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ABSTRACT

The rapid development of superior, highly stable, alkaline-medium-compatible, and nonprecious earth-abundant
bifunctional electrocatalysts has garnered significant research interest. This interest aims to replace the costliest
noble metals (Pt, Ir/IrO,, and Ru/RuO>) in renewable and green energy technologies for overall water splitting.
However, there are still important limitations, such as lower stability and higher energy consumption. In this
work, we report the synthesis of Cu-Co metal-organic frameworks (MOFs) as a bifunctional electrocatalyst using
a simple chemical precipitation technique. Especially, when 11.5 mM of Co is combined with Cu MOF, it exhibits
excellent bifunctional activity for overall water splitting with a lower overpotential of 0.21 V (OER) and -0.71 V
(HER) at a current density of 10 mA cm ™2, which exhibits nearly several times more enhancement than that of
pristine Cu and Co MOFs in a 1 M KOH electrolyte solution. The Tafel slope value of 130 mV/dec and the lower
charge transfer resistance, along with relatively high stability for up to 12 h at the onset potential of OER and
HER, are observed for the 11.5 mM Cu-Co MOF electrocatalyst. The present results open an alternative pathway
for developing a novel design of highly efficient and scalable bifunctional electrocatalysts for overall water
splitting.

1. Introduction

biomass pyrolysis [7], and electrochemical water splitting [8,9], are
extensively utilized for hydrogen generation. Among them, electro-

A thriving global issue in the twenty-first century is mainly towards
energy consumption, severe environmental pollution, and depletion of
fossil fuels. Renewable energy technologies are focusing on green energy
science [1]. In this light, hydrogen has been viewed as a promising
alternative green energy source to displace fossil fuels because it is a
clean and sustainable renewable energy source [1-4]. Accordingly,
several strategies, including steam reforming [5], coal gasification [6],
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chemical water splitting seems to be a promising technology for pro-
ducing pure hydrogen with zero emission of carbon [8,9]. The oxygen
evolution reaction (OER) (at the anode) and hydrogen evolution reac-
tion (HER) (at the cathode) are two half-reactions of water splitting, in
which the hydrogen generation process has been implicated. However,
the higher overpotential of OER and HER processes hinders their
widespread applications [9-13]. Therefore, there is an emerging need
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for the design and development of highly active bifunctional electro-
catalysts to minimize the overpotential during the OER and HER
processes.

Platinum (Pt) serves as a benchmark catalyst for the hydrogen evo-
lution reaction (HER) owing to its high activity and stability in an acidic
medium [14]. Nevertheless, its inherent drawbacks, such as high cost
and scarcity, necessitate the search for alternative catalysts. Moreover,
platinum (Pt) is unsuitable for high oxygen evolution reaction (OER)
voltages because its surface can be covered with an oxide, resulting in
low electric or ionic conductivity. In contrast, Ir/IrO2 or Ru/RuO,
emerges as highly desirable nanomaterials for OER electrocatalysts [15].
However, these noble metals have unlikely garnered sufficient attention
in the development of the oxygen evolution reaction (OER) due to their
high price, limited supply, and poor stability in alkaline electrolyte
media. Notably, the pH ranges of anode and cathode electrocatalysts
differ, posing a severe challenge in integrating the two electrode re-
actions for large-scale electrolyzer applications [16,17].

