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A B S T R A C T   

The title material, C28H24ClNO4, was synthesized using the Claisen-Schmidt condensation reaction and Schotten- 
Baumann reaction methods and crystallized. Geometrical parameters were determined for the grown crystal 
using the Single Crystal X-Ray Diffraction (SCXRD) technique. The title compound has been characterized and 
anzalyzed for its optical properties via1H1 and 13C NMR, FT-Raman, and FT-IR, UV and PL spectra. The melting 
point and thermal stability have been investigated using TG/DTA thermograms.Hirshfeld surfaces were devel
oped in order to observe and quantify short contacts, C–H…π and π...π stacking interactions. To determine how 
various interactions influence the overall Hirshfeld surface, 2D fingerprint plots were created, and it was 
discovered that the H…H contact’s contribution was the most significant. Cytotoxic effect on HEK293 cell lines 
was performed and found to be highly toxic. To determine the compound’s efficacy as an anticancer agent, a 
research was conducted using MCF-7 cell lines. Molecular docking simulation revealed that the title material 
(ligand) fits well at the active site of the target protein with PDB ID: 1M17. Pharmacokinetic, and ADMET 
properties revealed that the compound is exceedingly orally active, and after further biological and pharma
ceutical investigations, the compound can be recommended as a drug candidate.   

Introduction 

Natural substances acquired from fruits, vegetables, and spices, etc., 
have been used as prospective therapies for the majority of chronic 
disorders because of their non-toxic, cost-effectiveness, availability, and 
long-term use [1]. Curcumin is one such best example for naturally 
available bioactive compound that was isolated in the year 1815 [2] 
from the rhizomes of Curcuma longa (Zingiberaceae) [3]. It is a phyto
chemical molecule which is bright yellow in color The basic chemical 
structure of curcumin was identified in the year 1910 [4] and synthe
sized in the year 1913 by Milobedzka and Lampe [5]. Curcumin’s mo
lecular structure appears to be a diferuloyl methane molecule (1,7-bis 

(4‑hydroxy-3-methoxyphenol)− 1,6-heptadiene-3,5‑dione) with two 
ferulic acid residues connected by a methylene bridge [6]. There are 
various possible tautomeric forms of curucmin which includes two 
equivalent enol forms and 1,3- diketo form. The enol form tends to be 
morestable in both solid and liquid phases [7]. The biological function of 
numerous signaling molecules can be regulated by curcumin which is a 
multi-phenotypic chemical [8]. Over the years, due to extensive bio
logical application of curucmin, there is a drastic advancement in 
research on curucmin [9]. 

Breast cancer is the second-leading cause of cancer-related fatalities 
globally and it is one of the most devastating types of disease that strikes 
women [10]. It evolves gradually, and most diseases are discovered by 
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period screening. The treatment of breast cancer includes surgery 
(which controls local cancer), systemic therapy like chemotherapy, 
hormonal therapy, and targeted therapy [11,12]. The predominant 
chemotherapy drugs in treating breast cancer include anthracycline, 
doxorubicin [13], paclitaxel [14], docetaxel [15], and erlotinib [16]. 
Despite treating breast cancer, these drugs cause several side effects, like 
fertility issues, heart and nerve damage, menstrual changes, and the risk 
of leukemia [17]. Therefore, focusing on developing medication to treat 
breast cancer with no or fewer side effects is most important in current 
medicinal research. 

The preclinical investigation demonstrates that curcumin possess 
high efficacy in resisting breast cancer [18]. Curcumin inhibits angio
genesis (the formation of new blood vessels) in breast cancer cells, which 
causes nutrient shortage and hypoxia, which leads to cell death [19]. 
There have been many curcumin derivatives claimed to be effective 
against cancer, but additional new derivatives remain a possibility, one 
of which could lead to best targeted epidermal growth factor receptor 
(EGFR) inhibitor (PDB:1M17) [20,21]. 

