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ABSTRACT

We investigate the scaling of the energy cascade in a harmonically trapped, turbulent, rotating Bose-Einstein condensate in two dimensions.
We achieve turbulence by injecting a localized perturbation into the condensate and gradually increasing its rotation frequency from an initial
value to a maximum. The main characteristics of the resulting turbulent state depend on the initial conditions, rotation frequency, and ramp-
up time. We analyze the energy and the fluxes of kinetic energy by considering initial profiles without vortices and with vortex lattices. In the
case without initial vortices, we find the presence of Kolmogorov-like scaling (k~/3) of the incompressible kinetic energy in the inertial range.
However, with initial vortex lattices, the energy spectrum follows Vinen scaling (k™!) at transient iterations. For cases with high rotating fre-
quencies, Kolmogorov-like scaling emerges at longer durations. We observe positive kinetic energy fluxes with both initial states across all
final frequencies, indicating a forward cascade of incompressible and compressible kinetic energy.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0190917

I. INTRODUCTION

Superfluid turbulence, also known as quantum turbulence
(QT), has been a topic of interest within the scientific community
since the time of Feynman." Feynman proposed that one could
visualize QT as a chaotic tangle of quantized vortex filaments.
Building upon this, Vinen made an experimental observation that
turbulence in superfluid (*He), in general, can be sustained by the
mutual friction between quantized vortices and the normal fluid
component of the superfluid, driven by a constant temperature
gradient in the horizontal direction.”

Vortices play a central role in understanding fluid turbulence,
and a comparative study between classical turbulence (CT) and QT
could provide a better understanding of the nature of vortices formed
in these systems. Specifically, in the case of 3D turbulence, both CT
and QT exhibit similar macroscopic and statistical properties. They
both display a similar nature of the energy cascades in the large length
scale, particularly in the inertial range, as confirmed numerically in
earlier studies.”~ However, understanding the genesis of turbulence
and further energy cascade from the first principles in CT is relatively
rigorous due to the continuous and chaotic nature of the vortices. In
contrast, vortices observed in QT possess vortex cores with definite

sizes and circulations, making them an ideal prototype for investigat-
ing turbulence dynamics.”

Despite experimental studies on QT through superfluid helium,
which show significant promise in understanding the phenomena,"’
manipulating and studying these quantized vortices in such superfluids
remains a challenging experimental task. In the last few decades, Bose-
Einstein condensates (BECs), superfluids existing below a critical tem-
perature and free of viscous effects, have emerged as a novel platform
for exploring the role of quantized vortices in generating the QT. BECs
offer advantages, such as compressibility, weak atomic interactions, the
ability to fine-tune atomic parameters, and the availability of new
experimental methods for probing and studying superfluid flow."’

Several studies in the past reveal chaotic dynamics of quantum
vortices aided by the complex nature of the vortex reconnection
responsible for the turbulence in QT."*" For instance, Aref investi-
gated the influence of vortex number on the transition of a quantum
fluid from chaotic to turbulent flow."* Cornell and co-workers have
pioneered developing the cooling technique that accelerates the rota-
tion of an ultracold *’Rb gas and nucleates vorticity in a Bose-Einstein
condensate.'” People have also achieved the same effect by mechani-
cally rotating an anharmonically confined condensate.'” '* However,
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Parker and Adams were the first to numerically demonstrate the
occurrence of turbulence, with direct energy scaling, upon attainment
of the crystallization of a vortex lattice in 2D BECs." Using the laser
beam stirring technique, Neely ef al. demonstrated the first experimen-
tal confirmation of quantum turbulence in 2D BECs'’ through the
observation of the formation and evolution of a disordered distribution
of vortices in highly oblate annular BECs. Other methods for generat-
ing quantum turbulence in atomic BECs include introducing a stirring
potential in the condensate and evolving the turbulent state into a vor-
tex lattice through vortex-sound interactions,” phase-imprinting a dis-
ordered vortex lattice onto a 2D BECs*’ and combined-axis rotation
around two axes for the 3D trapped BECs.”’

A feature of 2D CT is the presence of energy cascades, in which
kinetic energy flows from larger to smaller length scales (direct energy
cascade) or from smaller to larger length scales (inverse energy cas-
cade) in an inertial range. The corresponding incompressible kinetic
energy spectrum follows Kolmogorov scaling in Fourier space, ie.,
el (k) ~ k=%, In QT, both inverse and direct cascades of the energy
spectrum have been reported depending on the initial configuration.
This scaling has been observed in 3D QT numerically by Kobayashi
et al”>*’ and has also been observed in 3D CT. Further similarities
between QT and CT have been confirmed numerically by solving the
Gross-Pitaevskii equation. ™

In turbulent BECs, the energy cascade very much depends on the
means through which turbulence is being generated in the system. As
an example, the turbulent BECs in 2D generated using the rotating
paddles show the forward cascade of the energy with Kolmogorov-like
scaling.”* Numasato et al. demonstrated Kolmogorov-like scaling for
BECs undergoing decaying homogeneous 2D quantum turbulence
generated by random phase initial conditions.” Their study also
revealed how vortices and sound waves introduced into the BECs can
significantly influence the observed spectra. However, the turbulence
generated through the stationary grid with obstacles in the 2D BECs
exhibits the inverse cascade of the energy with Kolmogorov-like scal-
ing.”° Similar features have been observed with decaying and unforced
turbulence.”” There are some works that show the presence of Vinen-
like scalings for the kinetic energy spectra (efdn ~ k™1 for the fast
rotating 2D BECs.”*”” Similar scalings have been reported for decaying
2D BECs turbulence in which the cluster of vortices breaks into multi-
ple ones.”””!

Previous studies on QT have primarily employed unstable initial
condensates, which tended to produce self-sustaining or decaying tur-
bulence phenomena during real-time evolution. Furthermore, earlier
investigations into 2D and 3D QT have typically focused on Gross-
Pitaevskii (GP) equations without a rotational term, with rotational
forcing achieved through anharmonic and time-varying potentials. For
instance, Estrada and colleagues recently carried out a study on 3D
condensates in the rotational frame.”® Given the substantial disparities
between dimensional regimes for QT in non-rotating GPEs, our objec-
tive is to explore these differences by simulating rotational QT in 2D.