Therefore, the advancement of materials science remains essential to
replace those noble metals. New electrode materials are highly expected
to serve as bifunctional electrocatalysts, performing effectively under
various critical conditions and facilitating technology-level production.
Accordingly, the focus has primarily been on p-block elements, such as
metal sulphides [17-22], selenides [23,24], phosphides [25-28], ni-
trides [29-31], carbides [32,33], oxides [34-36], carbon with metals
[37,38] and metal alloys [39-45], representing cost-effective substitutes
for noble metals. Unfortunately, many electrocatalysts based on these
materials exhibit minimal active sites, poor electrical conductivity,
insufficient electrical contact with the electrolyte, and instability under
operating conditions. Consequently, neither chemical exfoliation nor
functionalization by compounds yields a high surface area. Nowadays,
metal organic frameworks (MOFs) are of essential interest due to their
exclusive structural advantages like porous nature, large specific surface
area with tunable pores, changeful cavities, magnetizing optical, elec-
trical, physiochemical properties along with adaptable chemistry
[46-49], all of which make it the focus of research and development of
MOF; as a bifunctional electrocatalysts for OER and HER reactions such
as Ni-Co [50], Co-Fe [51], Ni-Fe [50], Cu-Fe [52], Cu-BTC [53], Cu-Co
[46], etc. For instance, Peng et al.,, prepared a multifunctional
book-like Cu-Co MOF using a one-step solvothermal method and it
proved to be an efficient and highly stable electrocatalyst for OER in an
alkaline medium [54]. As well, H. Lee et al. synthesized a bimetallic
Co/Cu-embedded N-doped carbon structure using the pyrolysis process.
This structure was successfully examined as a trifunctional electro-
catalyst for oxygen reduction reaction (ORR), oxygen evolution reaction
(OER), and hydrogen evolution reaction (HER) in an alkaline medium
[55]. Undoubtedly, Cu and Co-based MOFs have been the primary focus
as bifunctional electrocatalysts for overall water splitting applications in
an alkaline medium due to their impressive properties, including
high-volume abundance, outstanding redox characteristics, and ease of
development.

These kinds of MOFs nanocomposites are prepared via a variety of
processes, including hydrothermal [54], thermal treatment [56],
chemical precipitation [56,57], solvothermal [55], and pulsed laser [58,
59] methods, among others. Generally, many research works utilize the
solvothermal method to prepare MOFs. In our case, we employed a
simple chemical precipitation approach to produce Cu-Co MOF. This
method allows us to control the structure, morphology, phase orienta-
tion, and temperature by adjusting various parameters.

Here, we developed the Cu-Co MOF via a simple chemical precipi-
tation route as a bifunctional electrocatalyst using H,BDC as an organic
linker. The H,BDC organic linker effectively supports the maintenance
of surface morphology, specific surface area, and enhances charge
transfer between the two metals and electrochemical active sites in the
Cu-Co MOF. Furthermore, the Cu activity increased with the Co ratio
(7.5, 9.5, 11.5, and 13.5 mM) for overall water splitting. The optimal
concentration of 11.5 mM Co-functionalized Cu MOF exhibits excellent
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activity for the oxygen evolution reaction (OER) with an onset potential
of 1.44 V @ 10 mA cm~2 and the hydrogen evolution reaction (HER)
with overpotentials of 0.21 V and —0.71 V at a current density of 10 mA
cm™2, respectively. This is in comparison to Ni plate (0.17 V), and it
demonstrates good stability for 12 h in a 1 M KOH electrolyte solution.
The overpotential is lower than that of currently reported nano-
materials, such as other MOFs, Ni-Fe LDH, Ni-Co alloy, and Fe-Cu
nanocomposite. In addition, we conducted a full-cell water electro-
lyzer using Cu-Co MOF (11.5 mM) as both the anode and cathode ina 1
M KOH electrolyte solution. Moreover, the Cu-Co (11.5 mM) MOF
proves to be an excellent electrocatalyst, not only as a replacement for
noble metals but also due to its cost-effectiveness in developing water
electrolyzer technology.

2. Experimental section
2.1. Materials

All chemical substances are of analytical grade (AR) and are used
without further purification for the synthesis of MOFs. The CuSO4-5H50,
CO(NO3)2-6H20, NaOH and HyBDC were purchased from Sigma
Aldrich.

