- 19. Explain how a full adder can be built using two half adders.
- 20. Design the BCD Ripple Counter with using state diagram and logic Diagram.

S.No. 5213

16 SCCCA 7

(For candidates admitted from 2016-2017 onwards)

B.Sc. DEGREE EXAMINATION, APRIL 2022.

Part III — Computer Applications — Major

DIGITAL COMPUTER FUNDAMENTALS

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 2 = 20)$

Answer ALL questions.

- 1. List the different number systems?
- 2. Convert gray code 101011 into its binary equivalent.
- 3. Define Binary logic.
- 4. What is a Logic gate?
- 5. Define 'Min term' and 'Max term'.
- 6. What is a Karnaugh map?
- 7. Define Multiplexer.
- 8. Define Decoder.

- 9. State the types of sequential circuits?
- 10. Define Shift registers.

PART B —
$$(5 \times 5 = 25)$$

Answer ALL questions, choosing either (a) or (b).

11. (a) Explain briefly about the Binary Arithmetic with example.

0r

- (b) Convert the following:
- i) $(118.75)_{10} = (?)_2$.
- (ii) $(1010000.1010)_2 = (?)_{10}$.
- 12. (a) Explain the positive and negative Logic and Logic characteristics.

02

- (b) Simplify the following expression:
- Y = (A + B)(A + C)(B + C).
- 13. (a) Express the following Boolean functions in sum of minterms.

$$F = A'C + A'B + AB'C + BC.$$

Or

(b) Discuss briefly about the don't care condition.

14. (a) Explain the four bit parallel adder with a diagram.

 $O_{\mathbf{r}}$

- (b) Explain a 1 * 16 bit multiplexer with truth table.
- 15. (a) What is the operation of RS flip-flop? Explain with TT.

Or

(b) What is a master-slave flip-flop? What are the operations of JK flip-flop?

PART C —
$$(3 \times 10 = 30)$$

Answer any THREE questions.

- 16. Briefly discuss the error detection and correction methods.
- 17. Discuss the basic and universal logic gates with Truth Table.
- 18. Explain the Minimization Technique and simplify using K-map.

$$F(W, X, Y, Z) = (4, 5, 10, 11, 14, 15).$$

ယ