In our present work, we consider a stable initial condensate pre-
pared via imaginary time iterations. We then generate the turbulence
using a time-dependent rotational frequency in a perturbed central
barrier. We choose two initial states, viz., the vortex-free and the vortex
lattice. In the first case, we identify that the incompressible kinetic
energy exhibits Kolmogorov-like scaling with a forward energy cas-
cade. The Kolmogorov-like scaling becomes more pronounced at
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higher rotational frequency. However, in the latter case, we find the
Vinen-like scaling for the energy spectrum with a forward cascade at a
lower rotational frequency. For both cases, the negative particle num-
ber flux suggests the transfer of the particle from small to large length
scale, which becomes more significant at high rotational frequency.

The organization of this paper is as follows: In Sec. II, we present
the mathematical model for simulating rotating BECs with the details
of the perturbed central barrier used to generate turbulence, which also
includes the protocols used to introduce the angular frequency and
detailed forms of the relevant energy, such as incompressible and com-
pressible energy spectra. We use these spectra to characterize the
energy cascade in the later section. Section I1I deals with numerical
simulation results that we obtained by solving the mathematical model
mentioned in Sec. II. In Sec. III A, we discuss the energy spectra and
fluxes of the turbulent state, which we attain with an initial state having
no vortex present in the fluid, while in Sec. III B, we present the results
for the situation when the vortices pinned on a lattice are used as an
initial condition to get the turbulent state. Finally, we conclude our
investigation in Sec. V.

Il. DESCRIPTION OF THE MODEL AND ENERGY
SPECTRA

We consider a quasi-two-dimensional condensate confined
strongly in a transverse direction rotating with an angular frequency
Q. The dynamical equation of the condensate in the non-dimensional
form is given by

WSV V) gl QL)
where Y = (r,t) denotes the condensate wave function, with
r = (x,y), V2 is the two-dimensional Laplace operator defined as
V=92 + 8;, and V/(r) is the external potential, which includes the
harmonic trap along with the central circular barrier. The nonlinear
term gop = 4naN/ /2nd, represents the interaction strength between
the atoms, where N is the total number of atoms, a is the s-wave scat-
tering length, and d, corresponds to the axial width of the trap. Here,
Q(t) represents the rotational frequency, and L, = ih(y0, — x0,) is
the z component of angular momentum.

In Eq. (1), the unit length is measured in terms of the harmonic
oscillator length I = /fi/(mw), time is measured in units of w~!, and
trap frequency is measured in terms of w. Here, we consider two types
of initial configurations: (i) vortex-less and (ii) vortex lattice. For the
former case, we consider N =1 x 10* and g,p = 100, and for the
later, N = 2 x 10* and g;p = 200 have been taken. With the choice of
the aforementioned parameters, we obtain the scattering length
a == 3.8ay for both cases. The BECs should have a strong axial confine-
ment along z axis so as to restrict the dynamics within the x - y plane by
implementing trap frequencies w, ~ 27 x 33 Hz, w, ~ 271 x 33 Hz,
andw, ~ 27 x 1.5 KHz. This configuration provides a trap frequency
of w ~ 21 x 117.8 Hz, harmonic oscillator length [ ~ 1 ym, and unit
time ! ~ 1.3 ms. The oscillator length along the z direction would be
I, =~ 0.28 um. Experimentally, for a condensate of 8Rb atoms, the
desired scattering length can be accessible by tuning the magnetic fields
utilizing the Feshbach resonance.”"’

To induce turbulence in the rotating BECs, it requires some sort
of perturbation that generates the disordered structure of the vortex
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lattice from the initial Abrikosov vortex lattice.”” *” In our work, we

exploit a perturbed barrier to induce turbulence. We evolve the con-
densate using a gradually increasing rotational frequency via a
perturbed barrier. The external potential (in dimensionless form) is
given by

1

V(r) 5

(7" + v2y%) + Va(n), &)
where ) =1 and v =1 are the aspect ratios of the harmonic trap
along the radial direction. The perturbed barrier (V) is given by

vy, < R+A[sin(a®) +sin(ﬁ®+5)}
Va(r) = {0,0 otherwise, ®

with A, R, and Vj are the perturbation amplitude, barrier radius, and
barrier height, respectively, r = |r| = y/x* + y? and ® = arctan(y/x).
For our simulations, we set the amplitude to be A = 1.25 and the bar-
rier radius as R = 0.5/, and we choose the barrier height as V = 20k
and o = 10. We consider two configurations of perturbations: (i) peri-
odic perturbation for which f =20 and ¢ = 0.4 and (ii) quasiperiodic
perturbation for which =5 x (1 + \/5) and 0 = 0.4 are chosen.
Note that the perturbed potential considered in the paper can be realized
in the laboratory experiment by considering the superposition of two
optical lattices with the frequencies « and f in the angular coordinate
direction. In Figs. 1(a) and 1(b), we depict the central portion of the har-
monic trap (2) superimposed with the perturbed barrier (3) for periodic
and quasiperiodic perturbations, respectively.

We carry out the simulation by gradually increasing the rotation
frequency from the initial value to the final one. We used the following
form of the temporal rotational frequency Q(t):

t
Qy + (Qf — Q) sin® (;T), ifo<t<T,,

Qp, it t>T,,

Q(t) = 4)

where Q) and € represent the initial and final angular frequencies,
respectively, and T, represents the time interval during which the rota-
tion frequency is smoothly increased from an initial value of Q, to a
final value of Q. In the simulation, we have fixed T, = 120 and consid-
ered the different values of € Figure 2 illustrates a typical representa-
tion of the temporal increment of angular frequency Q for different
final frequencies (€) with the same initial frequency Qy = 0.3.

FIG. 1. Plots showing central portion of the harmonic trap superimposed with the
perturbed barrier: (a) periodic perturbation with o =10, =20, and 6 = 0.4. (b)
Quasiperiodic perturbation with o =10, f = 5 x (1 + 5), and 6 = 0.4.

pubs.aip.org/aip/pof
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FIG. 2. A typical representation of the variation of rotating frequency Q(t) with
respect to time as implemented for vortex-less initial state for different €. Here, ini-
tial frequency is fixed to Qy = 0.3.

A. Spectra and flux calculations

The flow of incompressible kinetic energy across wavenumbers
and its relationship to vortex dynamics are central and crucial to
understanding the nature of the QT at different lengths and time
scales. To obtain the scaling laws for energy spectra, we decompose the
condensate kinetic energy into compressible and incompressible parts
and analyze the distribution of kinetic energy due to vortex lines and
sound over length scales, as shown by Nore et al.’