Several in-vitro and in-vivo studies on curucmin derivatives revealed 
that, in addition to its anti-breast cancer activity, curcumin possesses 
tremendous antioxidant [22–24], anti-inflammatory [25], antimicrobial 
[26], and anticarcinogenic [27,28] activities. Additionally, it also shows 
a better benefits on hepatoand nephro-protective [29,30], 
thrombosis-suppressing activity [31], myocardial infarction protection 
[32,33], and display antirheumatic effects [34]. Due to its weak water 
solubility and low gastrointestinal absorption, curcumin possesses a 
limited medicinal value [35]. To bypass this limitation, numerous 

methods, including the manufacture of curcumin analogues [36,37]. 
These curcumin analogues are derived mainly by modifying the 
β-diketone structure and aryl substitution pattern of the molecule [38] 
and such derived monoketone analogues (mono-carbonyl) are more 
stable and water-soluble [39]. N-substituted 3, 5-bis (benzylidene) 
piperidin-4-one derivatives are biologically active molecules and have 
high potency to act as antimicrobial, antioxidant, anticancer agents, etc. 
[40]. 

To overcome the side effects of the commercially available drugs in 
treating breast cancer and to produce cost effective medicine, new N- 
substituted 3, 5-bis (benzylidene) piperidin-4-one curcumin derivative 
have been synthesized due to its flair biological impact. In the present 
study the crystallized materials structure was also elucidated. Addi
tionally, Hirshfeld surface analysis, optical, thermal, in-vitro, and in- 
silico properties have been investigated and the result has been 
communicated. 

Materials and methods 

Materials 

All the chemicals and solvents used in this work were purchased from 
Sigma Aldrich and Spectrochem Pvt. Ltd., Vijaya Scientific Company, 
Chennai-96, Tamil Nadu, and used as such without any further 
purification. 

Experimental 

The synthesis procedure (two steps) was carried out by following the 
Claisen-Schmidt condensation reaction and Schotten-Baumann reaction 
methods. A mixture of a 2:1 ratio of 4-methoxybenzaldehyde (0.02 mol) 
and 4-piperidone (0.01 mol) in the presence of 50 % NaOH along with 
75 ml of ethanol was prepared, and the solution was stirred for about 3 h 
and kept overnight. The solution was supplemented with ice cubes to 
boost the precipitation. The precipitate was then filtered and kept for 
drying. The formed product is (Fig. 1a) 3, 5 - bis (4-methox
ybenzylidene) 4-piperidone (intermediate). The mixture of intermediate 
product (0.01 mol), and triethylamine (0.01 mol) with 100 ml of chlo
roform was stirred for 2 h, and 4-chlorobenzyl chloride (0.01 mol) was 
added dropwise, and the solution was maintained below 10 ◦C. The 
solution was filtered and kept for evaporation to obtain the final prod
uct. The chemical scheme of the reaction is shown in Fig. 1b. The 

Fig. 1. a, 1b Chemical scheme of CMBP.  

Fig. 2. Grown crystal of CMBP.  
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synthesized material was then dissolved in acetone and allowed to grow 
by slow evaporation to get the single crystals of 1-(4-chlorobenzoyl)− 3, 
5-bis ((E)− 4-methoxybenzylidene) piperidin-4-one [CMBP] (yield: 92 
%; MP: 160 ◦C). The bulk crystal (Fig. 2) of the title compound was 
harvested after 2 weeks. The reaction mechanisms of the title synthe
sized material have elaborated in supplementary file (Fig. S1). 

Chemical characterization - XRD 

The crystal data were collected using a diffraction-quality crystal of 
size 0.276×0.117×0.072 mm using Bruker AXS kappa apex3 PHOTON 
II diffractometer with MoKα (λ = 0.7107 Å) as an X-ray radiation source 
from the Sophisticated Analytical Instruments Facility (SAIF), IITM, 
Tamilnadu, Chennai-36. The compound’s structure was solved and 
refined using the SHELXS-97 [41], SHELXT-2014/5 [42], and 
SHELXL-2018/3 [43] softwares, which are interfaced on the Wingx 
program with the full-matrix least-squares procedure on F2. The final 
R-factor of the title compound, C28H24ClNO4, is 0.0977 with R (int) =
0.1141. The molecular graphic plots were generated using PLATON [44] 
and visualized using ORTEP plot [45]. The Wingx program has been 
utilized for determining several types of crystal’s geometrical 

parameters.Crystallographic data have been deposited with the Cam
bridge Crystallographic Data Center with CCDC number: 2184461. 

