by the same composition without agar.

Antimicrobial evaluation of MA1

s.	Pathogen	Zone of inhibition (mm/mL)					
No		25 μL	50 μL	75 μL	100 μL	Control	
1.	S. aureus	12	15	17	20	20	
2.	E. coli	12	14	16	18	28	
3.	A. niger	17	20	22	25	30	

Table 2.1. Zone of inhibition of MA1

Zone of inhibition of the compound MA1 given in the Table 2.1 and Fig 2.5.1-2.5.4 reveals that the compound exhibits very less activity against *E.coli*. It shows moderate activity against *A. niger*. Potency of the compound is found to be high against *S. aureus*. The compound is found to be potent against gram positive bacteria and less active against gram negative bacteria and moderate against fungi strain when compared to the standard drug employed.

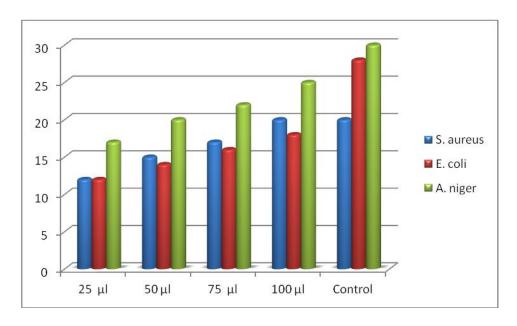


Fig.2.5.1.

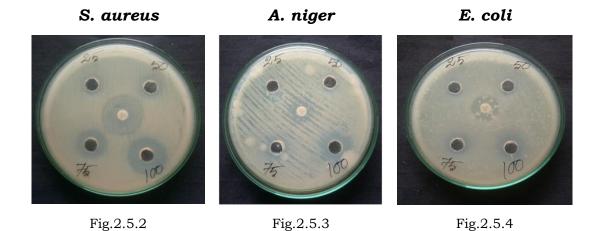


Fig.2.5.1-2.5.4.Zone of inhibition of MA1.

2.2. Synthesis of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine (MA2)

To the ethanolic solution of 4-isopropyl benzaldehyde (14.8 mL, 0.1 M), 3-amino benzotrifluoride (16.0 mL, 0.1 M) was added. The reaction mixture was taken in a RB flask and kept over a magnetic stirrer and stirred for 6 h. The solid separated out was washed, filtered, and dried over vacuum and recrystallized using absolute ethanol. (Colourless solid; M.P: 180 °C)

Scheme: 2.2- Synthesis of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine (MA2)

2.2.1. IR Spectrum of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine (MA2)

The FT-IR spectrum of MA2 is presented in the Fig. 2.6. Aromatic C-H stretching in phenyl ring exhibits a band at 2965 cm⁻¹. A strong absorption band appeared at 2876 cm⁻¹ is due to C-H stretching. An absorption band at 1631 cm⁻¹ indicates C=N stretching. A band appeared at 1018 cm⁻¹ is due to C-F stretching.

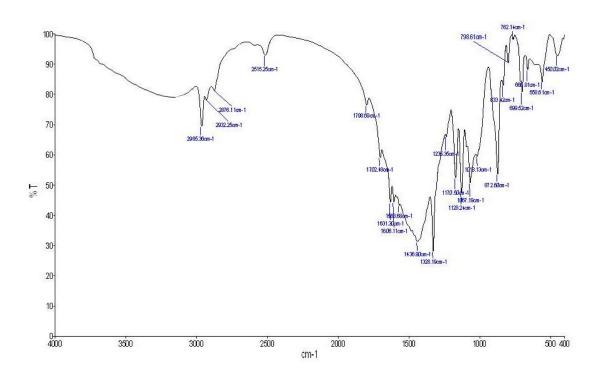


Fig. 2.6. IR Spectrum of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine (MA2)

2.2.2. ¹H-NMR Spectrum of (4-Isopropyl-benzylidene)-(3-trifluoromethylphenyl)amine (MA2)

¹H-NMR spectrum of MA2 has been given in the Fig 2.7. A peak at 8.5 ppm indicates the azomethine proton. The signals ranges from 6.9 to 7.5 ppm are assigned to aromatic protons. A peak observed at 2.5 ppm

indicates methine protons. Methyl protons are assigned by the signal obtained at 1.1 ppm.

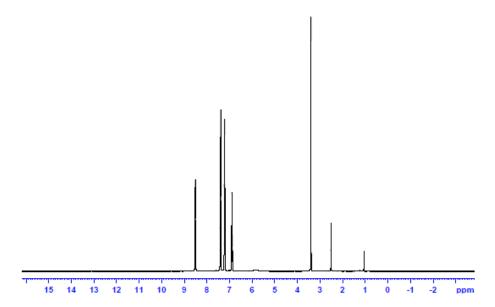


Fig. 2.7. ¹H-NMR Spectrumof(4-Isopropyl-benzylidene)-(3-trifluoromethylphenyl)amine (MA2)

2.2.3. ¹³C-NMR Spectrum of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine. (MA2)

¹³C-NMR of the compound MA2 has been presented in the Fig 2.8. Azomethine carbon shows a peak at 161 ppm. The peaks ranging from 124-138 indicate the aromatic carbons. CF₃ carbon is indicated by a peak at 122 ppm.

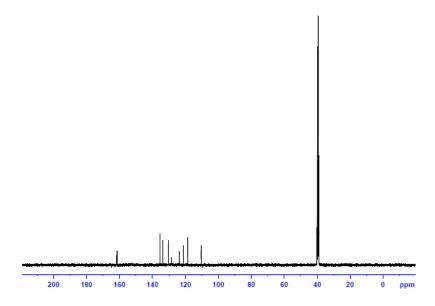


Fig.2.8. ¹³C-NMR Spectrum of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine. (MA2)

2.2.4. Mass Spectrum of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine. (MA2)

Fig. 2.9 represents the mass spectrum of the compound MA2. The peak appearing at m/z 291.12 confirms the calculated molecular mass of the compound. The intense peak at m/z 248.12 is the base peak.

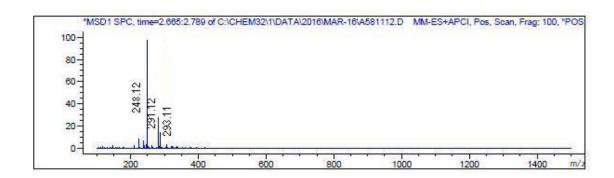


Fig.2.9. Mass Spectrum of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine. (MA2)

2.2.5. Antimicrobial evaluation of MA2

		Zone of inhibition (mm/mL)					
S. No	Pathogen	25 μL	50 μL	75 μL	100 μL	Control	
1.	S. aureus	10	12	15	19	20	
2.	E. coli	11	12	14	16	30	
3.	A. niger	10	14	16	18	30	

Table 2.2. Zone of inhibition of MA2

The compound MA2 possesses very high activity against *S. aureus*, less activity against *E.coli* and considerable activity against the fungi strain, *A. niger* when compared to the positive standard. In general the compound exhibit moderate activity against fungi pathogen and potent against gram positive bacteria. The results are shown in the Table 2.2 and in the Fig. 2.10.1-2.10.4

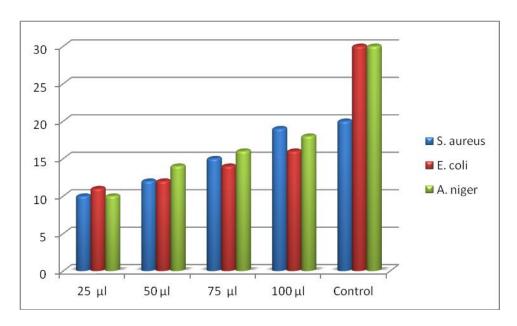


Fig.2.10.1

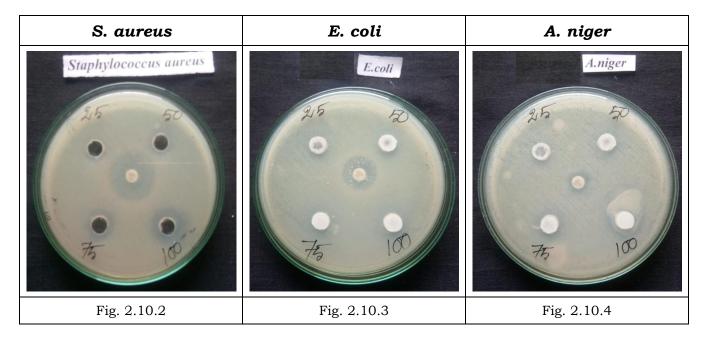


Fig.2.10.1-2.10.4. Zone of inhibition of MA2

2.3. Synthesis of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

To the ethanolic solution of 2-amino-5-nitrobenzenetrifluride (20.4 g, 0.1 M), 4-isopropylbenzaldehyde (15.0 mL, 0.1M) was added. The reaction mixture was taken in a RB flask and kept over a magnetic stirrer and stirred for 6 h. The solid separated out was washed, filtered, and dried over vacuum and recrystallized using absolute ethanol. (Colour: Brown solid; M.P: 106 °C)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Scheme: 2.3- Synthesis of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

2.3.1. IR spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

FT-IR spectrum of MA3 is shown in the Fig 2.11. Aromatic C-H stretching frequencies are indicated by the band at 3024 cm⁻¹. C=N stretching frequency is noticed by a band at 1632 cm⁻¹. A band at 1584 cm⁻¹ shows the NO₂ stretching. C-F absorption exhibited a band at 1055 cm⁻¹.

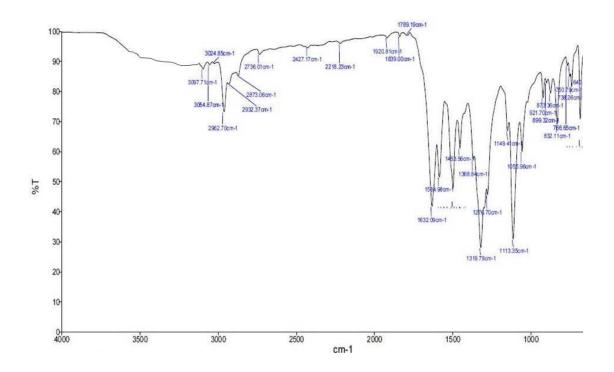


Fig.2.11. IR spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

2.3.2. ¹H-NMR spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

¹H-NMR spectrum of MA3 is given in the Fig 2.12. A peak at 8.5 ppm indicates the azomethine proton. The signals ranges from 6.9 to 7.5 ppm are assigned to aromatic protons. A peak observed at 2.5 ppm

indicates methine protons. Methyl protons are assigned by the signal obtained at 1.2 ppm.

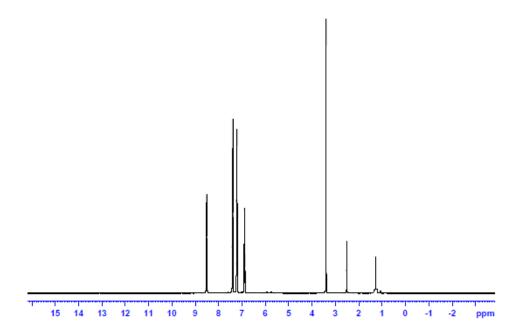


Fig.2.12. ¹H-NMR spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

2.3.3. ¹³C-spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

¹³C-NMR of the compound MA3 is presented in the Fig 2.13. Azomethine carbon shows a peak at 162 ppm. The signal appeared at 146 ppm is due to nitro group carbon bonded in aromatic ring. The peaks ranging from 122-135 indicate the aromatic carbons. CF₃ carbon is indicated by a peak at 121 ppm.

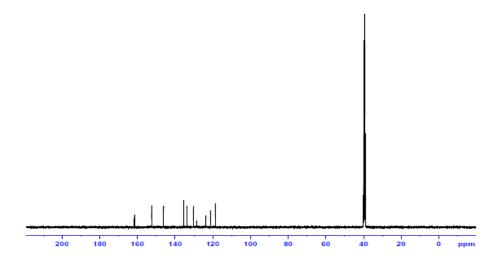


Fig. 2.13. ¹³C-spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

2.3.4. Mass spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

Fig. 2.14 represents the mass spectrum of the compound MA3. The molecular ion peak appearing at m/z 336.31 confirms the calculated molecular mass of the compound. The peak appearing with high intensity at m/z 293.11 is the base peak.

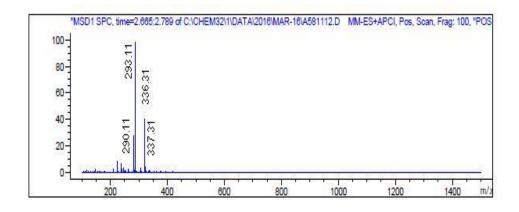


Fig.2.14. Mass spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

Mass Fragmentation

2.3.5. Antimicrobial evaluation of MA3

		Zone of inhibition (mm/mL)				
S. No	Pathogen	25 μL	50 μL	75 μL	100 μL	Control
1.	S. aureus	17	20	25	30	20
2.	E. coli	18	22	26	30	32
3.	A. niger	13	16	18	20	30

Table 2.3. Zone of inhibition of MA3

Table 2.3 and the Fig 2.15.1-2.15.4 represent the results of the antimicrobial evaluation of the compound MA3. It shows that the compound is found to possess greater activity against *S. aureus* and *E. coli* and moderate activity against *A. niger*. The compound is more active against bacterial stain than the fungi when compared to the positive standard.

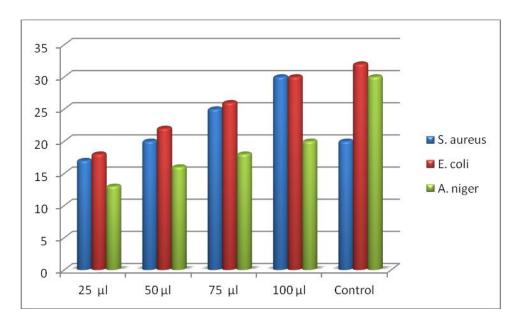


Fig.2.15.1

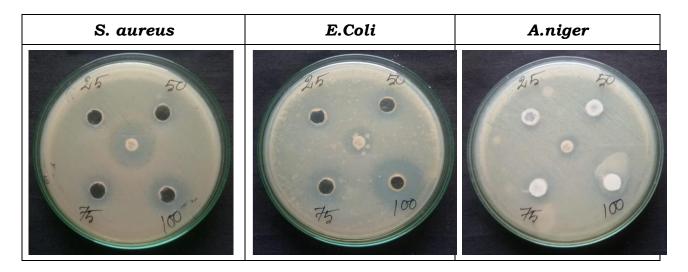


Fig.2.15.2-2.15.4. Zone of inhibition of MA3

2.4. Synthesis of 3-(trifluoromethyl)-N-(3,4,5-

trimethoxybenzylidene)aniline (MA4)

To the ethanolic solution of 3, 4, 5-trimethoxy benzaldehyde (19.0 mL, 0.1 M), 3-aminobenzotrifluride of (16.0 g , 0.1M) was added. The reaction mixture was taken in a RB flask and kept over a magnetic stirrer and stirred for 6 h. The solid separated out was washed, filtered and dried over vacuum and recrystallized using absolute ethanol. (Colour: Brown solid; M.P: 184 °C).

Scheme: 2.4- Synthesis of 3-(trifluoromethyl)-N-(3,4,5-trimethoxybenzylidene)aniline (MA4)

2.4.1. IR spectrum of 3-(trifluoromethyl)-N-(3,4,5-trimethoxybenzylidene)aniline (MA4)

The FT-IR spectrum of MA4 is provided in the Fig. 2.16. Aromatic C-H stretching in phenyl ring exhibits a band at 2939 cm⁻¹. A strong absorption band appeared at 2836 cm⁻¹ is due to C-H stretching. An absorption band at 1586 cm⁻¹ indicates C=N stretching. A sharp band noticed at 1122 cm⁻¹ is attributed to C-O-C Stretching. A band appeared at 1001 cm⁻¹ is due to C-F stretching.

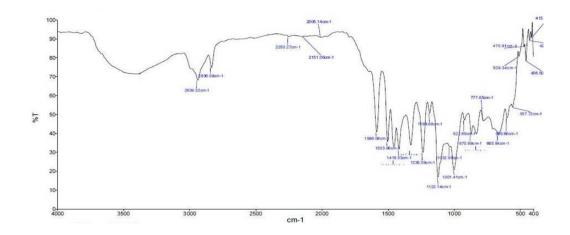


Fig. 2.16. IR spectrum of 3-(trifluoromethyl)-N-(3,4,5-trimethoxybenzylidene)aniline (MA4)

2.4.2.1H-NMR spectrum of 3-(trifluoromethyl)-N-(3,4,5-

trimethoxybenzylidene)aniline (MA4)

¹H-NMR spectrum of MA4 is shown in the Fig 2.17. A peak at 8.9 ppm indicates the azomethine proton. The signals ranges from 6.9 to 7.5 ppm are assigned to aromatic protons. Methyl protons are assigned by the signal obtained at 3.9 ppm.

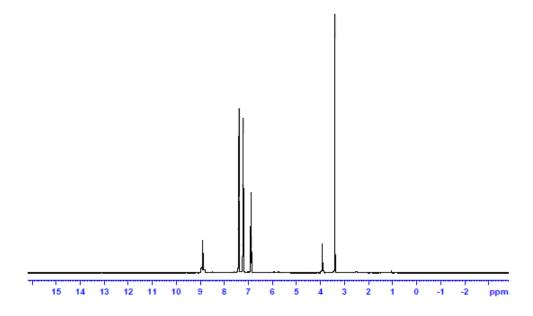


Fig. 2.17.¹H-NMR spectrum of 3-(trifluoromethyl)-N-(3,4,5-trimethoxybenzylidene)aniline (MA4)

2.4.3. ¹³C-NMR spectrum of 3-(trifluoromethyl)-N-(3,4,5-trimethoxybenzylidene)aniline (MA4)

¹³C-NMR spectrum of the compound MA4 has been presented in the Fig 2.18. Azomethine carbon shows a peak at 162 ppm. The signal appeared at 155 ppm is due to methoxy group attached in aromatic ring. The peaks ranging from 125-137 indicate the aromatic carbons. CF₃ carbon is indicated by a peak at 123 ppm. Carbon of methoxy group exhibited a peak 58 ppm.

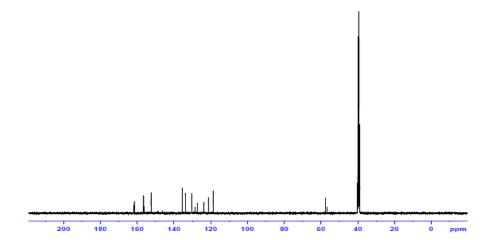


Fig. 2.18. ¹³C-NMR spectrum of 3-(trifluoromethyl)-N-(3,4,5-trimethoxybenzylidene)aniline (MA4)

2.4.4. Mass spectrum of 3-(trifluoromethyl)-N-(3,4,5-trimethoxybenzylidene)aniline (MA4)

Fig. 2.19 represents the mass spectrum of the compound MA4. The peak appearing at m/z 339.11 confirms the calculated molecular mass of the compound. The intense peak at m/z 255.09 is the base peak.

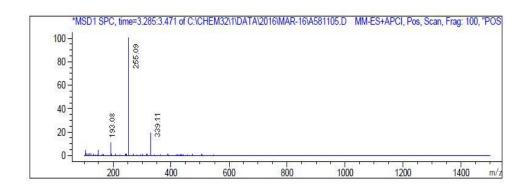


Fig.2.19. Mass spectrum of 3-(trifluoromethyl)-N-(3,4,5-trimethoxybenzylidene)aniline (MA4)

2.4.5. Antimicrobial evaluation of MA4

s.	Dath area	Zone of inhibition (mm/mL)					
No	Pathogen	25 μL	50 μL	75 μL	100 μL	Control	
1.	S. aureus	11	14	16	18	20	
2.	E. coli	14	18	21	25	28	
3.	A. niger	10	12	15	16	30	

Table 2.4. Zone of inhibition of MA4

Zone of inhibition of the compound MA4 is represented in the Table 2.4 and Fig 2.20. From the table and Fig., it has been understand that the compound is active against gram positive and negative bacteria. Further the compound is found to be less active against fungi.

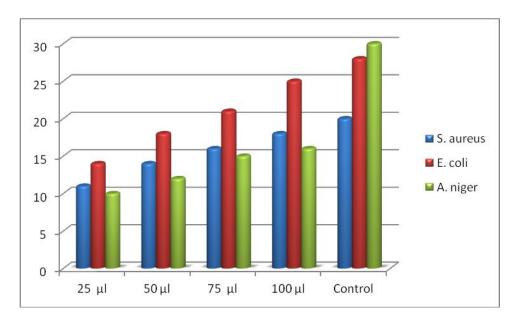


Fig.2.20.1

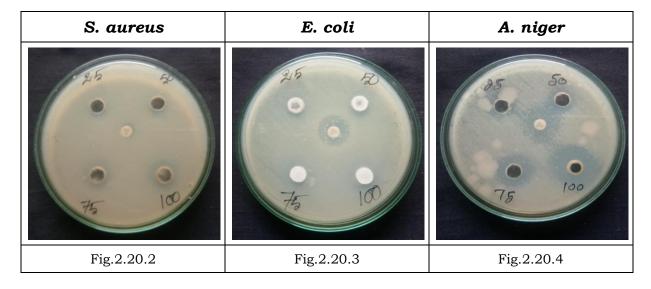


Fig.2.20.1-2.20.4 Zone of inhibition of MA4

2.5. Synthesis of 3-methyl-2-((3,4,5-

trimethoxybenzylidene)amino)butanoic acid (MA5)

To the ethanolic solution of 3, 4, 5-trimethoxybenzaldehyde (19.0 mL, 0.1 M), L-Valine (16.0 g, 0.1M) was added. The reaction mixture was taken in a RB flask and kept over a magnetic stirrer and stirred for 6 h.

The solid separated out was washed, filtered and dried over vacuum and recrystallized using absolute ethanol. (Colour: Yellow solid; M.P: 132 °C)

Scheme: 2.5- Synthesis of 3-methyl-2-((3,4,5-trimethoxybenzylidene)amino)butanoic acid (MA5)

2.5.1. FT-IR spectrum of 3-methyl-2-((3,4,5-

trimethoxybenzylidene)amino)butanoic acid (MA5)

FT-IR spectrum of MA5 is shown in the Fig 2.21 exhibits a band at 3418 cm⁻¹ indicates OH stretching. A band appeared at 2938 cm⁻¹ is attributed to aromatic C-H stretching. A band at 2836 cm⁻¹ is due to aliphatic C-H stretching. C=N stretching vibration is noticed at 1585 cm⁻¹. An absorption band at 1646 cm⁻¹ indicates the carbonyl stretching of carboxylic acid.

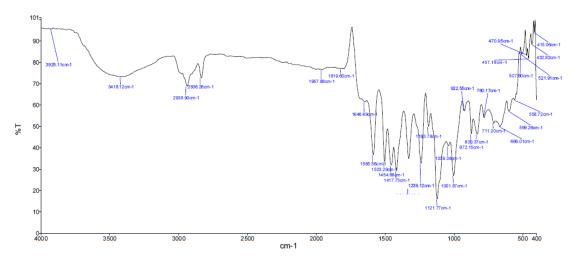


Fig.2.21. FT-IR spectrum of 3-methyl-2-((3,4,5-trimethoxybenzylidene)amino)butanoic acid (MA5)

2.5.2. ¹H-NMR spectrum of 3-methyl-2-((3,4,5-

trimethoxybenzylidene)amino)butanoic acid (MA5)

¹H-NMR spectrum of MA5 has been shown in the Fig 2.22. A sharp peak appeared at 9.9 ppm indicates the presence of OH proton. Aromatic protons are indicated by the signals range from 6.9-7.4 ppm. Methine protons in which carboxylic group and methyl groups attached show peaks at 3.9 and 2.5 respectively. Signal of methoxy group proton is appeared at 1.2 ppm.

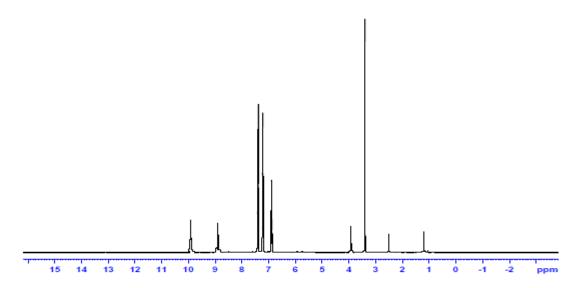


Fig. 2.22. ¹H-NMR spectrum of 3-methyl-2-((3,4,5-trimethoxybenzylidene)amino)butanoic acid (MA5)

2.5.3. ¹³C-NMR spectrum of 3-methyl-2-((3,4,5-trimethoxybenzylidene)amino)butanoic acid (MA5)

¹³C-NMR of the compound MA5 has been presented in the Fig 2.23. Carbonyl carbon of carboxylic acid shows a peak at 178 ppm. Azomethine carbon exhibits a peak at 162 ppm. The peaks ranging from

122-137 indicate the aromatic carbon. CH₃ and CH carbons are indicated by peaks at 62 and 57 ppm respectively.

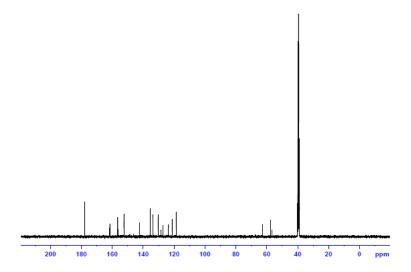


Fig.2.23. ¹³C-NMR spectrum of 3-methyl-2-((3,4,5-trimethoxybenzylidene)amino)butanoic acid (MA5)

2.5.4. Mass spectrum of 3-methyl-2-((3,4,5-

trimethoxybenzylidene)amino)butanoic acid (MA5)

Fig. 2.24 represents the mass spectra of the compound MA5. The peak appearing at m/z 295.14 confirms the calculated molecular mass of the compound. The intensity of the molecular ion peak reveals that the peak itself is the base peak.

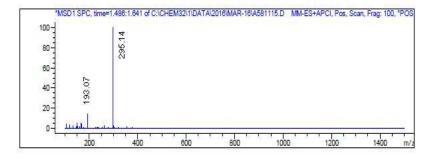


Fig.2. 24. Mass spectrum of 3-methyl-2-((3,4,5-trimethoxybenzylidene)amino)butanoic acid (MA5)

2.5.5. Antimicrobial evaluation of MA5

C No	Dothoron	Zone of inhibition (mm/mL)					
S.No	Pathogen	25 μL	50 μL	75 μL	100 μL	Control	
1.	S. aureus	10	12	14	16	20	
2.	E. coli	11	13	16	18	30	
3.	A. niger	12	14	17	18	30	

Table 2.5.Zone of inhibition of MA5

Antimicrobial evaluation of the compound MA5 shows that the compound possesses lesser activity against *E.Coli and A. niger* and excellent activity against *S.aureus* when compared to the positive standard. The results are given in the Table 2.5 and Fig 2.25.

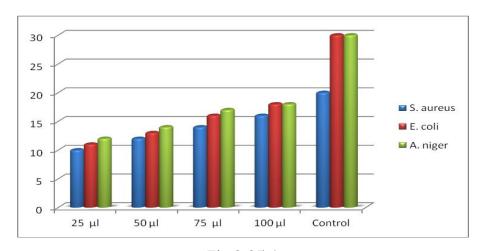


Fig.2.25.1

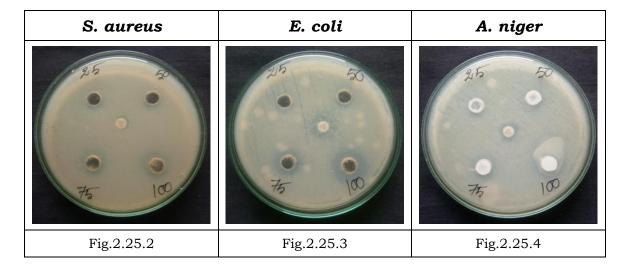


Fig.2.25.1-2.25.4 Zone of inhibition of MA5

Synthesis of azomethine compounds via Schiff reaction (MA6-MA10)

3.1. Synthesis of (E,E)-1,1'-(pentane-2,4-diylidene)bis(3-phenylurea) (MA6)

To the ethanolic solution of acetyl acetone (10.2 mL, 0.1 M), two equivalents of phenyl urea (24.0 g, 0.1 M) was added. The reaction mixture was refluxed for 6 h, cooled and poured into a beaker containing crushed ice. The solid separated out was washed, filtered and dried over vacuum and recrystallized using absolute ethanol. (Pale brown solid, M.P: 132 °C)

$$\begin{array}{c|c} & & & \\ & & \\ & & \\ & & \\ \end{array}$$

Scheme 3.1: Synthesis of (E,E)-1,1'-(pentane-2,4-diylidene)bis(3-phenylurea) (MA6)

3.1.1. IR spectrum of (E,E)-1,1'-(pentane-2,4-diylidene)bis(3-phenylurea) (MA6)

The IR spectrum of MA6 has been presented in the Fig 3.1 NH stretching and bending frequencies exhibited bands at 3428 and 1593 cm⁻¹ respectively. A strong absorption band at 3036 cm⁻¹ is due to aromatic CH stretching. A strong absorption band at 1656 cm⁻¹ is

assigned to C=O stretching. A band appeared at 1613 cm⁻¹ is due to C=N stretching.

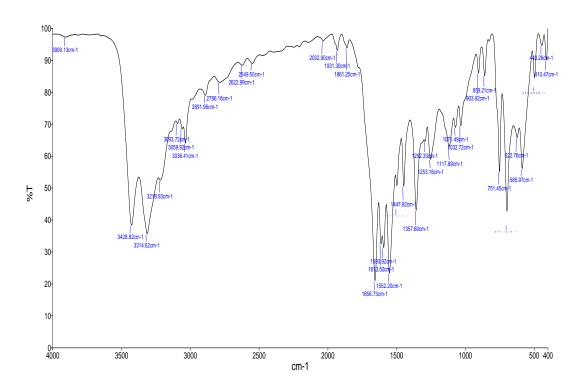


Fig.3.1. IR spectrum of (E,E)-1,1'-(pentane-2,4-diylidene)bis(3-phenylurea) (MA6)

3.1.2. ¹H-NMR spectrum of of (E,E)-1,1'-(pentane-2,4-diylidene)bis(3-phenylurea) (MA6)

¹H-NMR spectrum of MA6 has been given in the Fig 3.2. A peak observed at 8.5 ppm indicates NH protons. The signals appearing from 6.9 to 7.4 ppm are assigned to aromatic protons. The peaks appeared at 5.9 and 2.5 ppm are due to methylene and methyl protons respectively.

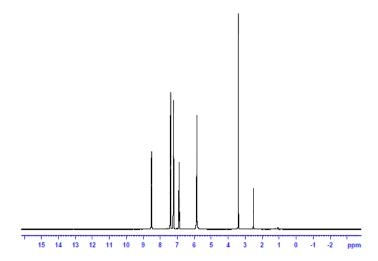


Fig. 3.2. ¹H-NMR spectrum of of (E,E)-1,1'-(pentane-2,4-diylidene)bis(3-phenylurea) (MA6)

3.1.3.¹³C-NMR spectrum of of (E,E)-1,1'-(pentane-2,4-diylidene)bis(3-phenylurea) (MA6)

¹³C-NMR of the compound MA6 has been presented in the Fig 3.3. Azomethine carbon exhibits a peak at 165 ppm. Carbonyl carbon shows a peak at 160 ppm. The peaks ranging from 119-129 indicate the aromatic carbons. CH₂ and CH₃ carbons of ester are indicated by peaks at 35 and 27 ppm respectively. A peak at 42 ppm is due to methine carbon.

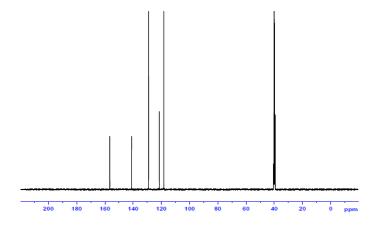


Fig.3.3. ¹³C-NMR spectrum of of (E,E)-1,1'-(pentane-2,4-diylidene)bis(3-phenylurea) (MA6)

3.1.4. Mass spectrum of (E,E)-1,1'-(pentane-2,4-diylidene)bis(3-phenylurea) (MA6)

Mass spectra of the compound MA6 has been given in the Fig. 3.4. The peak noticed at m/z 336.16 indicates the molecular ion peak. The intense appearing at m/z 216.12 is the base peak.

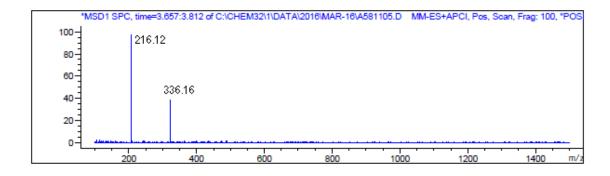


Fig.3.4. Mass spectrum of (E,E)-1,1'-(pentane-2,4-diylidene)bis(3-phenylurea) (MA6)

3.1.5. Antimicrobial evaluation of MA6

The results of antimicrobial evaluation depicted in the Table 3.1 and Fig.3.5.1-3.5.5 shows that the compound MA6 possess moderate activity against *S. aureus*, *C. Albicans* and *A. niger* and higher activity against *E. coli*. Activity of the compound is found to be maximum in the case of gram negative bacteria than the gram positive bacteria and fungi strains when compared to the positive standards. The compound possesses excellent antibacterial activity than the antifungal activity.

S.No	Dothogon		Zone of	on (mm/	mL)	
	Pathogen	25 μL	50 μL	75 μL	100 μL	21 18
1.	S. aureus	12	14	16	18	21
2.	E.coli	14	16	18	20	18
3.	C. albicans	11	13	15	16	20
4.	A.niger	12	14	16	18	22

Table 3.1: Zone of inhibition MA6

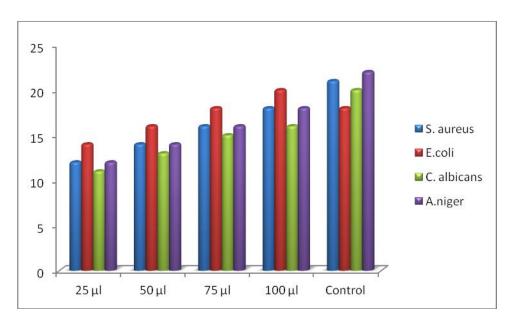


Fig.3.5.1.

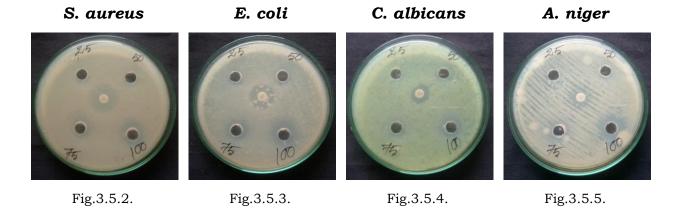


Fig.3.5.1-3.5.5.Zone of inhibition MA6

3.2. Synthesis of 4-(((5-bromopyridin-2-yl)imino)methyl)phenol (MA7)

To the ethanolic solution of 4-hydroxybenzaldehyde (12.2 g, 0.1 M), 2-amino-5-bromopyridine (17.3 g, 0.1 M) was added. The reaction mixture was refluxed for 6 h, cooled and poured into a beaker containing crushed ice. The solid separated out was washed, filtered and dried over vacuum and recrystallized using absolute ethanol. (Yellow solid; M.P: 112 °C)

Scheme 3.2: Synthesis of 4-(((5-bromopyridin-2-yl)imino)methyl)phenol (MA7)

3.2.1. IR spectrum of 4-(((5-bromopyridin-2-yl)imino)methyl)phenol (MA7)

FT-IR spectrum of the compound MA7 has been given in the Fig. 3.6. A band at 3453 cm⁻¹ shows the OH stretching. Aromatic CH stretching frequency is noticed by a band at 3022. C-H and C=N stretching of azomethine are indicated by the band at 2937 and 1628 cm⁻¹ respectively. A sharp band appears at 635 cm⁻¹ is due to C-Br stretching.

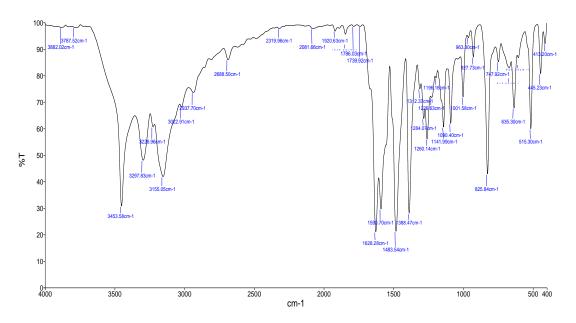


Fig.3.6. IR spectrum of 4-(((5-bromopyridin-2-yl)imino)methyl)phenol (MA7)

3.2.2. ¹H-NMR spectrum of 4-(((5-bromopyridin-

2yl)imino)methyl)phenol (MA7)

¹H-NMR spectrum of the compound MA7 has been represented in the Fig. 3.7. A peak appeared at 8.9 ppm is assigned to OH proton. Aromatic protons are indicated by signals ranging from 7.9 to 6.4 ppm. Methine proton shows a peak at 6.1 ppm.

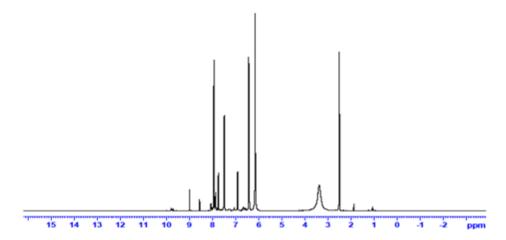


Fig.3.7. ¹H-NMR spectrum of 4-(((5-bromopyridin-2-yl)imino)methyl)phenol (MA7)

3.2.3. ¹³C-NMR spectrum of 4-(((5-bromopyridin-2-yl)imino)methyl) phenol (MA7)

¹³C-NMR spectrum of MA7 has been given in the Fig.3.8. A peak appears at 166.2 ppm indicates the carbon in which the OH group is bonded in the phenyl ring. Azomethine carbons exhibit signals at 158 ppm. The signals range from 116-127 ppm is assigned to aromatic carbons. The carbon in which the bromine atom is bonded in the phenyl ring is indicated by the signal at 111.

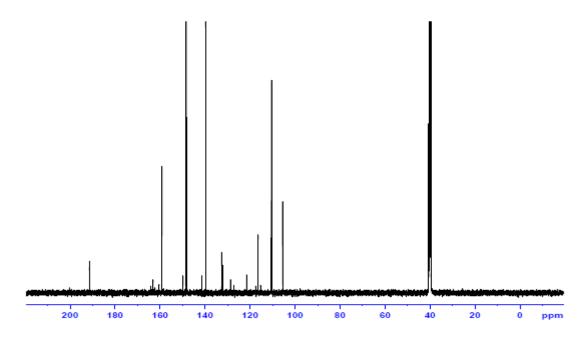


Fig.3.8. ¹³C-NMR spectrum of 4-(((5-bromopyridin-2-yl)imino)methyl)phenol (MA7)

3.2.4. Mass spectrum of 4-(((5-bromopyridin-2-

yl)imino)methyl)phenol (MA7)

Mass spectra of the compound MA7 has been given in the Fig. 3.9. The peak noticed at m/z 276 indicates the molecular ion peak. The intensity of the peak shows that the molecular ion peak itself is the base peak.