To obtain these spectra, we perform a Madelung transformation
on the wavefunction and obtain a density-weighted velocity field as

u(r) = v/n(r)v(r), )

where n(r) = [(r)|* is the particle density, v(r) = i/mV0(r) is the
superfluid velocity, and 6(r) is the corresponding phase.

We decompose this weighted velocity field into the hydrody-
namic and quantum pressure components. This definition of the
density-weighted velocity field allows for a Helmholtz decomposition
into the hydrodynamics components, u(r) =u(r)' +u(r)". The
incompressible and compressible components satisfy

V-ul(r) =0, (6a)
V xu(r) =0, (6b)

respectively. This decomposition is performed by applying a Fourier
transformation to the velocity fields. Apart from these hydrodynamic
components, the other relevant quantity quantum pressure velocity
field is defined as

ul(r) :%V\/n(r). (7)

Quantum pressure becomes significant when the condensate density
varies sharply, such as near the vortex cores. For 2D condensates, it
provides a more useful quantitative measure for the vortex number.
The quantum pressure velocity field does not contribute to the physical
velocity field but does possess the dimensions of velocity and satisfies
the condition V x u? = 0. Next, we express the total kinetic energy as

Ekin = Ell(ln + Elim + EZin’ (8)

where El’;in, Ef,»and Ezin represent, respectively, incompressible, com-
pressible, and quantum pressure contributions of the kinetic energy.
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Following Parseval’s theorem, different energy components can be rep-
resented as

B = | @Ko, ©)

where { € {i,c, q} being incompressible, compressible, and quantum
pressure components of the kinetic energy, respectively, and
” 1 .
i (k) = — | d’re *"u’(r). 10
u (k) ZHJ re “Tu"(r) (10)
Transforming Eq. (9) into the cylindrical coordinates in Fourier space
(k space) for a 2D condensate, we obtain

E, = J dkey,, (k). (11)
0

Usually, the spectra sfdn are computed by binning the data in k space

and further summing over an angular interval, an approximation that
holds good in small-k regimes. We use the analytical evaluation of k-
space integrals and its numerical implementation developed by
Bradley and colleagues.”* The method involves an angle-averaged
Wiener-Khinchin theorem relating the spectral densities to an associ-
ated correlation function. So the spectra ¢, from Eq. (11) can be writ-
tenas’

i) = | xta )l ] ), (12)
where A, (k, |x|) = (1/2m)kJo(k|x|) is the 2D kernel function, involv-
ing the Bessel function J, and C[u, u‘](x) represents the two-point
auto-correlation function in position for a given velocity field. The
aforementioned relation implies that for any of the position-space
fields u’, there exists a spectral density [see Eq. (12)], i.e., equivalent to
an angle-averaged two-point correlation in k space. Next, we consider
the relevant quantities to characterize the energy cascade, such as the
kinetic energy and particle number fluxes of the turbulent state, which
provide a quantitative idea about the flow of the energy and the parti-
cle from one scale to another. One can use these spectral densities to
compute the incompressible kinetic energy and particle fluxes. The
incompressible kinetic energy and density flux equations are given by
Garcfa-Orozco et al.,””

d ¢ i / /
q)gi“n(k) = —aJ‘ko Skin(k )dk y (133)
d k / /
®, (k) = *&L n(k)dK, (13b)

where n(k) and &, (k) correspond to the density and incompressible
kinetic energy spectra, respectively, and ko ~ 27/L represents the larg-
est length scale, with L being the length of the box. The positive nature
of the flux indicates the transfer of energy from the large to small scale,
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real-time propagation to investigate the condensate dynamics. In all
simulations presented in the paper, we use a two-dimensional grid
with 512 x 512 points, where the space step is dx = dy = 0.05 and the
time step is df=0.001. This choice of grid and step sizes ensures
numerical convergence and the desired accuracy in our simulations.
We have generated the ground state for both the vortex-free and
vortex-lattice cases using imaginary time propagation and then evolved
them further in real-time for a finite angular frequency.

In this work, we intend to analyze the energy spectra and fluxes
of the turbulent state of the rotating condensate using various initial
setups. In Secs. IIT A and I11 B, we present a systematic analysis of the
effect of rotational frequency on the turbulence attained through dif-
ferent initial configurations of the vortices. We emphasize the role of
the initial state in achieving the various turbulent states in QT.

A. Energy transfer and fluxes for vortex-less initial state

We begin our analysis by considering the initial state without vor-
tices and demonstrate the appearance of quantum turbulence by
increasing the rotation beyond a threshold frequency. To accomplish
this, we generate an initial condensate profile of the rotating BECs
using a perturbed barrier by evolving the condensate with a constant
rotating initial frequency of Q) in imaginary time. We select the value
of Q based on the critical rotating frequency, which determines the
angular frequency above which vortices start appearing in the conden-
sate. As we consider N = 1 x 10* atoms and nonlinearity strength
£p = 100, the critical frequency comes as Q. ~ 0.4 also considered in
Ref. 41. Following this, we have chosen Q) = 0.3 < Q. to prepare a
vortex-less initial condensate ground state using the imaginary time
propagation. Subsequently, we employ a real-time evolution approach
to delve into the dynamics of the condensate for various values of the
final angular frequency, Q. Furthermore, we utilize the evolved state
to compute the incompressible kinetic energy [e}; (k)], compressible
kinetic energy [ef; (k)], and density [n(k)] spectra in Fourier space
with k as a wavenumber. We also quantify the cascade energy using
the fluxes of the turbulent condensate at various rotational frequencies
using the methods described in Sec. II [see Eqgs. (132) and (13b)].