2.2. Preparation of Cu/Co-MOF, Cu-MOF, Co-MOF

A simple chemical precipitation method was employed to synthesize
Cu-Co MOFs with different molarities. CuSO4-5H,0 served as the copper
oxide precursor, and varying amounts of CO(NO3),-6H20 were used for
composite preparation. In a typical procedure, HoBDC (12 mM, 0.0996
g) and NaOH (25 mM, 0.0499 g) were dissolved in 100 mL of deionized
water with constant stirring for 30 min at room temperature. Subse-
quently, a 50 mL aqueous solution containing CuSO4-5H50 (7.5 mM,
0.0187 g) and CO(NO3)2-6H20 (7.5 mM, 0.0218 g) was added dropwise
to the above solution under vigorous stirring. After stirring for 5 h at
room temperature, the resulting blue precipitate was isolated by filtra-
tion and thoroughly washed with water. Finally, the precipitate sample
was subjected to a temperature of 70 °C for 24 h under vacuum condi-
tions. For a comparison, Cu-MOF and Co-MOF were synthesized by
treating 7.5 mM CuSO4-5H50 and 7.5 mM CO (NOs3)2-6H20, respec-
tively, with 12 mM H,BDC.

2.3. Physico-chemical characterization

The structural and crystallinity information of the Cu, Co, and Cu-Co
MOFs network was determined using the advanced X-ray diffractometer
(XRD, Bruker D8 with Cu-Ka (A = 1.5405) radiation). Raman spectros-
copy provided insights into the vibrational modes of molecules, and
spectra were collected using the Renishaw (UK) InVia Raman micro-
scope with a 632.8 nm wavelength incident laser light. The Fourier
transform-infrared (FT-IR) spectrometer was used to detect the presence
of functional groups in the prepared Cu-Co MOFs (TENSOR27; BRUKER
OPTIK GMBH, Germany). Scanning electron microscopy (SEM, Model
Hitachi S-4500) was employed to examine the morphology of the pro-
duced samples. The powder sample was thoroughly mixed with ethanol
before being drop-cast onto a gold-coated copper grid and then dried.
The elemental composition of the Cu-Co MOF was examined using the
PHI 5000 VersaProbe ULVAC apparatus and X-ray photoelectron spec-
troscopy (XPS). Electrochemical analysis was conducted at room tem-
perature utilizing an electrochemical workstation (SP-150, Biologic
Science Instruments, France). A standard three-electrode setup with
platinum as the counter electrode, Hg/HgO as the reference electrode,
and Cu-Co MOF as the working electrode was used.
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3. Result and discussion
3.1. Structural investigation through X-ray diffraction patterns

The powder X-ray diffraction (XRD) patterns were recorded to
determine the crystal phase and structure of the sample. The XRD
characterization is very good tool to investigate the formation of MOFs
in the prepared samples. Fig. 1 shows the XRD patterns for Cu MOF, Co
MOF and Cu-Co MOF. Fig. 1a represents the XRD pattern of Cu MOF, in
which characteristic peaks appeared at 20= 6.5°, 9.5°, 12.9°, 13.5°,
14.9°, 16.2°, 17.5°, 19.8°, 21.4°, 24.5°, 26.2° 29.3°, 35.3° and 39.5°
correspond to the (200), (220), (222), (400), (420), (422), (511), (440),
(442), (551), (731), (751), (773) and (882) crystal planes respectively
and are consistent with previous reported literature (Cambridge crys-
tallographic information data with deposit number of 112,954). A less
intensity peak at 16.5 is noticeable in the Cu-MOF sample, which is
related to the presence of some organic residue on Cu-MOF [60,61].
Further, Fig. 1b shows sharp diffraction peaks at 20 of 9.18°, 15.8°,
17.5°,29.5° correspond to (020) (120), (112), and (105) lattice planes of
Coy MOF respectively. The diffraction peaks positions of Coy MOF are in
good agreement with the simulation based on Co-MOF single-crystal
XRD data (Cambridge Crystallographic Data centre - 905,134) [62].
Further, the Cu-Co MOF reveals the diffraction peaks at 9.18°, 15.8° and
18.5° are related to the (020), (120) and (112) plane of Co, MOF
respectively. Further, the peak observed at 17.2°, 24.6°, 27.61° and
28.3° are related to the (511), (551), (731) and (751) of Cu MOF
respectively (Fig. 1c). In the present work, it is clearly confirmed the
presence of Cu and Co with the network contact of some organic residue
in Cu-Co MOF. The two metal phases are presented in the Cu-Co MOF.
Furthermore, compared with the Cu and Co MOFs, the diffraction peaks
of Cu-Co MOF sample are shifted to higher angles (Fig. 1c) [63].