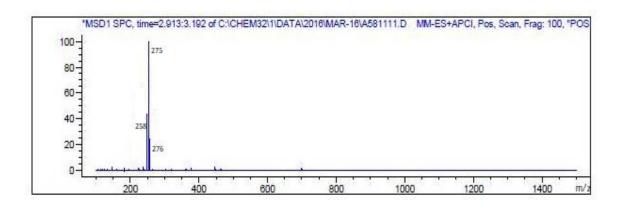


Fig. 3.9. Mass spectrum of 4-(((5-bromopyridin-2-yl)imino)methyl)phenol (MA7)

3.2.5. Antimicrobial evaluation of MA7

The results of antimicrobial evaluation depicted in the Table 3.2 and Fig 3.10 shows that the compound MA7 possess less activity against *S.aureus* and considerable activity against *C.albicans and A. niger*. Activity of the compound is found to be maximum in the case of gram positive bacteria than the gram negative bacteria. The compound exhibits greater activity against *E.coli* than the standard drug employed. The compound possesses excellent antibacterial activity than the antifungal activity.

S.No	D-41					
	Pathogen	25 μL	50 μL	75 μL	100 μL	Control
1.	S. aureus	10	12	14	16	21
2.	E.coli	12	14	16	18	18
3.	C. albicans	12	15	17	19	20
4.	A.niger	12	15	18	20	22

Table 3.2: Zone of inhibition MA7

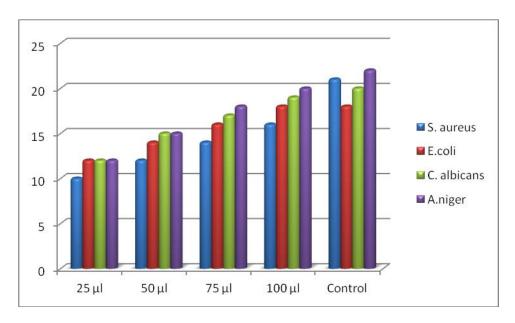


Fig.3.10.1

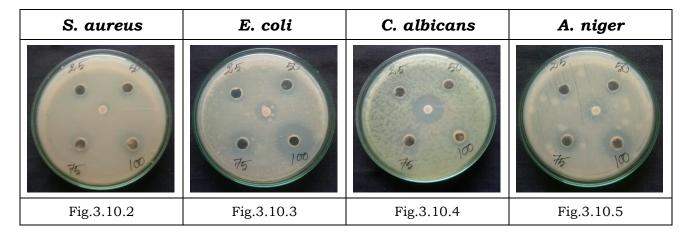


Fig.3.10.1-3.10.5Zone of inhibition MA7

3.3. Synthesis of 1-phenyl-3-(thiophen-2-ylmethylene)urea (MA8)

To the ethanolic solution of thiophene-2-carbaxaldehyde (9.3 mL, 0.1 M), N-phenyl urea (24.0 g, 0.1 M) was added. The reaction mixture was refluxed for 6 h, cooled and poured into a beaker containing crushed ice. The solid separated out was washed, filtered and dried over vacuum and recrystallized using absolute ethanol. (Silky solid; M.P: 142 °C).

Scheme 3.3: Synthesis of 1-phenyl-3-(thiophen-2-ylmethylene)urea (MA8)

3.3.1. IR spectrum of 1-phenyl-3-(thiophen-2-ylmethylene)urea (MA8)

Fig 3.11 represents the FT-IR spectrum of the compound MA8. It shows a sharp band at 3221 cm⁻¹ which indicates the NH stretching. Aromatic CH stretching frequency is exhibited by a band at 3061. C-H stretching of azomethine is indicated by a band at 1614. Carbonyl stretching is noticed by a band at 1655 cm⁻¹. Appearance of a band at 773 cm⁻¹ indicates the C-S stretching.

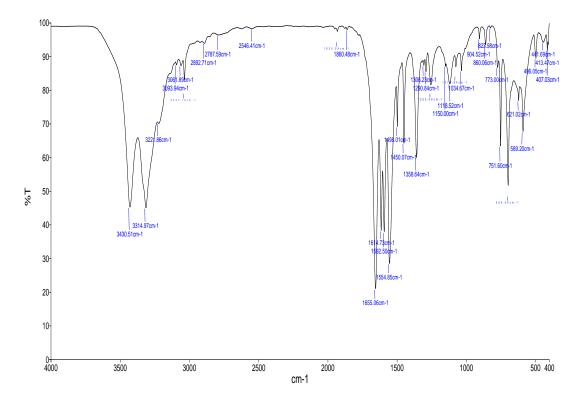


Fig. 3.11. IR spectrum of 1-phenyl-3-(thiophen-2-ylmethylene)urea (MA8)

3.3.2. ¹H-NMR spectrum of 1-phenyl-3-(thiophen-2-ylmethylene)urea (MA8)

¹H-NMR spectrum of the compound MA8 is shown in the Fig 3.12. A peak noticed at 9.6 ppm accounts NH proton. Aromatic protons exhibit signals from 6.9 to 7.9 ppm. Presence of a peak at 6.2 ppm reveals azomethine proton.

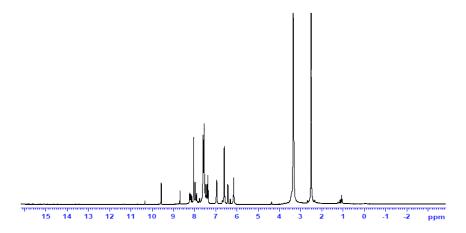


Fig. 3.12. ¹H-NMR spectrum of 1-phenyl-3-(thiophen-2-ylmethylene)urea (MA8)

3.3.3. ¹³C-NMR spectrum of 1-phenyl-3-(thiophen-2-ylmethylene)urea (MA8)

¹³C-NMR spectrum of MA8 is shown in the Fig 3.13 has a peak at 162 ppm is due to azomethine carbon. The signal at 159 is attributed to carbonyl carbon. The presence of aromatic carbons is indicated by the peaks ranges from 117-135 ppm.

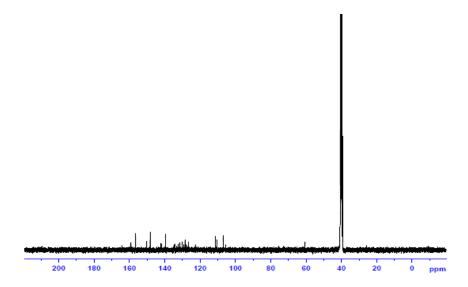


Fig.3.13. ¹³C-NMR spectrum of 1-phenyl-3-(thiophen-2-ylmethylene)urea (MA8)

3.3.4. Mass spectrum of 1-phenyl-3-(thiophen-2-ylmethylene)urea (MA8)

Mass spectra of the compound MA8 is shown in the Fig.3.14. The peak observed at m/z 230.05 indicates the molecular ion peak. The peak appearing at m/z 153.02 with high intensity is the base peak.

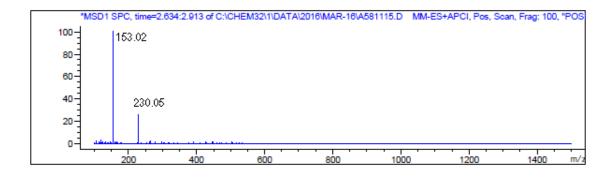


Fig.3.14. Mass spectrum of 1-phenyl-3-(thiophen-2-ylmethylene)urea (MA8)

Mass fragmentation

3.3.5. Antimicrobial evaluation of MA8

Results of antimicrobial screening of the compound MA8 are shown in the Table 3.3 and Fig 3.15.1-3.15.5 reveal that the compound possesses less activity against *C.albicans* and moderate activity against *A.niger and E.Coli*. Activity of the compound against *S.aureus* is found to be maximum when comparing to the positive standard. The compound is highly active against gram positive bacteria than the gram negative bacteria and fungi strains. Antibacterial activity of the compound is found to be higher than the antifungal activity.

		Zone of inhibition (mm/mL)					
S.No	Pathogen	25 μL	50 μL	75 μL	100 μL	Control	
1.	S. aureus	13	16	18	20	21	
2.	E.coli	10	12	14	16	18	
3.	C. albicans	10	11	13	15	20	
4.	A.niger	12	14	16	19	22	

Table 3.3: Zone of inhibition of MA8

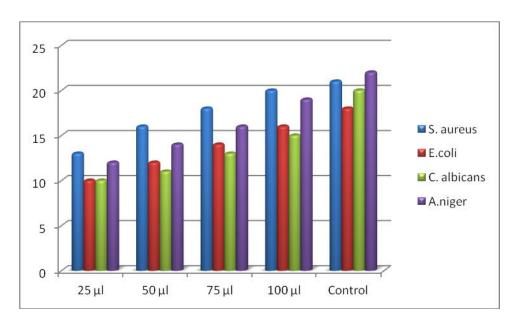


Fig.3.15.1

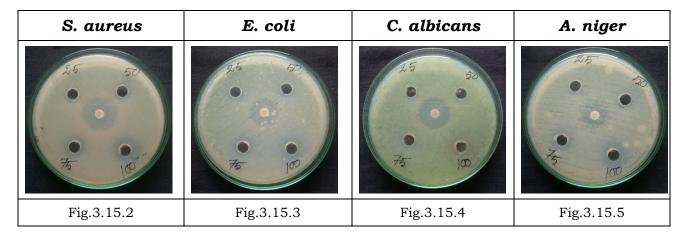


Fig.3.15.1-3.15.5.Zone of inhibition of MA8

3.4. Synthesis of 5-bromo-N-(2,3-dichlorobenzylidene)pyridin-2-amine (MA9)

To the ethanolic solution of 2, 3-dichlorobenzaldehyde (17.5 g, 0.1 M), 2-amino-5-bromopyridine (17.3 g, 0.1 M) was added. The reaction mixture was refluxed for 6 h, cooled and poured into a beaker containing crushed ice. The solid separated out was washed, filtered and dried over vacuum and recrystallized using absolute ethanol. (Ivory solid; M.P: 138 °C)

Scheme 3.4: Synthesis of 5-bromo-N-(2,3-dichlorobenzylidene)pyridin-2-amine (MA9)

3.4.1. IR spectrum of 5-bromo-N-(2,3-dichlorobenzylidene)pyridin-2-amine (MA9)

FT-IR spectrum of MA9 is shown in the Fig 3.16. A band noticed at 3050 cm⁻¹ shows aromatic CH stretching. Azomethine C-H and C=N stretching frequency are indicated by the bands at 2961 and 1588 cm⁻¹ respectively. The bands appeared at 747 and 712 cm⁻¹ are due to C-Br and C-Cl stretching respectively.

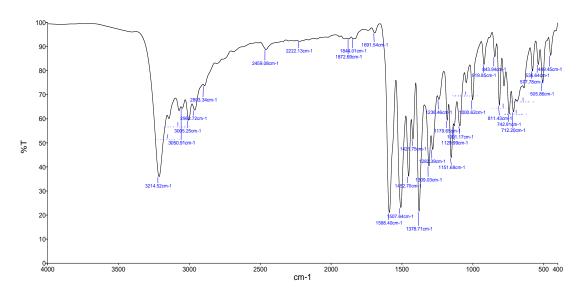


Fig.3.16. IR spectrum of 5-bromo-N-(2,3-dichlorobenzylidene)pyridin-2-amine (MA9)

3.4.2. ¹H-NMR spectrum of 5-bromo-N-(2,3-

dichlorobenzylidene)pyridin-2-amine (MA9)

¹H-NMR spectrum of MA9 is shown in the Fig 3.17. The signals at 8.5 is indicating CH proton of azomethine. The signals exhibited from 6.1 to 7.8 ppm indicates the aromatic protons.

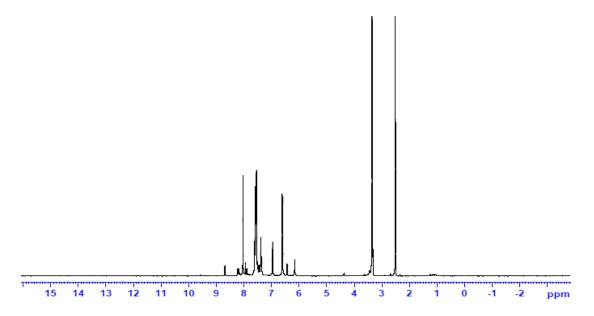


Fig.3.17. 1H-NMR spectrum of 5-bromo-N-(2,3-dichlorobenzylidene)pyridin-2-amine (MA9)

3.4.3. ¹³C-NMR spectrum of 5-bromo-N-(2,3-

dichlorobenzylidene)pyridin-2-amine (MA9)

¹³C-NMR spectrum of MA9 is shown in the Fig 3.18. A peak appears at 160 ppm is due to azomethine carbon. The peaks noticed at 142, 113 ppm are indicating the carbons in which cholrine and bromine atoms attached to the phenyl ring respectively. The signals appeared in the range of 126 to 140 ppm are due to aromatic carbons.

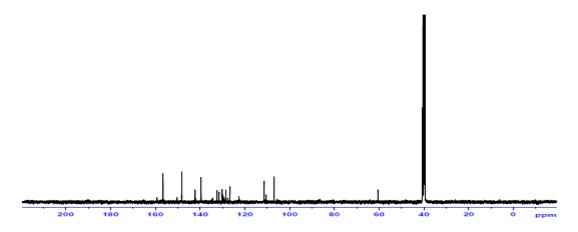


Fig.3.18. ¹³C-NMR spectrum of 5-bromo-N-(2,3-dichlorobenzylidene)pyridin-2-amine (MA9)

3.4.4. Mass spectrum of 5-bromo-N-(2,3-

dichlorobenzylidene)pyridin-2-amine (MA9)

Fig. 3.19 represents the mass spectra of the compound MA9. The molecular ion peak appearing at m/z 327.92 confirms the calculated molecular mass of the compound. The peak appearing with high intensity at m/z 187.0 is the base peak.

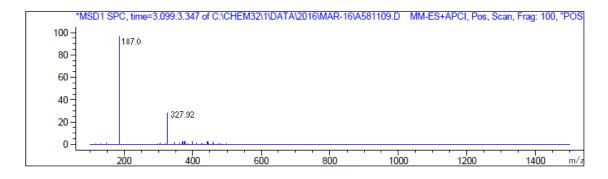


Fig.3.19. Mass spectrum of 5-bromo-N-(2,3-dichlorobenzylidene)pyridin-2-amine (MA9)

3.4.5. Antimicrobial evaluation of MA9

Zone of inhibition of the compound MA9 given in the Table 3.4 and Fig 3.20.1-3.20.5 reveal that the compound exhibits lesser activity against *C. albicans* and moderate against *E. Coli* and *S. aureus*. Potency of the compound is found to be high against *A.niger*. Further it is revealed that the compound is found to be potent against fungi strain than the bacterial strains when compared to the positive standard.

C No		Zone of inhibition (mm/mL)					
S.No	Pathogen	25 μL	50 μL	75 μL	100 μL	Control	
1.	S. aureus	12	14	16	18	21	
2.	E.coli	10	14	14	16	18	
3.	C. albicans	10	12	14	16	20	
4.	A.niger	12	15	18	20	22	

Table 3.4: Zone of inhibition of MA9

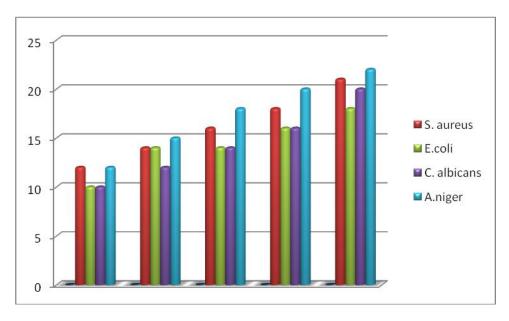


Fig.3.20.1

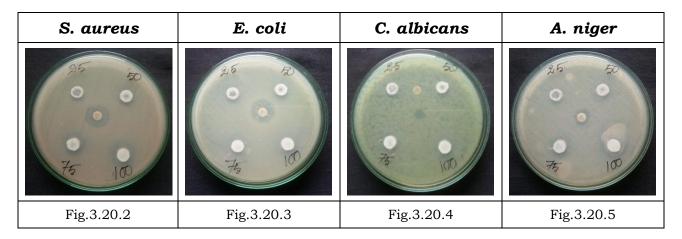


Fig.3.20.1-3.20.5.Zone of inhibition of MA9

3.5. Synthesis of 5-bromo-N-(thiophen-2-ylmethylene)pyridin-2-amine (MA10)

To the ethanolic solution of thiophene-2-carbaxaldehyde (9.30 mL, 0.1 M), 2-amino-5-bromopyridine (17.3 g, 0.1 M) was added. The reaction mixture was refluxed for 6 h, cooled and poured into a beaker containing crushed ice. The solid separated out was washed, filtered and dried over vacuum and recrystallized using absolute ethanol. (Brown solid; M.P: 137 °C)

Scheme 3.5: Synthesis of 5-bromo-N-(thiophen-2-ylmethylene)pyridin-2-amine (MA10)

3.5.1. IR spectrum of 5-bromo-N-(thiophen-2-ylmethylene)pyridin-2-amine (MA10)

FT-IR spectrum of MA10 is shown in the Fig 3.21 exhibits a band at 3023 cm⁻¹ indicates the aromatic CH stretching. The bands at 2943

and 1588 cm⁻¹ are due to C-H and C=N stretching vibrations respectively. Bands observed at 824 and 633 cm⁻¹ are due to C-Br and C-S stretching respectively.

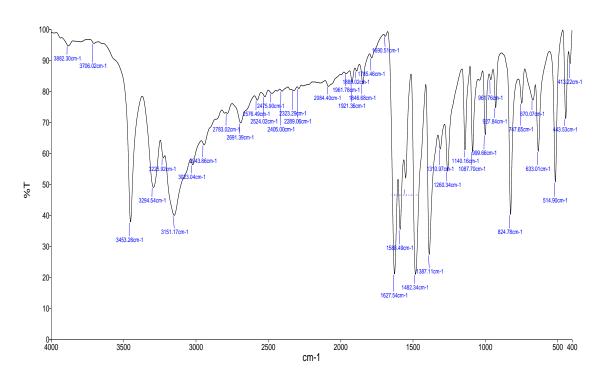


Fig.3.21. IR spectrum of 5-bromo-N-(thiophen-2-ylmethylene)pyridin-2-amine (MA10)

3.5.2.1H-NMR spectrum of 5-bromo-N-(thiophen-2-

ylmethylene)pyridin-2-amine (MA10)

¹H-NMR spectrum of MA10 has been given in the Fig 3.22. Azomethine proton noticed by a peak at 7.9 ppm. The signals ranging from 6.9 to 7.5 ppm are attributable to the aromatic protons.

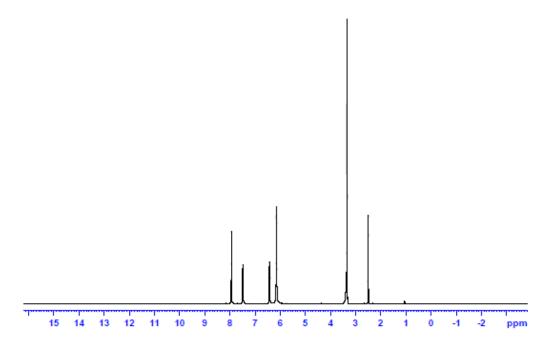


Fig.3.22.1H-NMR spectrum of 5-bromo-N-(thiophen-2-ylmethylene)pyridin-2-amine (MA10)

3.5.3.¹³C-NMR spectrum of 5-bromo-N-(thiophen-2-ylmethylene)pyridin-2-amine (MA10)

¹³C-NMR of MA10 has been given in the Fig 3.23. A peak at 159 ppm indicates C=N carbon. The signals at 116, 139 and 147 ppm show the aromatic carbons. A peak at 113 ppm indicates the carbon in which the bromine atom is bonded in the phenyl ring.

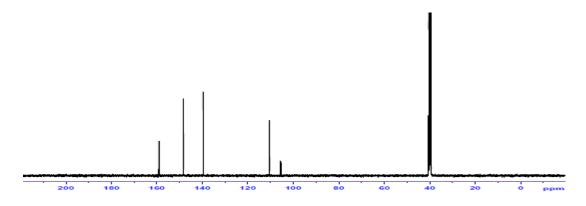


Fig.3.23.13C-NMR spectrum of 5-bromo-N-(thiophen-2-ylmethylene)pyridin-2-amine (MA10)

3.5.4. Mass spectrum of 5-bromo-N-(thiophen-2-

ylmethylene)pyridin-2-amine (MA10)

Mass spectrum of the compound MA10 has been depicted in the Fig. 3.24. The peak appearing at m/z 265.95 is the molecular ion peak. The intense peak noticed at m/z 197.98 is assigned as base peak.

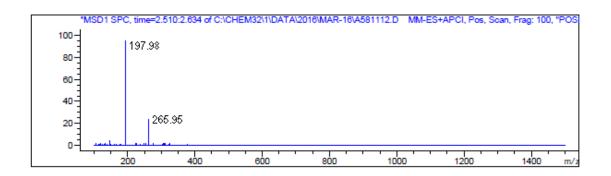


Fig.3.24. Mass spectrum of 5-bromo-N-(thiophen-2-ylmethylene)pyridin-2-amine (MA10)

3.5.4. Antimicrobial evaluation of MA10

The compound MA10 possesses excellent antimicrobial activity against all the tested bacterial and fungi pathogens when compared to the positive standard. Potency of the compound is found to be very high against gram negative bacteria and fungi pathogen. The compound shows equally higher activity on comparing both bacteria and fungi pathogen hence it is observed that the compound may possess broad spectrum antimicrobial activity. The results are shown in the Table 3.5 and in the Fig. 3.25.1-3.25.5

S. No	Datheren		Zone o	f inhibit	tion (mm/mL)			
	Pathogen	25 μL	50 μL	75 μL	100 μL	21 18 20		
1.	S. aureus	16	19	21	23	21		
2.	E.coli	15	17	20	22	18		
3.	C. albicans	14	17	20	22	20		
4.	A.niger	16	19	22	25	22		

Table 3.5: Zone of inhibition of MA10

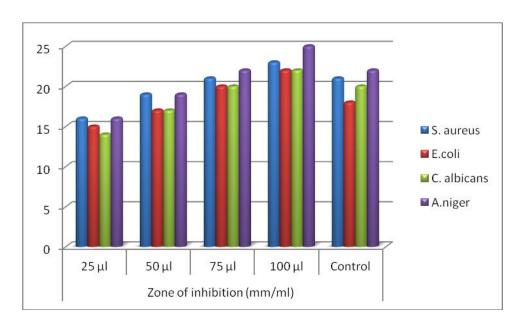


Fig.3.25.1

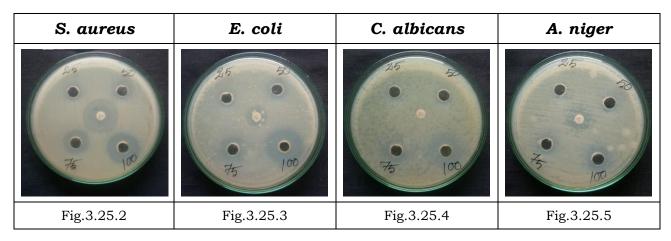


Fig.3.25.1-3.25.5.Zone of inhibition of MA10

Synthesis of β -amino carbonyl compounds using Mannich reaction (MA11-MA13)

4.1. Synthesis of 3-morpholino-1-(3-nitrophenyl)-3-(thiophen-2-yl)propan-1-one (MA11)

To the ethanolic solution of 3-nitro acetophenone, morpholine was added followed by thiophene-2-carboxaldehyde (9.3 mL, 0.1 M). The reaction mixture was kept at ice cold condition over a magnetic stirrer and stirred for about 3 h. The solid separated out was washed filtered and dried over vacuum. (Ivory solid; M.P: 142 °C)

Scheme 4.1: Synthesis of 3-morpholino-1-(3-nitrophenyl)-3-(thiophen-2-yl)propan-1-one (MA11)

4.1.1. IR spectrum of 3-morpholino-1-(3-nitrophenyl)-3-(thiophen-2-yl)propan-1-one (MA11)

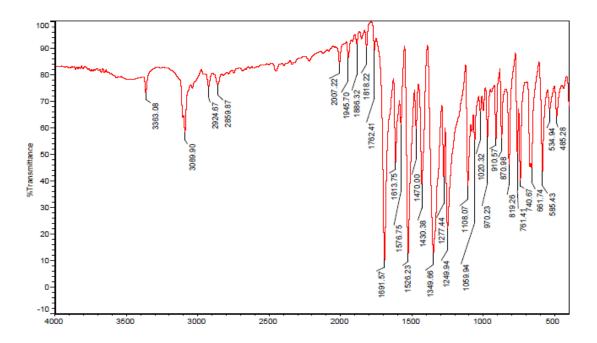


Fig.4.1.IR spectrum of 3-morpholino-1-(3-nitrophenyl)-3-(thiophen-2-yl)propan-1-one

The FT-IR spectrum of MA11 given in the Fig 4.1 shows a band at 3089 cm⁻¹ is due to aromatic C-H stretching. C-S stretching of thiophene exhibits a band at 2924 cm⁻¹. C-H stretching of methine group observed at the range of 2859 cm⁻¹. A strong absorption band appeared at 1691 cm⁻¹ is attributed to C=O stretching frequency. The band appeared at 1576 cm⁻¹ shows the N-O vibrations. The frequency ranges at 1349 and 1059 cm⁻¹ are assigned to C-N and C-O-C stretching of morpholine. A band noticed at 661 cm⁻¹ is due to C-S stretching.

4.1.2. ¹H-NMR spectrum of 3-morpholino-1-(3-nitrophenyl)-3-(thiophen-2-yl)propan-1-one (MA11)

¹H NMR spectrum of MA11 has been depicted in the Fig 4.2 show peaks ranges from 6.7 to 7.9 ppm indicate the aromatic protons of phenyl and thiophene ring. Methine proton shows a peak at 4.5 ppm. CH₂ protons of morpholine are assigned by the signals at 3.4 and 2.8 ppm.

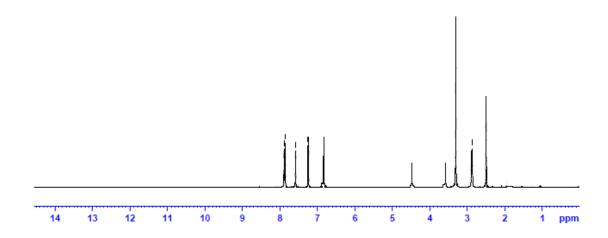


Fig.4.2. ¹H-NMR spectrum of 3-morpholino-1-(3-nitrophenyl)-3-(thiophen-2-yl)propan-1-one (MA11)

4.1.2. ¹³C-NMR spectrum of 3-morpholino-1-(3-nitrophenyl)-3-(thiophen-2-yl)propan-1-one (MA11)

¹³C NMR of MA11 has been given in the Fig 4.3. Carbonyl carbon of the compound is indicated by a signal at 196 ppm. Aromatic carbons of phenyl and thiophene ring shows the signal ranges from 137 to 122 ppm. The peaks obtained at 62 and 52 ppm are due to the carbons of morpholine. A peak appeared at 71 ppm shows the presence of methine carbon.

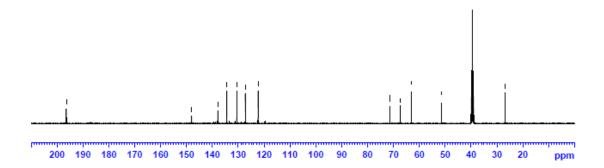


Fig.4.3. ¹³C-NMR spectrum of 3-morpholino-1-(3-nitrophenyl)-3-(thiophen-2-yl)propan-1-one (MA11)

4.1.4. Mass spectrum of 3-morpholino-1-(3-nitrophenyl)-3-(thiophen-2-yl)propan-1-one (MA11)

The Mass spectrum of MA11 has been represented in the Fig 4.4. The molecular ion peak appeared at m/z 347.8 shows the exact mass of the compound. The highest intensity peak observed at 164 is the base peak.

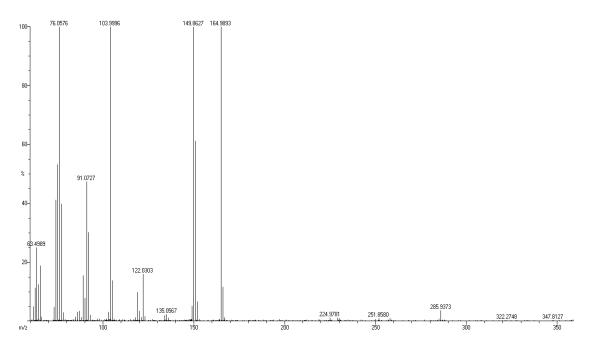


Fig.4.4. Mass spectrum of 3-morpholino-1-(3-nitrophenyl)-3-(thiophen-2-yl)propan-1-one (MA11)

4.1.5. Antimicrobial evaluation of MA11

Results of antimicrobial screening of the compound MA11 are shown in the Table 4.1 and Fig 4.5, reveal that the compound possesses less activity against *A.niger* and *Moraxella*. Activity of the compound against *B. subtilis* and *Trichophyton* is found to be moderate as compared to the positive standards. The compound is highly active against gram positive bacteria than the gram negative bacteria. Antifungal activity of the compound is found to be higher than the antibacterial activity.

S. No.	Dothogona		Zone o	f inhibitio	n (mm/µL)	
	Pathogens	25 μL	50 μL	75 μL	100 μL	Control
1.	B. subtilis	18	21	23	26	30
2.	Moraxella	13	14	15	16	30
3.	A. niger	9	10	11	12	30
4.	Trichophyton	9	10	12	15	18

Table 4.1: Zone of inhibition of MA11

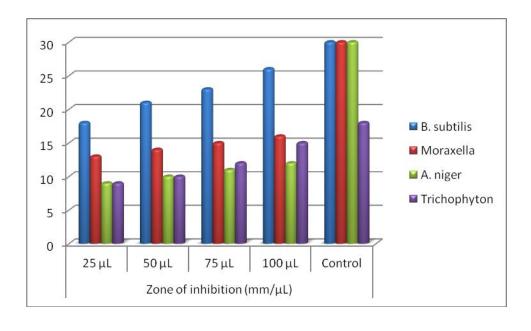


Fig.4.5: Zone of inhibition of MA11

4.2. Synthesis of 3-((4-aminophenyl)amino)-1-phenyl-3-(thiophen-2-yl)propan-1-one (MA12)

To the ethanolic solution of acetophenone, p-Phenylene diammine (10.8 g, 0.1 M) was added followed by thiophene-2-carboxaldehyde (9.3 mL, 0.1 M). The reaction mixture was kept at ice cold condition over a magnetic stirrer and stirred for about 7 h. The solid separated out was washed filtered and dried over vacuum. (Colour: Yellow solid; M.P: 151 °C)

Scheme 4.2: Synthesis of 3-((4-aminophenyl)amino)-1-phenyl-3-(thiophen-2-yl)propan-1-one (MA12)

4.2.1. IR spectrum of 3-((4-aminophenyl)amino)-1-phenyl-3-(thiophen-2-yl)propan-1-one (MA12)

FT-IR spectrum of MA12 is shown in the Fig 4.6. NH stretching is noticed by a band at 3396 cm⁻¹. Aromatic CH and C=C stretching frequencies are exhibited by the bands at 3026 and 1516 cm⁻¹ respectively. A sharp absorption band at 1665 cm⁻¹ is due to the carbonyl stretching of acetophenone.

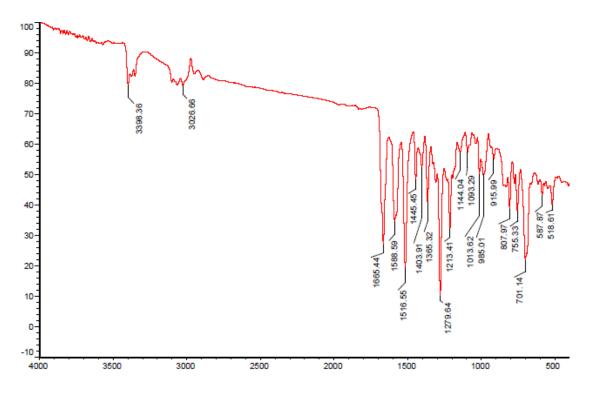


Fig. 4.6. IR spectrum of 3-((4-aminophenyl)amino)-1-phenyl-3-(thiophen-2-yl)propan-1-one (MA12)

4.2.2. ¹H-NMR spectrum of 3-((4-aminophenyl)amino)-1-phenyl-3-(thiophen-2-yl)propan-1-one (MA12)

¹H-NMR spectrum of MA12 has been given in the Fig 4.7. The peaks appeared at 9.2 and 7.9 ppm indicates NH₂ ans NH protons respectively. The signals range from 7.5 to 6.9 ppm represents the aromatic protons. A peak appears at 4.4 ppm is due to methine proton. The signals at 3.4 and 2.9 ppm are assigned to methine and methylene protons respectively.

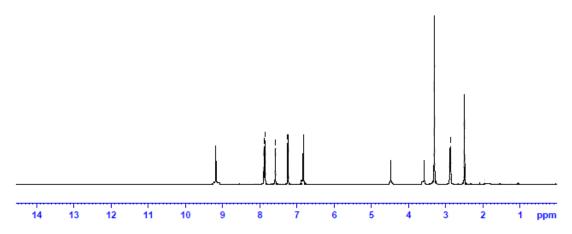


Fig.4.7. ¹H-NMR spectrum of 3-((4-aminophenyl)amino)-1-phenyl-3-(thiophen-2-yl)propan-1-one (MA12)

4.2.3. ¹³C-NMR spectrum of 3-((4-aminophenyl)amino)-1-phenyl-3-(thiophen-2-yl)propan-1-one (MA12)

¹³C-NMR spectrum of MA12 is shown in the Fig 4.8 has a peak at 199 ppm is due to carbonyl carbon. The signals from 135 to 127 ppm are attributed to the aromatic carbons. Methylene carbon exhibits a peak at 72 ppm. The presence of methine carbon is indicated by a peak at 58 ppm.

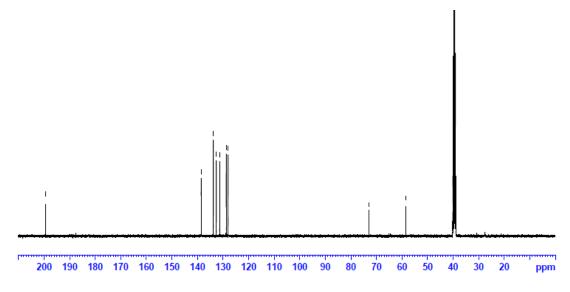


Fig.4.8. ¹³C-NMR spectrum of 3-((4-aminophenyl)amino)-1-phenyl-3-(thiophen-2-yl)propan-1-one (MA12)

4.2.3. Mass spectrum of 3-((4-aminophenyl)amino)-1-phenyl-3-(thiophen-2-yl)propan-1-one (MA12)

Mass spectra of the compound MA12 is shown in the Fig. 4.9. The peak observed at m/z 321.97 indicates the molecular ion peak. The peak appearing at m/z 105.04 with high intensity is the base peak.

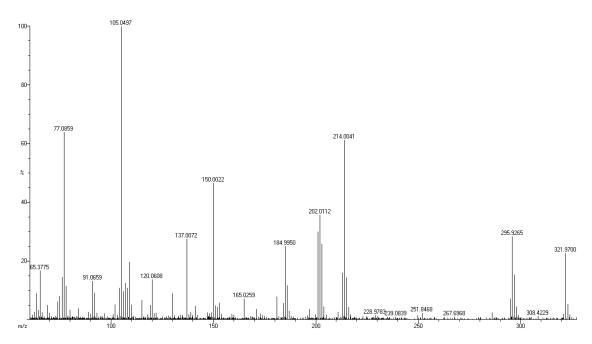


Fig.4.9.Mass spectrum of 3-((4-aminophenyl)amino)-1-phenyl-3-(thiophen-2-yl)propan-1-one (MA12)

4.2.5. Antimicrobial evaluation of MA12

The compound MA12 exhibits less activity against against Moraxella, A.niger and trichophyton. It has considerable activity against B. subtilis when compared to the positive standards. The compound is found to be more potent against fungi than the bacteria. Antifungal activity of the compound is found to be higher than the antibacterial activity. The results are shown in the Table 4.2 and Fig 4.10

s.	S. Pothogon		Zone of inhibition (mm/µL)					
No.	Pathogen	25 μL	50 μL	75 μL	100 μL	Control		
1.	B. subtilis	10	12	15	18	32		
2.	Moraxella	-	9	10	11	30		
3.	A. niger	11	13	14	15	28		
4.	Trichophyton	-	10	11	13	20		

Table 4.2: Zone of of inhibition of MA12

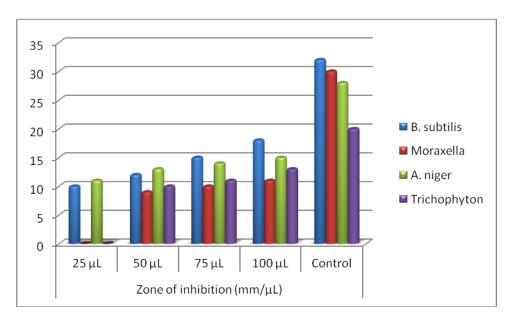


Fig.4.10.Zone of of inhibition of MA12

4.3. Synthesis of 2-(pyrrolidin-1-yl(thiophen-2-yl)methyl)cyclohexanone (MA13)

To the ethanolic solution of cyclohexanone, pyrrolidine (10.8 g, 0.1 M) was added followed by thiophene-2-carboxaldehyde (9.3 mL, 0.1 M). The reaction mixture was kept at ice cold condition over a magnetic stirrer and stirred for about 7 h. The solid separated out was washed filtered and dried over vacuum. (brown solid; M.P: 138 °C)

Scheme 4.3: Synthesis of 2-(pyrrolidin-1-yl(thiophen-2-yl)methyl)cyclohexanone (MA13)

4.3.1. IR spectrum of 2-(pyrrolidin-1-yl(thiophen-2-

yl)methyl)cyclohexanone (MA13)

FT-IR spectrum of MA13 is shown in the Fig 4.11. NH stretching is noticed by a band at 3432 cm⁻¹. Aromatic CH frequency is exhibited by the band at 3072 cm⁻¹. A band at 2939 cm⁻¹ indicates the C-H stretching of methine group. A sharp absorption band at 1646 cm⁻¹ is due to the carbonyl stretching of cyclohexanone. The bands noticed at 1371 and 702 are attributed to C-N and C-S stretching respectively.

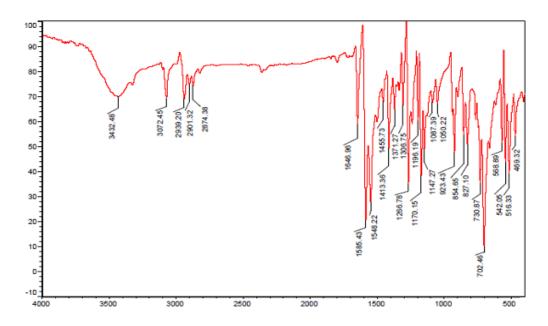


Fig.4.11. IR spectrum of 2-(pyrrolidin-1-yl(thiophen-2-yl)methyl)cyclohexanone (MA13)

4.3.2. ¹H-NMR spectrum of 2-(pyrrolidin-1-yl(thiophen-2-yl)methyl)cyclohexanone (MA13)

¹H-NMR spectrum of MA13 is shown in the Fig 4.12. The signals exhibited from 7.9 to 6.9 ppm indicates the protons of indole ring. Methine proton shows a peak at 4.3 ppm. CH₂ protons of pyrrolidine and cyclohexanone are indicated by the signals appeared at 2.9 to 1.9 ppm.