As the system attains the turbulent state, the fluctuations appear
at several length and time scales. For our spectrum analysis, we identify
three characteristic length scales, namely, Thomas-Fermi radius
Ryp = /24, intervortex separation £y = 1/,/n,, and condensate heal-
ing length & = 1/, /1, where p is the chemical potential and #, is the
number of vortices per unit area.”” In Table I, we provide the esti-
mated values of Ry, &, and ¢, for different final rotating frequencies,
averaged over the time interval t = 120 — 600 when the turbulence
state is attained with the vortex-less initial state. We find that all the

TABLE . Estimate of different characteristic length scales Ry, &, and ¢y of turbulent
condensates computed for various final rotation frequencies with the vortex-less initial
state. All the reported values are averaged over time interval t = 120-t = 600.

while the negative sign suggests the transfer from the small to large Q¢ Ryr 4 Ly
scale of the turbulent state.
0.85 4.140 0.342 1.498

I1l. NUMERICAL SIMULATIONS 0.9 4313 0.328 1.529

We numerically solve the Gross-Pitaevskii (GP) Eq. (1) using the 0.99 4.579 0.310 1.534
split-step Crank-Nicolson method.”* *' We use imaginary time propa- 1.0 4.645 0.305 1.584
gation to generate the ground states with and without vortices and
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FIG. 3. Pseudo color representation of the condensate density at the different instants of time with vortex-less initial condition undergoing turbulence for the cases when the
final rotating frequency Q¢ = 1.0 was introduced at t=120. (a) Density at t=0, (b) density at t= 120, (c) density at =300, and (d) density at t=600. The bottom panels
depict the corresponding phases. White circles guide the eye to identify the vortex positions. Most of the vortices appear to cluster around the central perturbation.

scales, except healing length, show increasing trend with increase in
the final rotation.

To show the evolution of the vortex-less initial state to turbulent
state in Fig. 3, we depict the snapshots of the condensate density pro-
files at various time instants as the final rotational frequency Q¢ as
achieved at a time span of t=120. Figure 3(a) shows a vortex-less ini-
tial condensate and the shape of the central barrier with a significant
perturbation. As the rotation frequency attains a value Q¢ at t= 120,
vortices begin to appear in the condensate, though they are not yet
arranged in a vortex lattice formation, as shown in Fig. 3(b).
Subsequently, as time progresses, the vortices start converging toward
the central barrier and organize into an ordered lattice, as illustrated in
Figs. 3(c) and 3(d). The density profiles clearly show a slow develop-
ment of compressible turbulence accompanied by consistent vortex
generation beyond ¢ = 120.

To understand different transient states of the turbulence, we
show the temporal evolution of the mean angular momentum ((L))
for different final angular frequencies (¢ = 0.6, 0.8, 1, and 1.2) in
Fig. 4. The steady-state value of (L,) very much depends upon the Qy;
it increases with an increase in €, indicating the increase in the num-
ber of vortices and having more turbulent states at higher Q. For
Qf < 0.8, there is no change in the angular momentum with time,
indicating no generation of vortices and thereby providing a lower
bound for Q¢ ~ 0.8 for our simulations below which we do not have
any vortex in the condensate. For 0.8 < Q; < 1, we find that the
angular momentum settles to a finite value at shorter times but contin-
ues to increase at longer duration due to persistent rotation. Notably,
when the rotation frequency is Q¢ = 1, we observe a stable (L,) value
within the time window of ¢ ~ 400 — 1500. However, beyond this
window, the value of (L,) increases and surpasses the (L) value asso-
ciated with Q¢ = 1.2 (around t ~ 2500). This increase in the angular
momentum may be attributed to the generation of a large number of
vortices, resulting from the appearance of degenerate Landau levels
when the rotating frequency resonates with the trap frequency.*” Once
(L;) saturates, the corresponding real-time density snapshot of the
condensate density shows the clustering of the vortices around the

central barrier as shown in the bottom panel of Fig. 4 for different
angular frequencies (€f = 0.8, 1, and 1.2). For final rotation frequen-
cies greater than the trap frequency (€¢ > 1), the angular momentum
does not exhibit a tendency to reach a steady value even at a shorter
duration and also does not show consistent scaling behavior.

After characterizing the different turbulent states at various angu-
lar frequencies, we then focus on analyzing the nature of the kinetic
energy spectra and their corresponding fluxes at different angular fre-
quencies during the time interval where the condensate exhibits the
presence of vortices clustered around the central barrier. We compute
the temporal averages of the spectra and fluxes for the different

[N = 1T

A A X
" :lV»,,\ W, 4.,

....... Qf — 08 “]‘\""Iv"’\\' |’

FIG. 4. (a) Variation of the mean angular momentum ((L,)) with respect to time for
Qr = 0.6 (blue-dash dotted line), Qs = 0.8 (red-dotted line), Qs = 1.0 (green-
dashed line), and Q = 1.2 (black-solid line), evaluated for a condensate with a
vortex-less initial condition. The condensate attains turbulence for Q¢ > 0.8. (c),
(d), and (e) The condensate density profiles at t=23500 [red-dotted line in (a)],
t=2900 [green-dashed line in (a)], and t=3000 [black-solid line in (a)],
respectively.
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FIG. 5. Time-averaged spectra of incompressible kinetic energy for the vortex-less
case, in the time range t=120 to t=600. (a)-(d) For € = 0.85, O
=0.95, O = 0.99,and O = 1.0 respectively, it exhibits k~%/° accompanied by
k3 scaling at larger k values.

components of kinetic energy from the instance when the final rota-
tional frequency (€X) is achieved at t = T, = 120 until the end of the
simulation at ¢ = 600. The kinetic energy spectra provide insights into
the characteristic structure and arrangement of vortices and their over-
all effect in inducing turbulent fluctuations in the condensate.

For our spectral analysis, we define the healing length scale in k
space k; = 2m/¢, along with the Thomas Fermi radius kg,, = 27/Ryp
and intervortex length kg, = 27/¢,. The characteristics scales for dif-
ferent Q are given in Table I. Figure 5 illustrates the scaled incom-
pressible kinetic energy spectra for different rotational frequencies
Qf = 0.85, 0.95, 0.99, and 1.0 in the wavenumber space. For all fre-
quencies €, the spectrum at large wave number (k ~ 27t/&) appears
to fall with a scaling k> a typical behavior for the energy spectrum
due to the presence of the vortex core.”” However, the energy spectrum
falls as k=>/> on both sides of the intervortex distance scale k ~ 27/£,
as shown in Fig. 5(a). Upon increase in the rotation frequency, the
scaling appears to fit better in the given region, indicating the chaotic
spatial distribution of the vortices [cf. Figs. 5(b)-5(d)]. The scaling
behavior appearing at scales larger than the intervortex distance indi-
cates the turbulence arising due to the collective motion of vortices,
and the cascade continues in the 27/¢y < k < 21/¢ region as well,
where individual vortex dynamics dominates. The observation of
Kolmogorov-like scaling for the incompressible kinetic energy is gen-
erally associated with the faster decay of the vortex tangles in 3D
superfluid turbulence and equivalently transfer of energy toward the
large scale during the decay of the vortex tangle.”""” However, estab-
lishing a similar kind of feature for the 2D QT is quite a subtle task. As
we look at the energy spectra for Q¢ > 1.0, we find a continuous gen-
eration of vortices prohibits the system from achieving the steady state.
Rotating at such elevated frequencies leads to the disruption of con-
finement in the condensate, facilitating its continuous expansion. This
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expanded state fosters the creation of an environment conducive to the
formation of additional vortices. Without consistent turbulence
dynamics and the continual breakdown of vortices, this scenario
imposes a constraint on the final rotational frequency that can be
achieved. In addition to spectral analysis of the incompressible kinetic
energy, we also examine the incompressible density profiles of the