Optical and thermal characterization 

1H1 and 13C NMR spectra of the grown crystal were recorded using a 
BRUKER ADVANCE III 500 MHz NMR spectrometer with CDCl3 as a 
solvent. The FT-IR and FT-Raman spectrum were obtained from Bruker 
Optik GmbH spectrometer and BRUKER RFS 27: stand-alone FT-Raman 
Spectrometer, respectively. The absorbance spectrum (UV–Vis) and PL 
spectrum were recorded with the help of Perkin Elmer LAMBDA 950 
Spectrophotometer and JY Fluorolog-3 –11 spectrofluorometer, 
respectively. With a temperature of up to 800 ◦C and a heating rate of 20 
◦C/min in a nitrogen atmosphere, the SDT Q600 V20.9 build 20 thermal 
analyzer was used to obtain TGA/DTA thermograms. 

Fig. 3. ORTEP plot with numbering scheme drawn at 30 % probability level of the compound.  

Fig. 4. Packing pattern involving dimer of the molecules in the unit cell viewed 
along ‘b’ axis. The dotted line represents the hydrogen bond. 

Table 1 
Crystal data collection and refinement.  

COMPOUND - CMBP 

CCDC 2,184,461 
Empirical formula C28 H24 Cl N O4 

Formula weight 473.93 
Temperature 295(2) K 
Wavelength 0.71073 Å 
Crystal system Monoclinic 
Space group P 21/c 
Unit cell dimensions a = 24.824(3) Å 

b = 6.9864(8) Å β=95.402(4)◦ . 
c = 13.4929(16) Å 

Volume (Å3) 2329.7(5) 
Z 4 
Density (calculated) 1.351 Mg/m3 

Absorption coefficient 0.200 mm− 1 

F(000) 992 
Crystal size 0.276×0.117×0.072 mm  

DATA COLLECTION 

Theta range for data collection 3.030 to 25◦

Index ranges − 29≤h ≤ 29, − 8 ≤ k ≤ 8, − 16≤l ≤ 16 
Reflections collected 65,053 
Independent reflections 4095 [R(int) = 0.1141] 
Completeness to theta = 25.000◦ 99.80 % 
Absorption correction Semi-empirical from equivalents  

REFINEMENT 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4095 / 0 / 309 
Goodness-of-fit on F2 1.183 
Final R indices [I > 2sigma(I)] R1 = 0.098, wR2 = 0.265 
R indices (all data) R1 = 0.122, wR2 = 0.285 
Largest diff. peak and hole (e.Å− 3) 0.55 and − 0.39  
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Hirshfeld surfaces and energy frameworks investigation 

Hirshfeld surface (HS) analysis is a graphical tool that aids in 
obtaining, visualizing, and comprehending various non-covalent in
teractions. Molecular HS analysis and the associated 2D fingerprint plots 
for the compound CMBP were investigated using Crystal Explorer 17.5 

program [46] by utilizing the CIF (crystallographic information files) as 
the input file. The normalized contact distance is 

dnorm =
di − rvdW

i

rvdW
i

+
de − rvdW

e

rvdW
e 

Fig. 5. 1H1 spectrum of CMBP.  

Fig. 6. 13C spectrum of CMBP.  
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where de and di are the external and internal nearest nucleus distances to 
the surface, respectively [47]. HS plotted over the wave properties like 
dnorm, shape index, curvedness, fragment patches, and electrostatic po
tential (using TONTO, software incorparated into the program Crystal 
Explorer 17.5 [48]). 2D Fingerprint plot and Energy frame work analysis 
were also examined to study about the stability of the molecule. 

In-silico studies 

Molecular docking studies 
Molecular docking model was performed with AutoDock 4.2.6 soft

ware package [50] and PyMOL graphic software [51]. The target protein 
complexed with co-crystal erlotinib (PDB ID: 1M17) [52] was acquired 
from the RCSB Protein Data Bank [53], and then the water molecules 

and extra side chains were removed using PyMOL software. Open Babel 
software is used to convert the ligand’s CIF format to PDB format [54]. 
Polar hydrogens and Kollaman charges were added to the protein and 
ligand by AutoDock Tools 1.5.6 for the correction of protein structures. 
Docking was performed for 10 runs by the Lamarckian genetic algorithm 
(LGA) with 60×58×60 Å grid size along the x, y, and z-axis with grid 
spacing of 0.547 Å. 