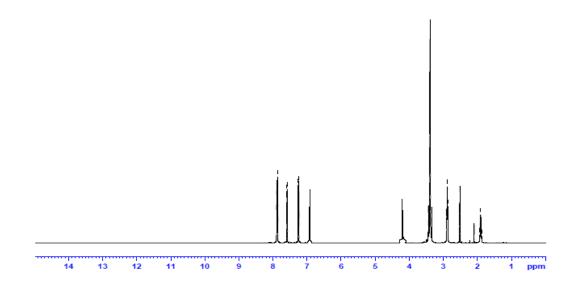


Fig. 4.12. ¹H-NMR spectrum of 2-(pyrrolidin-1-yl(thiophen-2-yl)methyl)cyclohexanone (MA13)

4.3.3. ¹³C-NMR spectrum of 2-(pyrrolidin-1-yl(thiophen-2-yl)methyl)cyclohexanone (MA13)

¹³C-NMR spectrum of MA13 is shown in the Fig 4.13. A peak appears at 189 ppm is due to carbonyl carbon of cyclohexanone. The peaks noticed in the range of 135-122 ppm are indicating the thiophene carbons. The signals appeared in the range of 22 and 28 ppm are due to pyrrolidine and cyclohexanone carbons. The signal appeared at 64 ppm is indicating the methine carbon.

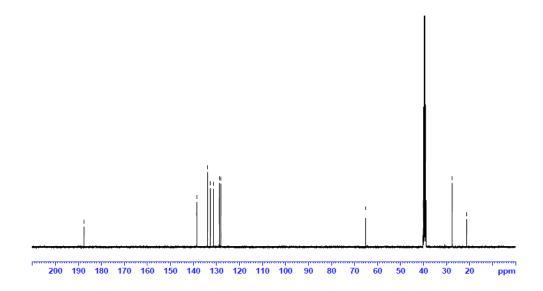


Fig.4.13. ¹³C-NMR spectrum of 2-(pyrrolidin-1-yl(thiophen-2-yl)methyl)cyclohexanone (MA13)

4.3.4. Mass spectrum of 2-(pyrrolidin-1-yl(thiophen-2-yl)methyl)cyclohexanone (MA13)

Mass spectra of the compound MA13 has been given in the Fig. 4.14. The molecular ion peak appearing at m/z 263.13 well fit with the calculated molecular mass of the compound. Intensity of the peak shows that the molecular ion peak itself is the base peak.

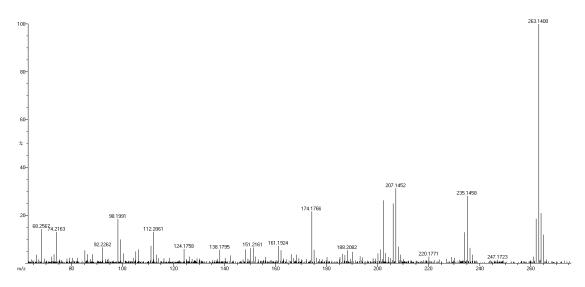


Fig.4.14. Mass spectrum of 2-(pyrrolidin-1-yl(thiophen-2-yl)methyl)cyclohexanone (MA13)

4.3.5. Antimicrobial evaluation of MA13

The compound MA13 possesses very less activity against *Moraxella*. It shows considerable activity against *B. subtilis, A.niger* and *Trichophyton*. Activity of the compound is higher in the case of gram positive bacteria than the gram negative bacteria. Potency of the compound against *A.niger* is found to be higher when compared to other strains. The results are shown in the Table 4.3 and Fig 4.15.

s.	Dothoron	Zone of inhibition (mm/µL)					
No.	Pathogen	25 μL	50 μL	75 μL	100 μL	Control	
1.	B. subtilis	12	15	17	20	32	
2.	Moraxella	-	-	7	9	30	
3.	A.niger	13	15	18	20	28	
4.	Trichophyton	9	10	11	12	20	

Table 4.3: Zone of inhibition of MA13

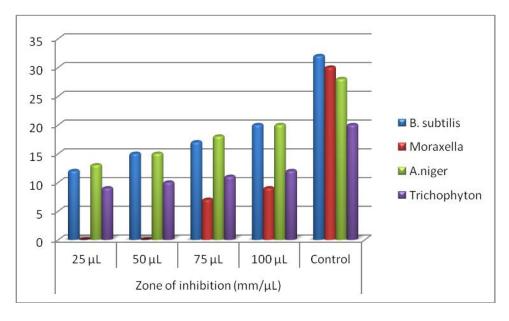


Fig.4.15.Zone of inhibition of MA13

Synthesis, characterization and DFT studies of MA14 & MA15

5.1. Synthesis of 2-ethoxy-4-(((2-

(trifluoromethyl)phenyl)imino)methyl)phenol (MA14)

To the ethanolic solution of 3-ethoxy-4-hydroxy benzaldehyde (16.6 g, 0.1 M), 2-trifluomethylaniline (9.9 g, 0.1 N) was added and refluxed for 6 h. The reaction mixture was cooled and poured in to a beaker containing crushed ice. The solid separated was washed, filtered and dried over vacuum and recrystallized using absolute ethanol.

Scheme 5.1: Synthesis of 2-ethoxy-4-(((2-(trifluoromethyl)phenyl)imino)methyl)phenol(MA14)

5.1.1. IR spectrum of 2-ethoxy-4-(((2-(trifluoromethyl)phenyl)imino) methyl)phenol (MA14)

The FT-IR spectrum of MA14 is presented in the Fig. 5.1. A broad band appeared at 3314 cm⁻¹ shows OH stretching. Aromatic C-H stretching in phenyl ring exhibits a band at 3043 cm⁻¹. A sharp band

observed at 2926 cm⁻¹ shows C-H stretching of methyl group. Strong absorption bands appeared at 2926 cm⁻¹ and 2870 cm⁻¹ are due to asymmetric and symmetric C-H stretching of methylene group. An absorption band at 1555 cm⁻¹ indicates C=N stretching. A band appeared at 1025 cm⁻¹ is due to C-F stretching.

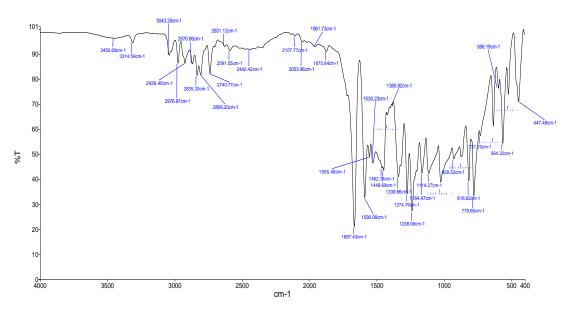


Fig. 5.1. IR spectrum of 2-ethoxy-4-(((2-(trifluoromethyl)phenyl)imino)methyl)phenol (MA14)

5.1.2. Mass spectrum of 2-ethoxy-4-(((2-

(trifluoromethyl)phenyl)imino)methyl)phenol (MA14)

Fig. 5.2 represents the mass spectra of the compound MA14. The molecular ion peak appearing at m/z 309.10 confirms the calculated molecular mass of the compound. The peak appearing with high intensity at m/z 293.10 is the base peak.

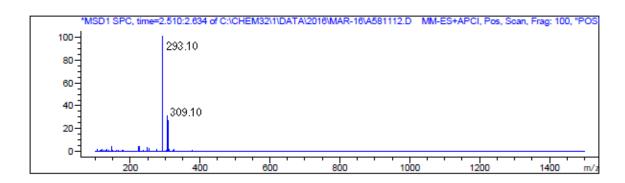


Fig. 5.2. Mass spectrum of 2-ethoxy-4-(((2-(trifluoromethyl)phenyl)imino)methyl)phenol (MA14)

DFT Studies of 2-Ethoxy-4[(2-trifluoromethyl- phenylimino) methyl]phenol (MA14)

This study presents the molecular properties such as, vibrational spectra: FT-IR and FT-Raman, ¹H NMR and ¹³C NMR chemical shifts, UV-Vis spectral parameters, HOMO, LUMO properties, atomic charges, NLO properties, NBO analysis, MEP surface and thermodynamic properties of 2-Ethoxy-4[(2-trifluoromethyl-phenylimino)methyl]phenol (MA14) molecule. Detailed analyses of structural, spectroscopic, magnetic, electronic, optical and thermodynamic properties of MA14 molecule are not available in the literature. The quantum chemical investigations are performed by means of DFT/B3LYP method with 6-311++G(d,p) basis set, for the first time. The quantum chemical computation provides a powerful support for experimental studies.

All computational functions were carried out using Gaussian 03W program package running under Windows XP [91]. The geometrical optimization of **MA14** molecule was done using DFT method with Becke's three-parameter hybrid exchange correlation functional (B3LYP) [92–95]. The 6-311++G(d,p) basis set augmented

by d polarisation functions on heavy atoms and p polarisation functions on hydrogen atoms as well as dif- fuse functions for both hydrogen and heavy atoms was used [96,97]. The optimised molecular structure, harmonic vibrational frequencies, UV-Vis spectra, ¹H NMR and ¹³C NMR spectra, the frontier molecular orbital (FMO), MEP, NLO properties, NBO analysis, Mulliken atomic charges and thermodynamic properties of title molecule were done using B3LYP/6-311++G(d,p) level.

The vibrational assignments were done with the help of Gauss View molecular visualisation program [98]. In addition, the calculated vibrational bands were justified by means of TED analysis and the assignments of the fundamental vibrational modes using VEDA 4 program [99]. The ¹H NMR and ¹³C NMR chemical shifts were calculated within GIAO approach [100] applying the same method and the basis set as used for geometry optimization. The UV-Vis. calculations of the title molecule were performed by the time dependent-DFT (TD-DFT) method. The HUMO, LUMO energy values and their shapes were computed by the same level. On the basis of computed HUMO and LUMO energy values of the title molecule, the molecular properties such as, electron affinity (A), ionisation potential (I), chemical hardness (η), chemical softness (S), electronegativity (x), chemical potential (μ) , and electrophilicity index (ω) were computed. The NLO properties such as, dipole moment (μ) , the mean polarisability (atotal), the first hyperpolarisability (β 0) were performed with the above mentioned computational level. The NBO analysis was done to know the interactions among the bonds and hyper

conjugative interactions in MA14 molecule. The MEP and its surfaces were simulated using the optimized molecular geometry of MA14 molecule.

Molecular geometry

The geometrical optimized molecular structure of MA14 molecule is shown in Figure 5.3. The computed geometrical parameters such as, bond lengths, bond angles and dihedral angles are summarised in Table 5.1. In the literature, experimental or calculated bond parameters for the molecule MA14 are not found; therefore the structure of MA14 molecule is compared with the available X-ray diffraction data of similar compound (*E*)- 2-ethoxy-6-[(phenylimino)methyl]phenol [101]. The calculated bond lengths at B3LYP method are slightly more than the experimental values; which is, due to the theoretical calculations that belong to the gaseous phase while the observed results are valid for solid phase of the molecule. The bond length of C13–C16 is 1.521 Å.

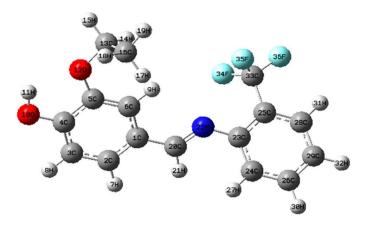


Figure.5.3. The optimised molecular structure of MA14.

Table 5.1. The optimised molecular geometric parameters of 2E42TP using B3LYP/6-311++G(d,p) basis set.

Bond parameters	B3LYP/6-311++G(d,p)	XRDa
Bond lengths (Å)		
C1-C2	1.399	1.398
C1-C6	1.409	1.398
C1-C20	1.458	1.446
C2-C3	1.392	1.387
C4-C5	1.416	1.400
C4-O10	1.355	1.3514
C5–C6	1.381	1.382
C5-O12	1.370	1.365
C6-H9	1.081	
O10-H11	0.968	
O12-C13	1.440	1.432
C13-H14	1.094	
C13-H15	1.090	
C13-C16	1.521	1.502
C20-H21	1.099	
C20-N22	1.280	1.271
N22-C23	1.396	
C23-C24	1.404	1.377
C23-C25	1.413	
C24-C26	1.390	1.379
C24-H27	1.084	
C28-C29	1.393	
C33-F34	1.354	
C33–F35	1.354	
C33-F36	1.357	
Bond angles (°)		
C1-C2-C3	120.62	120.74
C1-C2-H7	119.73	
C3-C2-H7	119.64	
C3-C4-O10	120.13	

C5-C4-O10	119.74	118.22
C4-C5-C6	120.05	119.16
C4-C5-O12	113.16	115.10
C6-C5-O12	126.78	125.81
C5-O12-C13	120.05	117.74
O12-C13-H14	109.33	11777
O12-C13-H15	104.07	
O12-C13-C16	112.54	
C1-C20-N22	122.90	122.94
H21-C20-N22	121.40	
C20-N22-C23	120.61	122.03
N22-C23-C24	122.15	124.16
N22-C23-C25	119.52	
C24-C23-C25	118.23	118.06
C23-C24-C26	121.03	121.12
C24-C26-C29	120.28	120.2
C25-C28-C29	120.70	120.8
C26-C29-C28	119.49	119.5
F34-C33-F35	106.85	
F34-C33-F36	106.25	
F35-C33-F36	106.13	
Dihedral angles (°)		
C6-C1-C2-C3	-0.32	-0.6
C6-C1-C20-N22	1.43	-1.6
C2-C3-C4-O10	179.68	179.26
O10-C4-C5-O12	-0.73	
O12-C5-C6-C1	-178.84	-178.76
C4-C5-O12-C13	-180.02	178.76
C6-C5-O12-C13	-0.84	-1.6
C25-C23-C24-C26	-1.30	-1.4
N22-C23-C25-C28	178.26	178.79
N22-C23-C25-C33	-2.16	
C24-C23-C25-C28	1.80	1.2

This elongation may be due to the repulsive nature between them which is, justified from Mulliken atomic charges as: C13 = -0.245 and C16 = -0.357 a.u. The calculated C5-O12 and C1-C20 bond lengths are 1.370 and 1.458 Å, respectively which are in agreement with XRD data [101]. The C20-N22, O10-H11, C5-O12 and C4-O10 bond lengths are 1.280, 0.968, 1.370 and 1.355 Å are agreeable with literature [101]. Similarly, the angles C1-C2-C3, C5-C4-O10 and C1-C20-N22 are 120.62°, 119.74° and 122.90° they are in agreement with literature [101]. The calculated dihedral angles N22-C23-C25-C33, O10-C4-C5-O12 and C6-C1-C20-N22 are -2.16°, -0.73° and 1.43° which show the planarity nature of the molecule. The angles C6-C5-O12: 126.78°/C4-C5-O12: 113.16° differ by 13.62° and this may be due to the intramolecular hydrogen bonding O10-H11 ... O12 with hyper conjugation interaction energy 8.24 kJ/mol.

Vibrational assignments

Vibrational spectral assignments are done at B3LYP/6-311++G(d,p) level for the present molecule which belongs to C1 point group. There are 36 atoms and have 102 vibrational modes which are active in both IR and Raman. The computed (unscaled and scaled) and observed vibrational frequencies, IR intensities, Raman intensities, vibrational assignments, force constant and reduced mass of vibrational assignments are summarised in Table 5.2. The calculated and observed FT-IR and FT-Raman spectra of MA14 molecule are given in Figure 5.4(a,b). The vibrational frequencies are justified on the basis of TED.

Table 5.2. The experimental and calculated frequencies of MA14 using B3LYP/6-311++G(d,p) level of basis set [Harmonic frequencies (cm $^{-1}$),FT- IR,FT- Raman (cm $^{-1}$)

Observed frequencies		bserved frequencies		
S. No.	Scaled	FT-IR	FT-Raman	Vibrational assignments
1	3629.37	3450vw		νОН
2	3106.33			νСН
3	3104.39			νСН
4	3091.83			νСН
5	3086.03			νСН
6	3078.29		3076vw	νСН
7	3065.72			νСН
8	3062.82	3043w	3046vw	νСН
9	3017.38		3026vw	νСН
10	2999.01			νСН
11	2992.25	2976w	2978vw	νСН
12	2945.84			νСН
13	2936.17	2926w	2941vw	νСН
14	2908.13	2870w	2869vw	νСН
15	1627.12	1667vs	1661vs	νNC
16	1585.55	1590s	1586vs	vCC+vCC
17	1578.78			νCC+νCC+βCCC
18	1572.98			vCC+vCC
19	1556.55	1555vw	1554m	vCC+vCC+vCC
20	1486.94			βCCC+νOC+βHCC+βHCC
21	1468.57			βНСН+βНСН+ГСНСН
22	1463.74			βНСС+βНСС
23	1450.2	1462vw	1462w	βНСН+βНСН
24	1438.6	1449vw		βНСС+βНСН

25 1430.86 βCCC+βHCC+βHCC 26 1422.16 1422vw vCC+vCC+vCC 27 1387.36 1385vw 1387m βHOC+βHCN 28 1369.96 ΓCHCH+ΓCHHH 29 1350.62 1339w βHCN+ΓCHCH+ΓCHHH 30 1344.82 1316m βHOC+βHCC+βHCN 31 1287.78 1274m 1273w vCC+vCC+βHCO 32 1283.91 βHCO 34 1266.51 1238m 1239s vCC+βHCC 35 1253.94 βHCC+βHCN vCC+βHCC 36 1232.67 vCC+βHCC vCC+βHCC 38 1204.63 vCC+vNC vCC+βHCC 39 1173.7 vCC+βHCC+βHCC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 vCC+βHCC+βHCC 42 1132.12 vOC+βHCC 43 1112.79 1114w 1116vw βCCC+vC+vC+vFC 44 1102.15 vFC+γFC+ΓCCFF vFC+γFC+ΓCCFF </th <th></th> <th></th> <th></th> <th></th> <th></th>					
27 1387.36 1385vw 1387m βHOC+βHCN 28 1369.96 ΓCHCH+ΓCHHH 29 1350.62 1339w βHCN+ΓCHCH+ΓCHHH 30 1344.82 1316m βHOC+βHCC+βHCN 31 1287.78 1274m 1273w vCC+vCC+βHCO 32 1283.91 βHCO 33 1278.11 vCC+βHCC 34 1266.51 1238m 1239s 36 1253.94 βHCC+βHCN 36 1232.67 vCC+βHCC 37 1230.74 vCC+βHCC 38 1204.63 vCC+νNC 39 1173.7 vCC+βHOC+βHCC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 vCC+βHCC+βHCC 42 1132.12 vOC+βHCC 43 1112.79 1114w 1116vw βCCC+vC+vFC 44 1102.15 vCC+βHCC+βHCC 45 1076.05 vFC+VFC+VFC+FCHCH 46 1071.21 vFC+VFC+VFC+CHCH 47 1069.28 vFC+VC+VFC	25	1430.86			βССС+βНСС+βНСС
28 1369.96 ΓCHCH+ΓCHHH 29 1350.62 1339w βHCN+ΓCHCH+ΓCHHH 30 1344.82 1316m βHOC+βHCC+βHCN 31 1287.78 1274m 1273w vCC+vCC+βHCO 32 1283.91 βHCO σC+βHCC 34 1266.51 1238m 1239s vCC+vCC+vOC 35 1253.94 βHCC+βHCC 36 1232.67 vCC+βHCC 37 1230.74 vOC+βHCC 38 1204.63 vCC+vNC 39 1173.7 vCC+βHOC+βHCC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 vCC+βHCC+βHCC 42 1132.12 vOC+βHCC 43 1112.79 1114w 1116vw βCCC+vCC+vFC 44 1102.15 vCC+βHCC+βHCC 45 1076.05 vFC+VFC+ΓCHCH 47 1069.28 vFC+vCC+ΓCHCH 48 1032.54 1025w vFC+βHCC+βCC 49 1016.11 vCC+vOC 50 1011.27 βCCC+v	26	1422.16	1422vw		vCC+vCC+vCC
29 1350.62 1339w βHCN+ΓCHCH+ΓCHHH 30 1344.82 1316m βHOC+βHCC+βHCN 31 1287.78 1274m 1273w νCC+νCC+βHCO 32 1283.91 βHCO 33 1278.11 νCC+βHCC 34 1266.51 1238m 1239s 35 1253.94 βHCC+βHCN 36 1232.67 νCC+βHCC 37 1230.74 νOC+βHCC 38 1204.63 νCC+νNC 39 1173.7 νCC+βHOC+βHCC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 νCC+βHCC+βHCC 42 1132.12 νOC+βHCC 43 1112.79 1114w 1116vw βCCC+νCC+νFC 44 1102.15 νCC+βHCC+βHCC 45 1076.05 νFC+νFC+ΓCCFF 46 1071.21 νFC+γCC+ΓCHCH 48 1032.54 1025w νFC+γCC+γCC 49 1016.11 νCC+νOC 50 50 1011.27 βCCC+νFC <td< td=""><td>27</td><td>1387.36</td><td>1385vw</td><td>1387m</td><td>βНОС+βНСN</td></td<>	27	1387.36	1385vw	1387m	βНОС+βНСN
30	28	1369.96			ГСНСН+ГСННН
31 1287.78 1274m 1273w νCC+νCC+βHCO 32 1283.91 βHCO 33 1278.11 νCC+βHCC 34 1266.51 1238m 1239s 36 1253.94 βHCC+βHCN 36 1232.67 νCC+βHCC 37 1230.74 νCC+βHCC 38 1204.63 νCC+γNC 39 1173.7 νCC+βHCC+βHCC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 νCC+βHCC+βHCC 42 1132.12 νOC+βHCC 43 1112.79 1114w 1116vw βCCC+νCC+νFC 44 1102.15 νCC+βHCC+βHCC νCC+βHCC+βHCC 45 1076.05 νFC+νFC+ΓCCFF νFC+νFC+ΓCHCH 47 1069.28 νFC+νC+ΓCHCH νFC+βHCC+βCCC 49 1016.11 νCC+νOC βCCC+νFC 50 1011.27 βCCC+νFC τHCNC 51 962.93 ΓCCCH+ΓCCCH	29	1350.62	1339w		βНСN+ГСНСН+ГСННН
32 1283.91 βHCO 33 1278.11 νCC+βHCC 34 1266.51 1238m 1239s νCC+νCC+νOC 35 1253.94 βHCC+βHCN 36 1232.67 νCC+βHCC 37 1230.74 νOC+βHCC 38 1204.63 νCC+νNC 39 1173.7 νCC+βHOC+βHCC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 νCC+βHCC+βHCC 42 1132.12 νOC+βHCC 43 1112.79 1114w 1116vw βCCC+νCC+νFC 44 1102.15 νCC+βHCC+βHCC νCC+βHCC+βHCC 45 1076.05 νFC+νFC+ΓCCFF νFC+νFC+ΓCHCH 46 1071.21 νFC+νCC+ΓCHCH νFC+γC+ΓCHCH 48 1032.54 1025w νFC+βHCC+βCCC 49 1016.11 νCC+νOC ρCC+νFC 50 1011.27 βCCC+νFC γHCNC 51 969.7 γHCNC γCCH+ΓCCCH	30	1344.82		1316m	βНОС+βНСС+βНСN
33 1278.11 VCC+βHCC 34 1266.51 1238m 1239s VCC+νCC+νOC 35 1253.94 βHCC+βHCN 36 1232.67 VCC+βHCC 37 1230.74 VOC+βHCC 38 1204.63 VCC+νNC 39 1173.7 VCC+βHCC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 VCC+βHCC 42 1132.12 VOC+βHCC 43 1112.79 1114w 1116vw βCCC+νCC+νFC 44 1102.15 VCC+βHCC+βHCC 45 1076.05 VFC+νFC+ΓCCFF 46 1071.21 VFC+ΓCHCH 47 1069.28 VFC+νCC+ΓCHCH 48 1032.54 1025w VFC+νCC+νFC 49 1016.11 VCC+νOC 50 1011.27 βCCC+νFC 51 969.7 THCNC 52 962.93 ΓCCC++ΓCCCH	31	1287.78	1274m	1273w	νCC+νCC+βHCO
34 1266.51 1238m 1239s νCC+νCC+νOC 35 1253.94 βHCC+βHCN 36 1232.67 νCC+βHCC 37 1230.74 νCC+βHCC 38 1204.63 νCC+νNC 39 1173.7 νCC+βHOC+βHCC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 νCC+βHCC+βHCC 42 1132.12 νOC+βHCC 43 1112.79 1114w 1116vw βCCC+νCC+νFC 44 1102.15 νCC+βHCC+βHCC 45 1076.05 νFC+νFC+ΓCCFF 46 1071.21 νFC+νCC+ΓCHCH 47 1069.28 νFC+νCC+ΓCHCH 48 1032.54 1025w νFC+βHCC+βCCC 49 1016.11 νCC+νOC 50 1011.27 βCCC+νFC 51 969.7 THCNC 52 962.93 ΓCCCH+ΓCCCH	32	1283.91			βНСО
35 1253.94 βHCC+βHCN 36 1232.67 νCC+βHCC 37 1230.74 νOC+βHCC 38 1204.63 νCC+νNC 39 1173.7 νCC+βHOC+βHCC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 νCC+βHCC+βHCC 42 1132.12 νOC+βHCC 43 1112.79 1114w 1116vw βCCC+νCC+νFC 44 1102.15 νCC+βHCC+βHCC 45 1076.05 νFC+νFC+ΓCCFF 46 1071.21 νFC+γCC+ΓCHCH 47 1069.28 νFC+γCC+ΓCHCH 48 1032.54 1025w νFC+βHCC+βCCC 49 1016.11 νCC+νOC 50 1011.27 βCCC+νFC 51 969.7 tHCNC 52 962.93 ΓCCCH+ΓCCCH	33	1278.11			νCC+βHCC
36 1232.67 νCC+βHCC 37 1230.74 νOC+βHCC 38 1204.63 νCC+νNC 39 1173.7 νCC+βHOC+βHCC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 νCC+βHCC+βHCC 42 1132.12 νOC+βHCC 43 1112.79 1114w 1116vw βCCC+νCC+νFC 44 1102.15 νCC+βHCC+βHCC 45 1076.05 νFC+νFC+ΓCCFF 46 1071.21 νFC+νC+ΓCHCH 47 1069.28 νFC+νC+ΓCHCH 48 1032.54 1025w νFC+βHCC+βCCC 49 1016.11 νCC+νOC 50 1011.27 βCCC+νFC 51 969.7 τHCNC 52 962.93 ΓCCCH+ΓCCCH	34	1266.51	1238m	1239s	vCC+vCC+vOC
37 1230.74 VOC+βHCC 38 1204.63 VCC+VNC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 VCC+βHCC+βHCC 42 1132.12 VOC+βHCC 43 1112.79 1114w 1116vw βCCC+VCC+VFC 44 1102.15 VCC+βHCC+βHCC 45 1076.05 VFC+VFC+ΓCFF 46 1071.21 VFC+ΓCHCH 47 1069.28 VFC+VCC+ΓCHCH 48 1032.54 1025w VFC+βHCC+βCCC 49 1016.11 VCC+VOC 50 1011.27 βCCC+VFC 51 969.7 THCNC 52 962.93 ΓCCCH+ΓCCCH	35	1253.94			βНСС+βНСN
38 1204.63	36	1232.67			νCC+βHCC
39 1173.7 νCC+βHOC+βHCC 40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 νCC+βHCC+βHCC 42 1132.12 νOC+βHCC 43 1112.79 1114w 1116vw βCCC+νCC+νFC 44 1102.15 νCC+βHCC+βHCC 45 1076.05 νFC+νFC+ΓCCFF 46 1071.21 νFC+γCC+ΓCHCH 47 1069.28 νFC+γCC+ΓCHCH 48 1032.54 1025w νFC+βHCC+βCCC 49 1016.11 νCC+νOC 50 1011.27 βCCC+νFC 51 969.7 τHCNC 52 962.93 ΓCCCH+ΓCCCH	37	1230.74			vOC+βHCC
40 1157.26 1164m βHCC+ΓCHCO 41 1148.56 νCC+βHCC+βHCC 42 1132.12 νOC+βHCC 43 1112.79 1114w 1116vw βCCC+νCC+νFC 44 1102.15 νCC+βHCC+βHCC 45 1076.05 νFC+νFC+ΓCFF 46 1071.21 νFC+νCC+ΓCHCH 47 1069.28 νFC+γCC+ΓCHCH 48 1032.54 1025w νFC+βHCC+βCCC 49 1016.11 νCC+νOC 50 1011.27 βCCC+νFC 51 969.7 τHCNC 52 962.93 ΓCCCH+ΓCCCH	38	1204.63			vCC+vNC
41 1148.56 νCC+βHCC+βHCC 42 1132.12 νOC+βHCC 43 1112.79 1114w 1116vw βCCC+νCC+νFC 44 1102.15 νCC+βHCC+βHCC 45 1076.05 νFC+νFC+ΓCCFF 46 1071.21 νFC+νCC+ΓCHCH 47 1069.28 νFC+νCC+ΓCHCH 48 1032.54 1025w νFC+βHCC+βCCC 49 1016.11 νCC+νOC 50 1011.27 βCCC+νFC 51 969.7 τHCNC 52 962.93 ΓCCCH+ΓCCCH	39	1173.7			νСС+βНОС+βНСС
42 1132.12 vOC+βHCC 43 1112.79 1114w 1116vw βCCC+vCC+vFC 44 1102.15 vCC+βHCC+βHCC 45 1076.05 vFC+vFC+ΓCCFF 46 1071.21 vFC+rCHCH 47 1069.28 vFC+vCC+ΓCHCH 48 1032.54 1025w vFC+βHCC+βCCC 49 1016.11 vCC+vOC 50 1011.27 βCCC+vFC 51 969.7 tHCNC 52 962.93 ΓCCCH+ΓCCCH	40	1157.26	1164m		βНСС+ГСНСО
43 1112.79 1114w 1116vw βCCC+vCC+vFC 44 1102.15 vCC+βHCC+βHCC 45 1076.05 vFC+vFC+ΓCFF 46 1071.21 vFC+rCHCH 47 1069.28 vFC+vCC+ΓCHCH 48 1032.54 1025w vFC+βHCC+βCCC 49 1016.11 vCC+vOC 50 1011.27 βCCC+vFC 51 969.7 tHCNC 52 962.93 ΓCCCH+ΓCCCH	41	1148.56			νСС+βНСС+βНСС
44 1102.15 νCC+βHCC+βHCC 45 1076.05 νFC+νFC+ΓCCFF 46 1071.21 νFC+ΓCHCH 47 1069.28 νFC+νCC+ΓCHCH 48 1032.54 1025w νFC+βHCC+βCCC 49 1016.11 νCC+νOC 50 1011.27 βCCC+νFC 51 969.7 τHCNC 52 962.93 ΓCCCH+ΓCCCH	42	1132.12			vOC+βHCC
45 1076.05	43	1112.79	1114w	1116vw	βCCC+vCC+vFC
46 1071.21 νFC+ΓCHCH 47 1069.28 νFC+νCC+ΓCHCH 48 1032.54 1025w νFC+βHCC+βCCC 49 1016.11 νCC+νOC 50 1011.27 βCCC+νFC 51 969.7 τHCNC 52 962.93 ΓCCCH+ΓCCCH	44	1102.15			νСС+βНСС+βНСС
47 1069.28 νFC+νCC+ΓCHCH 48 1032.54 1025w νFC+βHCC+βCCC 49 1016.11 νCC+νOC 50 1011.27 βCCC+νFC 51 969.7 τHCNC 52 962.93 ΓCCCH+ΓCCCH	45	1076.05			νFC+νFC+ΓCCFF
48 1032.54 1025w νFC+βHCC+βCCC 49 1016.11 νCC+νOC 50 1011.27 βCCC+νFC 51 969.7 τHCNC 52 962.93 ΓCCCH+ΓCCCH	46	1071.21			νFC+ΓCHCH
49 1016.11	47	1069.28			νFC+νCC+ΓCHCH
50 1011.27 βCCC+νFC 51 969.7 τHCNC 52 962.93 ΓCCCH+ΓCCCH	48	1032.54	1025w		νFC+βHCC+βCCC
51 969.7 τHCNC 52 962.93 ΓCCCH+ΓCCCH	49	1016.11			vCC+vOC
52 962.93 ΓCCCH+ΓCCCH	50	1011.27			βCCC+vFC
	51	969.7			τHCNC
53 958.1 vCC+vOC+vCC	52	962.93			ГСССН+ГСССН
	53	958.1			vCC+vOC+vCC

54	934.9	928vw	939w	ГСССН+ГСССН+тНССН
55	914.59			тНССН
56	873.99			νCC+νOC+ΓCHCH
57	868.19			тНССС
58	853.68			ΓCCCH+τHCCC
59	837.25	873vw	871vw	νΝC+βCCC
60	801.48	816m	812vw	ГСССН
61	800.51			νΟC+βΗСС+βССС
62	786.98	779s	784m	βНСС+ГСНСО
63	758.94			ΓCCCH+τCCCC+ΓNCCC
64	743.47			ΓCCCH+τHCCC+τCCCC
65	735.73	731vw		νFC
66	716.4			вссс
67	708.66			τCCCC+τCCCC
68	642.92			βССС+βFСF
69	619.72	634m	639m	βCCC+βCCC+βCCC
70	604.25			τCCCC
71	579.11	596vw		νFC+τCCCC+ΓCCFF
72	572.35	564s	564w	βCCN+ΓCCFF
73	548.18			βCCO+βCCO+ΓFCFC
74	539.47			νΟC+βCCC
75	525.94	522w	523vw	τCCCC+ΓNCCC
76	494.03			βCCC+βCCC
77	484.37			βCCN+βFCF+βFCF
78	477.6			тНОСС
79	462.13		467vw	βFCF+βFCF
80	446.66	447m		τCCCC+τCCCC+τCCCO+τCCCO
81	418.62			βCCO+βCCO

The absorption bands in the region of 3100–3700 cm⁻¹ result the presence of O–H stretching mode for free hydroxyl group [102]. Intramolecular hydrogen bonding if present in benzene moiety would reduce ν OH mode to 3200–3550 cm⁻¹ [103]. Based on this conclusion, the observed FT-IR band at 3450 cm⁻¹ and its corresponding harmonic value 3607 cm⁻¹ is assigned to ν OH (mode no: 1) with 100% contribution of TED. Generally, the O–H in-plane bending vibrations are observed in the region 1200–1350 cm⁻¹. The O–H in-plane bending vibration is assigned to 1379 cm⁻¹ (mode no: 27) and observed values: 1385/1387 cm⁻¹ FT-IR/FT-Raman and the O–H out-of plane bending vibration is assigned to 475 cm⁻¹ (mode no: 78) with 88% TED contribution. These assignments find support from the literature [104].

The C-H stretching vibrations generally are found in the region 3000–3100 cm⁻¹ in aromatic structure, which is, the characteristic region for the identification of *v*CH stretching vibrations [105]. In MA14, the *v*CH stretching modes are assigned to 3043/3046, 3076 cm⁻¹ in FT- IR / FT-Raman and its corresponding harmonic values are 3044/3073 cm⁻¹ (mode nos: 8, 4). The mode nos: 2, 3, 5, 6 and 7 also belong to *v*CH. The *v*CH stretching of aliphatic is assigned to 2870/2869 cm⁻¹ in FT- IR/FT-Raman and its corresponding harmonic value is 2890 cm⁻¹ (mode no: 14). These assignments are pure mode (> 92%) and they are also in line with the literature [105]. The C-H in-plane and out-of-plane bending vibrations are appeared in the regions: 1000–1600 cm⁻¹ and 650–1000 cm⁻¹ [102,106–108]. The mode nos: 22, 25, 36, 37, 41, 42, 44 and 52,

54, 58, 60, 64 are assigned to β CH and TCH modes, respectively and also find support from observed FT-IR/FT-Raman bands: 1449, 1422, and 928/939, 816/812 cm⁻¹. The in-plane and out-of-plane modes of $C_{20}H_{21}$ are attributed to mode nos: 30 and 51, respectively. These assignments have considerable TED value.

CH₂ vibrations

For the assignments of CH₂ group frequencies there are six fundamental vibrations associated with CH₂ group namely, ν sym(CH₂)symmetric stretch, vasy(CH₂)-asymmetric stretch, sci(CH₂)-scissoring, and $\rho(CH_2)$ -rocking modes which belong to in-plane vibrations. In addition to that wagging and twisting modes of CH2 group would be assigned as out-of-plane bending vibrations. The CH2 vasy and CH2 vsym vibrations would appear in the range 2700–3000 cm-1 [104]. The CH₂ vasy and vsym vibrations are assigned at 3026, 2941/2926 cm⁻¹ in FT-Raman/FT-IR and its corresponding harmonic values are 2999, 2928 cm^{-1} (mode nos: 9, 12) with (>91%) contribution of TED. The other fundamental CH₂ group vibrations which are CH₂ scissoring, CH₂ rocking, CH₂ wagging and CH₂ twisting modes appear in the expected wave number region of 875-1475 cm⁻¹ [109, 110]. According to TED (> 59%), the CH₂ scissoring mode is assigned to 1459 cm⁻¹ (mode no: 21) with observed values 1462/1462 cm⁻¹ in FT-IR/FT-Raman. Harmonic frequencies: 1342/1150 cm⁻¹ (mode nos: 29, 40) with TED value (>33%) are assigned to $\omega CH_2/TCH_2$ modes, respectively. These assignments are in line with the literature [109, 110] and also find support from observed FT-IR bands: 1339 and 1164 cm⁻¹.

CH₃ vibrations

Methyl groups are referred as electron-donating substituents in the aromatic ring system. The CH₃ vasy vibrations are observed in the range 2925–3000 cm⁻¹ and CH₃ vsym vibrations in the range 2905–2940 cm⁻¹ [111, 112]. The CH₃ vasy and vsym vibrations are assigned at 2976/2978 cm⁻¹ FT-IR/FT-Raman, respectively and its corresponding harmonic values are: 2980, 2974 and 2918 cm⁻¹ (mode nos: 10, 11, 13). These assignments are within the expected region and also find support from TED value (> 79%). According to Socrates [113], the β asy HCH and βsym HCH modes of CH₃ group appear in the regions: 1440–1465 and 1370-1390 cm⁻¹, respectively. The weak FT-IR band around 1449 cm⁻¹ belongs to β asy HCH mode it is in good agreement with harmonic value 1455 cm⁻¹ (mode no: 22). The β sym HCH is assigned to harmonic frequencies 1441, 1430 cm⁻¹ (mode nos: 23, 24) with TED contribution (>18%). The vibrational absorptions noticed in the region 900–1070 cm⁻ ¹ are due to ρ CH₃ mode [114]. The ρ CH₃ vibrations of CH₃ group appear as mixed vibrations. Based on this the calculated frequency 1065/869 cm^{-1} (mode nos: 46/56) with considerable TED (> 33%) observed at 873/871 cm⁻¹ in FT-IR/FT-Raman are designated as in-plane and outof-plane ρ CH₃ modes. The harmonic frequency 1361 cm⁻¹ (mode no: 28) having 66% TED value is attributed to wagging CH₃ which is justified with the help of Gauss View program.