3.2. Raman spectra analysis for Cu, Co and Cu-Co MOFs

The Raman spectra were obtained to investigate the Cu, Co, and Cu-
Co MOFs, as shown in Fig. 2. Fig. 2a displays the Raman spectrum of Cu
MOF, revealing peaks at 284.3, 324.1, and 363.8 cm”l, corresponding to
the formation of CuO. More specifically, the wavenumber at 284.3 cm ™
attributes to Ag, while the peaks at 357.4 and 363.8 cm ™! ascribe to Bg
modes for Cu MOF [64]. The Co MOF exhibits peaks at 431.8 (Co-0),
500.8, and 607.8 cm ™}, as depicted in Fig. 2b. The remaining two peaks
are indicative of the spinel structure of Co304 nanorods. Specifically, the
Raman peaks of the Co MOF correspond to the Eg, F2g, and A1g modes
of Co304 [65]. Additionally, the major Raman peaks of the Cu-Co MOF
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Fig. 2. The Raman spectra of (a) Cu (b) Co and Cu-Co MOFs.

are shown in Fig. 2c, with peaks observed at 264.6 and 351.1 cm*
corresponding to the modes of CuO, and peaks at 460.8 and 633.8 cm ™!
corresponding to the modes of Co304. It is noteworthy that the spectrum
indicates the formation of CuO—Co304 MOF [64.65].

3.3. Functional groups analysis

The FT-IR vibrational spectra determine the presence of organic
composites and the creation of new functional groups in the as-prepared
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MOFs. Fig. 3 exhibits the FT-IR spectra of Cu, Co, and Cu-Co MOFs. In
Fig. 3a, the FTIR spectrum of Cu MOF shows major peaks at 1728 and
1582 cm ™}, corresponding to the asymmetric vibrations of the carbox-
ylate groups of benzenetricarboxylate ligands, while 1354 and 741 cm ™
correspond to the symmetric vibrations of benzenetricarboxylate ligands
and Cu-O-H, respectively [66]. The vibrational peaks of the Co MOF at
1574 and 1356 cm ™! attribute to the stretching vibrations of C=0 and
C-0, respectively, as shown in Fig. 3b. Additionally, the absorption
peaks at 804, 738, and 690 cm’l, correspond to the aromatic ring
stretching C—H, flexural vibrations of Co-O-H, and stretching vibrations
of para-aromatic C—H groups, respectively [60,67] (Fig. 3b). The broad
peak at 3094 cm ! is uniquely present in the Cu-Co MOF, indicating the
presence of absorbed water on the surface [60,67] (Fig. 3c). Moreover,
two strong vibrational peaks at ~1658 and 1294 cm ™" are attributed to
the asymmetric and symmetric stretching vibrational modes of the
synchronized (COO-) group, respectively. Fig. 3c displays absorption
peaks at 1580 and 1360 cm ™' are mainly attributed to the coordination
of Cu®" and Co?* with hydroxyl groups, promoting the deprotonation of
the Cu-Co MOF. Similarly, the Av value of 220 cm™! between two
vibrational bands is less than that observed in the spectra of a and b,
indicating the synchronization of metal ions and hydroxyl oxygen in a
bidentate bridge. Moreover, the two absorption peaks near 750 - 747
em™! are ascribed as tensile and flexural vibrations of Cu-O-H and Co-
O-H in the Cu-Co MOF. Finally, the overall investigation firmly confirms
the successful synthesis of the MOF as an electrocatalyst. Additionally,
the peak at 671 em ™! corresponds to the vibrational band of C—H [46].
The FT-IR characterization further confirms the presence of carboxylic
groups as well as several oxidations in the Cu-Co MOF. These parameters
are deemed more suitable to enhance the electrocatalytic activity in
overall water splitting. Moreover, Fig. S1 shows the FT-IR spectrum for
H,BDC.