Molecular properties and pharmacokinetic prediction 
A bioactive molecule’s high oral bioavailability is vital for the 

development of the molecule as a medicinal treatment. Efficient oral 
bioavailability is strongly predicted by efficient intestinal absorption, 
reduced molecular flexibility, low polar surface area (PSA), number of 

Fig. 7. FT-IR spectrum of CMBP.  

Fig. 8. FT-RAMAN spectrum of CMBP.  

Fig. 9. UV–Vis spectrum of CMBP.  
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donors, number of acceptors, and number of hydrogen bonds [55]. The 
drug likeness of a drug candidate has been investigated using compu
tational and structural analysis [56]. In order to calculate the compound 
CMBP’s physicochemical characteristics and pharmacokinetic action, 
computational techniques were used with Molinspiration Chem
informatics [57] and the Swiss ADME web server [58]. 

In-vitro studies 

Cytotoxcity and anticancer activity investigation 
Human embryonic kidney 293 cell (normal) and MCF-7 were ob

tained from National Center for Cell Science (NCCS), Pune, India. The 
cells were cultured in Gibco Dulbecco’s Modified Eagle Medium 
(DMEM), supplemented with 10 % fetal bovine serum (Gibco), 1 % 
penicillin/streptomycin antibiotics, and were incubated in a humidified 
atmosphere containing CO2 (5 %) at 37 ◦C. Cell viability was assessed by 
MTT assay [59]. The cells were plated at a density of 1 × 106 cells per 
well in a 96-well plate at 37 ◦C in 5 % CO2 incubator. The cultured cells 
were treated with various concentrations of the samples, followed by 
incubation for 24 h. After 24 h incubation, 100 µl of DMEM media with 
MTT dye solution (5 mg/ml in phosphate buffer pH 7.4) was added to 
each well. After 4 h of incubation at 37 ◦C and 5 % CO2, the medium was 
removed, and formazan crystals were solubilized with 100 µl of DMSO 
and the solution was vigorously mixed to dissolve the reacted dye. The 
absorbance was measured at 570 nm using a 96-well plate reader 
(Bio-Rad, iMark, USA). The concentration required for 50 % inhibition 
(IC50) was determined graphically. The relative cell viability (%) 
related to control wells containing cell culture medium was calculated 
by the following formula: 

% of cell viability = 100 x
Sample absorbance
Control absorbance  

Results and discussion 

Geometrical parameters 

The ORTEP [45] plot is shown in Fig. 3. The title compound, 
C28H24ClNO4, is centro-symmetric and crystallized in a monoclinic 
crystal system with P 21/c space group. The compound includes three 
aromatic rings (C1-C6, C14-C19, and C21-C26) and one aliphatic ring 
(N1/C8-C11, piperidone). The aromatic rings are bridged with the 
central piperidone moiety through C=C (olefinic bond) and C=O 
(carbonyl bond).The calculated geometrical parameters are in good 
agreement with similar structure [60–63]. The title material adopts 
E-configuration with respect to the double bonds in the interlinking 
olefinic chain (C7 = C8 & C11 = C13). 

The central piperidone ring (N1/C8-C12) takes a distorted half-chair 
conformation (Fig. S2) with ring puckering parameter;q2=0.4409 
(0.0045)Å,q3= − 0.2724(0.0046)Å, phi2 = − 150.51(0.63)◦, QT=
0.5182(0.0045)Å and Theta2= 121.71(0.51) [64]. In the crystal pack
ing, the adjacent molecules are linked through a pair of C–H…O 
hydrogen bonds (Table S6, Fig. 4), forming an inversion dimer described 
by a graph set motif R2

2[(26)] [65].The crystal data collection and 
refinement details are given in Table 1. The selected bond lengths, bond 
angles, torsion angles, LSQ plane details and dihedral angles between 
the planes are listed in S1–S5. 

Fig. 10. PL spectrum of CMBP.  

Fig. 11. TG/DTA thermogram of CMBP.  