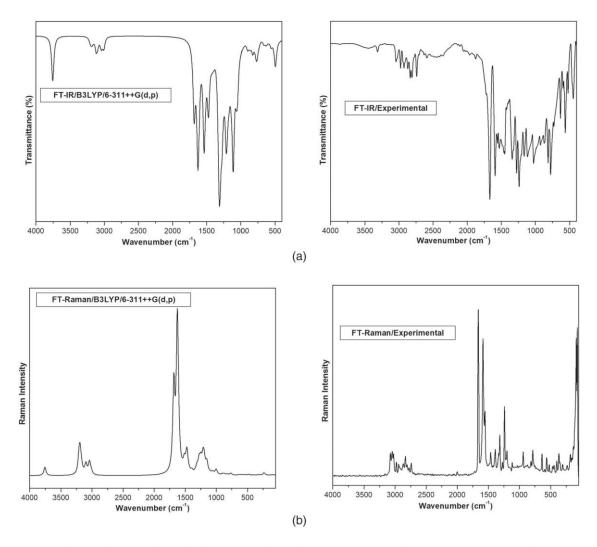


Fig. 5.4. The combined theoretical and experimental FT-IR spectra and FT-Raman spectra of MA14 (a) & (b).

CN vibrations

The C=N stretching vibrations are assigned in the region 1500–1600 cm⁻¹ by Silverstein [115] is close to the predicted region of 1600–1670 cm⁻¹ [116]. In the present study, the CN stretching mode is assigned to very strong bands: 1667/1661 cm⁻¹ in FT-IR/FT-Raman spectra and its corresponding harmonic value is 1617 cm⁻¹ (mode no: 15). The mode no: 15 has moderate to strong intensity with TED value 64%. According to Silverstein [115] the ν C-N vibrations are appeared in

the region: 1266-1382 cm⁻¹ for aromatic amines. The ν C-N is assigned to 1197 cm⁻¹ (mode no: 38) with no observed FT-IR/FT-Raman bands. The CN in-plane and out-of-plane bending vibrations are observed at 564/564 cm⁻¹ and 522/523 cm⁻¹ in FT-IR/FT-Raman spectra and its corresponding harmonic values are 569/523 cm⁻¹ (mode nos: 72/75) with >20% TED contribution.

C-C vibrations

The C-C ring stretching vibrations of aromatic group generally appear in the regions of 1280–1380; 1430–1465; 1470–1540; 1575–1590 and 1590–1625 cm⁻¹ with variable intensity [117]. For the title molecule ν CC vibrations are observed at 1590(s)/1586(vs) and 1555(vw)/1554(m) in FT-IR/FT-Raman spectra. These assignments find support from harmonic frequencies: 1576, 1569, 1563, 1547, 1413, 1280 and 1259 (mode nos: 16-19, 26, 31 and 34) in addition to their TED value (> 27%). The in- plane and out-of-plane bending modes of CCC are associated with smaller force constant than ν CCC vibrations and hence they are assigned to lower frequencies. The harmonic in-plane CCC (1005, 832, 796, 712, 639 and 616 cm⁻¹/mode nos: 50, 59, 61, 66, 68 and 69) and out-of-plane CCC (704, 601, 576, 523, 444 and 342 cm⁻¹/mode nos: 67, 70, 71, 75, 80 and 84) bending modes have been found to be in line with the observed FT-IR bands:634 and 596, 522, 447 cm⁻¹, respectively and their TED contributions are > 22%. The mode nos: 36 and 49 are attributed to ν C25C33 and ν C13C16 modes, respectively on the basis of TED value > 31%.

CO stretching

The C-O stretching vibrations are found in the range 1168-1310 cm⁻¹ [118]. Bharanidharan [119], assigned the phenolic ν C-O mode at 1201 (m) cm⁻¹ in FT-Raman spectrum. The ν C4-O10 vibration is assigned to 1238 (m)/1239 (s) cm⁻¹ in FT-IR/FT-Raman spectra and its corresponding harmonic value is 1259 cm⁻¹ (mode no: 34). This assignment is further supported by TED value 50%. The mode no: 42 and 49 are attributed to ν C5–O12 and ν C13–O12 vibrations, respectively with considerable TED value (34 and 44%). The calculated wavenumbers: 545, 416 and 387, 186 cm⁻¹ (mode nos: 73, 81 and 82, 92) are designated as β C4C5O12, β C3C4O10 and τ C6C5C4O10, τ H19C16C13O12 modes. respectively. Similarly β C5O12C13/ τ C5O12C13C16 modes are assigned to harmonic frequencies: 310/81 cm⁻¹ (mode nos: 86/97), respectively. These assignments have considerable TED value (> 20%) and also find support from observed FT-Raman bands 183, 307, 72 cm⁻¹.

CF₃ vibrations

According to the work by Alpaslan [120], the harmonic wave number at 1113: FT-IR/1114 cm⁻¹ is designated as ν C-F mode. Further, the ν C-F mode is assigned [121] at 1160 cm⁻¹/FT-IR in the case of 2,3-dichloro.5-trifluoromethyl pyridine. In this study, the bands 1114/1116, 731 cm⁻¹ (FT-IR/FT-Raman) are assigned to ν CF mode. These assignments are in line with calculated frequencies: 1106, 1069 and 731 cm⁻¹ (mode nos: 43, 45 and 65) in addition to their TED value (> 13%). The CF deformation vibrations are expected to occur in the region 490–590 cm⁻¹ [122]. The observed FT-Raman bands 467, 367 and

564, 234 cm⁻¹ confirm the presence of in-plane and out-of-plane bending vibrations of CF_3 , respectively. The harmonic frequencies 481, 459, 375 and 569, 235 cm⁻¹ (mode nos: 77, 79, 83 and 72, 89) are respectively in agreement with the experimental value. These assignments have TED value (> 34% and > 19%), respectively.

NMR

The isotropic NMR chemical shift analysis is used to identify relative ionic species, to determine different number of protons and carbon atoms and functional groups in a molecular structure as well as to calculate reliable magnetic properties which provide an accurate prediction of molecular geometries [123–126]. The ¹H NMR and ¹³C NMR chemical shift of MA14 molecule are calculated at B3LYP/6-311 G(d,p) level with TMS as an internal standard. The calculated ¹H NMR and ¹³C NMR chemical shift values are given in Table-5.3.

Table 5.3- The theoretical (¹H and ¹³C) chemical shifts (ppm) values of MA14.

Atoms	Theoretical	Atoms	Theoretical
H21	8.21	C23	158.92
H9	8.07	C4	157.65
H31	7.84	C5	150.47
H30	7.59	C26	137.32
H32	7.23	C1	134.56
H7	7.15	C33	134.52
H27	7.13	C28	132.26
Н8	7.03	C2	132.10
H11	5.79	C25	130.54
H14	4.52	C29	127.90
H15	4.29	C24	121.79
H17	1.75	C3	117.37
H18	1.18	C6	111.74
H19	1.01	C13	66.33
C20	164.17	C16	13.99

The ¹³C NMR chemical shift values are calculated in the range of 13.99–164.17 ppm, and ¹H NMR are calculated in the range of 1.01–8.21 ppm. The C₂₀, C₂₃, C₄ and C₅ atoms are connected with the electronegative atoms and their ¹³C NMR chemical shift values are assigned at 164.17, 158.92, 157.65 and 150.47 ppm. These carbons atoms have more chemical shift values than other carbon atoms in MA14 molecule, and this is due to deshielding effect of electronegative N and O atoms. Carbon atoms of aromatic ring give resonance signals in the range of 100–150 ppm [123–126]. As the NMR chemical shift values for aromatic carbon atoms in MA14 molecule are calculated at the interval 111.74–158.92 ppm. Due to intra-molecular hydrogen bonding, the proton NMR chemical shift for H21 atom is found at 8.21 ppm. The aromatic rings produce large deshielding effects and their π -bonding electrons act as a conductor [123]. The chemical shift of proton numbered at H21 is highly deshielded when compare with other protons due to the influence of adjacent Nitrogen atom. The C₁₃ and C₁₆ atoms show least chemical shift 66.33 and 13.99 ppm which is due to their repulsive nature between them (-0.245, -0.357 a.u) obtained from Mulliken atomic charges.

Natural bond orbital

The natural bond orbital (NBO) analysis is a calculated bonding orbital with maximum electron density (ED) which is used to determine intra-molecular and inter-molecular bonding interactions, bond structures, bond species and natural atomic charges in a molecular system. In addition, it is used to study inter-molecular charge transfers

(ICT) or hyperconjugation interactions and the stability between Lewis type filled orbitals and non-Lewis type vacancy orbitals. The hyperconjugation interaction energy (or the stabilisation energy, $E^{(2)}$) shows the interaction between donor and acceptor groups. The ED delocalisation between occupied bonded orbitals and unoccupied non-bonded orbitals corresponds to stabilise donor acceptor interaction [127]. The interactions result a loss of occupancy from the localised NBO of the idealised Lewis structure into an empty non-Lewis orbital. For each donor (i) and acceptor (j) orbital the stabilisation energy $E^{(2)}$ associated with the delocalisation $i \rightarrow j$ is estimated as

$$E^{(2)} = \Delta E_{ij} = q_i F(i, j)^2 / \varepsilon_j - \varepsilon_i$$

where q_i represents occupancy of donor orbital, ε_i and ε_j are the diagonal elements and F(i,j) is the off diagonal NBO Fock matrix element [128,129].

Table 5.4: The second order perturbation theory analysis of Fock Matrix in NBO basis for MA14 $\,$

Туре	Donor NBO (i)	ED/e	Acceptor NBO (j)	ED/e	a <i>E(</i> 2) kJ/mol	b <i>E(j)–E(i)</i> a.u.	c <i>F</i> (<i>i,j</i>) .u.
σ-σ*	BD (1) C 1 – C 2	1.974	BD*(1) C 1- C 6	0.02489	15.94	1.26	0.062
$\pi - \pi *$	BD (2) C 1 – C 2	1.655	BD*(2) C 3 - C 4	0.36709	76.53	0.27	0.064
			BD*(2) C 5 - C 6	0.3416	80.58	0.28	0.065
			BD*(2) C 20 - N 22	0.16772	84.56	0.28	0.07
<i>σ</i> – <i>σ</i> *	BD (1) C 1 – C 6	1.967	BD*(1) C 1 - C 2	0.02105	15.9	1.26	0.062
			BD*(1) C 5 - O 12	0.02968	22.47	1.03	0.067
<i>σ</i> – <i>σ</i> *	BD (1) C 2 – H 7	1.979	BD*(1) C 1 - C 6	0.02489	20.13	1.08	0.065
			BD*(1) C 3 - C 4	0.02137	13.31	1.09	0.052
$\pi - \pi *$	BD (2) C 3 - C 4	1.654	BD*(2) C 1 - C 2	0.39924	91.13	0.29	0.072
			BD*(2) C 5 - C 6	0.3416	73.05	0.29	0.063
σ - σ *	BD (1) C 3 – H 8	1.978	BD*(1) C 1 - C 2	0.02105	14.31	1.09	0.055
			BD*(1) C 4 - C 5	0.03795	17.32	1.04	0.059
$\pi - \pi *$	BD (2) C 5 - C 6	1.712	BD*(2) C 1 - C 2	0.39924	71.59	0.3	0.066
			BD*(2) C 3 - C 4	0.36709	78.78	0.29	0.068
<i>σ</i> – <i>σ</i> *	BD (1) C 6 – H 9	1.974	BD*(1) C 1 - C 2	0.02105	18.74	1.1	0.063
<i>σ</i> – <i>σ</i> *	BD (1) O 10 - H 11	1.986	BD*(1) C 3 - C 4	0.02137	20.29	1.31	0.071
<i>σ</i> – <i>σ</i> *	BD (1) C 16 - H 18	1.988	BD*(1) C 13 - H 14	0.02227	10.75	0.89	0.043
<i>σ</i> – <i>σ</i> *	BD (1) C 16 - H 19	1.980	BD*(1) O 12 - C 13	0.02841	19.92	0.77	0.054
<i>σ</i> – <i>σ</i> *	BD (1) C 20 - H 21	1.985	BD*(1) C 1 - C 6	0.02489	18.37	1.1	0.062
$\pi - \pi *$	BD (2) C 20 - N 22	1.911	BD*(2) C 1 - C 2	0.39924	32.05	0.36	0.051
<i>σ</i> – <i>σ</i> *	BD (1) N 22 - C 23	1.980	BD*(1) C 1 - C 20	0.03152	13.26	1.27	0.057
$\pi - \pi *$	BD (2) C 23 - C 24	1.625	BD*(2) C 20 - N 22	0.16772	30.5	0.29	0.043
			BD*(2) C 25 - C 28	0.35769	75.1	0.28	0.064
			BD*(2) C 26 - C 29	0.33407	94.14	0.28	0.072
<i>σ</i> - <i>σ</i> *	BD (1) C 24 - C 26	1.978	BD*(1) N 22 - C 23	0.02452	16.23	1.16	0.06
<i>σ</i> – <i>σ</i> *	BD (1) C 24 - H 27	1.978	BD*(1) C 23 - C 25	0.03226	17.99	1.07	0.061
π-π*	BD (2) C 25 - C 28	1.692	BD*(2) C 23 - C 24	0.36845	88.37	0.29	0.071
			BD*(2) C 26 - C 29	0.33407	70.67	0.29	0.063
π-π*	BD (2) C 26 - C 29	1.655	BD*(2) C 23 - C 24	0.36845	77.86	0.28	0.065
			BD*(2) C 25 - C 28	0.35769	97.11	0.28	0.072
<i>σ</i> – <i>σ</i> *	BD (1) C 28 – H 31	1.978	BD*(1) C 23 - C 25	0.03226	19.58	1.07	0.063
<i>σ</i> – <i>σ</i> *	BD (1) C 29 – H 32	1.980	BD*(1) C 24 - C 26	0.01482	15.56	1.1	0.057
n–σ*	LP (1) O 10	1.978	BD*(1) C 4 – C 5	0.03795	23.64	1.13	0.072
n-π*	LP (2) O 10	1.855	BD*(2) C 3 - C 4	0.36709	124.22	0.35	0.096
n-σ*	LP (1) O 12	1.958	BD*(1) C 5 – C 6	0.02413	28.53	1.14	0.079
	. ,		BD*(1) O 10 – H 11	0.01385	8.24	0.97	0.039
n-π*	LP (2) O 12	1.860	BD*(2) C 5 – C 6	0.3416	112.63	0.35	0.092
	,		BD*(1) C 13 – C 16	0.01431	22.72	0.7	0.057
n-σ*	LP (1) N 22	1.868	BD*(1) C 1 – C 20	0.03152	12.18	0.83	0.045
	()		BD*(1) C 20 - H 21	0.04227	53.14	0.73	0.088
			BD*(1) C 23 – C 24	0.03025	23.43	0.9	0.065
			BD*(2) C 23 – C 24	0.36845	32.05	0.36	0.05
n-σ*	LP (2) F 34	1.954	BD*(1) C 25 - C 33	0.05387	23.56	0.79	0.059
n-σ*	LP (3) F 34	1.937	BD*(1) C 33 – F 35	0.09886	39.83	0.65	0.071
0	(=) = = .	,,,,	BD*(1) C 33 – F 36	0.08849	44.31	0.64	0.074
n-σ*	LP (3) F 35	1.938	BD*(1) C 33 - F 34	0.09801	39.83	0.65	0.074
n–σ*	LP (2) F 36	1.956	BD*(1) C 35 = F 34 BD*(1) C 25 = C 33	0.05387	23.35	0.79	0.059
n–σ*	LP (3) F 36	1.943	BD*(1) C 33 - F 34	0.09801	42.05	0.65	0.039
11-0	Tr (0) 1: 00	1.240	(1) C 33 - 1, 34	0.03001	74.03	0.03	0.073

The NBO data computed for the molecule MA14 at B3LYP/6-311++G(d,p) is given in Table 5.4. The larger $E^{(2)}$ value the more intensive is the interaction between electron donors and acceptors i.e., the more donation tendency from electron donors to electron acceptors and greater the extent of conjugation of the whole system. The strong hyperconjugation interactions are computed between $\pi \& \sigma$ bonding electrons of the CC, CH, CO, OH, CN single and double bonds, π * and σ * antibonding ones of CC, CH, CO, OH, and CF single and CN double bonds. In addition, other strong hyperconjugation interactions are also found between the lone pair n electrons of O, N, F atoms and σ^* and π^* antibonding ones of C–C, O–H, C–H and C–F bonds. The π bond electrons are weaker than σ bond electrons. Therefore, π bonded groups have less ED than σ bonded ones. For the MA14 molecule, the EDs of the π bonds in the donor (i) groups are calculated at the interval of 1.625e-1.911e, whereas the EDs of the σ bonds in the donor (i) groups are found between 1.967e-1.988e. The EDs of lone pair n electrons of O, N, and F atoms in donor (i) groups are found between 1.855e-1.978e. The strongest hyperconjugation interactions occur from lone pair n electrons of O10 and O12 atoms to an antibonding π * electrons of C3-C4 and C5-C6, with interaction energy E(2) = 124.22 and 112.63 kJ/mol. It is evident from Table 5.4 the hydrogen (H11) is towards the oxygen (O12) and hence, the intra- molecular interaction takes place between the C5–O12 and O10-H11 group (O-H ... C-O). Due to this reason the LP O12 transfer energy (8.24 kJ/mol) to acceptor antibonding orbital σ *O10–H11. The stabilisation energy values for π (C1–C2) $\to \pi$ *(C20–N22), π (C3–C4) $\to \pi$ *(C1–C2), π (C23–C24) $\to \pi$ *(C26–C29), π (C25–C28) $\to \pi$ *(C23–C24) and π (C26–C29) $\to \pi$ *(C25–C28) are computed as 84.56, 91.13, 94.14, 88.37 and 97.11 kJ/mol. Likewise, the σ (C1–C6) $\to \sigma$ *(C5–O12), σ (O10–H11) $\to \sigma$ *(C3–C4), σ (C2–H7) $\to \sigma$ *(C1–C6), σ (C16–H19) $\to \sigma$ *(O12–C13), σ (C28–H31) $\to \sigma$ *(C23–C25) hyper conjugation interactions are obtained as 22.47, 20.29, 20.13, 19.92 and 19.58 kJ/mol.

UV-Visible

The UV-Vis electronic absorption spectrum of the MA14 molecule is recorded experimentally in the region 200–800 nm using DMSO solvent. The calculated and recorded UV-Vis spectroscopic parameters and its corresponding electronic transitions are given in Table 5.5.

Table 5.5: The electronic transition of MA14

Calculated at B3LYP/6- 311++G(d,p)	Oscillator strength and gap (eV/nm)	Calculated band gap (nm)	Experimental band gap (eV/nm)	Туре
Excited State-1	Singlet-A ($f = 0.5694$)	3.7180 eV/333.47 nm	362.90 nm	π $-\pi$ *
$78 \rightarrow 81$	0.17474			
$79 \rightarrow 81$	-0.21206			
$80 \rightarrow 81$	0.58917			
Excited State-2	Singlet-A ($f = 0.0348$)	4.0189 eV/308.50 nm	308.35 nm	π-π*
$76 \rightarrow 81$	-0.1417			
$79 \rightarrow 81$	0.59947			
$80 \rightarrow 81$	0.23103			
Excited State-3	Singlet-A (<i>f</i> = 0.1254)	4.3369 eV/285.88 nm	267.50 nm	π-π*
$78 \rightarrow 81$	0.58777			
$79 \rightarrow 81$	0.13888			
$80 \rightarrow 81$	-0.11967			
$80 \rightarrow 82$	0.18743			
80 → 83	-0.2103			

In addition, the simulated and recorded UV-Vis. Spectra are also given in Figure 5.5. The absorptions observed at 362.90 and 308.35 nm in the experimental UV-Vis spectrum using DMSO solvent can be assigned to $\pi \rightarrow \pi$ electronic transition in the MA14 molecule. According to Frank-Condon principle the maximum absorption peak (\lambda_max) in a UV-Vis spectrum corresponds to vertical excitation. The calculated UV-Vis spectrum shows an intense peak at 333.47 nm with an oscillator strength f = 0.5694 which is in line with the experimental $\lambda_{max} = 362.90$ nm. This electronic absorption corresponds to the transition from the ground state to the first excited state and is described as one electron excitation from the HOMO to the LUMO. Similarly, an electronic transition at 308.50 nm with an oscillator strength f = 0.0348 is in line with the observed data 308.35 nm. The absorption wavelength (λ), oscillator strength (f) and excitation energies are calculated at TD-DFT/B3LYP/6-311++G(d,p) level, for MA14 molecule. The band gap energy between HOMO and LUMO indicates the electrical transport properties of molecules [130].

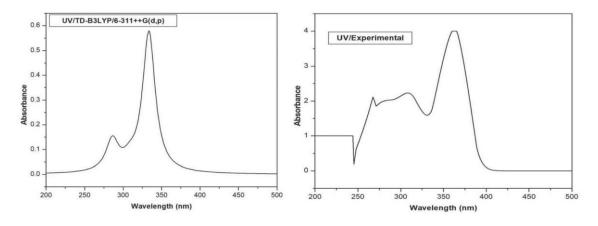


Fig. 5.5. Theoretical and experimental UV-Vis spectrum of **MA14**.

The MEP is associated with the ED and is generally an important descriptor to identify the sites for electrophilic and nucleophilic reactions as well as hydrogen bonding interactions [131, 132]. MEP has vital role to explain the hydrogen bonding, chemical reactivity, presence of intramolecular and inter-molecular interactions, electronegativity and structure activity of molecule [133]. The MEP surface denotes the distance from a molecule at which a positive (test) charge experiences a certain amount of repulsion or attraction. The negative electro- static potential indicates a possibility of an attraction of proton by the concentrated ED in the molecules, while positive electrostatic potential indicates repulsion of the proton by the atomic nuclei where the nuclear charge is incompletely shielded due to the existence of low electron density. Therefore, the regions with red coloured parts represents negative electrostatic potential while blue ones represent the regions of positive electrostatic potential. Additionally, green coloured parts represent the regions of zero potential. The MEP surface of MA14 molecule is calculated using the optimized molecular structure at B3LYP with 6- 311++G(d,p) level and its 3D plot is shown in Figure 5.6. The negative regions of MEP map are mainly localized on O10, N22, F34, F35 and F36 atoms indicating the possible sites for electrophilic reactivity due to the electronegative property of these mentioned atoms. The positive region of MEP map localised on hydrogen atoms indicates the possible sites for nucleophilic attack.

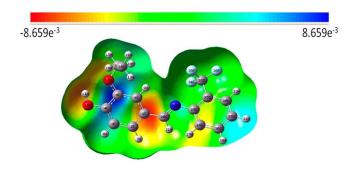


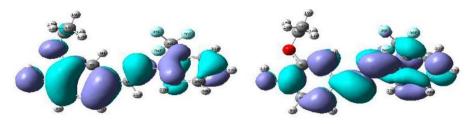
Fig. 5.6. MEP Plot of MA14

HOMO-LUMO

The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) play an essential role in quantum chemistry. These orbitals play a vital role in terms of electric properties as well as they determine the way the molecule interacts with other species [134–136]. Both orbitals take part in chemical reaction. The energy of the HOMO relates to the ionisation potential, whereas LUMO energy corresponds to the electron affinity. These orbitals are also called as frontier molecular orbitals (FMOs) which may be used to predict the absorption centres of the inhibitor molecule for corrosion of metal surfaces [137]. In order to provide a prudent qualitative indication of the excitation energies, HOMO and LUMO energies and HOMO–LUMO gap energy are done at B3LYP method with 6-311++G(d,p) level. The calculated values of HOMO and LUMO energies and HOMO–LUMO band gap energy of MA14 molecule are listed in Table 5.6.

Table 5.6. The Physico-chemical properties of MA14.

Parameters	Values
НОМО	-6.095 eV
LUMO	-1.986 eV
Energy gap	4.109 eV
Ionisation potential $[I = -E_{HOMO}]$	6.095 eV
Electron affinity $[A = -E_{LUMO}]$	1.986 eV
Electronegativity [$x = (I + A)/2$]	4.041 eV
Chemical potential $[\mu = -x]$	-4.041 Ev
Chemical hardness $[\eta = (I - A)/2]$	2.055 eV
Chemical softness [$S = I/2\eta$]	0.487 eV
Electrophilicity index [$\omega = \mu / 2\eta$]	3.982 eV


The HOMO and LUMO plot for MA14 molecule is given in Figure 5.7. The molecules which have more HOMO–LUMO energy band gap are called as 'hard molecules', whereas the molecules with a small HOMO–LUMO energy band gap are called as 'soft molecules'. Therefore, the molecules with the least HOMO–LUMO gap become more reactive. The computed HOMO and LUMO energy values for the MA14 molecule are found as –6.095 and –1.986 eV. The energy band gap between the HOMO and LUMO is obtained as 4.109 eV. The HOMO is localised on the whole molecule except ethyl group, CF₃ and hydrogen atoms whereas; LUMO is localised over the whole molecule except ethoxy group bonded with C₅ atom and CF₃ group. Normally larger the aromatic system, smaller is the HOMO–LUMO gap, which is due to the presence of mobile pi electrons in the aromatic ring. So, F3 negative is not involved in HOMO–LUMO part which is due to the presence of high electronegative fluorine group

attached with the aromatic ring. The calculated energy band gap between the HOMO and LUMO directly reveals that the charge transfer occurs within the molecule.

Density of state spectrum (DOS) is used to find out the contribution of groups with the molecular orbitals (HOMO-LUMO). DOS plot indicates the density of electrons per orbital and demonstrates an easy view of character of molecular orbitals in a certain energy range. The DOS spectrum is shown in Figure 5.8. The energy range from -20 eV to -5 eV is called as filled orbitals and from -5 eV to 0 eV are called as virtual orbitals. The virtual orbitals are empty and also called as acceptor orbitals, whereas filled orbitals are called as donor orbitals. The green and red lines in the DOS spectrum show the HOMO and LUMO levels, respectively. A high intensity DOS at a particular energy level means that there are many states available for occupation. A zero intensity DOS reveals that there are no states which can be occupied by the system. The frontier molecular orbital (FMO) analysis is done in order to get the molecular orbital information with Gaussian curves of unit height and full width at half maximum (FWHM) of 0.3 eV using the Gaussum 2.2 program [138, 139]. The variations found on the peaks are due to movement of electrons between the C = C and C-C in the rings of the molecule. The obtained FMO energies are given in Table 5.7.

Table 5.7. The frontier molecular orbitals of MA14

Occupancy	Orbital Energies (a.u)	Orbital Energies (eV)	Kinetic Energy (a.u)
076	-0.295	-8.027	1.599
O77	-0.278	-7.564	1.221
O78	-0.260	-7.075	1.460
O79	-0.248	-6.748	1.537
O80	-0.224	-6.095	1.645
V81	-0.074	-2.014	1.534
V82	-0.038	-1.034	1.424
V83	-0.022	-0.599	1.267
V84	-0.012	-0.326	0.672
V85	-0.012	-0.326	0.949

HOMO (-6.095 eV) Energy gap (4.109 eV) LUMO (-1.986 eV)

Fig.5.7. HOMO LUMO plots of MA14

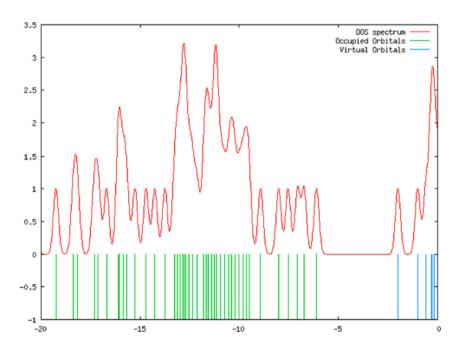


Fig.5.8. Density of state spectrum of MA14

Mulliken atomic charges

Mulliken analysis is one of the simplest and most common method used to determine the electronic partial distribution of molecular atomic charges in a molecular system. It arises from Mulliken population analysis [140]. The calculation of effective charges plays a vital role in the field of quantum chemistry computation. This calculation describes the charge of every atom as positive or negative in a molecular system which plays an important role to increase or decrease the bond length between the atoms. The review of literature depicts that the effective atomic charge distribution plays an essential role in the field of chemical calculation to the molecular system, as the atomic charges effect dipole moment, polarisability, acidity-basicity behaviour, electronic structure and other properties of the molecular system [141]. It is also used to determine the electrostatic potential surfaces [142-144]. The Mulliken atomic charges of MA14 molecule are calculated using B3LYP/ 6-311++G(d,p) level and are given in Table 5.8. The Mulliken charge plot is shown in Figure 5.9. From the Table 5.8 it is noticed that all hydrogen atoms have positive charges. It is clear that H₁₁ and H₈ atoms have more positive charge compare to other hydrogen atoms and this is due to the electro negative property of O10 atom. The computed Mulliken atomic charges of H11 and H8 are 0.305 and 0.196 a.u. The atomic charges of carbon atoms are found either positive or negative at the interval -1.131 to +1.050 a.u. The most positive/negative Mulliken atomic charge of carbon atoms are at C1/C23 as +1.050/-1.131 which is due to the C20 = N22 linkage in between two benzene rings.

Table 5.8. The Mulliken atomic charges of MA14

Atoms	Charges (a.u.)	Atoms	Charges (a.u.)
C1	1.050	H19	0.137
C2	-0.727	C20	-0.032
C3	-0.288	H21	0.103
C4	-0.703	N22	0.302
C5	0.016	C23	-1.131
C6	-0.169	C24	-0.293
H7	0.159	C25	0.964
Н8	0.196	C26	-0.037
Н9	0.134	H27	0.167
O10	-0.240	C28	0.168
H11	0.305	C29	-0.548
O12	-0.208	H30	0.178
C13	-0.245	H31	0.184
H14	0.165	H32	0.160
H15	0.190	C33	0.386
C16	-0.357	F34	-0.067
H17	0.149	F35	-0.068
H18	0.15	F36	-0.156

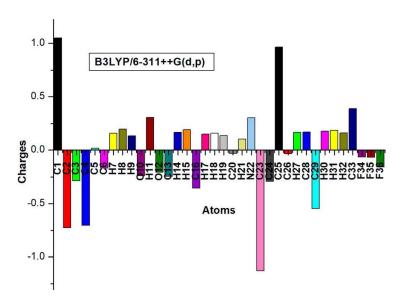


Figure 5.9. The Mulliken atomic charges of MA14.

PES SCAN

The aim of the conformational analysis of MA14 molecule is to provide a model for the molecular structure. Potential energy scan (PES) is a relationship between the energy of the molecule and its geometry. PES is important to visualise and understand the relationship between potential energy and molecular geometry and also help to understand how to compute chemistry programs, locate and characterise structures of interest [145]. Figure 5.10 shows the performance of PES scan for dihedral angle C5–O12–C13–C16 using B3LYP 6- 311++G(d,p) method for the title molecule.

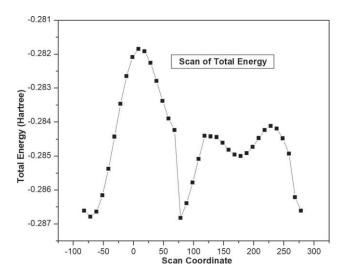


Figure 5.10. The potential energy surface around C5-O12-C13-C16 dihedral angle of MA14 molecule

The PES scan is carried out at the torsion angle C5–O12–C13–C16 using a 10° step size and considering the full 360° range for 2E42TP. The conformational energy profile shows three maxima with an energy values

-0.281846, -0.284118 and -0.284411 (hartree) and four minima with energy -0.286826, -0.286785, -0.286612 and -0.284996 (hartree). The energy values obtained from the scan output reveal that the structure has the dihedral angle C5-O12-C13-C16 at scan coordinate 78.4487 and possess minimum energy.

Thermodynamic properties

The standard thermodynamic functions as heat capacity $(C^{0}p,m)$, entropy ($S^{0}m$) and enthalpy ($H^{0}m$) rotational constants, temperature and zero-point vibrational energy (ZPVE) for MA14 are computed using B3LYP/6-311++G(d,p) basis set at room temperature of 298.15 K, under 1 atm pressure in vacuum and the results are shown in Table 5.9. The partition function plays an important role for both thermodynamic equilibrium and thermodynamic parameters. It has four species which are translational, electronic, vibrational and rotational one. It is used to find thermo- dynamic variables (heat capacity, entropy, equilibrium constants, total energy, pressure, thermal energy and rate constants, etc.) of a system. It is well known that total energy of any molecular system is the sum of electronic, vibrational, rotational and translational energies (E= Ee+Ev+Er+Et). The computed minimum total energy (-1123.178 a.u), ZPVE (170.428 kcal/mol) and total thermal energy (182.756 kcal/mol) are calculated. The major contribution to thermal energy comes from vibrational energy with 180.979 cal/mol × K value, whereas minor values belong to electronic energy with 0.000 cal/mol × K, translational and rotational energies with 0.889 cal/mol × K one.

Likewise, the calculated heat capacity (*Cv*) and entropy (*S*) values are calculated as 74.956 and 149.514 cal/mol × K, respectively. The contributions of electronic, translational, rotational and vibrational energy to heat capacity and entropy are found as 0.000, 2.981, 2.981 and 68.995 cal/mol × K and 0.000, 43.082, 34.909 and 71.524 cal/mol × K, respectively. The computed rotational constants (GHz) for MA14 are found as 0.481, 0.142 and 0.122 GHz, respectively.

Table 5.9. Thermodynamic properties of MA14 molecule.

Zero-point vibrational energy 170.428 (kcal/mol) Rotational constants						
(GHz) A(0.481), B(0.142), C(0.122) E(RB+HF-LYP) = -1123.178 a.u						

	E (Thermal) kcal/mol	Cv (Specific heat)cal/mol × K	S (Entropy) cal/mol × K
Total energy	182.756	74.956	149.514
Electronic	0.000	0.000	0.000
Translational	0.889	2.981	43.082
Rotational	0.889	2.981	34.909
Vibrational	180.979	68.995	71.524

For the first time a complete vibrational analysis was performed for MA14 molecule. The detailed interpretations of the vibrational spectra were carried out. The vibrational assignments were justified with the help of TED. The optimised geometrical parameters were calculated and compared with the reported XRD values. The calculated dihedral angles N22–C23–C25–C33, O10–C4–C5–O12 and C6–C1–C20–N22 are –2.16, –0.73 and 1.43° which showed the planarity nature of the molecule. The first order hyperpolarisability (β 0) value was seventy times more than that of urea and hence the present molecule possessed good NLO

property. The ν O10–H11 mode was observed at higher frequency due to high energy transfer from LPO10 to π * C3–C4 (124.22 kJ) anti-bonding orbital. The experimental band at 363 nm was attributed mainly due to a HOMO \rightarrow LUMO transition which was predicted as $\pi \rightarrow \pi$ * transition. The physico-chemical properties, Mulliken atomic charges, MEP and thermodynamic properties were also calculated. The H₁₁ atom had more positive charge compared to other hydrogen atoms which was due to the electronegative property of O10 atom. The most positive/negative Mulliken atomic charge of carbon atoms were at C1/C23 as +1.050/–1.131 which was due to the C20 = N22 linkage in between two benzene rings. The potential energy surface was obtained depending on the C5–O12–C13–C16 torsional angle.

5.2. Synthesis of 2-Ethoxy-4-(pyridin-2-yliminomethyl)-phenol (MA15)

To the ethanolic solution of 3-ethoxy-4-hydroxy benzaldehyde (16.6 g, 0.1 M), 2-aminopyridine (9.4 g, 0.1 M) was added and refluxed for 6 h. The reaction mixture was cooled and poured in to a beaker containing crushed ice. The solid separated was washed, filtered and dried over vacuum and recrystallized using absolute ethanol.

Scheme 5.2: Synthesis of 2-Ethoxy-4-(pyridin-2-yliminomethyl)-phenol (MA15)

5.2.1. IR spectrum of 2-Ethoxy-4-(pyridin-2-yliminomethyl)-phenol (MA15)

The FT-IR spectrum of MA15 is depicted in the Fig. 5.11. A broad intense band appeared at 3263 cm⁻¹ indicates OH stretching. Aromatic C-H stretching shows a band at 3061 cm⁻¹. A sharp band appeared at 2949 cm⁻¹ shows C-H stretching of methyl group. Strong absorption bands appeared at 2829 cm⁻¹ and 2749 cm⁻¹ are due to asymmetric and symmetric C-H stretching of methylene group. An absorption band at 1544 cm⁻¹ indicates C=N stretching. A band appeared at 1150 cm⁻¹ is due to C-O-C stretching.

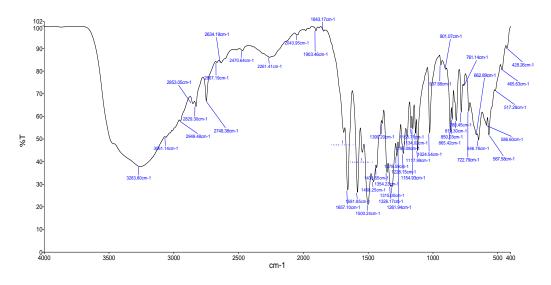


Fig.5.11. IR spectrum of 2-Ethoxy-4-(pyridin-2-yliminomethyl)-phenol (MA15)

5.2.2. Mass spectrum of 2-Ethoxy-4-(pyridin-2-yliminomethyl)-phenol (MA15)

Mass spectra of the compound MA15 has been depicted in the Fig. 5.12. The peak appearing at m/z 242.11 is the molecular ion peak (M+1). The intense peak noticed at m/z 226.11 is assigned as base peak.

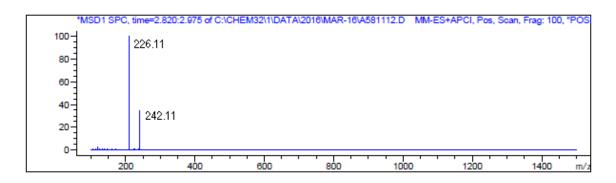


Fig. 5.12.Mass spectrum of 2-Ethoxy-4-(pyridin-2-yliminomethyl)-phenol (MA15)

The experimental FT-IR and FT-Raman spectra of the title compound are compared with the theoretical spectra in Fig. 5.13 & 5.14 respectively. The scaled calculated harmonic vibrational frequencies at B3LYP/6-311++G(d,p) level, observed vibrational frequencies are tabulated in Table 5.10. Harmonic frequencies are calculated for gas phase of an isolated compound while the experimental ones are obtained for its solid phase. Hence, there is disagreement between the observed and the calculated frequencies in some modes. In order to improve the agreement between the calculated and the experimentally observed values, the calculated harmonic frequencies have been scaled down by 0.9668.