kinetic energies in real space, as given in Appendix A. It suggests the
localization of the incompressible kinetic energy at the outer periphery

of the condensate, which becomes more prominent at a higher angular
frequency as shown in Fig. 19.

In Fig. 6, we show the flux corresponding to the incompressible
component of the kinetic energy calculated using the expression
defined in Eq. (13a). Figures 6(a)-6(d) denote the flux for the rota-
tional frequencies Q¢ = 0.85, 0.9, 0.95, and 1, respectively, at differ-
ent instances where the pseudo color bars indicate the time. We find
that for all the frequency ranges, the flux fluctuates between positive
and negative with a breathing frequency of 2.0w. For k values
k > 2m/ty, the amplitude of the flux does not change with the wave
number for a given instant of time, complementing the nature of cas-
cade due to the presence of the Kolmogorov scalings in this range.
However, as we analyze the variation of flux averaged over a time
interval (200 < t < 400) with wave number, we find that it appears to
remain positive for all the final rotation frequencies, as shown with the
dashed black line. This feature indicates the forward cascade of the
incompressible part of the kinetic energy in the IR as well as the UV
range consistent with the earlier studies related to the energy cascade
in 2D quantum turbulence.”” The role of rotation here is simply to
increase the rate of energy transfer from one scale to another.

In Fig. 7, we show the time-averaged scaled compressible kinetic
energy in the wave number space for different rotation frequencies
(Qf = 0.85, 0.9, 0.99, and 1). For all the frequencies, we find that the

400 400
333
266
200
400
333 333
N 266 Nt 266
N | Nt |
102; 10! 1023 10!

FIG. 6. Plots of the incompressible kinetic energy fluxes for the vortex-less case at
the different instants, as given in the color bar. Fluxes are computed for the time
range =200 to =400 at final rotation frequencies: (a) Q¢ = 0.85, (b) Q = 0.9,
(c) Q =0.95, and (d) Q = 1.0. The various scales are kr, = 2m/Rrr (gray-
dash dotted line), k;, = 27/¢; (gray-dashed line), and k; = 2x/¢& (gray-solid line).
The insets display time-averaged incompressible kinetic energy flux for each rota-
tional frequency (magnitude ~ 10’2) for the same k range as the main plot.
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FIG. 7. Time-averaged spectra of compressible kinetic energy for the vortex-less
case, in the time range t=120 to t=600 for the condensate rotating at (a)
Qf = 0.85, (b) O = 0.9, (c) & =0.99, and (d) Qr = 1.0. All cases display k
scaling, whose range extends for higher rotation frequencies, indicating strong ther-
malization of the condensate.

compressible spectrum behaves as k for small wave numbers, while at
large wave numbers, it exhibits k~7/2 scaling. Note that in general, the
compressible kinetic energy attains the thermal equilibrium scaling,
ie. &, (k) ~ k for the decaying turbulence where all the energy trans-
ferred to the compressible part of the energy.”” However, in the rotat-
ing turbulence case, we find that the incompressible part of the kinetic
energy dominates over the other components, and, thus, there is the
generation of the vortices. This is the reason that on the scale below
the healing length (¢), we find the presence of the &} (k) ~ k™7/2. As
we analyze the distribution of the compressible density of the kinetic
energies in real space, we find that initially localized compressible
kinetic energy near the central barrier evolves and get distributed
evenly in the condensates as shown in Fig. 20.

In Fig. 8, we show time-averaged density spectra for the different
final rotation frequencies (Qf = 0.85, 0.9, 0.99, and 1.0). As the
incompressible component of the kinetic dominates over the com-
pressible counterpart, we can have k’n(k) ~ & (k), which yields
k=173 and k~° scalings for the density in the k values k < 27/, and
UV range (k ~ 27m/¢). For all the frequencies, we find that the particle
density spectra follow these scalings at their respective ranges depicted
in Fig. 8.

To understand the detailed nature of the transfer of the particle
from one scale to another, in Fig. 9, we show the particle density flux
[®@, (k)] for different instants of time where we use color codes to illus-
trate the flux variation with wave number at that instant. Like incom-
pressible kinetic energy flux, density flux also oscillates between
positive and negative with time for a given range of the wavenumber.
The oscillation frequency is the same as that for the kinetic energy flux.
The density flux exhibits an increasing behavior in the IR range while
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FIG. 8. Plots of the average density spectra for the time range =120 to =600
with final rotation frequencies (a) Qf = 0.85, (b) Q& = 0.9, (c) & = 0.99, and (d)
Q = 1.0. Al figures show k—'1/3 scaling, indicating the onset of the Kolmogorov
cascade.

it attains a constant value in the UV range. As we analyze the time-
averaged density flux variation in the spectrum, we find that it takes on
negative values for all rotational frequencies, as shown in the average
dashed black lines of the respective plots, indicating an inverse cascade
of particles from small to large scales. We can attribute these particular
features to the aided features of the rotation, which is quite evident
from the increasing magnitude of the time-averaged flux upon an
increase in the rotational frequency.