Fig. 12. [a] Hirshfeld surface mapped over dnorm and [b] showing the possible intermolecular Interactions.  
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Optical and mechanical characterization 

1H1NMR and13C NMR analysis 
The 1H1 NMR and 13C NMR spectral analyses have been carried out 

in the liquid state to analyze the presence of various types of proton and 
carbon atoms of the title molecule with CDCl3 as a solvent. Figs. 5 and 6 
display the 1H1 NMR and 13C NMR spectra of the crystal, and the 
chemical shifts are shown in δ ppm and are tabulated in S7 and S8. In 
1H1 NMR, a strong singlet present at 3.871 ppm is attributed to the 
OCH3– (6H) protons present in the terminal aromatic rings [66]. The 
presence of -NCH2 (4H) protons of piperidone moiety is observed at 
4.659 and 4.978 ppm [67]. The existence of - C=CH (2H) protons are 
observed in the range 7.426–7.534 ppm [68]. The aromatic protons in 
the phenyl ring (12H) are observed in the range 6.934–8.031 ppm [66]. 

In 13C NMR, peaks at186 ppm, 131 − 132 and 114–169 ppm are 
ascribes to carbonyl carbon (C=O),α, β unsaturated carbonyl carbon (- 
C=C), and aromatic carbon, respectively [67]. The peak at δ 136 ppm is 
attributed to the C–Cl attached with the aromatic ring [69]. Multiplets 
between δ76.74– δ77.38 ppm are due to the presence of methoxy carbon 
(OCH3–) attached to the aromatic ring [70]. A Peak at δ55 ppm corre
sponds to the carbon present in NCH2 [67]. A distinct peak at δ 46 ppm is 
due to the presence of C–N in the piperidinone ring [69]. 

FT-IR and FT-RAMAN analysis 
The FT-IR and FT-RAMAN spectra of CMBP were recorded in solid 

form to analyze the various types of stretching and bending vibrations 
present in the title material and are shown in Figs. 7 and 8, respectively. 
The assigned frequencies are listed in S 9. A weak signal at 3071 cm− 1 in 
the FT-Raman spectrum represents the aromatic C–H stretching 

vibration [71], which is imperceptible in the IR spectrum due to highly 
substituted and condensed in nature [72]. In the IR spectrum, the weak 
peaks in the region 2977 and 2939 cm− 1 can be accounted for C–H 
asymmetric and symmetric stretching vibrations of CH2 group respec
tively [73]. From the IR spectrum, the peak around 2839 cm− 1 can be 
accounted for the CH3 stretching vibration [74]. The existence of the 
conjugated keto group C=O are observed as a strong peak of stretching 
vibration at 1645 and 1668 cm− 1 in IR and FT-Raman, respectively [75, 
76]. The strong band around 1600 cm− 1in IR and the weak band around 
1609 cm− 1 in FT-Raman are attributed to – C=C group in α, β-unsatu
rated carbonyl group [76,77]. In the IR spectrum, the strong and weak 
peaks at 1561and 1438 cm− 1 and long sharp peak at 1558 cm− 1 in 
Raman spectrum are attributed to the aromatic C=C stretching vibration 
of the aromatic ring [78]. In the Raman spectrum a peak at 1314 cm− 1 

attributes to the -CH2 twisting vibration of the grown crystal [79]. The 
medium signals in the region 1278–1307 cm− 1and 1255–1220 cm− 1 in 
FT-IR and FT-Raman, respectively, is due to the occurrence of C–N 
stretching vibration of the piperidone moiety [80,81]. In IR spectrum 
the presence of C - O stretching vibration is observed at 1254 cm− 1 [82]. 
In Raman spectrum C - O – C asymmetric stretching of the methoxy 
group attached to the aromatic ring is observed around 1177 cm− 1 [83]. 
The aromatic C–H in plane bending was observed as medium to strong 
peaks around 1125–1031 cm− 1 and C–H out of plane bending appears 
in the region 970–650 cm− 1 [74]. The weak absorption signal at 696 
cm− 1 represents =C–H aromatic bending vibration [84]. The C - Cl 
stretching vibration is observed as strong to medium peaks in the region 
840–505 cm− 1 in IR and at 454 cm− 1 in FT- Raman [85,86]. 

UV visible spectral analysis 
The absorption spectrum of the title compound is shows in Fig. 9. The 

spectrum consist of two finger print peaks at 310 and 368 nm, corre
sponds to π- π* electron transition which might be due to the presence of 
C=C and C=O groups of the title compound [87]. The band gap energy 
of the compound CMBP has been calculated using Eg = hν (λmax = 368 
nm) and was found to be 3.38 ev. 