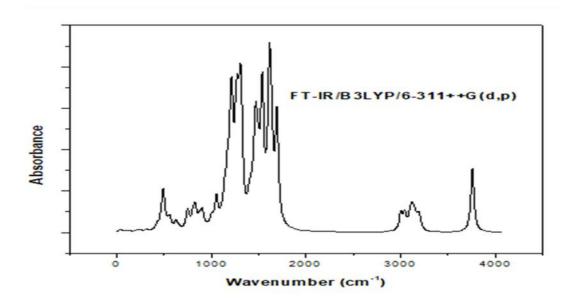


Fig.5.13.IR spectrum of MA15

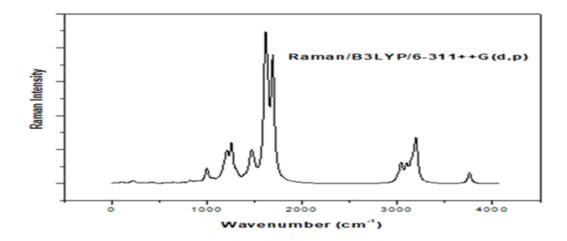


Fig.5.14.Raman spectrum of MA15

The frequencies obtained by theoretical method are in accordance with the observed FT-IR and FT-Raman spectra. The present molecule belongs to C₁ point group. The OH stretching are extremely sensitive to the formation of hydrogen bonding. The absorption bands in the region 3700-3100 cm⁻¹ result the presence of O-H stretching mode. In the present work, the OH stretching vibration is assigned at 3263 cm⁻¹ and its harmonic value is calculated at 3633 cm⁻¹. This decrease in vOH is due to intra-molecular hydrogen bonding. If it is present in a six membered ring moiety, the vOH mode would be reduced to 3200-3500 cm⁻¹. The CH stretching vibrations are normally observed in the region 3100-3000 cm⁻¹ for the benzene ring and less than 3000 cm⁻¹ for nonaromatic compounds. In the present work, the CH stretching vibrations are assigned at 3025, 2980 and 2947 cm-1 in FT-Raman spectrum and its calculated values are: 3016, 2991 and 2944 cm⁻¹. The CH bending vibrations are assigned at 1023, 1067 cm⁻¹. It is difficult to assign νCN vibrations, since there is mixing of several vibrations are possible. Silverstein et al assigned CN stretching absorption in the region 1500-1600 cm⁻¹. In the present work, the band observed at 1657 cm⁻¹ has been assigned to CN stretching vibration and its corresponding calculated frequency is 1634 cm⁻¹. The CN in-plane bending vibration is observed at 1354 cm⁻¹ in FT-IR and 1353 cm⁻¹ in FT-Raman. The ring stretching vibrations are very important in the spectrum of benzene and their derivatives are highly characteristic of the aromatic ring itself. The bands between 1400 and 1650 cm⁻¹ in benzene derivatives are usually assigned to C=C stretching modes. For the title molecule, the CC stretching vibrations are undoubtedly assigned to 1438 cm⁻¹ in FT-IR and 1430 cm⁻¹ in FT-Raman. These assignments are within the characteristic region and also find support from harmonic value 1436 cm⁻¹. The CC in-plane bending vibration is assigned at 959 cm⁻¹ and its corresponding harmonic value is 967.8 cm⁻¹. The carbonyl stretching vibrations has been most extensively studied by IR spectroscopy. This multiply bonded group is highly polar and therefore gives rise to an intense IR absorption band 1168-1310 cm⁻¹. Based on the above conclusion, the observed bands 1117 cm⁻¹: FT-IR/1113 cm⁻¹: FT-Raman however with weak intensity and its corresponding harmonic value 1130 cm⁻¹ is designated as vCO mode is observed in the present investigation. The in-plane and out-of-plane vibrations are listed in Table.

Table 5.10. The experimental and calculated frequencies of MA15 using B3LYP/6-311++G(d,p) level of basis set [Harmonic frequencies (cm⁻¹),FT- IR,FT- Raman (cm⁻¹)

s.		Observed f	requencies	
No.	Scaled FTIR		FTRaman	Vibrational Assignments
1	3633	3263.8(m)		νОН
2	3104			νСН
3	3091			νСН
4	3089			νСН
5	3082			νСН
6	3065			νСН
7	3063	3061.14(vw)	3052.94(m)	νСН
8	3040			νСН
9	3016		3025.61(m)	νСН
10	2997			νСН
11	2991		2980.16(vw)	νСН
12	2944	2949.48(vw)	2947.04(m)	νСН
13	2936			νСН
14	2901	2853.05(v)	2848.62(m)	νСН
15	1635	1657.1(vs)	1646.1(vs)	vNC)
16	1583	1581.85(vs)		vCC+vCC
17	1580		1577.27(vs)	vCC+vCC+vCC
18	1561			vNC+vCC+vCC
19	1547	1544.39(vw)	1544.88(s)	vNC+vCC+vCC+βCCC
20	1486			vCC+vCC+vCC+vOC
21	1469	1458.25(vw)	1456.83(m)	βНСН+βНСН
22	1451			βНСН+βНСН
23	1446			νΝC+βΗCC+βΗCΝ
24	1437	1438.55(w)	1430.07(vw)	βНСН
25	1422			νCC+νCC+νCC+βHCC
26	1406		1407.01(vw)	νΝC+βΗCC+βΗCC
27	1386	1390.2(vw)	1388.83(vw)	νCC+βHOC+βHCN+ΓCHCH

28	1368			ГСНСН+ГСННН
29	1353	1354.23(w)	1353.69(vw)	βНСN+ГСНСН+ГСННН
30	1344	1326.17(vw)	1317.95(m)	βНОС+βНСN+ГСНСН
31	1284			внсо
32	1278	1278.59(m)		νNC+βHCC+βHCN
33	1266	1261.94(w)	1262.92(vw)	vCC+vCC+vCC+vOC
34	1256			внсс
35	1240			vNC+vCC
36	1232	1228.15(m)	1224.62(m)	vOC
37	1215			vNC
38	1174	1168.71(w)	1198.56(vw)	νСС+βНОС+βНСС
39	1157	1154.93(vw)		ГСНСО+ГСНСН
40	1133	1134.02(m)		νCC+νCC+βHCC+βHCC+βHCC
41	1130			νOC+νCC+βHCC+βHCC
42	1102		1113.08(w)	νСС+βНСС+βНСС
43	1080			νCC+νCC+βHCC+βHCC
44	1067		1067.46(w)	νCC+βHCC+βCCO
45	1032	1024.54(vs)	1023.91(w)	νCC+νCC+βHCC
46	1016			vCC+vOC
47	973			τHCCH+τHCCH+ΓCCNH
48	971.6			βCCN+βCCC+ΓCCNH
49	967.8			βCCC+τHCCH+τHCCH+ΓCCNH
50	957.1		959.56(vw)	vCC+vCC
51	947.5	937.68(vw)	938.03(vw)	тНССН
52	914.6	901.07(vw)		ΓCCCH+τHCCC
53	875			νCC+νOC+βHCC
54	868.2	865(s)		τHCCO
55	859.5			тНССН+тНССН
56	843	850.03(m)		νNC+βCCC+τHCCH
57	803.4	819.3(m)	824.33(w)	ГСССН+тНССС
58	798.6			νOC+ΓCCCH
59	788.9			ГСНСО+ГСНСН

60	774.4	780.45(s)	780.08(w)	ΓCHCO+τCNCC+ΓNCNC
61	727			τHCCN+τCNCC+τCCCN
62	721.2	722.79(w)	722.32(vw)	νΟC+βCCC
63	709.6			τCCCC5+τCCCC
64	637.1	646.78(w)	639.1(m)	βCCN+βCCN
65	614.9			βCCN+βCCC+βNCN
66	603.3			τCCCC
67	559.8	567.58(m)	566.97(vw)	вссо
68	539.5			νΟC+βCCC+βCCO
69	525	517.28(vw)	514.12(vw)	τCCCC+τCCCN+ΓNCNC
70	492			вссс
71	476.6			βNCN+τHOCC
72	470.8	465.63(vw)		тНОСС
73	446.7			τCCCC+τCCCC+τCCCO+τCCCO
74	412.8	428.26(vw)	426.59(w)	βCCO+βCCO
75	407			τCNCC+τCCCC+τCCCN

ν: Stretching, β:in-plane-bending, Γ:out-of-plane bending, τ:Torsion, νw: very weak, w:weak,

m:medium, s:strong, scaling factor:0.9668(Radom et al.,)

Summary and Conclusion

The research work deals with the synthesis and characterisation of some azomethines and β -amino carbonyl compounds using Schiff condensation pathway and Mannich reaction respectively. Fifteen new compounds have been synthesized using simple synthetic procedure based on the recent literatures.

Twelve compounds listed below have been synthesized via Schiff Condensation

- (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)
- (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine (MA2)
- N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)
- 3-(trifluoromethyl)-N-(3,4,5-trimethoxybenzylidene)aniline (MA4)
- 3-methyl-2-((3,4,5-trimethoxybenzylidene)amino)butanoic acid (MA5)
- (E,E)-1,1'-(pentane-2,4-diylidene)bis(3-phenylurea) (MA6)
- 4-(((5-bromopyridin-2-yl)imino)methyl)phenol (MA7)
- 1-phenyl-3-(thiophen-2-ylmethylene)urea (MA8)
- 5-bromo-N-(2,3-dichlorobenzylidene)pyridin-2-amine (MA9)
- 5-bromo-N-(thiophen-2-ylmethylene)pyridin-2-amine (MA10)
- 2-ethoxy-4-(((2-(trifluoromethyl)phenyl)imino) methyl)phenol (MA14)
- 2-Ethoxy-4-(pyridin-2-yliminomethyl)-phenol (MA15)

Three compounds mentioned below have been synthesized via Mannich reaction.

- 3-morpholino-1-(3-nitrophenyl)-3-(thiophen-2-yl)propan-1-one (MA11)
- 3-((4-aminophenyl)amino)-1-phenyl-3-(thiophen-2-yl)propan-1-one (MA12)
- 2-(pyrrolidin-1-yl(thiophen-2-yl)methyl)cyclohexanone (MA13)

All the compounds have been characterized using FTIR, ¹H & ¹³C-NMR and mass spectral studies. The results of the spectral investigation are found to be in amicable agreement with the proposed structures of the synthesized compounds.

Antimicrobial screening has been carried out at various concentrations for thirteen compounds MA1-MA13. Four bacterial pathogens viz., Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Moraxella and three fungi strains viz., Candida albicans, Aspergilus niger, Trichophyton have been selected at random for the investigation. Hilton Agar dilution method employed for antimicrobial screening and Oflaxacin, Amphotericin B and Gentamicin were used as positive standards. Compound, MA10 possessed excellent antimicrobial activity against the tested bacteria and fungi pathogens. Zone of inhibition of MA10 is higher than the positive standard. Presence of thiophene ring and bromo substituted pyridine ring present in the compound may be the reason for its potency. Compounds MA7, MA9 and MA11 are exhibited equal antimicrobial activity compared to the standard drug. Compound MA6 exhibited moderate antimicrobial activity compared to the standard drugs. Considerable activity has been found in the compounds MA1, MA3, MA8 against bacteria stain and moderate activity noticed against fungi pathogens. Zone of inhibition of the compounds MA4 and MA5 are moderate against bacteria strains. Compounds MA12 and MA13 possessed very less activity against all the tested microbial strains.

Density functional theory (DFT) studies have been carried out for the compounds MA13 and MA14. Characteristic absorption frequencies have been well established by FTIR spectral characterization and it is correlated with FT-Raman spectral studies.

- 1. I. Iovel, L. Golomba, J. Popelis, A. Gaukhman and E. Lukevics, Chemistry of Heterocyclic compounds 36 **(2000)** 264
- 2. Adnan dib, International Journal of ChemTech Research 5 **(2013)** 204
- 3. Veera Raghavulu Nagavolu, Shankarananth Velusamy, Sridhar Chechugari, Prasanna Raju Yalavarthi and Manasa Karani, Indian Journal of Pharmaceutical Education and Research 51 **(2017)**
- 4. Sunita Bhagat, Nutan Sharma and Tejpal Singh Chundawat, Hindawi Journal of Chemistry, Article ID 909217 (2013)
- 5. Jumbad H. Tomma, Mustafa S. Khazaal and Ammar H. Al-Dujaili, Arabian Journal of Chemistry 7 **(2014)** 157
- 6. Emad Yousif, Ahmed Majeed, Khulood Al-Sammarrae, Nadia Salih, Jumat Salimon and Bashar Abdullah, Arabian Journal of Chemistry 10 (2017) 1639
- 7. Rishikesh V. Antre, A. Cendilkumar, Divakar Goli, Ganesh S. Andhale, and Rajesh J. Oswal, Saudi Pharmaceutical Journal 19 (2011) 233
- 8. Hina Zafar, Abdul Kareem, Asif Sherwani, Owais Mohammad, Mohammad Azam Ansari, Haris M.Khan and Tahir AliKhan, Journal of Photochemistry and Photobiology B: Biology 142 **(2015)** 8
- 9. Yixiao Dong, Waqar U.Hassan, Robert Kennedy, Udo Greiser, Abhay Pandit, Yolanda Garcia and Wenxin Wang, Acta Biomaterialia 10 **(2014)** 2076
- Eliene Leandrode Araújo, Hellen Franciane, Gonçalves Barbosa,
 Edward Ralph Dockal and Éder Tadeu Gomes Cavalheiro,
 International Journal of Biological Macromolecules 95 (2017) 168

- 11. B.Kavitha, M.Sravanthi and P.Saritha Reddy, Journal of Molecular Structure 1185 **(2019)** 153
- A. M. Iglesis, V. Miranda-soto, D. A. Pompa-Monroy, J. G. Martínez-Ortiz, G. K. Díaz-Trujillo and L. J. Villarreal-Gómez, Indian Journal of Pharmaceutical Sciences 81 (2019) 333
- 13. Bhushan Nazirkar, Mustapha Mandewale and Ramesh Yamgar, Journal of Taibah University for Science 13 **(2019)** 440
- 14. Ikram Saadaoui, Fatma Krichen, Bochra Ben Salah, Riadh Ben Mansour, Nabil Miled, Ali Bougatef and Mohamed Kossentini, Journal of Molecular Structure 1180 (2019) 344
- 15. Shahzad Murtaza, Muhammad Shoaib Akhtar, Farina Kanwal, Aadil Abbas, Shoaib Ashiq and Saima Shamim, Journal of Saudi Chemical Society 21 **(2017)** 329
- 16. Mokhles M.Abd-Elzaher, Ammar A.Labib, Hanan A.Mousa, Samia A.Moustafa, Mamdouh M.Ali and Ahmed A.El-Rashedy, Beni-Suef University Journal of Basic and Applied Sciences 5 **(2016)** 85
- 17. Salam A.H.Al-AmeriMahmoud N.A.Al-JibouriTaghreed M.D.Musa, Journal of Saudi Chemical Soceity 18 2014 802
- 18. Asha B.Thomas, Rabindra K.Nanda, Lata P.Kothapalli and Sunil C.Hamane, Arabian Journal of Chemistry 9 (2016) S79
- 19. P.MangaveniG.DurgaP.BhushanavathiP.Sarada, Materials Today Proceedings 5 2018 25862
- 20. Azza A.Abou-Hussein and Wolf gang Linert Spectrochimica Acta Part A: Molecular and Biomolecuar Spectroscopy 117 2014 763
- 21. Hanan F.Abd El-halim, M.M.Omar and Gehad G.Mohamed, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 78 (2011) 36

- 22. Gehad G.MohamedM.M.Omar and Ahmed M.M.Hindy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 62 (2005) 1140
- 23. Divyaraj Puthran Boja Poojary Nikil Purushotham Nandam Harikrishna Soukhyarani GopalNayak Vinuta Kamat, Heliyon 5 (2019) e02233
- 24. Y.Harinath, D.Harikishore Kumar Reddy, B.Naresh Kumar, Ch.Apparao and K.Seshaiah, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 101 **(2013)** 264
- 25. Piotr Przybylski, Adam Huczynski, Krystian Pyta, Bogumil Brzezinski, Franz Bartl, Current Organic Chemistry 13 **(2009)** 124
- 26. Zhanyong Guo, Ronge Xing, Song Liu, Zhimei Zhong, Xia Ji, Lin Wang and Pengcheng Li, Carbohydrate Research 342 **(2007)** 1329
- 27. Shū Kobayashi, Naohiro Aoyama and Kei Manabe, Wiley Online Library 2 (2003) 124
- 28. Shū Kobayashi, Masaharu Ueno, Susumu Saito, Yumiko Mizuki, Haruro Ishitani, andYasuhiro Yamashita, Proceedings of the National Academy of Sciences of the United states of America 15 (2004) 5476
- 29. Nanyan Fu and Thomas T.Tidwell, Tetrahedron 64 (2008) 10465
- 30. P Rathelot, P Vanelle, M Gasquet, F Delmas, MP Crozet, P Timon-David and J Maldonado, European Journal of Medicinal Chemistry 30 (1995) 503
- 31. Misbah ur Rehman, Muhammad Imran and Muhammad Arif, American Journal of Applied Chemistry 4 **(2013)** 59
- 32. Dueke-Eze, C. U, Fasina, T. M and Idika. N, African Journal of Pure and Applied Chemistry 5 **(2011)** 13
- 33. Francis K. Ngounoue, Evans N. Mainsah, Aseng M. Conde , Awawou G. Paboudam, Sally-Judith E. Ntum, Walter K.

- Ndamukong, Choumkeu Mbakop Vanessa and Peter T Ndifon, Der Pharma Chemica 7 **(2015)** 101
- 34. A. V. G. S. Prasad, K Trinagaraju, Boyina Gopala Rao, Y. Usha, P. Sudha Reddy, P. Venkateswara Rao, International journal of innovative research and development 2 **(2013)** 39
- 35. R Nirmal, Cr Prakash, K Meenakshi and P Shanmuga pandiyan, Journal of Young Pharmacists 2 **(2010)** 162
- 36. Mohammad Sayed Alam, Dong-Ung Lee and Md. Latiful Bari, Journal of the Korean Soceity for Applied Biological Chemistry 57 (2014) 613
- 37. Shahzad Murtaza, Muhammad Shoaib Akhtar, Farina Kanwal, Aadil Abbas, Shoaib Ashiq and Saima Shamim, Journal of Saudi Chemical Soceity 21 **(2017)** S359
- 38. Dharmarajan Sriram, Perumal Yogeeswari, Naga Sirisha Myneedu and Vivek Saraswat, Bioorganic and Medicinal Chemistry Letters 16 **(2006)** 2127
- 39. Krishnan Suresh Kumar, Swastika Ganguly and Erik De Clercq, European Journal of Medicinal Chemistry 45 **(2010)** 5474
- 40. Fatiha Benachenhou, Abderrezzak Mesli and Roger Guilard, Arabian Journal Chemistry 6 (2013) 313
- 41. Mounira Mesbah, Tahar Douadi, Farida Sahli, Saifi Issaadi, Soraya Boukazoula, Salah Chafaa, Journal of molecular structure, 1151 (2018) 41
- 42. Angamaly Antony Shanty, Jessica Elizabeth Philip, Eeettinil kunnathil JoseSneha, Maliyeckal R, Prathapachandra Kurup, Sreedharan nair, Balachandran and Puzhavoorparambil Velayudhan Mohanan, Bioorganic Chemistry, 70 (2017) 67
- 43. Hossein Naeimi, Hashem Sharghi, Fariba Salimi and Khadijeh Rabiei, Heteroatom Chemistry 19 **(2008)** 1

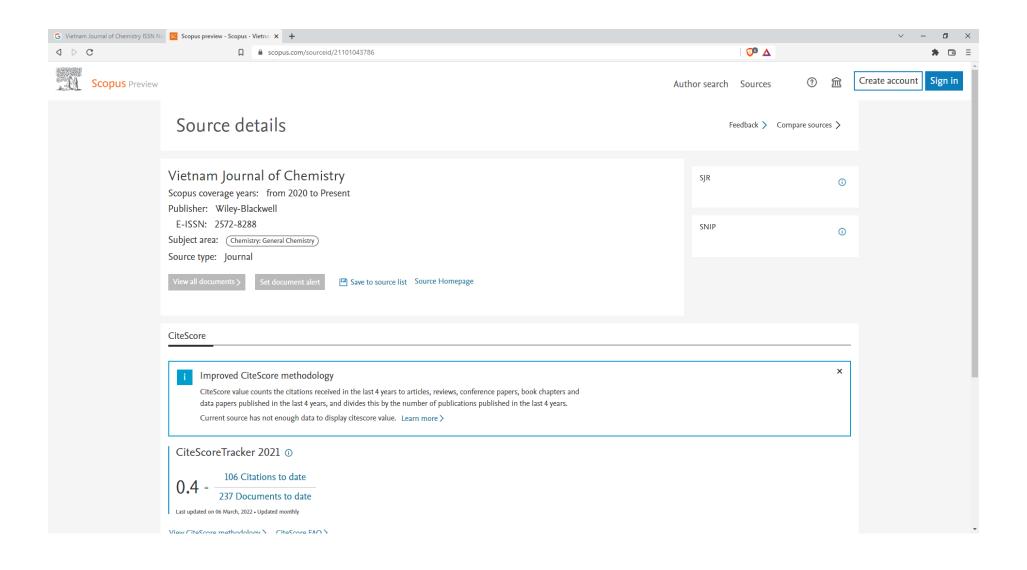
- 44. Dong-Mei Ye, Hou-Li Zhang, Li Wang, Qi-Ying Yao, Yuan Lin and Kun Li, Asian Journal of chemistry 25 **(2013)** 4629
- 45. Vladimir P. Petrovic, Dusica Simijonovic, Zorica D. Petrovic and Svetlana Markovic, Chemical Papers 69 **(2015)** 1244
- 46. Subrahmanian Supriya, Aravamudhan Raghavan, V.R. Vijayaraghavan, Kandasamy Chinnakali, Hoong-Kun Fun and J. Subramanian, Polyhedron 26 (2007) 3217.
- 47. Po-Jung J. Huang, D. Youssef, T. Stanley Cameron and Amitabh Jhaa, Platinum Open Access Journal for Organic Chemistry 16 (2008) 165.
- 48. Chew Hee Ng, Yih Tong Lim, Norhayati Moris and Siang Guan Teoh, Polyhedron 22 **(2003)** 521.
- 49. Scott K. Bur and Stephen. F. Martin, Tetrahedron 57 (2001) 3221.
- 50. Dhananjay V. Bondar, Research Journey 165 (2019) 270
- 51. Afshin Fassihi, Daryoush Abedi, Lotfollah Saghaie, Razieh Sabet, Hossein Fazeli, Ghasem Bostaki, Omid Deilami and Hekmatollah Sadinpour, European Journal of Medicinal Chemistry 44 (2009) 2145
- 52. K. Shanmuga Bharathi, A. Kalilur Rahiman, K. Rajesh, S. Sreedaran, P.G. Aravindan, D. Velmurugan and V. Narayanan, Polyhedron. 25 (2006) 2859.
- 53. Zhi-Liang Yuan, Jia-Jun Jiang and Min Shi, Tetrahedron. 65 (2009) 6001
- 54. Arun M. Isloor, Balakrishna Kalluraya and Prashanth Shetty, European Journal of Medicinal Chemistry 44 **(2009)** 3784
- 55. Kakul Husain, Mohammad Abid and Amir Azam, European Journal of Medicinal Chemistry 43 (2008) 393

- 56. Chaluvaraju K C and Ishwar Bhat K, International Journal of ChemTech Research 2 (2010) 1368
- 57. U. Sankappa Rai, Arun M. Isloor, Prakash Shetty, Nishitha Isloor, Shridhar Malladi and Hoong-Kun Fun, European Journal of Medicinal Chemistry 45 **(2010)** 6090
- 58. M. Lakshmi Kantam, Koosam Mahendar, Bojja Sreedhar, Boyapati. M. Choudary, Suresh K.Bhargava and Steven H.Priver, Tetrahedron 66 **(2010)** 5042.
- 59. Trupti S. Chitre, Santosh Panda, Shital M. Patil, Aparna S. Chothe, G. Vignesh, Amol B. Salake and Muthu K. Kathiravan, Advances in Biological Chemistry 1 (2011) 7
- 60. Ahlam J. Abdulghani and Nada M. Abbas, Bioinorg Chemistry and Applications 706262 **(2011)** 1
- 61. Ebru Mete, Halise Inci Gul, Sinan Bilginer, Oztekin Algul, Mehmet Emin Topaloglu, Medine Gulluce and Cavit Kazaz, Molecules 16 (2011) 4660
- 62. Arthur Y. Shaw, Chun-Yi Chang, Mei-Yuan Hsu, Pei-Jung Lu, Chia-Ning Yang, Hui-Ling Chen, Cheng-Wei Lo, Chung-Wai Shiau and Ming-Kai Chern, European Journal of Medicinal Chemistry 45 (2010) 2860
- 63. Amanda P. Neves, Kelly C.B. Maia, Maria D. Vargas, Lorenzo C. Visentin, Annelise Casellato, Miguel A. Novak and Antônio S. Mangrich, Polyhedron 29 **(2010)** 2884
- 64. Elizabeth Malamidou-Xenikaki, Christina Vlachou and Xenophon N. Stampelos, Tetrahedron. 62 **(2006)** 9931
- 65. Elena Maria Mosoarca, Ingo Pantenburg, Ramona Tudose, Gerd Meyer, Nicolae Calin Popa, Adelina Han, Radostina Alexandrova, Reni Kalfin, Wolfgang Linert and Otilia Costisor, Inorganica Chimica Acta 370 **(2011)** 460.

- 66. Bikash Karmakar and Julie Banerji, Tetrahedron Letters 52 (2011) 4957
- 67. Arpit D. Shah, Devanshi J. Raval, Viraj P. Jatakiya, Dr. Dhrubo Jyoti Sen and R. Badmanaban, International Journal of Drug Development & Research. 4 (2012) 205
- 68. Sachin A. Pishawikar and Harinath N. More, Arabian Journal of Chemistry 10 (2017) S2714
- 69. S. Sheik Mansoor, K. Aswin, K. Logaiya and S.P.N. Sudhan, Journal of Saudi Chemical Soceity 19 (2015) 379.
- 70. Pandeya S N and Neha Rajput, Indo Global Journal of Pharmaceutical Sciences 2 **(2012)** 76.
- 71. Surendra N. Pandeya and Neha Rajput, International Journal of Medicinal Chemistry 237965 **(2012)** 1
- 72. Sindhu T. J, Meena Chandran, K Krishnakumar and A R Bhat, Journal of Pharmacy Research 1 **(2013)** 992.
- 73. G. Vishnuvardhanaraj, D. Tamilvendan and M. Amaladasan, International Journal of Pharmacy and Pharmaceutical Sciences 5 (2013) 821
- 74. Rimpy Gupta, Haq N. Sheikh, Bansi L. Kalsotra and Vishal Singh, Journal of Saudi Chemical Soceity 20 **(2016)** 291
- 75. Wafaa S. Hamama, Mohamed A. Ismail, Hanaa A. Al-Saman and Hanafi H. Zoorob, Journal of Advanced Research 4 **(2013)** 115
- 76. Rathi Paresh P, More Vishal S, Deshmukh V.K and Chaudhari S. R, International Journal of Pharmaceutical Research 10 **(2013)** 30
- 77. Rita Bamnela and S P Shrivatava, Indian Journal of Chemistry 53B **(2014)** 1128
- 78. Baldwin Mathew V, Meena Chandran, K Krishnakumar and A.R Bhat, Journal of Pharmacy Research 1 **(2013)** 970

- 79. Jiangke Qin, Wenli Lan, Zhong Liu, Jun Huang, Huang Tang and Hengshan Wang, Chemistry Central Journal 7 **(2013)** 1
- 80. Veerababurao Kavala, Chunchi Lin, Chun-Wei Kuo, Hulin Fang and Ching-Fa Yao, Tetrahedron 68 **(2012)** 1321
- 81. Someshwar D. Dindulkar, Vedavati G. Puranik and Yeon Tae Jeong, Tetrahedron Letters 53 **(2012)** 4376
- 82. Onkara.P, A.Sunil Kumar, S.Kanakaraju, B.Prasanna, Y.Pydisetty and G.V.P.Chandramoul, International Journal of Pharma and Bio Sciences 4 (2013) 263.
- 83. Suman Bala, Neha Sharma, Anu Kajal, Sunil Kamboj, and Vipin Saini, International Journal of Medicinal Chemistry 191072 (2014) 1
- 84. M. Sivakami, B. Natarajan, M.Vijayachandrasekar, S. Ram Kumar Pandian and Krishnan Sundar, International Journal of Pharmacy and Pharmaceutical Sciences 6 (2014) 59
- 85. K.Chakkaravarthi, K.Gokulakrishnan, T.Suman and D.Tamilvendan, International Journal of Pharma and Bio Sciences 5 (2014) 580
- 86. Beena Thomas, Anju LS and Jyoti Harindran, International Journal of Research in Pharmacy and Chemistry 4 **(2014)** 351
- 87. Sayan Dutta Gupta, Manish Kumar Bommaka, Gisela I. Mazaira, Mario D. Galigniana, Chavali Venkata Satya Subrahmanyam, Naryanasamy Lachmana Gowrishankar and Nulgumnalli Manjunathaiah Raghavendra, International Journal of Biological Macromolecules 80 (2015) 253
- 88. Hitendra M. Patel, Green and Sustainable Chemistry 5 (2015) 137
- 89. Sheela Joshi, Purti Bilgaiyan and Anju Pathak, Arabian Journal of Chemistry 10 **(2013)** S1180

- 90. Gheorghe Roman, Mini-Reviews in Organic Chemistry 10 **(2013)** 27
- 91. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuse-ria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T.J. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J., Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scal-mani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T., Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J., Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A., Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clif- ford, J. Cioslowski, B.B. Stefanov, G. Liu, A., Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W., Chen, M.W. Wong, C. Gonza-lez, J.A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Pittsburgh, PA, 2003.
- 92. C.T. Lee, W.T. Yang and R.G. Parr, Physical Review B 37 **(1988)** 785
- 93. R.G. Parr and W. Yang, *Density Functional Theory of Atoms and Molecules* (Oxford University Press, New York, **1989**).
- 94. A.D. Becke, Journal of Chemical Physics 98 (1993) 5648.
- 95. P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch, Journal of Physical Chemistry 98 **(1994)** 11623.
- 96. G.A. Petersson and M.A. Allaham, Journal of Chemical Physics 94 (1991) 6081
- 97. G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Allaham, W.A. Shirley and J.J. Mantzaris, Journal of Chemical Physics 89 (1988) 2193


- 98. A. Frisch, R. D. Dennington II, T. A. Keith, J. Milliam, A.B. Nielsen, A.J. Holder, J. Hiscocks, GaussView Reference, Version 4.0. Gaussian Inc., Pittsburgh, **2007**.
- 99. M.H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, **2004**.
- 100. R. Ditchfield, Journal of Chemical Physics 56 (1972) 5688.
- 101. C. Albayrak, B. Kosar, S. Demir, M. Odabasoglu and O. Büyükgüng, Journal of Molecular Structure 963 **(2010)** 211.
- 102. N.B. Colthup, L.H. Daly and E. Wiberley, *Introduction to Infrared and Raman Spectroscopy* (Academic Press, New York, **1964**).
- 103. D. Michalska, D.C. Bienko, A.J. Abkowicz-Bienko and Z. Latajka, Journal of Physical Chemistry 100 (1996) 17786
- 104. G. Litivinov, *Proceedings of the XIII International Conference on Raman Spectroscopy*, Wurzburg, Germany, **1992**.
- 105. N. Özbek, G. Kavak, Y. Özcan, S. İde and N. Karacan, Journal of Molecular Structure 919 **(2009)** 154
- 106. L.J. Bellamy, *The Infrared Spectra of Complex Molecules* (Wiley, New York, **1975**).
- 107. R.M. Silverstein and F.X. Webster, *Spectroscopic Iden-tification of Organic Compounds* (Wiley, New York, **1998**).
- 108. B.H. Stuart, *Infrared Spectroscopy: Fundamentals and Applications* (Wiley, England, **2004**).
- 109. H. Alyar, A. Ünal, N. Özbek, S. Alyar and N. Karacan, Spectrochimca Acta Part A: Molecular and Biomolecular Spectroscopy 91 (2012) 39
- 110. S.P.V. Chamundeeswari, E.R.J.J. Samuel and N. Sundaraganesan, European Journal of Chemistry 2 (2011) 136

- 111. D. Lin-Vien, N.B. Colthup, W.G. Fateley, and J.A. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Boston, MA, **1991.**
- 112. N. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures (Wiley, New York, **1994**).
- 113. G. Socrates, *Infrared Characteristic Group Frequencies* (Wiley, New York, **1980**).
- 114. F.R. Dolish, W.G. Fateley and F.F. Bentely, *Characteristic Raman Frequencies of Organic Compounds* (Wiley, New York, **1997**).
- 115. R.M. Silverstein and F.X. Webster, *Spectroscopic Identifi- cation of Organic Compounds*, 6th ed. (Wiley, New York, **2003**).
- S. Subashchandrabose, C. Meganathan, Y. Erdogdu, H. Saleem,
 C. Jajkumar and P. Latha, Journal of Molecular Structure 1042
 (2013) 37
- 117. G. Varsanyi, Assignments for Vibrational Spectra of 700 Benzene Derivatives (Wiley, New York, **1974**).
- 118. A.R. Berenji, S.F. Tayyari, M. Rahimizadeh, H. Eshghi, M. Vakili and A. Shiri, Spectrochimca Acta Part A: Molecular and Biomolecular Spectroscopy 102 **(2013)** 350
- S. Bharanidharan, H. Saleem, A. Nathiya, A. Arokiasamy and V. Thanikachalam, International Letters of Chemistry 60 (2015) 168
- 120. Y.B. Alpaslan, H. Gokce, G. Alpaslan and M. Macit, Journal of Molecular Structre 1097 **(2015)** 171.
- 121. R. Sangeetha, S. Seshadri and M.P. Rasheed, International Journal of Academic Research and Development 2 (2017) 653
- 122. G. Socrates, *Infrared and Raman Characteristic Group Frequencies* (Wiley, New York, **2001**).

- 123. L.G. Wade Jr, *Organic Chemistry* (Pearson Prentice Hall, New Jersey, **2006**).
- 124. R.J. Anderson, D.J. Bendell and P.W. Groundwater, *Organic Spectroscopic Analysis* (The Royal Society of Chemistry, Sanderland, UK, **2004**).
- 125. H.O. Kalinowski, S. Berger and S. Braun, *Carbon-13 NMR Spectroscopy* (Wiley, Chichester, **1988**).
- 126. K. Pihlaja and E. Kleinpeter, editors, *Carbon-13 Chemi- cal Shifts* in *Structural and Sterochemical Analysis* (VCH Publishers, Deerfield Beach, **1994**).
- 127. F. Wienhold and C.R. Landis, *Valency and Bonding-A Nat- ural Bond Orbital Donor-Acceptor Perspective* (Cambridge University Press, New York, **2005**).
- 128. J. Liu, Z. Chen and S.F. Yuan, Journal of Zhejiang University Science B 6 (2005) 584
- 129. S. Gunasekaran, R.A. Balaji, S. Kumaresan, G. Anand and S. Srinivasan, Canadian Journal of Analytical Science and Spectroscopy 53 **(2008)** 149
- 130. K. Fukui, Science 218 (1982) 747
- 131. E. Scrocco and J. Tomasi, Advances in Quantum Chemistry 11 (1978) 115
- 132. F.J. Luque, J.M. Lopez and M. Orozco, Theoretical Chemistry Accounts 03 (2000) 343
- 133. J.S. Murray and K. Sen, *Molecular Electrostatic Potentials:* Concepts and Applications (Elsevier Science B.V, Amsterdam, The Netherlands, **1996**).
- 134. M. Govindarajan, S. Periandy and K. Carthigayen, Spectrochimca Acta Part A: Molecular and Biomolecular Spectroscopy 97 (2012) 411

- 135. M. Govindarajan and M. Karabacak, Spectrochimca Acta Part A: Molecular and Biomolecular Spectroscopy 96 **(2012)** 421
- 136. C. Ravikumar, I.H. Joe and V.S. Jayakumar, Chemical Physics Letters 460 (2008) 552
- 137. R.M. Issa, M.K. Awad and F.M. Atlam, Materials and Corrosion 61 (2010) 709
- 138. N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, Journal of Computational Chemistry 29 (2008) 839
- 139. R. Hoffmann, Solids and Surfaces: A Chemist's View of Bonding in Extended Structures (VCH Publishers, New York, **1988**).
- 140. R.S. Mulliken, Journal of Chemical Physics 23 (1955) 1833
- 141. I. Sidir, Y.G. Sidir, M. Kumalar and E. Tasal, Journal of Molecular Structure 964 **(2010)** 134
- 142. V. Balachandran and K. Parimala, Spectrochimca Acta Part A: Molecular and Biomolecular Spectroscopy 96 (2012) 340
- 143. A. Lakshmi and V. Balachandran, Journal of Molecular Structure 1033 **(2013)** 40
- 144. S. Ramalingama, M. Karabacak, S. Periandy, N. Puviarasan and D. Tanuja, Spectrochimca Acta Part A: Molecular and Biomolecular Spectroscopy 96 (2012) 212.
- 145. E.G. Lewars, Computational Chemistry: Introduction to the theory and Applications of Molecular and Quantum Mechanics, 2nd ed. (Springer, New York, **2011**).

- K.K. Mohammed Ameen, M. Syed Ali Padusha, Ajitha Devi and F.M. Mashood Ahamed, Synthesis, Characterization and Antimicrobial Studies of Some Azomethine Compounds Derived Via Schiff Base Condensation Chemistry, Journal of Natural Remedies 21 (2020) 84.
- 2. **K.K. Mohammed Ameen,** M. Syed Ali Padusha, Ajitha Devi and F.M. Mashood Ahamed, Synthesis, Characterization, DFT and Microbial Studies of Some Azomethine and β -amino derivatives, High Technology Letters 26 **(2020)** 870.

Cite this paper: Vietnam J. Chem., **2022**, *60(1)*, 49-69

DOI: 10.1002/vjch.202100077

Research article

Spectroscopic analysis, DFT studies and molecular docking of 2,3-dichloro-benzylidine-(2-trifluoromethyl-phenol)-amine

Mohammed Ameen K. K.¹, Towseef Ahmad Hajam², Syed Ali Padusha M.^{1*}, Saleem H.², D. Partha Sarathi¹

¹PG and Research Department of Chemistry, Jamal Mohamed College, Affiliation with Bharathidasan University, Trichy 620 020, India

²Department of Physics, Annamalai University, Annamalainagar 608 002, India

Submitted July 6, 2021; Revised September 21, 2021; Accepted December 28, 2021

Abstract

2,3-dichloro-benzylidine-(2-trifluoromethyl-phenol)-amine (2DBTP) has been synthesized and characterized by various spectroscopic techniques including FT-IR, FT-Raman, UV-Vis and ¹H, ¹³C NMR spectroscopy. The equilibrium geometry and harmonic vibrational frequencies were investigated by density functional theory (DFT) at B3LYP/6-311++G(d,p) basis set. The vibrational wavenumber assignments were made on the basis of total energy distribution (TED) calculations using Veda 4 program. The harmonic wavenumbers calculated at DFT were in line with the experimental values. The non-linear optical properties (NLO) were calculated. Stability of the molecule arises from hyperconjugative interactions and charge delocalization was analyzed by natural bond orbital (NBO) analysis. Molecular electrostatic potential (MEP), mulliken atomic charges were also calculated. The energy gap of the molecule was found by HOMO and LUMO calculation. TD-DFT calculations have been carried out on the optimized geometry to further understand the electronic transitions in the UV-Vis spectrum of the compound. In addition, the ¹H and ¹³C NMR chemical shift values of 2DBTP in the ground state were also calculated using Gauge invariant atomic orbital (GIAO) method. The molecular docking solved the binding mode of 2XCT complex with the ligand. The investigated molecule revealed the inhibition activity of the ligand against anti-bacterial protein topoisomerase DNA gyrase enzyme (PDB ID: 2XCT).

Keywords. FT-IR, FT-RAMAN, NLO, NBO, NMR, docking studies.