3.4. Investigation on surface morphology, elements and mapping

The surface morphology of Cu, Co and Cu-Co MOFs was character-
ized by FE-SEM. Fig. 4a shows the self-assembled columnar shaped with
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around many dispersed nanoparticles of Cu MOF. Co MOF shows a
nanosheet with size of 50 nm in Fig. 4b, while the Cu-Co MOF possesses
the Cu MOF nanoparticles perfectly placed on the Co MOF sheets with
the control size. Moreover, the combination of nanosheet and particles
can create more surface area as well as more electroactive sites to favor
the reactions of the overall water splitting. The FE-SEM image of Cu-Co
MOF is proving significance of surface morphology in Fig. 4c. In addi-
tion, the EDAX spectra were caried out for Cu, Co and Cu-Co MOFs, as
shown in Fig. 4d-f. The Fig. 4d exhibits Cu, O and C elements for Cu
MOF, as well as Co, O and C elements were presented in Co MOF
(Fig. 4e). Both spectra confirmation of single-phase MOFs. Moreover,
The EDAX spectrum of Cu-Co MOF shows presence of Cu, Co, O and C
elements, as shown in Fig. 4f, which is confirmation of formation of Cu
and Co. Consequently, the percentage of all elements were observed for
each Cu, Co and Cu-Co MOFs in Fig. 4g-i, respectively.

The elements mapping is the one of the good techniques to investi-
gate the presence and quantify of elements for as prepared nano-
materials. The Fig. 5 shows the elementals mapping for Cu-Co MOF.
Fig. 5a exhibits elementals mapping survey of Cu-Co MOF, where
confirmed presence of all elements. Frequently, the Fig. 5b-e represents
elementals mapping high resolution spectra for C, O, Cu and Co,
respectively. From these results, we confirmed formation of Cu-Co MOF.
Moreover, Fig. S8 shows the elements mapping for Cu and Co MOFs.

3.5. Determination of elements and oxidation level

Fig. 6a represents the high resolution spectrum of Cu2p from Cu
MOF. The deconvolution peaks are presented at 930.9, 933.8, 941,
943.6, 950.7 and 954 eV corresponding to Cu(I) and Cu(Il) for Cugz/y,
satellite peaks and Cu(I) and Cu(Il) for Cuj o, respectively. This result is
confirmed the oxidation state of Cu. In Fig. 6b, the O1s major peaks were
appeared at 531.1 eV for C—0-Cu, 531.8 eV for C=0 and 532.8 eV for
-OH. The XPS study is concluded that Cu MOF was effectively prepared.
The XPS high resolution spectra of Co MOF shown in Fig. 6¢ and d for
Co2p and Ols. The deconvolution of Co2p were contained five major
peaks. The peaks at 776.7 and 780.3 eV for Co2ps3,, can be revealed to
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Fig. 4. The FE-SEM images of (a) Cu, (b) Co and (c) Cu-Co MOFs. (d-f) the EDAX spectra and (g-i) percentage of all elements for Cu, Co and Cu-Co MOFs.
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oxidation of Co(II) and Co(III), which is due to oxidation in air. The peak
at 783 eV is attributed to satellite peak due to charge transfer shakeup.
The two peaks at 796.5 and 800.7 eV for Co2p; 2 might be Co oxidized
species. The Ols two major peaks were appeared at 531.1 and 532.2 eV
for C—0-Co and C=O0, respectively (Fig. 6d). From XPS investigation,
the Co MOF was synthesised via simple chemical precipitation method.
The characterization of XPS was used to determine the chemical
composition of the prepared MOF. The peaks of Cu, Co and O elements
are clearly observed at 935, 785 and 527 eV from the XPS survey
spectrum, as shown Fig. 7a. Fig. 7b shows the XPS high resolution
spectrum of Cu 2p, which indicates the coexistence of Cu(I) and Cu(Il)
oxidation level on the catalyst surface. The Cu2ps,, XPS spectra are split
into two major peaks at the binding energies of 929.6 and 928 eV cor-
responding to Cu(Il) and Cu(l), respectively. While the Cu2p;,» XPS
spectra can be fitted into two main peaks at 947.7 and 949.3 eV,
attributed to Cu(I) and Cu(II) species, respectively [68]. In addition, the
binding energy of 934.9, 939, 954 and 957.7 eV indicates the appear-
ance of satellite peak, revealing the presence of Cu(II) species in Cu MOF
[68]. Fig. 7c, the high-resolution XPS spectrum of Co2p shows two major
peaks at 780.5 and 795.4 eV (Co2p;,2). Subsequently, the two major
peaks are deconvoluted into four peaks at 779.5, 780.6, 792.5 and 797.1
eV, revealing the co-existence of +2 and +3 oxidation states for Co ions
[69]. In Fig. 7d, the XPS spectrum of O 1 s is deconvoluted into three
peaks with binding energy of 526.3, 527 and 528.1 eV for lattice oxygen
in an oxygen-deficient environment with 02~ vacancies, water adsorp-
tion on the surface of catalyst and a typical metal-oxygen bond,
respectively [69,70]. The Cu-Co MOF exhibits various oxidation states,
consistent with XPS result. Based on these findings, we conclude that the
Cu-Co MOF nanomaterial is well-suited for overall water splitting,
serving as a bifunctional electrocatalyst in an alkaline medium.