Photoluminiscence spectral analysis 
The Photoluminescence spectrum of the grown crystal has been 

shown in Fig. 10. The studies exhibit two excitation peaks. The first peak 
is at 501 nm (Green light emission) corresponds to the fluorescence and 
the second peak is at 708 nm (red emission) which corresponds to 
phosphorescence. The emission energies of the synthesized compounds 
were found to be 2.47 eV. 

Fig. 13. Hirshfeld surfaces mapped over (a) Shaped Index (b) Curvedness (c) Fragment patches (d) Electrostatic Potentials.  

Table 2 
Calculated Interaction Energies for CMBP using B3LPY/6–31G(d, p) Model.  

N Symop R Eele Epol Edis Erep Etot 

1 -x, -y, -z 10.93 − 7.8 − 5.3 − 21.4 14.7 − 21.8 
2 -x, y + 1/2, -z + 1/ 

2 
11.38 − 23.1 − 5 − 83.3 56.1 − 66 

1 -x, -y, -z 14.40 − 18.3 − 7.8 − 31.3 27.9 − 35.2 
2 x, -y + 1/2, z + 1/2 7.29 − 12.9 − 4.6 − 58.3 33.6 − 47.2 
2 x, y, z 6.99 − 4.8 − 1.5 − 22 7.8 − 20.5 
2 x, -y + 1/2, z + 1/2 7.96 − 7.7 − 4.5 − 31 15.8 − 28.7 
1 -x, -y, -z 14.45 4.6 − 0.8 − 14.1 5.9 − 4.3 
2 -x, y + 1/2, -z + 1/ 

2 
16.77 − 4.4 − 0.9 − 10.4 5.4 − 11.1 

Energy Model kele kpol kdis krep 

CE-B3LYP … B3LYP/6–31G(d,p) electron 
densities 

1.057 0.74 0.871 0.618  
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TG/DTA 
In order to analyze the stability of the material thermogravimetric 

and differential thermal analysis thermograms were plotted simulta
neously and displayed in Fig. 11. The initial weight of the compound 
used for the analysis is 4 mg. The TG curve displays four stages of the 
decomposition process, in which the weight loss up to 76.35◦C is 
ascribed to the desorption of the trapped water component in the ma
terial. The second stage of decay, which is up to 249.4◦C is due to 
sublimation, in which stray solvents are converted to steam. Subsequent 
two stage weight loss between 249.4 and 799.7◦C is due to the degra
dation of the title compound CMBP [88]. The presence of several ring 
systems and a halogen atom (Cl) linked to the aromatic ring may be 
accountable for the compound’s high residual mass of 19.49 %.In the 
DTA graph a small peak at 173.80◦C corresponds to the melting point of 
the compound. From the DTA graph it is observed that the thermal 
processes (exo and endo) associated with the material are negligible 
[89]. 

Hirshfeld surfaces analysis and energy frameworks investigation 

The Hirshfeld surface was visualized for several surface properties. 
The dnorm (Fig. 12a) is a normalized contact distance, which was 
examined using red-blue-white scheme of colors [90]. The weak inter
molecular interactions and short contacts present in the structure have 
been visualized, and the possible interactions between the two adjacent 
molecules involving the C–H…O hydrogen bond with H…A distance 
equals to 1.385 Å and 1.392 Å, is shown in Fig. 12b. 

The neighboring red and blue triangles in the shape-index map 
(Fig. 13a) denote the presence of C–H-π interactions. [91]. The π-π 
stacking can be visualizedas the flat regions over the curvedness surface 
(Fig. 13b). The proximity of the nearby molecules has been examined in 
the fragment patches (Fig. 13c). The chemical CMBP has a coordination 
number of 13.On the electrostatic potential surface (Fig. 13d), the red 
color spots show the negative electrostatic potential (hydrogen bond 
forming region) and the blue color attributes to the positive electrostatic 

potential [92]. 
The 2D fingerprint plots (Fig. S3) helps to understand the contribu