1. INTRODUCTION

The Schiff base compounds or dynamic imine compounds are the condensed products of primary amines with carbonyl compounds were firstly reported by Hugo Schiff. [1,2] These compounds have numerous applications in various fields such as biological, analytical and inorganic chemistry. They also play a great role as an intermediate in catalysts, dyes, organic synthesis, corrosion inhibitors, polymer stabilizers and pigments.[3] Schiff bases have achieved great importance in medicinal and pharmaceutical fields due to broad spectrum of biological activities like anti-bacterial, [4] inflammatory,^[5] anti-fungal, anti-cancer and herbicidal^[6,7] activities. The electron conjugated system in compounds with donor-acceptor benzene derivatives display extremely large second-order nonlinearities. The conformation optical molecules of aromatic compounds that are substituted with π -electron donors and acceptors

which exhibit intra-molecular charge transfer. In addition, the Schiff base is of special interest in literature which shows thermochromic photochromic properties.^[8,9] Xuan and Zhai^[10] have recorded and analyzed the FT-IR and FT-Raman spectra of the methyl 2,5-dichlorobenzoate molecule in the solid phase. The bond parameters were calculated using DFT with 6-311G(d,p) and 6-311++G(d,p) basis sets and compared with the experimental data. Arjunan and Mohan[11] reported the vibrational spectra of 2-chloro-4-methylaniline and 2-chloro-6-methylaniline. Utilizing the observed FT-IR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes the compounds were carried manifestations of NH- π interactions and the influence of bulky chlorine and methyl group on the vibrational modes of the amino group were investigated.

In the present study, the vibrational and structural properties of Schiff base derivative:

2DBTP have been studied by Gaussian 03 W software with basis set 6-311++G(d,p). The detailed interpretation of the vibrational spectra of the title molecule was justified on the basis of TED. NBO analysis was used to quantify the redistribution of electron density (ED) at various bonding and $E^{(2)}$ antibonding and energies, providing unambiguous evidence of stabilization arising from various intra-molecular hyper conjugation of interactions. The non-linear optical (NLO) behavior, molecular electrostatic potential (MEP) thermodynamic properties of the title molecule were also calculated. The electronic transition was studied using TD-DFT method. UV spectroscopic studies, as well as HOMO and LUMO analyses have been utilized to explain charge transport information within the molecule.

2. MATERIALS AND METHODS

2.1. Synthesis procedure

Synthesis method of the compound is depicted schematically in scheme 1.

0.01 M (1.72 g) 2,3 dichloro benzaldehyde and 0.01 M (1.63 g) 2-amino benzotrifloride were dissolved in 40 ml ethanol and the solution was taken in 100 ml round-bottom flask. The reaction mixture was stirred for 3 h at room temperature in the presence of 10 drops of glacial acetic acid. The completion of the reaction was ensured by TLC. After completion the mixture was poured into crushed ice, crude solid developed was filtered, washed with water, dried in air and recrystallized using ethanol.

Scheme 1: Synthesis of 2,3-dichloro-benzylidine-(2-trifluoromethyl-phenol)-amine

2.2. Instrumentation

KBr pellet with FT-IR Shimadzu spectrometer was used to record FT-IR spectrum in the spectral range

of 4000-400 cm⁻¹. The spectrum was recorded with a scanning speed of 10 cm⁻¹ per minute at room temperature with the spectral resolution of 2.0 cm⁻¹. The FT-Raman spectrum was recorded in the region 4000-50 cm⁻¹ using 1064 nm line of Nd: YAG laser as excitation wavelength on Bruker IFS 66v spectrophotometer equipped with a FRA 106 FT-Raman module with spectral resolution of 4 cm⁻¹. ¹H NMR spectrum was recorded on Bruker 400 MHz spectrometer and ¹³C NMR spectrum was recorded on Bruker 100 MHz spectrometer. The UV-Vis absorption spectrum was recorded in the range of 200-800 nm using Shimadzu-2600 spectrometer.

2.3. Computational procedure

The optimization of structure and vibrational assignments were performed by Gaussian 03 W software package^[12] at DFT/B3LYP/6-311++G(d,p) level of theory. Density functional theory (DFT) method is more beneficial for its low computational cost with high accuracy. These important properties make DFT more practical and feasible for computations of different molecules. The geometry of 2DBTP was optimized using DFT/B3LYP method.[13,14] At the optimized geometry for the title molecule no imaginary frequency was obtained, therefore a true minimum on the potential energy surface was found. The vibrational assignments were performed using GaussView 5.0 program package.[15,16] The wavenumber values computed at DFT level contains known systematic errors due to the negligence of electron correlation. In order to improve the calculated values in agreement with the experimental values, a spectral uniform scaling factor was used to offset the systematic errors due to the anharmonicity of vibrational bands. Hence, the vibrational frequencies calculated at DFT level were scaled down by proper scaling factor.[17, 18] The assignments of the calculated normal modes were made on the basis of TED analysis. The TEDs were computed from quantum chemically calculated vibrational frequencies using VEDA 4 program.^[19] The electronic absorption spectrum for optimized molecule was calculated with time dependent density functional theory (TD-DFT) at B3LYP/6-311++G(d,p) level. In order to investigate the nucleophilic and electrophilic attacks of the title compound the molecular electrostatic potential surface was evaluated. The ¹H and ¹³C NMR chemical shifts were calculated with GIAO approach.^[20] NBO analysis, Mulliken atomic charges and thermodynamic properties of title molecule were computed at same level. Further, to show NLO activity of 2DBTP molecule, the dipole moment,

linear polarizability and first order hyperpolarizability were obtained from molecular polarizabilities based on theoretical calculations.

3. RESULTS AND DISCUSSION

3.1. Molecular geometry

The optimized structural parameters of 2DBTP are calculated molecule by DFT/B3LYP/6-311++G(d,p) basis set are listed in table 1. The optimized molecular structure with atomic numbering is shown in figure 1. The calculated geometric parameters can be used as foundation to calculate other parameters for 2DBTP. The conformational analysis is carried out by means of the potential energy surface scan with DFT/B3LYP method at 6-311++G(d,p) basis set. During the scan, all the geometrical parameters were simultaneously relaxed; while the dihedral angle C_{18} – C_{16} – C_{25} – F_{28} was allowed to vary in the steps of 10°, ranging from 0° to 360° in a total of 36 steps. For this rotation minimum energy of -0.166252 Hartrees for C_{18} – C_{16} – C_{25} – F_{28} which is shown in figure 2. In the present work, we have focused on the most stable form of 2DBTP molecule to clarify molecular structure assignments of vibrational spectra. The carbon and hydrogen atoms are bonded with σ-bonds in the benzene ring and the substitution of chlorine atoms for hydrogen reduces the electron

density (ED) at the ring carbon atom. In 2DBTP, the C-Cl bond length varies from 1.735 to 1.748 Å which is due to the steric effect produced by the C=N linkage, respectively. The substitution at carbon atoms in a benzene ring exerts large attraction on the valence electron cloud of hydrogen atoms, which causes increase in C–H force constants that results the decrease in corresponding bond length. The actual change in the C-H bond length would be influenced by the combined effects of the inductive-mesomeric interaction and the electric dipole field of the polar substituent. The calculated bond lengths of C_4 – C_5 , C_5 – C_6 and C_1 – C_6 are 1.387, 1.389 and 1.393 Å, whereas C_1 – C_2 , C_2 – C_3 and C_3 - C_4 are 1.402, 1.414 and 1.404 Å this variation is due to the attachment of electron withdrawing group (Cl and C=N linkage). Similarly, the bond lengths of C_{18} – C_{21} , C_{17} – C_{19} , C_{15} – C_{17} and C_{15} – C_{16} are 1.394, 1.391, 1.403 and 1.412 Å, respectively which are in a good agreement with the literature, [21] whereas the C–H bond lengths of benzene rings in 2DBTP varies from 1.082 to 1.084 Å. The benzene ring appears to be little distorted because of the C=N group linkage as seen from the bond angle C₂–C₃–C₄ is calculated as 118.41° which is smaller than typical hexagonal angle of 120°. The dihedral angles C₃–C₁₂–N₁₃–C₁₅, C_{25} – C_{16} – C_{15} – N_{13} and C_2 – C_3 – C_{12} – N_{13} are 177.153, -2.764 and -9.963°, which show the non-planar nature of the compound.

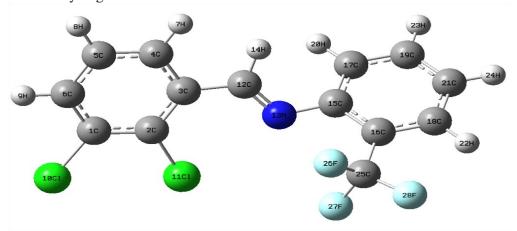


Figure 1: The optimized molecular structure of 2DBTP

3.2. Vibrational Assignments

The 2DBTP molecule has 28 atoms and belongs to C₁ point group symmetry; hence 78 fundamental vibrations are possible which are active in both IR and Raman spectra. For visual comparison, the observed and calculated FT-IR and FT-Raman spectra of 2DBTP at DFT/B3LYP level using 6-311++G(d,p) basis set are shown in figures 3(a,b),

respectively. The detailed vibrational assignments of fundamental modes of 2DBTP along with the calculated FT-IR and FT-Raman frequencies, IR and Raman intensities, force constant, reduced mass and normal mode descriptions (characterized by TED) are summarized in table 2. The vibrational assignments obtained at DFT/B3LYP/6-311++G(d,p) force field are generally greater than the experimental values due to neglect of

1.393

1.394

1.355

1.350

1.356

121.18

117.66

anharmonicity in the real system. These discrepancies can be corrected explicitly either by computing anharmonic corrections or by introducing the scaled field or directly scaling the calculated wavenumbers with proper scaling factor.^[17,18]

Table 1: The optimized molecular geometric parameters of 2DBTP using B3LYP/6-311++G(d,p) basis set

				C0 C1 C110	117.00	
	B3LYP/6-311	1++G(d,p) basis set	C1-C2-C111	C1-C2-C111 119.09		
	Parameters	B3LYP/6-	T :44	C3-C2-C111	121.75	
	Bond lengths (Å)	311++G(d,p)	Lit*	C2-C3-C4	118.41	
_	C1-C2	1.402		N13-C12-H14	120.66	
	C1-C6	1.393		N13-C15-C16	119.84	
	C1-C110	1.748		N13-C15-C17	121.49	
	C2-C3	1.414		C16-C25-F27	112.56	
	C2-C111	1.735		F26-C25-F27	107.08	106.85
	C3-C4	1.404		F26-C25-F28	106.31	106.25
	C3-C12	1.472		F27-C25-F28	106.45	106.13
	C4-C5	1.387		Dihedral (°)		
	C4-H7	1.084		C6-C1-C2-Cl11	-179.004	
	C5-C6	1.389		Cl10-C1-C2-Cl11	0.778	
	C5-H8	1.083		C1-C2-C3-C4	-0.748	
	C6-H9	1.082		C1-C2-C3-C12	179.181	
	C12-N13	1.273	1.280	C111-C2-C3-C4	178.383	
	C12-H14	1.099	1.099	C111-C2-C3-C12	-1.688	
	N13-C15	1.399	1.396	C2-C3-C12-N13	-9.963	
	C15-C16	1.412	1.413	C2-C3-C12-H14	172.058	
	C15-C17	1.403	1.404	C3-C12-N13-C15	177.153	
	C16-C18	1.393		N13-C15-C16-C25	-2.764	
	C16-C25	1.509		N13-C15-C17-C19	-177.180	
	C17-C19	1.391				
	C17-H20	1.084		*Taken from Ref. [21].		

C18-C21

C25-F26

C25-F27

C25-F28

C2-C1-C110

C6-C1-C110

Angles (°)

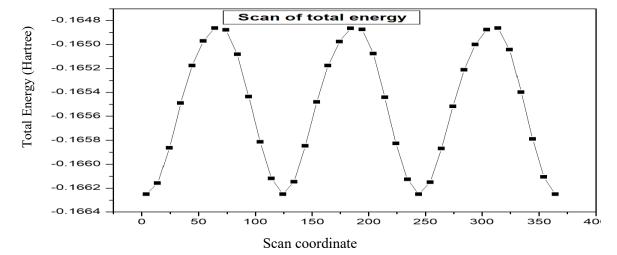


Figure 2: The potential energy surface around C18-C16-C25-F28 dihedral angle of 2DBTP

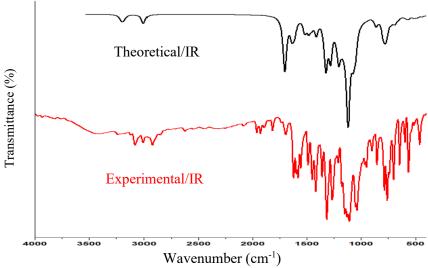


Figure 3a: The combined theoretical and experimental FT-IR spectra of 2DBTP

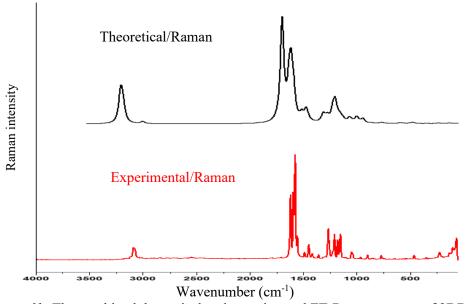


Figure 3b: The combined theoretical and experimental FT-Raman spectra of 2DBTP

3.2.1. CH Vibrations

In aromatic compounds, the C–H stretching vibrations usually fall in the range of 3044-3087 cm⁻¹. ^[21] These vibrations are not being affected due to the nature and position of the substituent. In 2DBTP, the ν_{C-H} vibrations are found at 3117, 3077/3085, 3002 cm⁻¹ in FT-IR/FT-Raman and their corresponding harmonic values are 3085, 3081 and 3046 cm⁻¹ (mode nos: 1, 2 and 7) are pure modes with > 96 % TED values. The mode nos: 3-6 are also pure modes with > 98 % TED values are designated as ν C–H modes. The ν_{C-H} of aliphatic group is observed at 2851 cm⁻¹ in FT-IR and its corresponding harmonic value is 2880 cm⁻¹ (mode no: 8). The C–H in-plane bending vibrations were appeared in the range 1000-1300 cm⁻¹ in the

substituted benzenes and the out-of-plane bending vibrations in the range 750-1000 cm $^{-1}.^{[22]}$ The mode nos: 14-16, 22, 24-26, and 37, 38, 40, 41, 43, 45 are assigned to β_{CH} and Γ_{CH} modes, respectively and also find support from observed FT-IR/FT-Raman bands: 1449, 1417, 1178, 1150, 1128/1449, 1417, 1180, 1153 cm $^{-1}$. The in-plane and out-of-plane bending modes of $C_{12}\text{--}H_{14}$ are assigned at 1355 and 964 cm $^{-1}$ (mode nos: 18 and 35), respectively which are in good agreement with the observed FT-IR/FT-Raman bands: 1358/1358 cm $^{-1}$ and 963/963 cm $^{-1}$, these assignments are having > 64 % contribution of TED.

3.2.2. CN Vibrations

According to Socrates^[23] the $v_{C=N}$ stretching

vibrations appear around 1600-1670 cm⁻¹ and Babu et al., [24] assigned v_{C=N} vibration at 1611/1627 cm⁻¹ in FT-IR/FT-Raman spectra. Which is further supported by earlier studies $^{[21,25]}$ $\nu_{C=N}$ stretching bands: 1667/1661 and 1657/1646 cm⁻¹ in FT-IR/FT-Raman spectra. Based on the above literatures, the scaled harmonic wavenumber 1633 cm⁻¹ (mode no: 9) is assigned to $\nu_{C_{12}=N_{13}}$ (76 % TED value) in which the calculated value is in good agreement with the experimental values: 1621/1620 cm⁻¹ in FT-IR/FT-Raman spectra. The v_{C-N} stretching modes are expected in the region 1100-1300 cm^{-1[26]} and in the present study, $\nu_{C_{15}\text{--}N_{13}}$ mode is observed at 1210/1209 cm⁻¹ in FT-IR/FT-Raman bands and its corresponding calculated value is 1215 cm⁻¹ (mode no: 23) with considerable TED value. The mode nos: 49, 59 and 67, 74 are assigned to $\beta C_3 - C_{12} = N_{13}$, $\tau C_2 - C_3 - C_{12} = N_{13}$ BC17-C15-N13 and $\tau C_{12}=N_{13}-C_{15}-C_{17}$ modes, respectively.

3.2.3. CC Vibrations

The v_{C-C} ring vibrations are expected to fall in the regions: 1280-1380; 1430-1465; 1470-1540; 1575-1590 and 1590-1625 cm⁻¹ with variable intensity.^[27] In the present study, v_{C-C} vibrations are observed at 1580(m)/1578(vs), 1556(m)/1557(m)1315(s), 1266(m)/1266(m) cm⁻¹ in FT-IR/FT-Raman spectra. These assignments find support from harmonic frequencies: 1571, 1553, 1548, 1529, 1280 and 1262 cm⁻¹ (mode nos: 10-13, 19, 21). The harmonic inplane and out-of-plane deformations of CCC are 1030, 1006, 825, 731, 723, 629, 556 cm⁻¹ (mode nos: 32, 34, 42, 46, 47, 50, 53) and 740, 690, 576, 502, 350, 288, 228 cm⁻¹ (mode nos: 45, 48, 51, 56, 62, 65, 67) are in line with the observed FT-IR values: 1037, 986, 563 and 740, 700, 595, 511, 350 cm⁻¹, respectively. These assignments are further justified by the TED values. The $\nu_{C_3\!-\!C_{12}}$ and $\nu_{C_{16}\!-\!C_{25}}$ modes are assigned to harmonic frequencies: 1156 and 1270 cm⁻¹ (modes nos: 25 and 20), respectively. The mode nos: 71/70 and 66/73 respectively belongs to $\beta C_2 C_3 C_{12} / \beta C_{18} C_{16} C_{25}$ and $\tau C_1 C_2 C_3 C_{12} / \tau C_{21} C_{18} C_{16} C_{25}$ modes. These modes also have considerable TED values.

3.2.4. CF₃ Vibrations

Lipp and Seliskar^[28] have studied the infrared spectra of a number of mono- and di-substituted fluorine derivatives and those of tri-and tetra-fluoro benzene by Rastogi *et al.*^[29] They have assigned the frequency 1250 cm⁻¹ to C–F stretching mode of vibration. In the vibrational spectra of related

compounds, the band due to the C–F stretching vibration^[23,30] may be found over a wide frequency range 1000-1360 cm⁻¹, since the vibration is easily affected by adjacent atoms or groups. In the present investigation, the C–F stretching vibrations are calculated at 1110, 1076, 1067 cm⁻¹ (mode nos: 28, 30, 31) find support from the observed values 1108, 1051/1049 cm⁻¹ in FT-IR/FT-Raman are in line with the reported values 1114/1116 cm⁻¹ in FT-IR/FT-Raman spectra.^[21] The C–F deformation vibrations generally appear in the region 490-590 cm⁻¹.^[23] The harmonic frequencies 490, 463, 453 and 576, 573 cm⁻¹ (mode nos: 57-59 and 51, 52) are attributed to β_{CF} and Γ_{CF} modes, respectively. These assignments are further supported by their TED value (> 17 %).

3.2.5. CCl Vibrations

The vibrations that belong to the bond formed between the ring and the halogen atoms are worth to discuss here, since mixing of vibrations are possible due to lower molecular symmetry and the presence of heavy atoms on the periphery of molecule.[31] Generally, the v_{C-Cl} absorption is obtained in the broad region between 550 and 850 cm⁻¹.[32] Therefore, the bands found at 459/462 cm⁻¹ in FT-IR/FT-Raman are being designated to v_{C-Cl} stretching mode of vibration and the corresponding force constant contribute nearly 40 % to the TED, are in line with the corresponding harmonic value 463 cm⁻¹ (mode no: 58). The calculated harmonic value at 723 cm⁻¹ (mode no: 47) is also attributed to v_{C-Cl} mode. The calculated harmonic frequencies 418, 215 and 228, 220 cm⁻¹ (mode nos: 60, 69 and 67, 68) having considerable TED values are assigned to β_{CCCI} and Γ_{CCCCI} modes, respectively.

3.3. NMR Analysis

The NMR isotropic chemical shifts are continuously being used as an aid to identify the reactive organic as well as ionic species. The Gauge invariant atomic orbital (GIAO) H and Chemical shift calculations of the present molecule has been made on the optimized geometry at B3LYP/6-311++G(d,p) method and experimental values are listed in table 3. The H NMR is interesting since the hydrogen atom is the smallest of all atoms and its chemical shift will be more susceptible to intermolecular interactions. The typical range of CNMR chemical shift in organic molecules is greater than 100 ppm. The singlet observed at 8.86 ppm is attributed to =C-H proton. The protons of aromatic rings give the multiplets in the region 7.37-

7.88 ppm. Aromatic proton adjacent to fluorine atoms appear at 7.88 ppm and aromatic proton adjacent to chlorine atoms appear at 7.71 ppm, respectively. Similarly, the multiplets appear in the region 122.6-149.65 ppm are attributed to aromatic carbon atoms. A singlet appear at 158.69 ppm is assigned to azomethine carbon. Whereas the signals appeared at 149.65 and 127.78 ppm are due to C–Cl and C–F₃ respectively. The ¹H and ¹³C NMR spectra of 2DBTP are shown in figures 4(a,b).

3.4. NBO Analysis

The NBO analysis results of the prominent chargetransfer interactions in the isolated gas-phase molecule of 2DBTP. It is an essential tool to study inter- and intra-molecular bonding interactions and also a convenient basis to investigate charge transfer or hyperconjugative interactions in the molecular system. Some orbitals are electron donors and some are electron acceptors, the energy difference between the bonding and anti-bonding orbitals makes the molecule susceptible for interactions. [35,36] The large energy difference E⁽²⁾ value means the strong interaction that implies the more donating and accepting tendency of electrons from one orbital to other. Delocalization of ED between occupied Lewis type (bond or lone pair) NBO orbitals and formally unoccupied (anti-bond or Rydgberg) non-Lewis NBO orbital corresponds to a stabilizing donoracceptor interaction. NBO analysis have been 2DBTP performed on at DFT/B3LYP/6-311++G(d,p) level in order to elucidate the intramolecular rehybridization and delocalization of ED within the molecule. The strong hyperconjugative interactions are computed between π and σ bonding electrons of CC, CCl, CH, CN, CF and π^* and σ^* anti-bonding ones of CC, CCl, CH, CN, CF. The π bond electrons are weaker than σ bond electrons. Therefore, π bonded groups have less ED than C bonded groups. In the present study, the electron densities (EDs) of π bonds in the donor (i) groups are calculated at the interval of 1.632e to 1.915e, whereas the EDs of the σ bonds in the donor (i) groups are calculated between 1.966e to 1.995e. Similarly, the EDs of lone pair n electrons of Cl, N, and F atoms in donor (i) groups are found between 1.861e to 1.993e. The $E^{(2)}$ energy values and types of transitions are listed in table 4. The strongest hyperconjugation interactions occur from lone pair n electrons of F₂₇, N₁₃ and Cl₁₀, Cl₁₁ to an anti-bonding

 σ^* and π^* electrons of $C_{25}\!\!-\!\!F_{28},\,C_{12}\!\!-\!\!H_{14}$ and $C_1\!\!-\!\!C_2$ with interaction energies $E^{(2)} = 44.73$, 54.18 and 59.87, 67.36 kJ/mol. Lone pairs $Cl_{11} \rightarrow \pi^*C_1-C_2$ and $Cl_{10} \rightarrow \pi^*C_1-C_2$ transfer hyperconjugation energies 67.36 and 59.87 kJ/mol, respectively. It is evident from the table 9 that the Cl_{11}/C_2 and Cl_{10}/C_1 atoms possess Mulliken atomic charge: 0.675/-0.750 and 0.465/0.682 a.u. respectively, which cause greater inter-atomic force in between Cl₁₁–C₂ on comparing with Cl₁₀-C₁, hence more energy transfer to the antibonding orbital (C₁-C₂). The stabilization energy values for $\pi(C_3-C_4) \rightarrow \pi^*(C_1-C_2)$, $\pi(C_5-C_6) \rightarrow$ $\pi^*(C_3-C_4),$ $\pi(C_{15}-C_{17})$ $\pi^*(C_{19}-C_{21})$ \rightarrow $\pi(C_{19}-C_{21}) \rightarrow \pi^*(C_{16}-C_{18})$ are computed as 89.91, 92.01, 91.76 and 96.36 kJ/mol. Similarly, the $\sigma(C_3-C_4) \to \sigma^*(C_2-Cl_{11}), \ \sigma(C_5-C_6) \to \sigma^*(C_1-Cl_{10}),$ $\sigma(C_{16}-C_{18}) \rightarrow \sigma^*(C_{15}-C_{16})$ and $\sigma(C_{18}-H_{22}) \rightarrow$ $\sigma^*(C_{15}-C_{16})$ hyperconjugation interactions obtained as 19.92, 19.08, 19.41 and 19.62 kJ/mol.

Table 3: Theoretical and experimental (¹H & ¹³C) NMR isotropic chemical shifts (ppm) of 2DBTP

	_	
Atoms	Calculated (B3LYP/6- 311++G(d,p))	Exp. δ(ppm)
H14	8.39	8.86
H22	7.85	7.88
Н9	7.61	7.71
H23	7.59	7.58
H7	7.41	7.46
H8	7.27	7.43
H24	7.26	740
H20	6.97	7.37
C12	163.52	158.69
C15	157.96	149.65
C1	150.69	135.08
C2	148.29	134.43
C3	140.51	134.0
C4	139.97	133.58
C19	137.46	133.10
C6	137.42	129.16
C25	133.73	127.78
C18	132.02	126.69
C16	130.18	126.62
C5	129.45	126.55
C21	129.01	126.22
C17	121.54	122.6

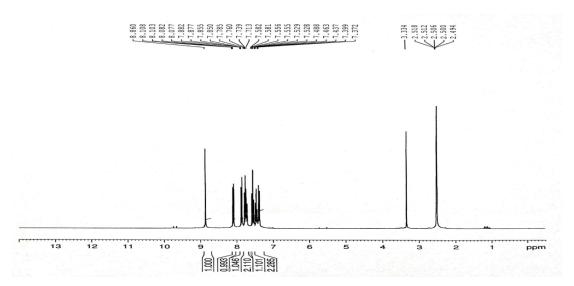


Figure 4a: ¹H NMR spectrum of 2DBTP

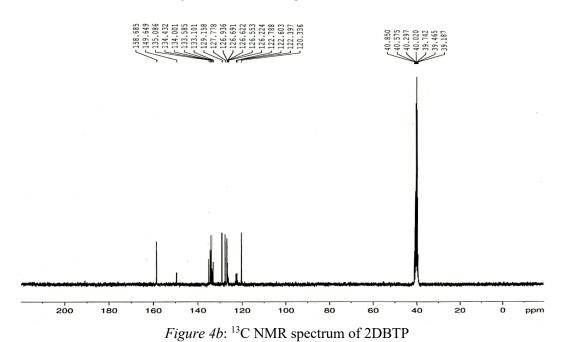


Table 4: The second order perturbation theory analysis of Fock Matrix in NBO basis for 2DBTP

Type	Donor NBO (i)	ED/e	Acceptor NBO (j)	ED/e	$^{a}E^{(2)}$ KJ/mol	^b E(j)-E(i) a.u.	°F(I,j) a.u.
π-π*	BD (2) C1 – C2	1.68605	BD*(2) C3 – C4	0.3772	69.33	0.31	0.065
			BD*(2) C5 – C6	0.32425	78.37	0.31	0.068
σ - σ *	BD (1) C1 – C6	1.97509	BD*(1) C1 – C2	0.0415	17.99	1.27	0.066
σ - σ *	BD (1) C1 – Cl10	1.98764	BD*(1) C2 – C3	0.03758	10.71	1.25	0.051
σ - σ *	BD(1)C2 - C3	1.96857	BD*(1) C1 – C2	0.0415	16.82	1.25	0.064
			BD*(1) C1 – Cl10	0.02847	18.83	0.87	0.056
σ - σ *	BD (1) C2 – Cl11	1.98744	BD*(1) C1 – C6	0.02707	11.38	1.27	0.053
σ - σ *	BD (1) C3 – C4	1.9671	BD*(1) C2 – C3	0.03758	17.24	1.23	0.064
			BD*(1) C2 – Cl11	0.02697	19.92	0.86	0.057
			BD*(1) C4 – C5	0.0144	11.46	1.28	0.053
π-π*	BD (2) C3 – C4	1.63316	BD*(2) C1 – C2	0.43342	89.91	0.25	0.067

			BD*(2) C5 – C6	0.32425	79.79	0.28	0.066
			BD*(2) C12 – N13	0.13707	76.15	0.29	0.069
σ - σ *	BD(1)C3 - C12	1.9727	BD*(1) C1 – C2	0.0415	8.28	1.2	0.044
			BD*(1) N13 – C15	0.02607	17.66	1.12	0.061
σ - σ *	BD(1)C4 - C5		BD*(1) C3 – C4	0.02027	12.55	1.26	0.055
σ-σ*	BD (1) C4 – H7	1.97817	BD*(1) C2 - C3	0.03758	17.95	1.06	0.06
			BD*(1) C5 - C6	0.01714	15.06	1.1	0.056
σ-σ*	BD(1)C5 - C6	1.972	BD*(1) C1 – C6	0.02707	14.02	1.26	0.058
			BD*(1) C1 – Cl10	0.02847	19.08	0.86	0.056
π-π*	BD(2)C5 - C6	1.64914	BD*(2) C1 - C2	0.43342	89.75	0.25	0.067
			BD*(2) C3 – C4	0.3772	92.01	0.28	0.071
			BD*(1) C3 – C4	0.02027	15.94	1.07	0.057
σ-σ*	BD (1) C6 – H9		BD*(1) C1 – C2	0.0415	18.07	1.06	0.061
π-π*	BD (2) C12 – N13		BD*(2) C3 – C4	0.3772	31.59	0.36	0.05
σ-σ*	BD (1) C12 – H14		BD*(1) C2 - C3	0.03758	17.53	1.07	0.06
σ-σ*	BD (1) N13 – C15		BD*(1) C3 – C12	0.03353	15.86	1.23	0.061
σ-σ*	BD (1) C15 – C16	1.96558	BD*(1) C12 – N13	0.01136	9.79	1.32	0.05
			BD*(1) C16 – C18	0.0193	18.03	1.27	0.066
σ-π*	BD (1) C15 – C17	1.97161	BD*(2) C12 – N13	0.13707	4.23	0.73	0.025
			BD*(1) C15 – C16	0.03214	17.28	1.25	0.064
			BD*(1) C17 – C19	0.01482	12.43	1.28	0.055
π-π*	BD (2) C15 – C17	1.63163	BD*(2) C12 – N13	0.13707	29.5	0.29	0.043
			BD*(2) C16 – C18	0.35207	74.98	0.28	0.064
			BD*(2) C19 – C21	0.32768	91.76	0.29	0.072
σ-σ*	BD (1) C16 – C18	1.9724	BD*(1) N13 – C15	0.02607	14.77	1.15	0.057
			BD*(1) C15 – C16	0.03214	19.41	1.26	0.068
			BD*(1) C21 – H24	0.01324	8.83	1.16	0.044
π-π*	BD (2) C16 – C18	1.69042	BD*(2) C15 – C17	0.3682	89.04	0.29	0.071
			BD*(2) C19 – C21	0.32768	71.42	0.29	0.063
σ -σ*	BD (1) C17 – C19		BD*(1) N13 – C15	0.02607	16.32	1.15	0.06
σ -σ*	BD (1) $C17 - H_2O$	1.97815	BD*(1) C15 – C16	0.03214	18.03	1.07	0.061
			BD*(1) C19 – C21	0.01612	14.98	1.1	0.056
σ-σ*	BD (1) C18 – C21		BD*(1) C16 – C18	0.0193	13.35	1.27	0.057
σ-σ*	BD (1) C18 – H22	1.9775	BD*(1) C15 – C16	0.03214	19.62	1.07	0.063
			BD*(1) C19 – C21	0.01612	15.02	1.1	0.056
σ-σ*	BD (1) C19 – C21		BD*(1) C17 – C19	0.01482	11.42	1.28	0.053
π-π*	BD (2) C19 – C21	1.65546	BD*(2) C15 – C17	0.3682	78.99	0.28	0.065
ate	DD (1) C10 1100	1 05050	BD*(2) C16 – C18	0.35207	96.36	0.28	0.072
σ-σ*	BD (1) C19 – H23	1.97/97/8	BD*(1) C15 – C17	0.02938	16.15	1.08	0.058
de	DD (1) CO1 1101	1 05000	BD*(1) C18 – C21	0.0153	15.31	1.1	0.057
σ -σ*	BD (1) C21 – H24	1.97/996	BD*(1) C16 – C18	0.0193	15.65	1.09	0.057
ate.	I.D. (1) C110	1 00055	BD*(1) C17 – C19	0.01482	15.65	1.1	0.057
n-σ* ↓	LP (1) C110		BD*(1) C1 – C2	0.0415	5.19	1.46	0.038
n-σ*	LP (2) Cl10	1.96866	BD*(1) C1 – C2	0.0415	20.33	0.85	0.057
	I D (2) C110	1.01007	BD*(1) C1 – C6	0.02707	15.73	0.87	0.051
n-π*	LP (3) C110	1.91997	BD*(2) C1 – C2	0.43342	59.87	0.3	0.065

n-σ*	LP (1) Cl11	1.99276	BD*(1) C1 – C2	0.0415	4.98	1.45	0.037
			BD*(1) C2 - C3	0.03758	6.65	1.45	0.043
n-σ*	LP (2) Cl11	1.96217	BD*(1) C1 – C2	0.0415	18.74	0.84	0.055
			BD*(1) C2 – C3	0.03758	21.25	0.83	0.058
n-π*	LP (3) Cl11	1.89675	BD*(2) C1 – C2	0.43342	67.36	0.3	0.067
n-σ*	LP (1) N13	1.8613	BD*(1) C3 – C12	0.03353	12.76	0.79	0.045
			BD*(1) C12 – H14	0.0436	54.18	0.72	0.089
			BD*(1) C15 – C17	0.02938	20.29	0.9	0.061
			BD*(2) C15 – C17	0.3682	37.7	0.37	0.055
n-σ*	LP (2) F26	1.9544	BD*(1) C16 – C25	0.05459	23.39	0.78	0.059
			BD*(1) C25 – F27	0.09654	20.13	0.66	0.051
			BD*(1) C25 – F28	0.089	16.53	0.64	0.046
n-σ*	LP (3) F26	1.93768	BD*(1) C25 – F27	0.09654	39.33	0.65	0.071
			BD*(1) C25 – F28	0.089	44.6	0.64	0.074
n-σ*	LP (2) F27	1.95171	BD*(1) C16 – C25	0.05459	24.35	0.78	0.06
			BD*(1) C25 – F26	0.09876	20.04	0.65	0.05
			BD*(1) C25 – F28	0.089	17.91	0.64	0.047
n-σ*	LP (3) F27	1.93583	BD*(1) C25 – F26	0.09876	41.76	0.64	0.072
			BD*(1) C25 – F28	0.089	44.73	0.64	0.074
n-σ*	LP (2) F28	1.95565	BD*(1) C16 – C25	0.05459	23.6	0.79	0.06
			BD*(1) C25 – F26	0.09876	15.86	0.65	0.045
			BD*(1) C25 – F27	0.09654	20.29	0.66	0.051
n-σ*	LP (3) F28	1.94245	BD*(1) C25 – F26	0.09876	43.68	0.65	0.074
			BD*(1) C25 – F27	0.09654	38.41	0.66	0.07

^aE⁽²⁾ means energy of hyper conjugative interaction (stabilization energy).

3.5. UV-Vis spectral analysis

The lowest singlet to singlet spin-allowed excited states are taken into account for the TD-DFT calculation to investigate the electronic properties of the molecular system. The experimental λ_{max} values are obtained from the UV-Vis spectrum recorded in DMSO. The calculation was also performed in gas phase and DMSO, ethanol solvents. The calculated and the experimental absorption wavelengths (λ_{max}) are given in table 5. The observed and the calculated UV-Vis spectra of 2DBTP are shown in figure 5. The energy gap between HOMO and LUMO is an

important tool to determine the molecular electrical transport properties. [37] In the electronic absorption spectra, the calculated λ_{max} values are obtained at 278.74, 278.23 and 277.37 nm in DMSO, ethanol and gas phase with higher oscillator strengths f=0.4609, 0.4252 and 0.2540 is attributed to the most prominent $\pi \to \pi^*$ transition which are in good line with the experimental $\lambda_{max}=267.50$ nm. As can be seen in figure 5 across the solvents against the gas phase there is red shift i.e., bathochromic shift the absorption of radiation is shifted towards longer wavelength with decrease in energy gap.

Table 5: The experimental and computed UV-Vis parameters of 2DBTP

	TD-DF7	T/B3LYP/6-311	++G(d,p)		
Solvent	Oscillator strength (f)	$\lambda_{max} \ (nm)$	Band gap (eV)	Experimental λ_{max} (nm)	Type
DMSO	0.4609	278.74	4.4481	267.50	π - π*
Ethanol	0.4252	278.23	4.4563	-	π - π *
Gas	0.2540	277.37	4.4701	-	π - π*

^bEnergy difference between donor (i) and acceptor (j) nbo orbitals.

^cF(I, j) is the Fock matrix element between I and j nbo orbitals.

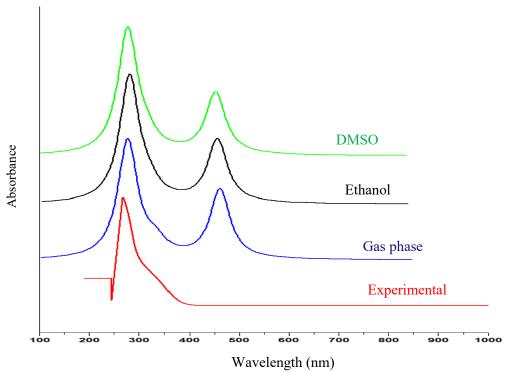


Figure 5: Theoretical and experimental UV-Vis spectra of 2DBTP

3.6. Molecular electrostatic potential

The reactivity of a chemical compound is determined by molecular electrostatic potential map (MEP) which differentiates the electrophilic and nucleophilic sites in a molecule. [38] For this purpose the MEP has been calculated for 2DBTP compound at B3LYP/6-311++G(d,p) level. From MEP plot as shown in figure 6 the negative regions represented

by red color, are preferable sites for electrophilic attack and the positive regions represented by blue color are favored nucleophilic attack. It is obvious from figure 6 that the regions around CF₃, CCl and C=N represents the negative potential regions. These negative and positive sites help to predict the regions in a compound responsible for non-covalent interactions.^[39]

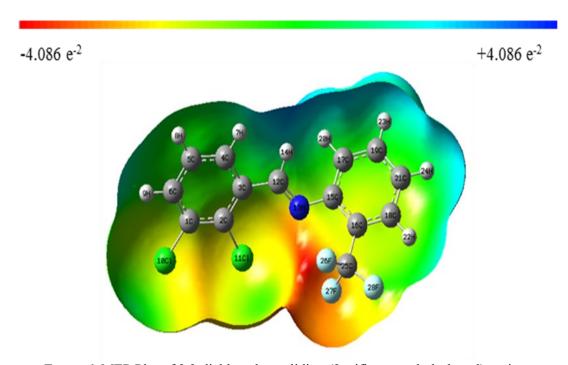


Figure 6: MEP Plot of 2,3-dichloro-benzylidine-(2-trifluoromethyl-phenol)-amine

3.7. HOMO-LUMO analysis

The HOMO energy characterizes the ability of electron donating orbitals, whereas LUMO energy characterizes the ability of electron accepting^[40] and the energy gap between HOMO and LUMO characterizes the stability of a molecule. It is also an important tool to determine the molecular electrical transport properties because it is a measure of electron conductivity.^[37] The electronic absorption corresponds that is mainly described by one electron excitation from HOMO to LUMO, an increase in values a molecule becomes more stable and decreases the intermolecular charge transfer which makes a compound to be NLO active.[41] We have obtained a plot of the frontier molecular orbital of the first and the last five orbitals of a molecule of each group (HOMO and LUMO) to analyze the

main atomic contributions for these orbitals. The importance of observing these plots were to determine the chemical reactivity of 2DBTP. The HOMO (-6.748 eV), LUMO (-2.476 eV) and the energy gap values are 4.272 eV obtained using B3LYP/6-311++G(d,p) basis set. The HOMO-LUMO pictures are shown in figure 7. DOS spectrum is used to calculate the contribution of groups to the molecular orbitals. The DOS plot shows population analysis for each orbital and demonstrates a simple view character of the Mos in a certain range. DOS spectrum is shown in figure 8, in which the lines start from -20 eV to -5 eV, are called filled orbitals and the lines start from -5 eV to 0 eV, are called virtual orbitals. The physicochemical properties and frontier molecular energies for 2DBTP are given in tables 6 and 7, respectively.