B. Energy transfer and fluxes for vortex-lattice initial
state

After presenting the detailed nature of the spectrum and fluxes
for the vortex-less initial condition, we consider another type of initial
state with the presence of vortex lattices. This initial condensate has
the same barrier parameters as those considered for the vortex-less
case. To introduce vortices into the system, we first prepare an initial
condensate in imaginary time with an appropriate choice of € that
yields the vortices arranged on the lattice. An important difference
from the vortex-less state here is the atom number and interaction
strengths, which we certainly need to increase for the present case in
comparison to those for the vortex-less case. Here, we consider N
=2 x 10* and gp = 200, with a critical frequency of Q. ~ 0.3, above
which vortices are generated and arranged on the lattice in the conden-
sate. Here, we have chosen a larger nonlinearity strength (gp) than
those for the vortex-less initial condition to accommodate the vortex
lattice in the condensate. To illustrate the dynamics with a vortex-
lattice initial profile clearly and consistently, we consider the rotation
frequency as Qy = 0.6 for the results presented below. We have also
presented the time-averaged values of the Thomas-Fermi radius Ry,
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FIG. 9. Density flux profiles for the vortex-less case. The plots taken are averaged
over the time range t=200 to t=400 at final rotation frequencies: (a) & = 0.85,
(b) Q¢ = 0.9, (c) Qr = 0.99, and (d) Q¢ = 1.0. The inset displays the time average
of the density flux (magnitude ~ 10’6) for the corresponding rotational frequency
for the same k range as the main plot.

TABLE II. Estimate of Rys &, and ¢, values computed for various final rotation fre-
quencies for the vortex-lattice case, averaged over the time interval t =280t = 380
for Q; = 0.8 and t= 120 to ¢t = 220 for Q = 0.825, 0.85,and 0.89.

Qf Ryp 4 Lo

0.8 3.968 0.356 2.487
0.825 3.990 0.354 2.500
0.85 4.009 0.353 2.369
0.9 4,028 0.351 2.380
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healing length £ and intervortex distance ¢, for various final rotation
frequencies, Q, in Table II.

In Fig. 10, we show the snapshots of the condensate at different
instant of time as the condensate was finally set to the final rotation
with frequency Q; = 0.85 at t=120. At t=0 [cf. Fig. 10(a)], we find
the presence of pinned vortices inhibiting them from reaching the con-
densate boundaries. The condensate gets distorted at t= 120. Beyond
t=120, the sustained rotation with frequency Q¢ = 0.85 introduces
more vortices in the condensate, resulting in the enlargement of the
condensate. During this time, very few vortices get clustered around
the central barrier, while the rest of the vortices start spiraling around,
thereby producing a disordered lattice [see Figs. 10(c) and 10(d)].

Furthermore, to get an insight into the transient states of the turbu-
lence for the vortex-lattice initial state, we illustrate the time evolution of
the mean angular momentum (L)) for different final angular frequen-
cies (Qf = 0.6, 0.8, 1.0, and 1.2) in Fig. 11. Like vortex-less case for this
initial state, we also find that the (L,) increases with an increase in Q.
The angular momentum attains to the quasi-static at shorter times, how-
ever, keeping on gradually increasing due to the persistent rotation for
0.8 < Q¢ < 1. However, for Q¢ = 1, (L,) remains stable for a duration
t ~ 200 — 1000. Beyond that period, (L,) starts increasing profusely
and starts having higher (L,) than those for Qf = 1.2. This drastic
change in angular momentum for the situation when the rotating fre-
quency resonates with the trap frequency may be connected with the
presence of large number of degenerate Landau levels at this frequency.*”

Figure 12 illustrates the scaled incompressible kinetic energy
spectra for the vortex lattice initial state at different rotational frequen-
cies Qf = 0.85, 0.825, 0.85, and 0.9 in the wavenumber space. Like
the vortex-less initial state for all the frequency €, the spectrum at
large wave number follows k3 a typical behavior for the energy spec-
trum due to the presence of the vortex core.”” For k values k > 27/,
where the dynamics of individual vortices dominates, the scaled spec-
trum fits well with k=1 a typical feature of the Vinen-like turbulence
and indicative of vortices clustering together without combining to
form a larger vortex.”' This k™! scaling is also shown to be accompa-
nied by 2D weak wave turbulence confirmed by the compressible

FIG. 10. Snapshots of the condensate density at the different instants of time: (a) t=0, (b) t=120, (c) t= 1300, and (d) t=600, with the vortex-lattice initial state as conden-
sate starts rotating with Qg, = 0.85 at t = 120. The other parameters are the same as those in Fig. 3.
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FIG. 11. Variation of the expectation value of angular momentum with respect to
time for different Qs values, evaluated for a condensate with vortex-lattice initial con-
dition. The condensate undergoes turbulence for € > 0.8. The insets show con-
densate density profiles for t=23600 for Q; = 0.8 (red dotted line), O = 1.0
(green-dashed line), and Q; = 1.2 (black solid line).

kinetic energy spectra (see Fig. 14), which consistently show k~>/2 and
k=77 scaling laws. The Vinen or ultraquantum scaling of k=" suggests
no accumulation of kinetic energy at large scales and a direct cascade
of energy in the region 27/¢y < k < 27/ onward.

Figure 13 shows the flux of the incompressible component of the
kinetic energy for the vortex-lattice initial state. Panels (a)-(e) repre-
sent the flux for the condensate as it is rotated with the rotation
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FIG. 12. Time-averaged incompressible kinetic energy spectra for vortex-lattice ini-
tial condition: (a) t=280 to =380 at O = 0.8, and t=120 to =220 for (b)
Q; = 0.825, (c) Q = 0.85, and (d) Q = 0.9. All the plots display k~' scaling in
an inertial range, along with an enstrophy cascade k2.
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FIG. 13. Incompressible kinetic energy flux for the vortex-lattice case for (a) =360
to t=380 at ©Q; =0.8, and for =200 to {=220 at (b) Qs = 0.825, (c)
Qs = 0.85, and (d) at Q; = 0.9. The inset displays the time average of the kinetic
energy flux (magnitude ~ 10~2) for each rotational frequency plotted in the range
2n/Rir < k < 2.3n/¢.

frequency Q¢ = 0.85, 0.825, 0.85, and 0.9, respectively. The different
colors represent the instants at which we plot the flux as indicated in
the color bar. Like the vortex-less initial state, this case also exhibits
oscillation in the flux profile with frequency 2.0 for all rotational fre-
quencies of the condensate. However, the time-averaged flux shown as
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FIG. 14. Time-averaged compressible kinetic energy spectra: (a) t =280 to t= 380
at Qr = 0.8, and for t= 120 to t=220 at (b) ©r = 0.825, (c) Q& = 0.85, and (d)
at Qr = 0.9. At smaller frequencies, the plots show k scaling at smaller k and for
larger frequencies show k%2 and k~7/2 scaling at larger k values.
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the thick dashed black line exhibits a constant positive flux in the UV
range, indicating the forward cascade of incompressible kinetic energy.