tion of various elemental interactions present the compound. It reveals 
that the H…H interactions have the largest contribution to the total 
Hirshfeld surface of 47.2 %. The O…H/H…O interactions with 18.6 % 
contribution is represented by two sharp spikes with a slight separation, 
and the same has been validated from the interactions generated from 
Platon software [44]. The existence of C…H/H…C interaction with 17.6 
% reveals that the compound possesses a C–H. . .π interaction which is 
also been confirmed by the presence of red and blue triangles in shape 
index. The Cl…H/H…Cl (7.1 %) and C…C (5.1 %) are the next greatest 
contributors to the surface contacts. The contribution percentages of 
other intermolecular contacts are less than 5 % in the Hirshfeld surface 
mapping. The large number of H…H, O…H/H…O and C…H/H…C in
teractions suggest that van der Waals interactions and hydrogen bond
ings play the major roles in the crystal packing [93]. 

The total intermolecular interaction energy (Etot) is the sum of four 
energy terms: electrostatic (Eele), polarization (Epol), dispersion (Edisp), 
and repulsion (Erep) with scale factors of 1.057, 0.740, 0.871 and 0.618, 
respectively [49]. The interaction energies have been calculated for the 
compound using the CE-B3LYP/6–31 G (d,p) quantum level of theory, as 
available in Crystal Explorer is shown in Table 2, revealing that the 
dispersion energy is more significant than other energies. The energies 
between the molecular pairs around the selected molecule are shown as 
cylinders connecting centroids are shown in Fig. 14a-d, electrostatic 
energy (coulomb) by red cylinders, dispersion energy by green cylin
ders, and total energy by blue cylinders. 

In-silico studies 

Molecular docking studies 
The AutoDock 1.5.6 tools have attempted ten runs, which assist in 

obtaining the best fit interaction indicated by the lowest binding energy. 
Table S 10 contains the values for the scoring functions. The inhibition 
constant (Ki) for 1M17 with the ligand interaction was found to be 2.45 

Fig. 14. a) Interaction between the selected molecule and the molecules present in a 3.8 Å 
cluster (b) Electrostatic energy (c) Dispersion energy and (d) Total energy. 
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nM for run 1, which is the measure of the ligand binding affinity to the 
target protein. The value of Ki is directly proportional to the dosage of 
medication needed to stop the deadly action [94]. The ligand interaction 
with the 1M17 protein exhibits a lower binding energy value of − 11.75 
kcal/mol during run 1. The interaction between the ligand and the target 
molecules is sped up by the decreased binding energy, which also sug
gests an increase in molecular stability [95].The title compound CMBP 
fits well into the active site of 1M17 protein, with N–H…O hydrogen 
bonds at a distance of 1.9 Å with the amino acid residues Met 769 and 
Lys 721(Fig. 15a). The amino acid residue Met 769 is involved in the 

active site interactions of the co-crystal (Erlotinib) (Fig. 15b), which is 
used as a drug for treating breast cancer. Binding energy, binding site 
interactions, and donor-acceptor distances were listed in Table 3. 
Correlating the results, the title compound exhibits better binding en
ergy and active site interactions involving the same amino acid residue 
as that of the complexed co-crystal (erlotinib), hence, the title molecule 
can be recommended as a lead candidate to design new drugs to treat 
breast cancer. 

In-silico molecular properties and pharmacokinetic prediction 
For the title compound CMBP, all the parameters of Lipinski’s RO5 

(Table 4) were in the optimum range except miLogp, which is slightly 
greater than 5, which shows moderate permeability across the cell 
membrane [56]. The bioavailability rating forecasts the proportion of an 
oral substance that enters systemic circulation. The title compound 
correlates well with the bioavailability score (0.55) indicates an excel
lent compound for systemic circulation [96]. For a drug to be orally 
active, it should have high gastrointestinal absorption (GIA). CMBP 
exhibited high GI absorption and was permeable to the blood-brain 
barrier (BBB). The synthetic accessibility scores refer to how easily a 
compound can be synthesized in a lab, and scales of easy to hard range 
between 0 and 10, and was found to be 3.22, indicates that it may be 
produced on a wide scale with ease [95]. The lipophilicity value is 4.77, 
which indicates poor permeation rates across the skin [97]. Molar 
refractivity defines the drug’s transport and bio-distribution behavior, 
which should be ≤ 130, but for the compound CMBP it is around 137 
which show poor bio-distribution [98]. The pharmocochemical 

Fig. 15. PyMOL plot representing the interactions between (a) The ligand 
(CMBP) and the protein (1M17) (b) Co-crystal (Erlotinib) and the pro
tein (1M17). 