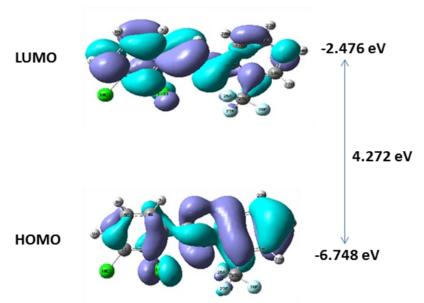


Figure 7: HOMO, LUMO Plots and energy band gap of 2DBTP

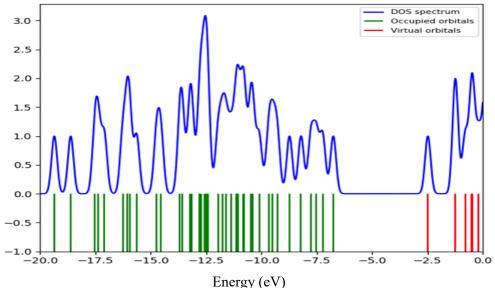


Figure 8: Density of State Spectrum of 2DBTP

Parameters	Values	
HOMO (eV)	-6.748	
LUMO (eV)	-2.476	
Energy gap (eV)	4.272	
Ionization potential $[I = -E_{HOMO}]$ (eV)	6.748	
Electron affinity $[A = -E_{LUMO}]$ (eV)	2.476	
Electronegativity [$\chi = (I+A)/2$]	4.612	
Chemical Potential $[\mu = -\chi]$	-4.612	
Chemical Hardness $[\eta = (I-A)/2]$	2.136	
Chemical Softness [S = $I/2\eta$]	2.970	
Electrophilicity Index [$\omega = \mu^2/2 \eta$]	4.980	

Table 6: The Physico-chemical properties of 2DBTP

Table 7: The frontier molecular orbitals of 2DBTP

Occupancy	Orbital energies (a.u)	Orbital energies (eV)	Kinetic energy (a.u)
O76	-0.3006	-8.183	1.826
O77	-0.2841	-7.730	1.227
O78	-0.2764	-7.521	1.665
O79	-0.2655	-7.225	1.738
O80	-0.2474	-6.732	1.560
V81	-0.0912	-2.482	1.516
V82	-0.0462	-1.257	1.452
V83	-0.0442	-1.203	1.442
V84	-0.0283	-0.770	1.379
V85	-0.0197	-0.536	0.947

3.8. Nonlinear optical properties

A good NLO material has been frequently used in communication technology, signal processing, optical memory devices and optical switches. The NLO property originates with delocalized π electrons of an organic compound and increase with increasing conjugation in a compound. The presence of electron donor group and an electron acceptor group also increase the NLO properties. The static dipole moment (μ), the linear polarizability (α 0) and the first order hyperpolarizability (β 0) using the x, y, z components are calculated using the following equations. [42]

$$\mu = \sqrt{\mu_x^2 + \mu_y^2 + \mu_z^2}$$
$$\beta_0 = \sqrt{\beta_x^2 + \beta_y^2 + \beta_z^2}$$

$$\alpha_0 = \frac{1}{3} \left(\alpha_{xx} + \alpha_{yy} + \alpha_{zz} \right)$$

$$\beta_{0} = \left[\left(\beta_{xxx} + \beta_{xyy} + \beta_{xzz} \right)^{2} + \left(\beta_{yyy} + \beta_{yzz} + \beta_{yxx} \right)^{2^{1/2}} + \left(\beta_{zzz} + \beta_{zxx} + \beta_{zyy} \right)^{2} \right]$$

Larger the dipole moment, stronger will be the intermolecular interactions. [43] The dipole moment (μ) , the linear polarizability (α_0) and the first order hyperpolarizability (β_0) are calculated at B3LYP/6-311++G(d,p) level and are summarized in table 8.

The dipole moment (μ) value for 2DBTP compound is 2.1750 D. The calculated linear polarizability (α_0) and first hyperpolarizability (β_0) for 2DBTP compound are 0.431×10⁻³⁰ and 6.065×10⁻³⁰ esu, respectively. Urea is one of the prototype materials which is used as a reference

material and frequently used for comparative purpose in the study of the NLO properties. The calculated values of μ and β_0 for 2DBTP compound are greater than those of urea (μ and β_0 of urea are 1.3732 D and 0.3728×10⁻³⁰ esu). [44] Theoretically, the first-order hyperpolarizability (β_0) of the title compound is 16.26 times higher than urea, which indicates that the 2DBTP compound possess good NLO property.

3.9. Mulliken atomic charges

Mulliken atomic charge calculation^[45] has an important role in the application of quantum chemical calculation to molecular system. Because charges affect dipole moment, polarizability, electronic structure and properties of molecular system. The total atomic charges of 2DBTP molecule obtained by Mulliken population analysis at B3LYP/6-311++G(d,p) basis set is listed in table 9 and plotted in figure 9. From the results, it is clear that the substitution of Cl₂ and CF₃ groups in the aromatic rings leads to the redistribution of ED. The C₁ (0.682 a.u) carbon is linked with C₆-H₉ and C₂ (-0.750 a.u) carbon atom with C₃-C₁₂ has different atomic charges which may be due to their adjacent proton and carbon atoms. Highest positive atomic charge is at C₁₆ (1.228 a.u) which is due to the inductive effect of CF₃ group and least charge at C₁₅ (-1.793 a.u) which is due to attachment of electronegative nitrogen (N_{11}) atom.

Table 8: The calculated dipole moment (μ), polarizability (α_0) and first-order hyperpolarizability (β_0) values of 2DBTP

Parameters	B3LYP/6-
	311++G(d,p)
Dipole moment µ	Debye
μ_{x}	1.9162
$\mu_{ m y}$	-1.0272
μ_{z}	-0.0581
μ	2.1750 Debye
Polarizability	$(\alpha_{\theta}) \times 10^{-3\theta} esu$
$lpha_{ ext{xx}}$	187.250
$lpha_{ m xy}$	-19.235
$lpha_{ m yy}$	138.051
$lpha_{ ext{xz}}$	9.217
$lpha_{ m yz}$	5.085
$lpha_{\sf zz}$	317.997
α_0	$0.431 \times 10^{-30} \text{ esu}$
Hyperpolarizabili	ity (β ₀) × 10 ⁻³⁰ esu
β_{xxx}	403.098
$eta_{ m xxy}$	-30.771
$eta_{ m xyy}$	42.161
$eta_{ m yyy}$	-93.904
β_{xxz}	85.733
$eta_{ ext{xyz}}$	14.029
$eta_{ m yyz}$	5.594
$eta_{ m xzz}$	239.027
β_{yzz}	-20.389
β_{zzz}	-31.223
β ₀	6.065×10^{-30} esu

Standard value for urea ($\mu = 1.3732$ Debye, $\beta_0 = 0.3728 \times 10^{-30}$ esu); esu-electrostatic unit.

Table 9: The Mulliken atomic charges of 2DBTP

Atoms	Charges (a.u.)	Atoms	Charges (a.u.)
C1	0.682	C15	-1.793
C2	-0.750	C16	1.228
C3	0.238	C17	-0.230
C4	-0.343	C18	0.279
C5	-0.664	C19	-0.171
C6	-0.234	H20	0.174
H7	0.169	C21	-0.376
Н8	0.177	H22	0.186
Н9	0.202	H23	0.176
C110	0.465	H24	0.165
C111	0.675	C25	0.515
C12	-0.969	F26	-0.073
N13	0.476	F27	-0.056
H14	0.082	F28	-0.158

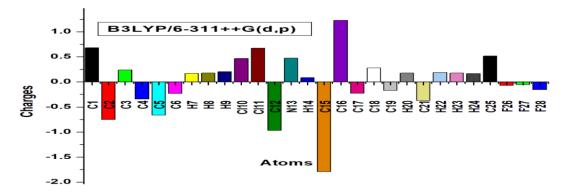


Figure 9: The Mulliken atomic charges of 2DBTP

3.10. Thermodynamic properties

The thermodynamic quantities such as the enthalpy (H), heat capacity at constant volume (C_v) due to vibrational motion and entropy (S) for 2DBTP molecule were calculated at B3LYP/6-311++G(d,p) basis set at the temperature of 298.15K, and at the pressure of 1 atmosphere. The structure dependent thermodynamic properties of the molecule are given in table 10. The thermal energy (E_{therm}) was calculated as the sum of the thermal energy corrections for molecular translation (E_{trans}), rotation (E_{rot}) and vibration (E_{vib}) at 298.15 K. The total

electronic energy gives the total energy of the molecular system relative to separate nuclei and electrons. The zero-point vibrational energy (ZPVE) is attributed from the vibrational motion of the molecular systems at 0K and is the sum of the contributions from all the vibrational modes of the molecular system. The computed minimum total energy -1813.2694 a.u, zero point vibrational energy 117.39168 kcal/mol and total thermal energy 128.111 kcal/mol are calculated. The calculated vibrational energies contribute 126.333 kcal/mol to thermal energy, 58.118 cal/mol×K to specific heat and 61.378 cal/mol×K to entropy.

Table 10: Thermodynamic properties of 2DBTP

Zero-Point	Vibrational	l Energy	117.39168	(kcal/mol`	١

Rotational Constants (GHz) A(0.54822), B(0.15006), C(0.13320)

E(RB+HF-LYP) = -1813.2694 a.u

Molecular mass = 316.998 amu

	E (Thermal) kcal/mol	C _v (Specific heat) cal/mol×K	S (Entropy) cal/mol×K
Total Energy	128.111	64.079	139.182
Translational	0.889	2.981	43.157
Rotational	0.889	2.981	34.638
Vibrational	126.333	58.118	61.387

3.11. Molecular docking

The docking studies reported in the present study are performed using Glide program^[46,47] version 6.3, Schrodinger software. Molecular docking study is performed on topoisomerase DNA enzymes to find the binding and interaction properties of synthesized compound. The 3D crystallographic structure of topoisomerase was downloaded from Protein Data Bank (PDB ID: 2XCT). The protein complex was

prepared by Protein Preparation Wizard in Maestro of Schrodinger software. The synthesized compound exhibits Glide score, Glide energy and Emodel value as -2.713, -31.467 and -43.422 kcal/mol are in line with the Glide score, Glide energy and Emodel value for the standard drug Norfloxacin as -7.29, -54.230 and -83.073 kcal/mol. This shows that the present compound possesses anti-bacterial activity. The protein ligand interactions are shown in figure 10.

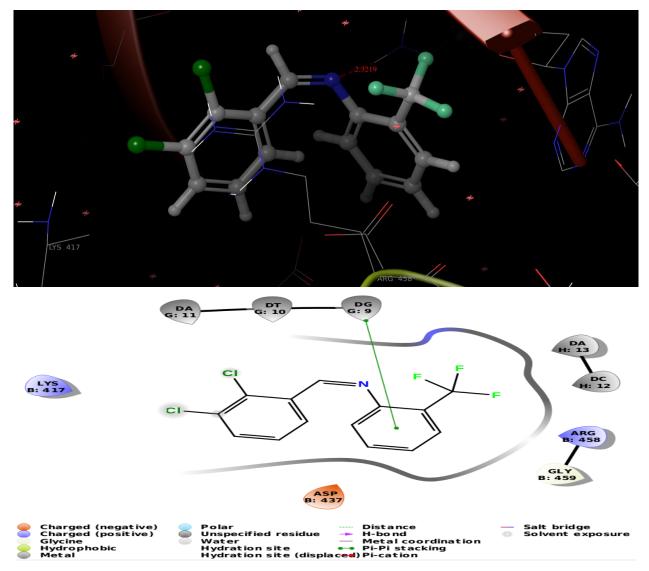


Figure 10: 2D and 3D interactions of 2DBTP

4. CONCLUSION

title molecule was synthesized characterized by spectral analysis such as FT-IR, FT-Raman NMR and UV-Vis. A complete vibrational analysis was carried out for the first time on 2DBTP molecule. The bond parameters were calculated. The Cl₁₁-C₂ was shortened due to the steric effect. The NBO results reflect the charge transfer occurred within the molecule and the maximum energy transfer took place from $n-\pi^*$ bonding orbital of chlorine atom to anti-bonding orbital of C₁-C₂. Lone pair Cl₁₁ transferred more energy 67.36 kJ/mol to C₁-C₂ anti-bonding orbitals compared with Cl₁₀: 59.87 kJ/mol was due to the effect of inter-atomic force between Cl_{11} – C_2 . The β_0 value of 2DBTP is 16.26 times larger than urea, hence the molecule had good NLO property. The recorded UV-Vis spectral value agreed well with calculated value in DMSO solvent. The λ_{max} 267.5

nm was assigned to π - π * type. MEP gives the visual representation of the chemically active sites and comparative reactivity of atoms. The region around C₁₅ atom possessed the most negative potential. Mulliken population analysis revealed that the most positive and most negative mulliken atomic charges at C₁₆ (1.228 a.u)/C₁₅ (-1.793 a.u) were due to the inductive effect of CF₃ group and electronegative N₁₁ atom. The synthesized 2DBTP ligand exhibited excellent ligand-protein interactions with the amino acids. The obtained docking results revealed that the titled compound possessed anti-bacterial activity.

Acknowledgements. Authors gratefully thank Sophisticated Analytical Instrument Facility (SAIF), IIT Madras and Department of Chemistry, Jamal Mohamed College, Tiruchirappalli, Affiliation to Bharathidasan University, Tamilnadu for spectral studies.

REFERENCES

- 1. Z. Cimerman, S. Miljanic, N. Galic. Schiff bases derived from aminopyridines as spectrofluorimetric analytical reagents, *Croat. Chem. Acta*, **2000**, *73(1)*, 81-95.
- 2. H. Schiff. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen, *Justus Liebigs Ann. Chem.*, **1864**, *131(1)*, 118-119.
- 3. C. M. Da Silva, D. L. da Silva, L. V. Modolo, R. B. Alves, M. A. de Resende, C. V. B. Martins, A. de Fatima. Schiff bases: A short review of their antimicrobial activities, *J. Adv. Res.*, **2011**, *2(1)*, 1-8.
- K. Cheng, Q. Z. Zheng, Y. Qian, L. Shi, J. Zhao, H. L. Zhu. Synthesis, antibacterial activities and molecular docking studies of peptide and Schiff bases as targeted antibiotics, *Bioorg. Med. Chem.*, 2009, 17, 7861-7871.
- 5. M. T. Cocco, C. Congiu, V. Lilliu, V. Onnis. Synthesis and in vitro antitumoral activity of new hydrazinopyrimidine-5-carbonitrile derivatives, *Bioorg. Med. Chem.*, **2006**, *14*(2), 366-372.
- 6. B. S. Creaven, B. Duff, D. A. Egan, K. Kavanagh, G. Rosair, V. R. Thangella, M. Walsh. Anticancer and antifungal activity of copper (II) complexes of quinolin-2(1*H*)-one-derived Schiff bases, *Inorg. Chim. Acta.*, **2010**, *363*(*14*), 4048-4058.
- 7. K. Singh, M. S. Barwa, P. Tyagi. Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with bidentate Schiff bases derived by heterocyclic ketone, *Eur. J. Med. Chem.*, **2006**, *41*(*1*), 147-153.
- 8. A. Koll. Specific features of intramolecular proton transfer reaction in Schiff bases, *Int. J. Mol. Sci.*, **2003**, *4*(7), 434-444.
- 9. S. Manivannan, S. Dhanuskodi. Synthesis, crystal growth, structural and optical properties of an organic NLO material, *J. Crys. Growth.*, **2004**, *262(1-4)*, 473-478.
- 10. X. Xuan, C. Zhai. Quantum chemical studies of FT-IR and Raman spectra of methyl 2,5-dichlorobenzoate, *Spectrochim. Acta Part A.*, **2011**, 79(5), 1663-1668.
- 11. V. Arjunan, S. Mohan. Fourier transform infrared and FT-Raman spectra, assignment, ab initio, DFT and normal co-ordinate analysis of 2-chloro-4-methylaniline and 2-chloro-6-methylaniline, *Spectrochim. Acta Part A.*, **2009**, *72*(2), 436-444.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. J. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.

- Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Pittsburgh, PA, 2003.
- 13. A. D. Becke. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction, *J. Chem. Phys.*, **1993**, *98*(492), 5648-5652.
- 14. C. T. Lee, W.T. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, *Phys. Rev. B.*, **1988**, *37(2)*, 785-789.
- 15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani et al. Gaussian 09, Revision d. 01, Gaussian Inc, Wallingford CT 201, **2009**.
- A. Frisch, H. P. Hratchian, R. D. Dennington, II, T. A. Keith, John Millam, B. Nielsen, A. J. Holder, J. Hiscocks, GaussView Version 5.0.8, Gaussian Inc, Wallingford, CT, USA, 2009.
- 17. L. Radom, J. A. Pople. Molecular orbital theory of the electronic structure of organic compounds. IV. Internal rotation in hydrocarbons using a minimal Slater-type basis, *J. American. Chem. Soc.*, **1970**, 92(16), 4786-4795.
- 18. J. A. Pople, A. P. Scott, M. W. Wong, L. Radom. Scaling factors for obtaining fundamental vibrational frequencies and zero-point energies from HF/6–31G* and MP2/6–31G* harmonic frequencies, *Israel J. Chem.*, **1993**, *33(3)*, 345-350.
- 19. M. H. Jamroz. Vibrational Energy Distribution Analysis, VEDA 4, Warsaw, **2004**.
- K. Wolinski, J. F. Hilton, P. Pulay. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations, J. Am. Chem. Soc., 1990, 112(23), 8251-8826.
- 21. T. A. Hajam, H. Saleem, M. S. A. Padhusha, K. K. Mohammed Ameen. Synthesis, quantum chemical calculations and molecular docking studies of 2-ethoxy-4[(2-trifluromethyl-phenylimino) methyl] phenol, *Mol. Phys.*, **2020**, *118(24)*, 1-19.
- 22. V. Krishnakumar, N. Prabavathi. Analysis of vibrational spectra of 1-chloro-2,4-dinitrobenzene based on density functional theory calculations, *Spectrochim. Acta Part A.*, **2009**, *72A*, 738-742.
- 23. G. Socrates. Infrared and Raman Characteristic group frequencies, 3rd ed., John Wiley, Chicester, **2001**.
- N. R. Babu, S. Subashchandrabose, M.S.A. Padusha, H. Saleem, Y. Erdogdu. Synthesis and spectral characterization of hydrazone derivative of furfural using experimental and DFT method, *Spectrochim. Acta A.*, 2014, 120, 314-322.

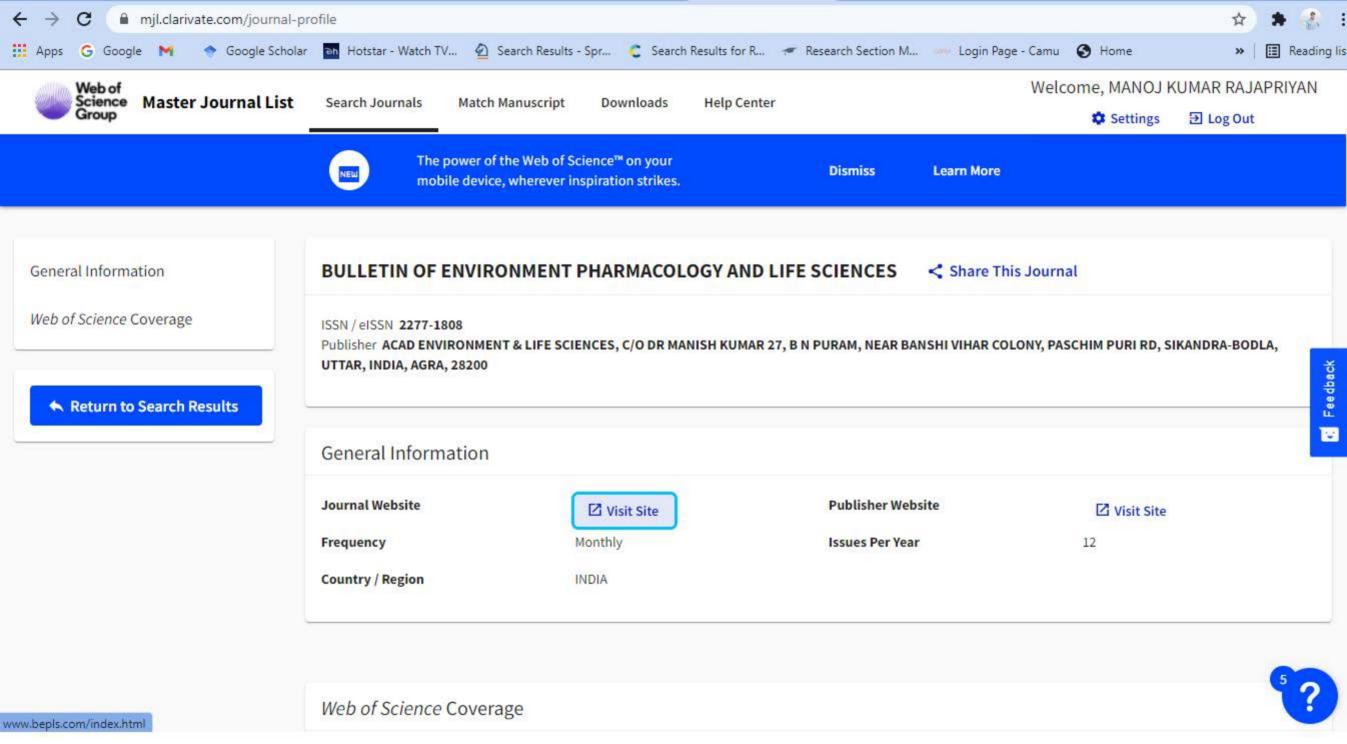
- 25. T. A. Hajam, H. Saleem, M. S. A. Padhusha, K. K. Mohammed Ameen. Quantum Mechanical Study, Spectroscopic (FT-IR, FT-Raman and UV-Vis) Study, NBO, NLO Analysis and Molecular Docking Studies of 2-Ethoxy-4-(Pyridine-2yliminomethyl)-Phenol, *Polycycl. Aromat. Compd.*, Taylor and Francis, 2021, 1-24.
- R. M. Silverstein, G. C. Bassler, T. C. Morril. Spectrometric Identification of Organic Compounds, Fifth ed., John Wiley and Sons Inc., Singapore, 1991.
- 27. G. Varsanyi. Assignments for vibrational spectra of 700 benzene derivatives, Wiley, New York, **1974**.
- 28. E. D. Lipp, C. J. Seliskar. The vibrational spectrum of fluorobenzene, *J. Mol. Spectrosc.*, **1978**, *73(2)*, 290-304.
- 29. V. K. Rastogi, M. A. Palafox, R. P. Tanwar, L. Mittal. 3,5-Difluorobenzonitrile: ab initio calculations, FTIR and Raman spectra, *Spectrochim. Acta Part A.*, **2002**, *58(9)*, 1987-2004.
- 30. C. J. Pouchert. Aldrich Library of Infrared Spectra, Wisconsin, USA, 1975.
- 31. R. K. Yadav, N. P. Sing, R. A. Yadav. Vibrational studies of trifluoromethyl benzene derivatives: II 5-amino-2-fluoro and 5-amino-2-chloro benzotrifluorides, *Indian J. Phys.*, **2003**, *77*, 421-427.
- 32. V. Arjunan, S. Mohan. Fourier transform infrared and FT-Raman spectral analysis and ab initio calculations for 4-chloro-2-methylaniline and 4-chloro-3-methylaniline, *J. Mol. Struct.*, **2008**, *892(1-3)*, 289-299
- 33. H. O. Kalinowski, S. Berger, S. Brawn. Carbon 13 NMR spectroscopy, John Wiley and Sons, Chichester, **1988**.
- 34. D. A. Kleinman. Nonlinear dielectric polarization in optical media, *Phys. Rev.*, **1962**, *126(6)*, 1977.
- 35. J. Liu, Z. Chen, & S. Yuan. Study on the prediction of visible absorption maxima of azobenzene compounds. *J. Zhejiang Univ. Sci.*, **2005**, *6B*(*6*), 584-589.
- 36. C. James, A. A. Raj, R. Reghunathan, V. S. Jayakumar, I. H. Joe. Structural conformation and vibrational spectroscopic studies of 2,6-bis(p-N,N-dimethyl benzylidene)cyclohexanone using density functional theory, *J. Raman Spectrosc.*, **2006**, *37(12)*, 1381-1392.
- 37. K. Fukui. Role of frontier orbitals in chemical reactions, *Science*, **1982**, *218*(4574), 747-754.
- 38. M. Yavuz, H. Tanak. Density functional modelling

- studies on N-2-Methoxyphenyl-2-oxo-5-nitro-1-benzylidenemethylamine, *J. Mol. Struct. Theochem.*, **2010**, *961(1-3)*, 9-16.
- 39. S. Y. Ebrahimipour, M. Abaszadeh, J. Castro, M. Seifi. Synthesis, X-ray crystal structure, DFT calculation and catalytic activity of two new oxidovanadium (V) complexes containing ONO tridentate Schiff bases, *Polyhedron.*, **2014**, *79*, 138-150.
- 40. G. Gece. The use of quantum chemical methods in corrosion inhibitor studies, *Corros. Sci.*, **2008**, 50(11), 2981-2992.
- 41. S. Muthu, A. Prabhakaran. Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method, *Spectrochim Acta Part A.*, **2014**, *129*, 184-192.
- 42. C. Albayrak, M. Odabasoglu, A. Ozek, O. Buyukgungor. Synthesis, spectroscopic characterizations and quantum chemical computational studies of (Z)-4-[(E)-(4-fluorophenyl) diazenyl]-6-[(3-hydroxypropylamino) methylene]-2-methoxycyclohexa-2,4-dienone, *Spectrochim. Acta Part A.*, **2012**, *85(1)*, 85-91.
- 43. S. Sakthivel, T. Alagesan, S. Muthu, Christina Susan Abraham, E. Geetha. Quantum mechanical, spectroscopic study (FT-IR and FT-Raman), NBO analysis, HOMO-LUMO, first order hyperpolarizability and docking studies of a non-steroidal anti-inflammatory compound, *J. Mol. Struct.*, 2017, 1156, 645-656.
- 44. Y. B. Alpaslan, G. Alpaslan, A. A. Agar, N. O. Iskeleli, E. Oztekin. Experimental and density functional theory studies on (E)-2-[(2-(hydroxymethyl) phenylimino) methyl] benzene-1, 4-diol, *J. Mol. Struct.*, **2011**, *995*(*1-3*), 58-65.
- 45. V. K. Rastogi, M. A. Palafox, L. Mittal, N. Peica, W. Kiefer, K. Lang, P. Ohja. FTIR and FT-Raman spectra and density functional computations of the vibrational spectra, molecular geometry and atomic charges of the biomolecule: 5-bromouracil, *J. Raman Spectrosc.*, **2007**, *38*(10), 1227-1241.
- 46. Prime. Version 3.6, Schrodinger, LLC, New York, NY, USA, 2014.
- 47. R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, D. T. Mainz. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes, *J. Med. Chem.*, **2006**, *49*(*21*), 6177-6196.

Corresponding author: Syed Ali Padusha M.

PG and Research Department of Chemistry Jamal Mohamed College Affiliation with Bharathidasan University, Trichy 620 020, India E-mail: Syedalipadusha26@gmail.com/syedalipadusha@gmail.com.

Table 2: The experimental and calculated frequencies of 2DBTP using DFT/6-311++G(d,p) level of basis set [harmonic frequencies (cm⁻¹), IR, Raman intensities (Km/mol)], reduced masses (amu) and force constants (mdynÅ⁻¹)


No No Olimbia Frequencies (cm²) Frequencies (cm²) FT Raman Raman Reduced No No Scaled FT-IR Raman Raman No No No No No No No N	Mada	Calculated ode Frequencies (cm ⁻¹)		Obse		IR	Daman	Dadwaad	Force	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Un	•	•	FT					Vibrational Assignments≥10%(TED) ^d
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			200#	2115()	Kaman		00.65	1.00		G II (0.6)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				` ,	2005()					` '
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				3077(vw)	3085(w)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$?									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6									` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_			` ′						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8			` ,						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9			, ,	, ,					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· 10			` ,	` /					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11			1556(w)	1557(w)					` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$; 12									` '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· 13									` '
16 1475 1417 1417(s) 1417(vw) 2.81 557.97 2.21 2.83 $βH_7C_4C_3(21) + βH_8C_5C_6(23)$ 17 1453 1396 24.64 112.58 1.94 2.41 $βH_9C_6C_5(22) + βH_14C_{12}N_{13}(30)$ 18 1410 1355 1358(m) 1358(vw) 55.48 15.19 1.86 2.18 $βH_14C_{12}N_{13}(75)$ 19 1332 1280 1315(vs) 1.72 60.80 4.51 4.72 $vC_{19}C_{21}(30) + vC_{15}C_{16}(36)$ 20 1322 1270 160.54 19.09 2.62 2.70 $βC_{15}C_{16}C_{18}(12) + vC_{16}C_{25}(24) + βH_{22}C_{18}C_{21}(24)$ 21 1313 1262 1266(m) 1266(m) 16.33 454.31 6.90 7.01 $vC_4C_5(32) + vC_1C_2(31)$ 22 1278 1228 1228 127.66 343.15 2.74 2.64 $vC_{16}C_{25}(17) + βH_{20}C_{17}C_{15}(39)$ 23 1265 1215 1210(w) 1209(w) 5.43 32.51 2.69 2.54 $vN_{13}C_{15}(44)$ 24 1226 1178 1178(vw) 1180(w) 20.26 734.73 1.73 1.53 $vN_{13}C_{15}(14) + βH_7C_4C_3(27) + βH_9C_6C_5(16)$ 25 1203 1156 1150(vw) 1153(w) 118.37 1322.1 2.09 1.78 $vC_3C_{12}(26) + βH_9C_6C_5(62)$	14			1449(m)	1449(w)					• • • • • • • • • • • • • • • • • • • •
17 1453 1396 24.64 112.58 1.94 2.41 $βH_9C_6C_5(22) + βH_14C_{12}N_{13}(30)$ 18 1410 1355 1358(m) 1358(vw) 55.48 15.19 1.86 2.18 $βH_14C_{12}N_{13}(75)$ 19 1332 1280 1315(vs) 1.72 60.80 4.51 4.72 $vC_{19}C_{21}(30) + vC_{15}C_{16}(36)$ 20 1322 1270 160.54 19.09 2.62 2.70 $βC_{15}C_{16}C_{18}(12) + vC_{16}C_{25}(24) + βH_{22}C_{18}C_{21}(24)$ 21 1313 1262 1266(m) 1266(m) 16.33 454.31 6.90 7.01 $vC_4C_5(32) + vC_1C_2(31)$ 22 1278 1228 1228 127.66 343.15 2.74 2.64 $vC_{16}C_{25}(17) + βH_{20}C_{17}C_{15}(39)$ 23 1265 1215 1210(w) 1209(w) 5.43 32.51 2.69 2.54 $vN_{13}C_{15}(44)$ 24 1226 1178 1178(vw) 1180(w) 20.26 734.73 1.73 1.53 $vN_{13}C_{15}(14) + βH_7C_4C_3(27) + βH_9C_6C_5(16)$ 25 1203 1156 1150(vw) 1153(w) 118.37 1322.1 2.09 1.78 $vC_3C_{12}(26) + βH_9C_6C_5(62)$	15	1480	1422			39.59	25.63	2.37	3.06	$\beta C_{15}C_{16}C_{18}(11) + \beta H_{23}C_{19}C_{21}(27) + \beta H_{24}C_{21}C_{19}(21)$
18 1410 1355 1358(m) 1358(vw) 55.48 15.19 1.86 2.18 $βH_{14}C_{12}N_{13}(75)$ 19 1332 1280 1315(vs) 1.72 60.80 4.51 4.72 $vC_{19}C_{21}(30) + vC_{15}C_{16}(36)$ 20 1322 1270 160.54 19.09 2.62 2.70 $βC_{15}C_{16}C_{18}(12) + vC_{16}C_{25}(24) + βH_{22}C_{18}C_{21}(24)$ 21 1313 1262 1266(m) 1266(m) 16.33 454.31 6.90 7.01 $vC_4C_5(32) + vC_1C_2(31)$ 22 1278 1228 1228 127.66 343.15 2.74 2.64 $vC_{16}C_{25}(17) + βH_{20}C_{17}C_{15}(39)$ 23 1265 1215 1210(w) 1209(w) 5.43 32.51 2.69 2.54 $vN_{13}C_{15}(44)$ 24 1226 1178 1178(vw) 1180(w) 20.26 734.73 1.73 1.53 $vN_{13}C_{15}(14) + βH_7C_4C_3(27) + βH_9C_6C_5(16)$ 25 1203 1156 1150(vw) 1153(w) 118.37 1322.1 2.09 1.78 $vC_3C_{12}(26) + βH_9C_6C_5(62)$. 16	1475	1417	1417(s)	1417(vw)	2.81	557.97	2.21	2.83	$\beta H_7 C_4 C_3(21) + \beta H_8 C_5 C_6(23)$
19 1332 1280 1315(vs) 1.72 60.80 4.51 4.72 $vC_{19}C_{21}(30) + vC_{15}C_{16}(36)$ 20 1322 1270 160.54 19.09 2.62 2.70 $βC_{15}C_{16}C_{18}(12) + vC_{16}C_{25}(24) + βH_{22}C_{18}C_{21}(24)$ 21 1313 1262 1266(m) 1266(m) 16.33 454.31 6.90 7.01 $vC_4C_5(32) + vC_1C_2(31)$ 22 1278 1228 1228 12766 343.15 2.74 2.64 $vC_{16}C_{25}(17) + βH_{20}C_{17}C_{15}(39)$ 23 1265 1215 1210(w) 1209(w) 5.43 32.51 2.69 2.54 $vN_{13}C_{15}(44)$ 24 1226 1178 1178(vw) 1180(w) 20.26 734.73 1.73 1.53 $vN_{13}C_{15}(14) + βH_7C_4C_3(27) + βH_9C_6C_5(16)$ 25 1203 1156 1150(vw) 1153(w) 118.37 1322.1 2.09 1.78 $vC_3C_{12}(26) + βH_9C_6C_5(62)$	å 17	1453	1396			24.64	112.58	1.94	2.41	$\beta H_9 C_6 C_5(22) + \beta H_{14} C_{12} N_{13}(30)$
20 1322 1270	17 18 19 20 21	1410	1355	1358(m)	1358(vw)	55.48	15.19	1.86	2.18	$\beta H_{14}C_{12}N_{13}(75)$
21 1313 1262 1266(m) 1266(m) 16.33 454.31 6.90 7.01 $vC_4C_5(32) + vC_1C_2(31)$ 22 1278 1228 1228 12766 343.15 2.74 2.64 $vC_{16}C_{25}(17) + \beta H_{20}C_{17}C_{15}(39)$ 23 1265 1215 1210(w) 1209(w) 5.43 32.51 2.69 2.54 $vN_{13}C_{15}(44)$ 24 1226 1178 1178(vw) 1180(w) 20.26 734.73 1.73 1.53 $vN_{13}C_{15}(14) + \beta H_7C_4C_3(27) + \beta H_9C_6C_5(16)$ 25 1203 1156 1150(vw) 1153(w) 118.37 1322.1 2.09 1.78 $vC_3C_{12}(26) + \beta H_9C_6C_5(62)$	19	1332	1280	1315(vs)		1.72	60.80	4.51	4.72	$vC_{19}C_{21}(30) + vC_{15}C_{16}(36)$
22 1278 1228 127.66 343.15 2.74 2.64 $vC_{16}C_{25}(17) + βH_{20}C_{17}C_{15}(39)$ 23 1265 1215 1210(w) 1209(w) 5.43 32.51 2.69 2.54 $vN_{13}C_{15}(44)$ 24 1226 1178 1178(vw) 1180(w) 20.26 734.73 1.73 1.53 $vN_{13}C_{15}(14) + βH_7C_4C_3(27) + βH_9C_6C_5(16)$ 25 1203 1156 1150(vw) 1153(w) 118.37 1322.1 2.09 1.78 $vC_3C_{12}(26) + βH_9C_6C_5(62)$	20	1322	1270			160.54	19.09	2.62	2.70	$\beta C_{15}C_{16}C_{18}(12) + \nu C_{16}C_{25}(24) + \beta H_{22}C_{18}C_{21}(24)$
23 1265 1215 1210(w) 1209(w) 5.43 32.51 2.69 2.54 $vN_{13}C_{15}(44)$ 24 1226 1178 1178(vw) 1180(w) 20.26 734.73 1.73 1.53 $vN_{13}C_{15}(14) + \beta H_7C_4C_3(27) + \beta H_9C_6C_5(16)$ 25 1203 1156 1150(vw) 1153(w) 118.37 1322.1 2.09 1.78 $vC_3C_{12}(26) + \beta H_9C_6C_5(62)$		1313	1262	1266(m)	1266(m)	16.33	454.31	6.90	7.01	$vC_4C_5(32) + vC_1C_2(31)$
24 1226 1178 1178(vw) 1180(w) 20.26 734.73 1.73 1.53 $vN_{13}C_{15}(14) + \beta H_7C_4C_3(27) + \beta H_9C_6C_5(16)$ 25 1203 1156 1150(vw) 1153(w) 118.37 1322.1 2.09 1.78 $vC_3C_{12}(26) + \beta H_9C_6C_5(62)$	22	1278	1228			127.66	343.15	2.74	2.64	$\nu C_{16}C_{25}(17) + \beta H_{20}C_{17}C_{15}(39)$
25 1203 1156 1150(vw) 1153(w) 118.37 1322.1 2.09 1.78 $vC_3C_{12}(26) + \beta H_9C_6C_5(62)$. 23	1265	1215	1210(w)	1209(w)	5.43	32.51	2.69	2.54	$vN_{13}C_{15}(44)$
	22 23 24 25 26	1226	1178	1178(vw)	1180(w)	20.26	734.73	1.73	1.53	$\nu N_{13}C_{15}(14) + \beta H_7C_4C_3(27) + \beta H_9C_6C_5(16)$
$26 1188 1141 7.92 74.01 1.12 0.93 \nu C_{19}C_{21}(11) + \beta H_{20}C_{17}C_{15}(10) + \beta H_{23}C_{19}C_{21}(29) + \beta H_$	25	1203	1156	1150(vw)	1153(w)	118.37	1322.1	2.09	1.78	$\nu C_3 C_{12}(26) + \beta H_9 C_6 C_5(62)$
	26	1188	1141			7.92	74.01	1.12	0.93	$\nu C_{19}C_{21}(11) + \beta H_{20}C_{17}C_{15}(10) + \beta H_{23}C_{19}C_{21}(29) +$