The compressible spectra of the vortex initial state shown in
Fig. 14 exhibit k' scaling at small wave number while also exhibit k~3/2
and k~7/2, respectively, in the k > 27/¢, and UV ranges for all the
rotation frequency Q¢ = 0.85, 0.825, 0.85, and 0.9.

In Fig. 15, we plot the density spectra for the vortex-lattice initial
state, which scales as k=3 for k7! scaling in incompressible spectra. We
also plot the density fluxes for the vortex initial state in Fig. 16, whose
average shows a negative flux similar to that of the vortex-less case [cf.
Fig. 9]. For all the final rotating frequencies (0.8 < Q¢ < 0.9), which
display scaling in the transient regime, it does not show any significant
and sustained turbulence, even when the condensate energy settles.
This is due to the perturbations not extending all the way to the con-
densate boundary and being unable to develop significant compress-
ible turbulence. However, when rotated at sufficiently higher
frequencies for longer time periods, we observe consistent and sus-
tained turbulent behavior. We notice strong quantum turbulence with
a pronounced scaling law for the final rotating frequency of Q¢ = 1.0,
as shown in Fig. 17(b), where the k=5/3 and k™3 scales indicate the
onset of the Kolmogorov cascade accompanied by an enstrophy cas-
cade. We also note that the accompanying density spectra, as shown in
Fig. 17(c), display k~'!/3 scaling. However, the compressible spectra
show linear increasing behavior with k in the IR range while k~7/? in
the UV range same as those observed with the vortex-less cases [see
Fig. 17(d)]. Furthermore, we complement the chaotic observation of
the condensate through the energy density representation in the real
space in Figs. 21 and 22. Note that compared to the Kolmogorov scal-
ing observed in the vortex-less initial wave profile, the scaling behavior,
in this case, appears at larger k values. This is further confirmed by the
kinetic energy and density flux profiles in Fig. 18, which display

P k73 _____ k75
10° 10"

(a)
104 VA\ 1074 E\Q
= 10°8 \: 10°%

(b)

N

2n | |2 2w 2 ||
_ Rrr 17 3 _ Rrr 17 3

T T L T 0
10° 10°

(c) (d)
0] WA 104>§E:§\f2§_§N§§:§:

= \
<
10-8 N\ 10¢

2 2t 2m 2 2r 27w

_12l  Brr b ¢ —12l  Rur b ¢

L 10 or 10 10 10!
k k

FIG. 15. Time-averaged density spectra for the vortex-lattice case: (a) t=280-
t=380 at O = 0.8, and for t=120 to t =220 at (b) Qs = 0.825, (c) Qf = 0.85,
and (d) Qr = 0.9.
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FIG. 16. Density flux profiles for the vortex-lattice case: (a) t=2360 to {=380 at
O = 0.8, and for =200 to {=220 at (b) Q = 0.825, (c) & = 0.85, and (d)
Qr = 0.9. The inset displays the time average of the density flux (magnitude
~ 107°) for each rotational frequency plotted in the range 27t/Rr < k < 2m/¢.

positive and negative average values, respectively, over the k range,
indicating a direct energy cascade.

To further confirm the influence of the perturbation barrier on
generating the turbulence in the condensate, we have also considered
the condensate along with the quasiperiodic central barrier as illus-
trated in Fig. 1(b). We find that the presence of a quasiperiodic barrier
does not bring much change in the dynamics of the condensate with
both vortex-less and vortex-lattice initial states. With the quasiperiodic
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FIG. 17. Plots of (a) density and spectral profiles of (b) incompressible kinetic
energy, (c) density, and (d) compressible kinetic energy averaged over the time
interval t=3600~t=4800 for vortex-lattice rotating at Q = 1.0 with Ryz=6.14,
fp =1.15,and & = 0.23.
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FIG. 18. Plots of (a) incompressible kinetic energy and (b) density fluxes for vortex-
|attice rotating at Qs = 1.0 for the time interval t = 3600 to t=4800. For (a), both
the inset and the main plot are shown in the range 27t /Rrr < k < 2.37/&, while
(b), the inset and main plot are in the range 0.27/Rrr < k < 2.3w/¢.

perturbation, we do not find any signature of turbulent fluctuation in
the condensate. Both incompressible and compressible components of
the kinetic energy also do not exhibit any scaling laws for various final
rotation frequencies. However, one interesting observation is made at
higher rotation frequencies closer to Q = 1.0. For this, we notice the
presence of strong turbulence in the condensate, which is quite evident
from the power law behavior of the incompressible kinetic energy in
the k <2m/l, range that exhibits Kolmogorov-like scaling
e}, (k) ~ k=°/*] for both the initial state, which is similar to that those
a periodically perturbed barrier.

IV. SUMMARY AND CONCLUSIONS

In this paper, we investigated the impact of the perturbed central
barrier on rotating Bose-Einstein condensates confined in harmonic
traps. We found that a strong perturbation can trigger the formation
of an ordered vortex lattice from a vortex-free condensate, showing a
direct energy cascade with Kolmogorov scaling, and, in contrast, the
initial wave profile with a vortex-lattice gets distorted during transient
stages and exhibits a non-Kolmogorov scaling law within the inertial
range and displays no consistent turbulence. However, at a longer
duration under higher rotation frequencies, we observe turbulent
behavior following Kolmogorov scaling.

For both cases, we have confined our studies to a range of initial
and final rotation frequencies mainly based on the appearance of scal-
ing laws and the onset of consistent turbulent dynamics. More gener-
ally, for rotating frequencies greater than the trap frequency, a
condensate undergoing rotation will undergo constant expansion fol-
lowed by an uncontrolled generation of vortices. This region presents
with no interesting spectral profiles as the vortex core scaling of k= is
totally absent. Although the angular momentum expectation values
provide an idea regarding the dynamical behavior in both cases, we
confirm and quantify its exact nature via spectral analysis, energy den-
sity, and flux profiles of the kinetic energy components.