Table 3 
Binding site interactions and binding energies.  

Ligand Receptor (PDB ID) Run Number Binding Site Interaction D-H…A (Å) Binding Energy kcal/mol Inhibiton constant (ki) nM 

CMBP 1M17 1 [MET’ 769] N–H…O 1.9 − 11.75 2.45 
[LYS’ 721] N-H…O 1.9 

ERLOTINIB 10 [MET’ 769] N-H…O 1.9 − 9.84 61.63  

Table 4 
Drug likeness score of the compound CMBP.  

miLogp TPSA nAtoms nON nOHNH nrotb volume MW nviolation 

5.3 55.85 34 5 0 5 419.83 473.96 1  

Fig. 16. Concentration vs. Cell viability plot showing the IC50 value for the 
title compound. 
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properties were tabulated in S11. Based on the aforementioned activity 
defining parameters, it can be concluded that the title material exhibits 
moderate oral bioactivity. 

In-vitro studies 

Anticancer and cytotoxic activity analysis 
The anti-cancer activity of the synthesized compound on MCF-7 cell 

lines was evaluated using an MTT assay method [61]. It is observed that 
the cell viability decreases as the concentration of the sample increases 
(Table S12). The concentration corresponding to IC50 value of the 
compound is around 1.6 µg/mL (Fig. 16), which demonstrates its effi
cacy as potential anticancer material in the field of drug designing. 
MCF-7 cell treated with the synthesized compound is shown in Fig. 17. 

Similarly, the cytotoxicity of the compound was done on HEK293 
cell line by MTT assay method [61] and concentration vs. cell viability 
plot and the surface morphology are shown in Fig. S 4&5. Cytotoxicity is 
inverse to cell viability (Table S13), the IC50 value of the compound is 
around 1.9 µg/mL which shows that the compound is highly toxic, this 
may be due to environmental stress while testing and the solvent used 
(chloroform) during synthesis procedure. The IC50 value corresponds to 
lower sample concentration (S12 & 13) clearly illustrates the title 
molecule is highly active against cancerous cells and shows toxicity on 
normal cells. In future after optimizing the toxic level on the normal 
cells, the compound CMBP can be considered as a drug candidate to fight 
against breast cancer. 

Conclusion 

A new curcumin derivative CMBP has been synthesized and it was 
studied for its 3D structure and crystallographic parameters using the X- 
ray diffraction technique. The compound was crystallized in monoclinic 
crystal system with the space group P 21/c. The piperidone ring adopts 
distorted half chair conformation. In the crystal structure, the neigh
bouring molecules are linked through a pair of C–H…O hydrogen bonds 
forming inversion dimer. The obtained crystal was characterized and 
analyzed using NMR, FTIR and FT Raman spectral analysis and the 
derived results matched well with the similar reported structures. The 
preferential absorption and emission signals were studied using UV/PL 
spectral analysis. The TG/DTA thermal studies reveal multistage 
decomposition of the material with high residual mass of 19 %. The non 
covalent interactions namely C–H-π, π-π, van der Waals, and hydrogen 
bonds have been visualized and analyzed via the Hirshfeld surfaces 
investigation. The effect of dispersion energy on the stability of the 
compound is verified by Energy Frame work analysis. The suitability of 
the title molecule for pharmacological application has been verified by 
performing in-silico analysis. The ligand CMBP binds well with the 
target protein (1M17) and shows better binding energy than the refer
ence material (Erlotinib). The in-silico molecular and pharmacokinetic 
prediction shows moderate oral biovailability of the compound. An 
excellent anticancer activity of the compound on breast cancer cell line 
(MCF-7) was observed with the IC50 value < 2 µg/mL but highly toxic 

(IC50 value = 1.6 µg/mL) on normal cell line. Over viewing the results 
the newly synthesized title compound shows better in-vitro and in-silico 
bioactivity, in future further investigations needed to reduce the toxic 
level of the compound so that it can be as a drug candidate to fight 
against breast cancer. 
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