								$\beta H_{24}C_{21}C_{19}(31)$
27	1175	1129	1128(vw)	37.46	191.54	1.68	1.37	$\beta H_8 C_5 C_6(38) + \beta C_2 C_1 C_6(15)$
28	1155	1110	1108(w)	38.21	351.77	2.15	1.69	$\nu C_{18}C_{21}(16) + \nu F_{28}C_{25}(17) + \beta H_{23}C_{19}C_{21}(11)$
29	1129	1085		10.29	205.59	2.34	1.76	$vC_5C_6(17) + \beta H_7C_4C_3(11) + \beta H_9C_6C_5(14)$
30	1120	1076		224.03	5.50	8.25	6.10	$vF_{27}C_{25}(53) + vF_{26}C_{25}(14)$
31	1111	1067	1051(w) 1049(vw)	151.74	11.71	4.15	3.01	$vF_{26}C_{25}(41) + vF_{28}C_{25}(25)$
32	1072	1030	1037(m)	48.11	175.07	5.94	4.03	$\nu C_4 C_5(20) + \beta C_1 C_2 C_3(13) + \nu C I_{11} C_2(12) + \beta C_2 C_1 C_6(10)$
33	1069	1027		57.01	215.40	2.57	1.73	$\nu C_{19}C_{21}(19) + \nu F_{28}C_{25}(14) + \beta H_{22}C_{18}C_{21}(10)$
34	1047	1006	986(vw)	88.99	122.16	7.29	4.71	$vC_{19}C_{21}(14) + \beta C_{17}C_{19}C_{21}(25) + \beta C_{18}C_{21}C_{19}(20)$
35	1003	964	963(vw) 963(vvw)	7.43	410.45	1.55	0.92	$\Gamma C_{12}C_3N_{13}H_{14}(64)$
36	998	959		1.77	124.29	1.35	0.79	$\tau H_{20}C_{17}C_{19}H_{23}(17) + \tau H_{23}C_{19}C_{21}H_{24}(44)$
37	986	947	949(vw)	0.39	65.37	1.34	0.77	$\Gamma C_4 C_3 C_5 H_7(11) + \tau H_8 C_5 C_6 H_9(75)$
38	970	932		4.34	22.58	1.39	0.77	$\tau H_{20}C_{17}C_{19}H_{23}(36) + \Gamma C_{18}C_{16}C_{21}H_{22}(45)$
39	943	906		5.43	462.03	5.19	2.72	$vC_3C_{12}(15) + vCl_{10}C_1(12) + \beta C_3C_{12}N_{13}(21) + \beta C_2C_1C_6(19)$
40	920	884	899(w) 898(vw)	0.38	7.17	1.37	0.68	$\Gamma C_4 C_3 C_5 H_7(52) + \tau H_9 C_6 C_1 C_2(33)$
41	883	848	853(m)	0.43	20.94	1.53	0.70	$\tau H_{20}C_{17}C_{19}H_{23}(31) + \Gamma C_{18}C_{16}C_{21}H_{22}(22) + \tau H_{23}C_{19}C_{21}H_{24}(25)$
42	859	825		30.98	54.99	6.22	2.71	$\begin{array}{l} \nu N_{13}C_{15}(14) + \beta C_{17}C_{19}C_{21}(14) + \beta C_{18}C_{21}C_{19}(30) + \\ \beta C_{16}C_{18}C_{21}(10) \end{array}$
43	795	764	771(vw)	40.69	1.80	1.60	0.59	$\Gamma C_4 C_3 C_5 H_7(18) + \tau H_9 C_6 C_1 C_2(29) + \tau C_1 C_6 C_2 C_3(19)$
44	783	752	759(m)	23.42	25.02	2.58	0.93	$\tau C_{15}C_{17}C_{21}C_{19}(10) + \Gamma N_{13}C_{15}C_{17}C_{16}(16)$
45	770	740	740(m)	49.91	73.11	1.57	0.55	$\Gamma C_{19}C_{17}C_{21}H_{23}(56) + \tau C_{17}C_{19}C_{18}C_{21}(10) + \tau C_{18}C_{16}C_{21}C_{19}(12)$
46	761	731		6.34	70.11	6.21	2.12	$vF_{27}C_{25}(14) + \beta C_{17}C_{19}C_{21}(35)$
47	753	723		17.79	24.46	7.54	2.52	$vCl_{11}C_2(14) + vCl_{10}C_1(13) + \beta C_4C_5C_6(49)$
48	718	690	700(s)	13.76	16.33	3.35	1.02	$\tau H_9 C_6 C_1 C_2 (16) + \tau C_1 C_6 C_4 C_5 (11) + \tau C_3 C_2 C_4 C_5 (37) + \Gamma C l_{11} C_1 C_3 C_2 (17)$
49	686	659	645(m)	22.58	29.28	6.69	1.85	$\beta C_1 C_6 C_5(10) + \beta C_3 C_{12} N_{13}(41)$
50	655	629		8.01	33.36	7.24	1.83	$\beta C_{16}C_{18}C_{21}(32)$
51	600	576	595(w)	1.66	95.35	5.34	1.13	$\begin{array}{l} \nu F_{27}C_{25}(10) + \tau C_{15}C_{17}C_{21}C_{19}(21) + \Gamma C_{25}C_{16}F_{27}F_{28}(17) + \\ \tau C_{21}C_{18}C_{16}C_{25}(11) \end{array}$
52	596	573		0.93	34.89	7.04	1.48	$\beta C_{15}C_{17}C_{19}(14) + \Gamma C_{25}C_{16}F_{27}F_{28}(28)$
53	579	556	562(s)	4.77	55.87	5.73	1.13	$\beta C_{15}C_{17}C_{19}(34)$
54	563	541		8.94	25.88	5.98	1.12	$\beta C_{15}C_{17}C_{19}(14)$
55	554	532		1.48	31.19	6.66	1.21	$\Gamma F_{27}C_{16}F_{26}C_{25}(37)$

© 2022 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH www.vjc.wiley-vch.de 68

	56	523	502	511(vw)		0.33	3.02	4.08	0.66	$\tau C_1 C_6 C_4 C_5(35) + \tau C_3 C_2 C_4 C_5(14) + \Gamma C l_{10} C_2 C_6 C_1(13) + \Gamma C l_{11} C_1 C_3 C_2(28)$
	57	510	490			7.97	62.05	6.31	0.97	$\beta F_{27}C_{25}F_{28}(39)$
	58	482	463	459(m)	462(vw)	6.85	218.16	8.02	1.10	$vCl_{11}C_2(40) + \beta F_{27}C_{25}F_{28}(39)$
	59	472	453			0.28	126.69	6.12	0.80	$\beta C_{17}C_{15}N_{13}(22) + \beta F_{26}C_{25}F_{28}(41)$
	60	435	418			5.08	41.31	5.80	0.65	$\beta C_1 C_2 C l_{11}(18) + \beta C_2 C_1 C l_{10}(23)$
	61	412	396			0.54	59.13	10.63	1.06	$vCl_{10}C_1(27) + \beta C_2C_1C_6(13) + \beta F_{26}C_{25}F_{27}(10)$
	62	364	350		350(vvw)	0.56	39.97	6.56	0.51	$\beta F_{26}C_{25}F_{27}(16) + \tau C_{15}C_{17}C_{21}C_{19}(12)$
0 202	63	347	333			0.45	54.35	7.20	0.51	$\beta F_{26}C_{25}F_{27}(10) + \beta F_{26}C_{25}F_{28}(11) + \Gamma F_{27}C_{16}F_{26}C_{25}(32)$
22 V	64	330	317			3.17	82.61	9.94	0.64	$\beta C_{15}C_{16}C_{18}(13) + \nu C_{16}C_{25}(27) + \beta F_{27}C_{25}F_{28}(10)$
ietna	65	300	288			1.99	19.24	6.32	0.33	$\tau C_{17}C_{19}C_{18}C_{21}(52)$
m Acade	66	269	258			6.09	121.36	5.68	0.24	$ \beta C_{17}C_{15}N_{13}(10) + \Gamma F_{27}C_{16}F_{26}C_{25}(11) + \Gamma Cl_{11}C_{1}C_{3}C_{2}(13) + \\ \tau C_{1}C_{2}C_{3}C_{12}(15) $
my of S	67	237	228			2.19	214.21	4.55	0.15	$ \begin{aligned} \tau C_2 C_3 C_{12} N_{13}(11) + \tau C_1 C_6 C_4 C_5(14) + \tau C_3 C_2 C_4 C_5(14) + \\ \Gamma C I_{10} C_2 C_6 C_1(21) \end{aligned} $
cienc	68	229	220		224(vw)	1.04	162.18	7.45	0.23	$\tau C_{17}C_{19}C_{18}C_{21}(13) + \Gamma Cl_{10}C_{2}C_{6}C_{1}(16) + \Gamma Cl_{11}C_{1}C_{3}C_{2}(10)$
e an	69	224	215			0.06	80.79	27.49	0.82	$\beta C_1 C_2 C l_{11}(43) + \beta C_2 C_1 C l_{10}(44)$
d Te	70	185	178			1.63	89.19	7.05	0.14	$\beta C_{12}N_{13}C_{15}(10) + \beta C_{18}C_{16}C_{25}(39)$
chno	71	149	143			0.24	54.67	7.93	0.10	$\beta C_2 C_3 C_{12}(14) + \tau C_{21} C_{18} C_{16} C_{25}(35)$
 © 2022 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH GmbH	72	133	128			1.16	725.13	4.72	0.05	$\tau C_1 C_6 C_2 C_3(35) + \tau C_{12} N_{13} C_{15} C_{17}(18)$
	73	113	109		100(vw)	0.31	219.92	5.18	0.04	$\tau C_{17}C_{19}C_{18}C_{21}(15) + \tau C_{21}C_{18}C_{16}C_{25}(44)$
101 &	74	68	65		66(w)	1.26	741.22	9.22	0.03	$\tau C_1 C_6 C_2 C_3 (12) + \tau C_{12} N_{13} C_{15} C_{17} (28)$
. W.	75	55	53			0.20	298.10	9.81	0.02	$\beta C_3 C_{12} N_{13}(13) + \beta C_{12} N_{13} C_{15}(17) + \tau C_{18} C_{16} C_{25} F_{26}(28)$
ley-\	76	40	38			0.22	185.26	15.26	0.01	$\beta C_{12}N_{13}C_{15}(12) + \tau C_{18}C_{16}C_{25}F_{26}(52)$
/CH	77	32	31			0.32	289.12	11.83	0.01	$\tau C_3 C_{12} N_{13} C_{15}(37) + \tau C_1 C_2 C_3 C_{12}(34)$
Gm	78	13	12			0.19	3430.3	9.61	0.00	$\tau C_2 C_3 C_{12} N_{13}(65) + \tau C_{12} N_{13} C_{15} C_{17}(22)$
H	044.1.	· 0. ·	11		C 1 1		г .	1		wy viamy vyjadła wy vyjadła aj atmama, viaj viamy atmama

v: Stretching, β: in-plane-bending, Γ: out-of-plane bending, τ: Torsion, vw: very weak, vvw: very weak, w: weak, s: strong, vs: very strong, aScaling factor: 0.9608 (Random et al., 1970 and Pople *et al.*, 1993). [17,18] bIR absorption intensities. at B3LYP/6-311++G(d,p) level. dTotal energy distribution calculated at B3LYP/6-311++G(d,p) level. dTotal energy distribution calculated at DFT/B3LYP/6-311++G(d,p) level.

Bulletin of Environment, Pharmacology and Life Sciences

Bull. Env. Pharmacol. Life Sci., Vol 10 [2] January 2021 : 105-114 ©2021 Academy for Environment and Life Sciences, India Online ISSN 2277-1808

Journal's URL:http://www.bepls.com

CODEN: BEPLAD

OPEN ACCESS

Synthesis, Characterization, DFT and antimicrobial studies of some azomethine and β-amino derivatives

Mohammed Ameen K.K¹, M. Syed Ali Padusha^{2*}, Ajitha Devi³ and F.M. Mashood Ahamed⁴
^{1,2,4}PG& Research Department of Chemistry, Jamal Mohamed College (Affiliated to Bharathidasan University), Tiruchirappalli, Tamilnadu

³Department of Chemistry, Government Victoria College, Palakkad, Kerala

*Author for correspondence: syedalipadusha@gmail.com

ABSTRACT

In the present work, three phenol derivatives Schiff and Mannich Bases were prepared and characterized using analytical and spectral methods such as FT-IR, ¹H-NMR, ¹³C-NMR and Mass Spectral Studies. The molecular structure, vibrational frequencies and intensity vibrational bands were analyzed for Schiff base derived by treating 2-ethoxy-4-(((2-(trifluoromethyl)phenyl)phenyl)phenol and interpreted with the help of Density Functional Theory (DFT) method with basis set 6-311++G(d,p). Further all the compounds are screened for Anti-microbial activity by disc diffusion method. Synthesized compounds such as (1-phenyl-ethyl)-amine(MA1), (3-trifluoromethyl phenyl)-amine (MA2) and 4-nitro-2-(trifluoromethyl) aniline(MA3) compounds found to have antibacterial and antifungal activity **Key words:** Mannich Bases- Imines-azomethine compounds-DFT

Received 04.12.2020 Revised 03.01.2021 Accepted 19.01.2021

INTRODUCTION

A reaction in which two molecules combine to form a single molecule is called condensation reaction. Usually a small molecule water is removed in this reaction [1]. Formation of peptide bond during the combination amino acid is because of condensation reaction, a covalent bond forms between the amine nitrogen of one amino acid and the carboxyl carbon of the second amino acid. Condensation reaction proceeds in a step-wise fashion to produce the addition product. It is a versatile class of reactions that can occur in acidic or basic conditions or in the presence of a catalyst. There are several type of condensation reactions exist, viz., aldol condensation, Claisen condensation, Knoevenagel condensation, Dieckman condensation (intramolecular Claisen condensation), Schiff Condensation and Mannich Condensation [2]. Of these several condensation reaction studied, the products of Schiff and Mannich reactions gained much attention among the researchers in the fields like Organic, Organometallic and Pharmaceutical chemistry due to their wide biological applications. The present research work focused on synthesis of organic compounds via. Schiff and Mannich reactions. Hence, it is essential to highlight the importance of Schiff and Mannich Bases. German chemist, Hugo Schiff in 1864 produced Schiff bases by reacting primary amines and carbonyl compounds [3-5]. Schiff base is also known as imine or azomethine group. Schiff bases are active against a wide range of organisms since they play an important role in living organisms, such as decarboxylation, transamination and C-C bond cleavage. Biological Properties Azomethine group of these compounds has a great attention as precursor in huge organic synthesis due to their biological applications such as, anticancer, CNS depressant, antibacterial, anti-inflammatory [6-8], anticonvulsant, anti-tumor, analgesic [9-11], anti- hypertensive activity, anti HIV activity, antimicrobial activity[12,13], anticovelcent [14], anti-tubercular [15], anti-cancer [16], anti-oxidant [17], plant growth inhibitors, and insecticidal properties. Schiff base ligands are essential in the field of coordination chemistry, especially in the development of complexes of Schiff bases because these compounds are potentially capable of forming stable complexes with metal ions. Metal-imine complexes have been widely investigated due to antitumor and herbicidal use. They can work as models for biologically important species. Ligands and complexes that include sulfur and nitrogen have wide applications for the synthesis of drugs. Drug resistances properties of Schiff base against antibacterial agents may be enhanced by the preparation of metal complexes, using a process of chelation with the coordination of transition metal ions. Schiff bases

have N atoms as their basic elements. Schiff base derivatives containing donor atom can act as good chelating agents for the transition of metal ions [18].

Photo- and thermochromic properties of Schiff bases find used in the following modern technolgies: optical computers, to measure and control the intensity of the radiation, in imaging systems, in the molecular memory storage, as organic materials in reversible optical memories and photodetectors in biological systems [19, 20]. Photochromic properties of Schiff compounds make them as photo stabilizers, dyes for solar collectors, solar filters. They are also exerted in optical sound recording technology [19]. Among others, worthy of interest in the properties associated with Schiff rules include: properties of liquid crystal [20], chelating ability [21], thermal stability [22], optical nonlinearity [23] and the ability to create the structure of a new type of molecular conductors using electrical properties to proton transfer [24]. Because of its thermal stability Schiff bases can be used as stationery phase in gas chromatography. The optical nonlinearity of these compounds allows us to use them as electronic materials, optoelectronic (in optical switches) and photonic components [25]. Imine derivatives can be exerted to obtain conductive polymers. Schiff bases as an electrical conductor possess a variety range of uses: as catalysts in photo electrochemical processes, electrode materials and micro-electronic equipment, organic batteries or electrochromic display device (graphical output devices). Due to the presence of the imine group, the electron cloud of the aromatic ring and electronegative nitrogen, oxygen and sulfur atoms in the Schiff bases molecules [26], these compounds effectively prevent corrosion of mild steel, copper, aluminium and zinc in acidic medium. Carl Mannich developed a product by reacting formaldehyde and a primary or secondary amine or ammonia and a compound containing acidic proton, the final product formed is a β-amino-carbonyl compound also known as a Mannich base [27, 28]. The Mannich reaction is an example of nucleophilic addition of an amine to a carbonyl group followed by dehydration to the Schiff base. The Mannich-Reaction is employed in the organic synthesis of natural compounds such as peptides, nucleotides, antibiotics, and alkaloids (e.g. tropinone). Mannich compounds are used to possess potent activity like anti-inflamatory, anticancer, antibacterial, antifungal and antimicrobial activities [29].

MATERIAL AND METHODS

Synthesis of azomethine compounds via Schiff reaction (MA1-MA3)

Melting points were measured in an open capillary on Mel-Temp apparatus and are uncorrected. IR spectra were recorded on Perkin Elmer spectrometer using KBr pellets. H and H and KBr spectra were recorded on a Bruker AM-400 spectrometer for solution in DMSO-d6 with tetramethylsilane (TMS) as an internal standard. All the chemical shifts values were recorded as δ ppm. Mass spectra were recorded by EI method and HRMS was measured on a JEOL GC mate II mass spectrometer. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with silica gel-G coated plates.

Synthesis of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)

To the ethanolic solution of 1-phenylethanamine (12.8 mL, 0.1 M), 2,3-dichlorobenzaldehyde (17.5 g, 0.1 M) was added and refluxed for 6 h. The mixture was poured into a beaker contain crushed ice. The solid separated out was washed, filtered and dried over vacuum and recrystallized using ethanol. (Colour: Deep Brown solid; M.P: $171\,^{\circ}$ C)

CI CH3 CH3
$$\stackrel{\text{CH}_3}{\longrightarrow}$$
 $\stackrel{\text{CI}}{\longrightarrow}$ $\stackrel{\text{CH}_3}{\longrightarrow}$ $\stackrel{\text{CI}}{\longrightarrow}$ $\stackrel{\text{CH}_3}{\longrightarrow}$ $\stackrel{\text{CH}_3}{\longrightarrow}$ $\stackrel{\text{CI}}{\longrightarrow}$ $\stackrel{\text{CI}$

Scheme: 1 - Synthesis of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)

Synthesis of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine (MA2)

To the ethanolic solution of 4-isopropyl benzaldehyde (14.8 mL, 0.1 M), 3-amino benzotrifluoride. (16.0 mL, 0.1 M) was added. The reaction mixture was taken in a RB flask and kept over a magnetic stirrer and stirred for 6 h. The solid separated out was washed, filtered, and dried over vacuum and recrystallized using absolute ethanol. (Colour: Colourless solid; M.P: $180\,^{\circ}\text{C}$)

Scheme: 2- Synthesis of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine (MA2)

Synthesis of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl) aniline (MA3)

To the ethanolic solution of 2-amino-5-nitrobenzenetrifluride (20.4 g, 0.1 M), 4-isopropylbenzaldehyde (15.0 mL, 0.1M) was added. The reaction mixture was taken in a RB flask and kept over a magnetic stirrer and stirred for 6 h. The solid separated out was washed, filtered, and dried over vacuum and recrystallized using absolute ethanol. (Colour: Brown solid; M.P: 106 °C)

Scheme: 3- Synthesis of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl) aniline (MA3)

Antimicrobial study

Antibacterial activity evaluated against E.coli and S.aureus and antifungal activity performed against Aspergillusniger by disc diffusion method. Known concentration of compound at $100\mu g/disc$ were preloaded and placed over the agar surface seeded with test pathogen. Zone of inhibition for bacteria recorded after 24 h and antifungal activity confirmed after 5 days.oflaxacin and cyclohexamide used as positive control DMSO used as negative control.Relative inhibitory zone was calculated as follows

RIZD= Zone of Test-Zone of negative control/zone of PC X 100

RESULT AND DISCUSSION

Spectral and Antimicrobial studies of (MA1)

The FT-IR spectrum of MA1 is presented in the **Fig. 1.** Aromatic C-H stretching in phenyl ring exhibits a band at 3068 cm⁻¹. A strong absorption band appeared at 2964 cm⁻¹ is due to C-H stretching. An absorption band at 1562 cm⁻¹ indicates C=N stretching. A band appeared at 719 is due to C-Cl stretching. H- NMR spectrum of MA1 in the **Fig 2.** The peaks ranges from 7.2-7.5 are due to aromatic protons. Presence of azomethine and methine protons revealed from the peaks exhibited at 6.9 ppm and 5.9 ppm respectively. Methyl protons exhibited peak at 1.5 ppm. **Fig. 3** represents the ¹³C-NMR spectrum of MA1. Azomethine carbon exhibits a peak at 162 ppm. Aromatic carbons show signals from 120 to 128 ppm. A peak appeared at 72 ppm shows the presence of methine carbon. A peak obtained at 22 ppm is due to methyl carbon. Mass spectrum of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1) is shown in the **Fig 4.** Exact mass of MA1 has been confirmed by its m/z appeared at 277.04.

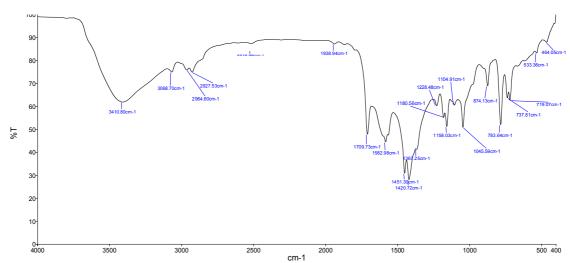


Fig. 1. FTIR spectrum of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)

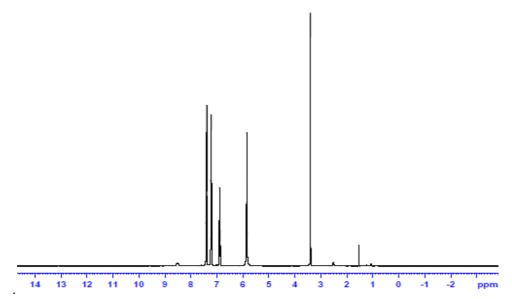


Fig. 2.1H-NMR spectrum of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)

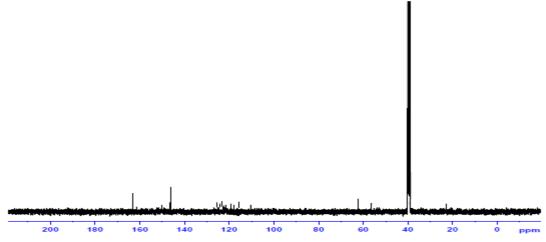


Fig. 3.13C-NMR spectrum of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)

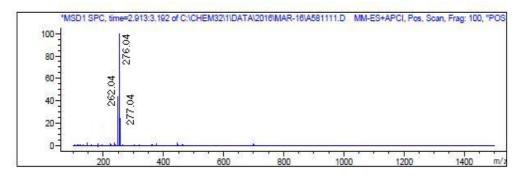


Fig. 4. Mass spectrum of (2, 3-Dichloro-benzylidene)-(1-phenyl-ethyl)-amine (MA1)

Spectral and Antimicrobial studies of (MA2)

The FT-IR spectrum of MA2 is presented in the **Fig. 5.** Aromatic C-H stretching in phenyl ring exhibits a band at 2965 cm⁻¹. A strong absorption band appeared at 2876 cm⁻¹ is due to C-H stretching. An absorption band at 1631 cm⁻¹ indicates C=N stretching. A band appeared at 660 is due to C-F stretching. ¹H-NMR spectrum of MA2 has been given in the **Fig. 6.** A peak at 8.5 ppm indicates the azomethine proton. The signals ranges from 6.9 to 7.5 ppm are assigned to aromatic protons. A peak observed at 2.5 ppm indicates methine protons. Methyl protons are assigned by the signal obtained at 1.1 ppm. ¹³C-NMR of the compound MA2 has been presented in the **Fig. 7.**Azomethine carbon shows a peak at 161 ppm. The peaks ranging from 124-138 indicate the aromatic carbons. CF₃ carbon is indicated by a peak at 122 ppm. Mass Spectrum of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine. (MA2) given in **Fig. 8** represents the mass spectrum of the compound MA2. The peak appearing at m/z 291.12 confirms the calculated molecular mass of the compound. The intense peak at m/z 248.12 is the base peak.

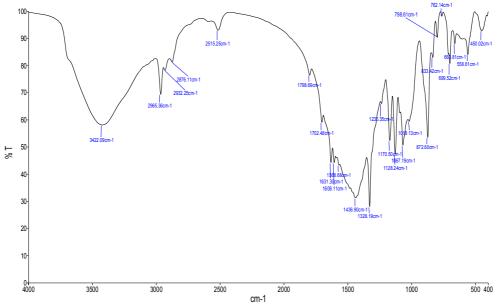


Fig. 5. IR Spectrum of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine (MA2)

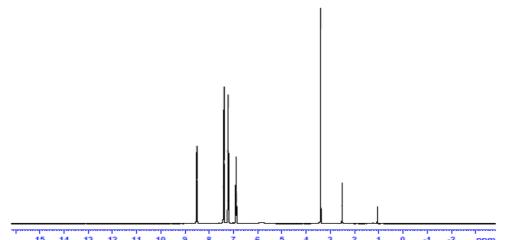


Fig. 6¹H-NMR Spectrumof(4-Isopropyl-benzylidene)-(3-trifluoromethylphenyl)amine (MA2)

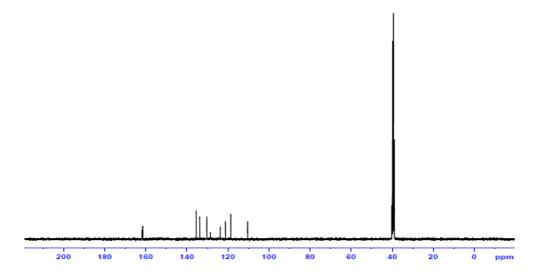


Fig.7.¹³C-NMR Spectrum of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine. (MA2)

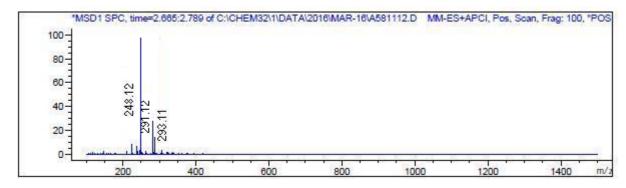


Fig.8 Mass Spectrum of (4-Isopropyl-benzylidene)-(3-trifluoromethyl phenyl)-amine. (MA2)

Spectral and Antimicrobial studies of (MA3)

FT-IR spectrum of MA3 is shown in the **Fig. 9**. The band appears at 3314 cm⁻¹ is due to NH stretching. Aromatic C-H and C=C stretching frequencies are indicated by the bands at 2988 and 1492 cm⁻¹ respectively. Carbonyl stretching frequency of ester is noticed by a band at 1697 cm⁻¹, ¹H-NMR spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline(MA3) given in the **Fig. 10**. A peak at 8.5 ppm indicates the azomethine proton. The signals ranges from 6.9 to 7.5 ppm are assigned to aromatic protons. A peak observed at 2.5 ppm indicates methine protons. Methyl protons are assigned by the signal obtained at 1.2 ppm. ¹³C-NMR of the compound MA3 is presented in the **Fig. 11**. Azomethine carbon

shows a peak at 162 ppm. The signal appeared at 146 ppm is due to nitro group carbon bonded in aromatic ring. The peaks ranging from 122-135 indicate the aromatic carbons. CF_3 carbon is indicated by a peak at 121 ppm. Fig. 12 represents the mass spectrum of the compound MA3. The molecular ion peak appearing at m/z 336.31 confirms the calculated molecular mass of the compound. The peak appearing with high intensity at m/z 293.11 is the base peak.

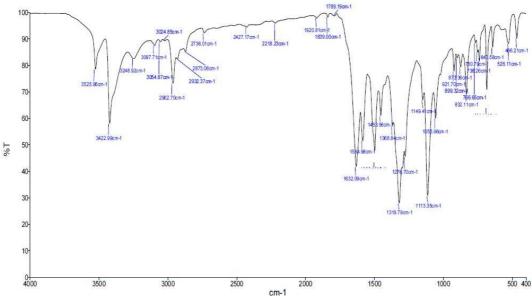


Fig. 9. IR spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

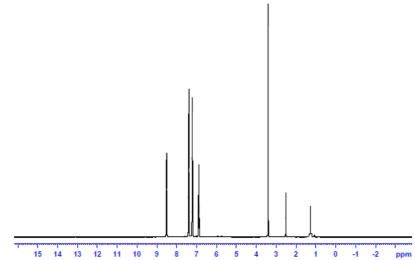


Fig. 10.1H-NMR spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline(MA3)

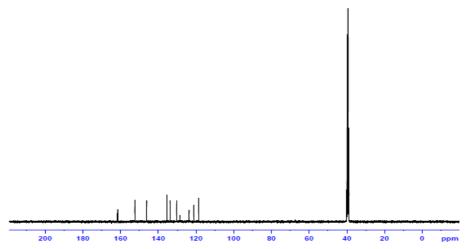


Fig. 11.13C-spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline (MA3)

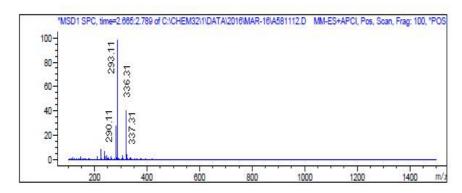


Fig. 12. Mass spectrum of N-(4-isopropylbenzylidene)-4-nitro-2-(trifluoromethyl)aniline

Antibacterial effect

Zone of inhibition of the compound MA1 –MA3 is given in the Table 1 reveals that the compound exhibits very less activity against *E.coli*. It shows moderate activity against *A. niger*. Potency of the compound is found to be high against *S. aureus*. All the three compound is found to be potent against gram positive bacteria and less active against gram negative bacteria and moderate against fungi strain when compared to the standard drug employed. All the test pathogens were highly sensitive to MA3 than MA1 and MA2. The compound MA2 possesses very high activity against *S. aureus*, less activity against *E.coli* and considerable activity against the fungi strain, *A. niger* when compared to the positive standard. In general the compound exhibit moderate activity against fungi pathogen and potent against gram positive bacteria. **Fig. 13**represent the results of the antimicrobial evaluation of the compound MA1 to MA3 Compared with standard. MA1 found 76% RIZD against fungi but moderate against bacterial pathogen. Similarly MA2 found better against Staphylococcus and It shows 50 % RIZD against E.coli and A.niger. the another derivative MA3 is found to posses greater activity than standard against *S. aureus* and *E. coli*but moderate activity against *A. niger*. The compound is more active against bacterial stain than the fungi when compared to the positive standard.Many investigators have observed the importance of azomethines for their antibacterial and antifungal [30]

Table 1.Zone of inhibition mm in diameter

TEST PATHOGEN	MA1	MA2	MA3	STANDARD	NC
S. aureus	20	19	30	20	2
E. coli	18	16	30	24	3
A. niger	25	18	20	30	3

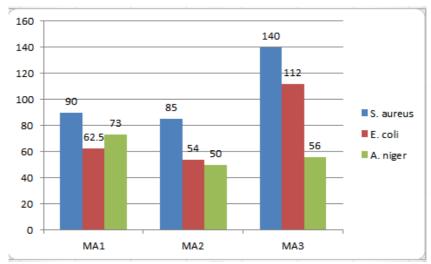


Figure . Relative inhibitory zone of diameter

CONCLUSION

Biologically potent compounds having more Nitrogen in their structure were effected through condensation Schiff and Mannich base reactions. FT-IR, 1H-NMR, 13C-NMR and Mass Spectral data of all the compounds corroborated with the structure proposed in the scheme concerned. The results of the antimicrobial studies reveal that, the compounds have found to possess highest activity at 100 μg for all the selected microorganism.

REFERENCES

- 1. Fakirov S (2019). Condensation Polymers: Their Chemical Peculiarities Offer Great Opportunities. Progress in Polymer Science; 89: 1-18.
- 2. Bruckner, Reinhard (2002). Advanced Organic Chemistry (First Ed.). San Diego, Harcourt Academic Press; 414-427
- 3. Cimerman, Miljanić S, and Galić N (2000). Schiff bases derived from aminopyridines as spectrofluorimetric analytical reagents. CroaticaChemicaActa; 73(1): 81-95.
- 4. Schiff (1864). Communications from the University Laboratory in Pisa: a new series of organic bases. Justus Liebigs Annalen der Chemie; 131(1): 118-119.
- 5. Dhar D. N and Taploo C. L (1982). Schiff bases and their applications. Journal of Scientific and Industrial Research; 41(8): 501-506.
- 6. Sathe B. S, Jaychandran .E, Jagtap V. A, and Sreenivasa G. M (2011). Synthesis characterization and antiinflammatory evaluation of new fluorobenzothiazole schiff's bases. International Journal of Pharmaceutical Research and Development; 3 (3): 164-169.
- 7. Sondhi S. M, Singh N, Kumar A, Lozach O, and Meijer L (2006). Synthesis, anti- inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff's bases. Bioorganic and Medicinal Chemistry; 14(11): 3758-3765.
- 8. Pandey A, Dewangan D, Verma S, Mishra A, and Dubey R. D (2011). Synthesis of schiff bases of 2-amino-5-aryl-1, 3, 4-thiadiazole and its analgesic, anti-inflammatory, anti-bacterial and anti-tubercular activity. International Journal of ChemTech Research; 3(1): 178-184.
- 9. Chandramouli C, Shivanand M. R, Nayanbhai T. B, Bheemachari B, and Udupi R. H (2012). Synthesis and biological screening of certain new triazoleschiff bases and their derivatives bearing substituted benzothiazole moiety. Journal of Chemical and Pharmaceutical Research; 4(2): 1151-1159.
- Chinnasamy R. P, Sundararajan R, and Govindaraj S (2010). Synthesis, characterization, and analgesic activity of novel schiff base of isatin derivatives. Journal of Advanced Pharmaceutical Technology and Research; 1(3): 201342–347.
- 11. Mounika K, Anupama B, Pragathi J, and Gyanakumari C (2010). Synthesis, characterization and biological activity of a Schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes. Journal of Scientific Research; 2(3): 513-524.
- 12. Venkatesh P (2011). Synthesis, characterization and antimicrobial activity of various schiff bases complexes of Zn (II) and Cu(II) ions. Asian Journal of Pharmaceutical and Health Sciences; 1(1): 8-11.
- 13. Chaubey A. K. and Pandeya S. N (2012). Synthesis & anticonvulsant activity (Chemo Shock) of Schiff and Mannich bases of Isatin derivatives with 2-Amino pyridine (mechanism of action). International Journal of Pharm Tech Research; 4(4):590-598.
- 14. Aboul-Fadl T, Mohammed F. A, and Hassan E. A (2003). Synthesis, antitubercular activity and pharmacokinetic studies of some Schiff bases derived from 1- alkylisatin and isonicotinic acid hydrazide (INH). Archives of Pharmacal Research; 26(10):778-784.

Ameen et al

- 15. Miri R, Razzaghi-asl N, and Mohammadi M. K (2013). QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent, Journal of Molecular Modeling; 19(2):727-735.
- 16. Ali SM, Azad MA, Jesmin M, Ahsan S, Rahman MM, Khanam JA, Islam MN, Shahriar SM (2012). In vivo anticancer activity of Vanillin semicarbazone, Asian Pacific Journal of Tropical Biomedicine; 2(6):438-442.
- 17. Wei D, Li N, Lu G, and Yao K (2006). Synthesis, catalytic and biological activity of novel dinuclear copper complex with Schiff base. Science in China B; 49(3): 225-229.
- 18. Chohan Z. H, Praveen M, and Ghaffar A (1997). Structural and biological behaviour of Co(II), Cu(II) and Ni(II) metal complexes of some amino acid derived Schiff- bases, Metal-Based Drugs; 4(5): 267-272.
- 19. Tanaka K., Shimoura R., Caira M. R (2010). Synthesis, crystal structures and photochromic properties of novel chiral Schiff base macrocycles. Tetrahedron Lett; 51(2):449-452.
- 20. Pistolis G, Gegiou D, Hadjoudis E (1996). Effect of cyclodextrin complexation on thermochromic Schiff bases. J. Photochem. Photobiol. A: Chem; 93(2-3): 179-184.
- 21. Mocanu A. S, Ilis M, Dumitrascu F, Ilie M, Circu V (2010). Synthesis, mesomorphism and luminescence properties of palladium(II) and platinum(II) complexes with dimeric Schiff base liquid crystals. Inorg.Chim.Acta; 363 (4):729-736.
- 22. Issa Y. M, Sherif O. E, Abbas S. M (1998). Chelation behaviour of Ce(III), Th(IV), and UO2 (VI) with 5,7-Dihydroxy-6-formyl-2-methylbenzopyran-4-one Schiff bases. Monatshefte fur Chemie; 129: 985-998.
- 23. Atta A. M., Shaker N. O., Maysour N. E (2006). Influence of the molecular structure on the chemical resistivity and thermal stability of cured Schiff base epoxy resins. Prog. Org. Coat; 56:100-110.
- 24. Jia J. H, Tao X. M, Li Y. J, Sheng W. J (2011). Synthesis and third-order optical nonlinearities of ferrocenyl Schiff base. Chem. Phys. Lett; 514(1-3):114-118.
- 25. Amany M. A (1992). Ibrahim Electrical and thermal behaviour of some Schiff bases and their charge transfer complexes with acidic acceptors. Thermochim.Acta; 197(1): 211-217.
- 26. Emregül K. C, Düzgün E, Atakol O (2006). The application of some polydentate Schiff base compounds containing aminicnitrogens as corrosion inhibitors for mild steel in acidic media. Corr. Sci; 48: 3243-3260.
- 27. Carl Mannicl, Krösche, W (1912). "About a condensation product from formaldehyde, ammonia and antipyrine ", Archiv der Pharmazie; 250(1): 647-667.
- 28. Blicke, F. F (2011). The Mannich Reaction, Organic Reactions; 1(10): 303-341.
- 29. Bala S, Sharma N, Kajal A, Kamboj S and Saini V (2014). Mannich Bases: An Important Pharmacophore in Present Scenario. International Journal of Medicinal Chemistry; 2014: 191072.
- 30. Neelakantan M, Esakkiammal M, Mariappan S, Dharmaraja J, Jeyakumar T. Synthesis, Characterization and Biocidal Activities of Some Schiff Base Metal Complexes. Indian J Pharm Sci 2010: 72: 216-222.

CITATION OF THIS ARTICLE

Mohammed Ameen K.K., M. Syed Ali Padusha, Ajitha Devi and F.M. Mashood Ahamed Synthesis, Characterization, DFT and antimicrobial studies of some azomethine and β -amino derivatives . Bull. Env. Pharmacol. Life Sci., Vol 10[2] January 2021 : 105-114.