When subjected to turbulent rotation, the vortex profile estab-
lishes an ordered and symmetric vortex lattice whose existence and
scale depend on the final rotating frequency, Q. With faster rotation,
the condensate can sustain more vortices, which eventually become
attracted toward the central barrier. This process, accompanied by
strong compressible turbulence, is indicated by the scalings of k in the
compressible kinetic energy spectra and k~''/3, and k*/* at longer
length scales (k < 2m/{y) for density and incompressible spectra,
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respectively. To further confirm the nature of the energy cascade, we
computed the energy fluxes which exhibit direct cascade.

In the case of condensate comprising of vortex lattice initial state
(containing a sufficient number of vortices), the influence of the per-
turbed barrier on the lattice structure leads to distinct scaling behavior.
The presence of the vortex lattice is equivalent to initiating a conden-
sate with energy injected at smaller scales. According to Barenghi, "’
this constitutes a recipe for generating a disordered vortex lattice, char-
acterized by &l (k) ~ k™! scaling in the incompressible kinetic energy
spectra. The k™! scaling in the incompressible spectra and k> scaling
in density spectra are indicative of weak wave turbulence, a fact reaf-
firmed by the presence of k~*/? and k~7/? scaling in the compressible
spectra.”’ These scaling tendencies are observed for final rotational fre-
quencies within the range 0.8 < Q¢ < 0.9. In contrast to the scenario
without vortices, choosing Q value to be greater than the critical fre-
quency Q. of the condensate causes the condensate to expand and
introduce vortices, reducing the perturbation amplitude relative to the
condensate size. As a result, the perturbations are unable to generate
sufficient compressible turbulence. Despite the appearance of k! scal-
ing and k=32, k~7/? scaling behavior in the incompressible and com-
pressible spectra, respectively, in the transient time iterations, the lack
of sufficient turbulence shows no consistent scaling behavior at longer
durations, where the condensate energy settles. By limiting the pertur-
bation amplitude in such a manner, we only observe turbulence by
rotating the condensate at higher frequencies for longer durations,
where the condensate displays k3> Kolmogorov scaling.

In conclusion, our study highlights the behavior of a perturbed
barrier when subjected to rotation. In addition to playing a crucial role
in generating turbulence, the perturbed barrier also significantly influ-
ences the nature of this turbulence, depending on the choice of initial
wave profiles, especially in the presence of vortices. Under the influ-
ence of these perturbations combined with a centered axis of rotation,
vortices tend to cluster around the barrier. Forcing vortices into the
initial condensate causes the barrier to behave differently by distorting
the vortex lattice rather than creating a settled vortex cluster. Our
method provides a novel mechanism to generate turbulence and alter
the behavior of the condensate in a rotating frame with a barrier whose
geometry and strength can be fine tuned. This study can be simulated
and experimentally realized for a given BEC, provided the barrier has
sufficient perturbation amplitude, barrier radius, and strength.

Finally, our present study is relevant for exploring the dynamical
evolution of fluids inside boundary layers between the superfluid cores
inside pulsars and the ambient normal matter, where the observed
glitch phenomena are said to occur. Once the rotating superfluid core
jumps promptly into the next lower energy state abruptly, a certain
amount of rotational energy is ejected into the ambient medium, set-
ting the medium in the boundary layer in a turbulent mode. Following
Refs. 47 and 48, such events are predicated to reoccur several billion
times during a pulsar’s lifetimes; hence, the core serves as a forcing
term for generating turbulence, as alluded to in the present study.
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APPENDIX A: INCOMPRESSIBLE AND COMPRESSIBLE
ENERGY DENSITIES

In addition to the spectral profiles discussed in Subsections
[IT A and III B, it is worth examining the incompressible and com-
pressible density profiles of kinetic energies in real space. In this
appendix, we illustrate the incompressible and compressible density
profiles of kinetic energies for both the vortex-less and vortex lattice
cases.

In Fig. 19, we show the snapshot of the density profile of the
incompressible kinetic energy in real space at initial (t=120) and
final (+=600) instant of time for Qf = 0.85 and Qf = 1. We can

FIG. 19. Snapshots of the incompressible energy density for the vortex-less case:
Qf = 0.85 at (a) t=120 and (b) t=600, and Q = 1.0 at (c) t=120 and (d)
t=1600.
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FIG. 20. Snapshots of the compressible energy density for the vortex-less case:
Q= 0.85 at (a) t=120 and (b) =600, and Q; = 1.0 at (c) t=120 and (d)
t=600.
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FIG. 21. Snapshots of the incompressible energy density for the vortex-lattice case:
O = 1.0 at (a) t=0and (b) t= 4800.

observe that the incompressible energy, initially localized at the bar-
rier, is relatively small [see Figs. 19(a) and 19(c)].

As turbulence sets in, the energy becomes concentrated around
the edges of the barrier, indicating the presence of vortices. For
higher rotation frequencies [see Figs. 19(c) and 19(d)], the density
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FIG. 22. Snapshots of the compressible energy density for the vortex-lattice case:
O = 1.0 at (a) t=0and (b) t= 4800.
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distribution follows a similar trend, but at later times, there is a
band of high-energy density, indicating the presence of several vor-
tices clustered around the barrier. The initial time snapshots illus-
trate the localization of compressible energy near the barrier edge.
This emphasizes the role of the barrier in inducing turbulence as it
compresses the condensate between the perturbations. As time pro-
gresses, the compressible turbulence becomes evenly distributed
within the condensate surrounding the barrier [see Figs. 20(b) and
20(d)]. This observation shows significant phonon activity and ther-
malization, also confirmed by the compressible energy spectra.

This observation confirms what we have noticed in the spectral
profiles and their time derivatives as the energy becomes more con-
centrated toward the healing length or vortex-size scales. In Fig. 20,
we show the snapshots of the compressible kinetic energy densities
for Qf = 0.85 (upper panel) and Qf = 1.0 (lower panel) at time
t=120 and t=600. The density profiles of the kinetic energy com-
ponents further confirm the disordered nature of the turbulence.
The incompressible kinetic energy densities shown in Fig. 21,
for Qf = 1.0, show an ordered vortex lattice at the initial stage,
which, when rotated at such a high frequency, develops considerable
turbulence with the incompressible density being similar to that of
the vortex-less case but larger and more pronounced. The com-
pressible density profiles shown in Fig. 22 for the same parameters
show no significant development of compressible turbulence at ini-
tial stages but later distribute itself more evenly at the highly turbu-
lent state.
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