3.6. Electrochemical analysis

3.6.1. OER
For the analysis of electrocatalytic activity toward OER, we

employed a standard three-electrode system. The Cu-Co MOFs served as
the working electrode, Pt wire as the counter electrode, and Hg/HgO as
the reference electrode. The experiments were conducted in a 1.0 M
KOH aqueous solution at a scan rate of 10 mV/s. Bare Cu, Co, and
different ratios of Cu-Co MOFs were also tested in the same environment
for comparison. Fig. 8a represents the linear sweep voltammetry (LSV)
curves for bare Cu, Co, CuO—Co MOFs and bare Ni plate. Cu-Co MOF
shows the excellent electrocatalytic activity for OER with the onsetpo-
tential of 1.32 V (0.21 V overpotential (@10 mA cm~2). On the other
hand, the onset potential of Cu-Co MOF is lower than that of bare Cu
(1.48 V) and Co (1.40 V) MOFs, and comparable to that of a bare Ni plate
(1.31 V). The results indicate that the incorporation of Co is effective in
reducing the onset potential of Cu during OER. Hence, the inset of
Fig. 8a provides an enlarged scale of the onset potential for bare Cu, Co,
CuO—Co MOFs, and bare Ni plate. Furthermore, we conducted OER
activity tests for different percentages of Co functionalization (7.5, 9.5,
11.5, and 13.5 mM) on the surface of Cu (Fig. S2a). The onset potentials
for 7.5, 9.5, 11.5, and 13.5 mM are 1.36, 1.45, 1.32, and 1.46 V,
respectively. As expected, the Cu-Co MOF (with a Co ratio of 11.5 mM)
exhibits superior OER activity compared to others. The low amount of
Co is insufficient to enhance the OER of Cu MOF. However, upon further
increasing the Co functionality percentage to 13.5 mM, OER activity
decreases. This observation clearly indicates that the presence of Co
considerably enhances the OER activity of Cu MOF. Tafel slope values
are calculated from the potential versus log |j| in the linear region above
the onset potential of OER, as shown in Fig. 8b. The Tafel slope value of
11.5 mM Cu-Co MOF exhibits the lowest 130 mV/dec. Moreover, the Cu
(149 mV/dec) and Co MOFs (145 mV/dec) shows a highest Tafel slope
value, comparable to bare Ni plate (64 mV/dec). The Tafel slope values
of 147, 137 and 139 mV/dec obtained for 7.5, 9.5 and 13.5 mM,
respectively, which are higher than 11.5 mM (Fig. S2b). A lesser Tafel
slope value of 11.5 mM Cu-Co MOF is kinetically favors an electro-
chemical OER reaction. Moreover, we have plotted the comparison of
onsetpotential, @10 mA onsetpotential and overpotential for all sam-
ples, as shown Fig. 8c. The comparison plot (onsetpotential, @10 mA
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onsetpotential and @10 mA overpotential) clearly shows the 11.5 mM
Cu-Co MOF is highly active compared to other samples and comparable
to bare Ni plate. The Kinetic current is also one of the key roles to
identify the catalytic activity of electrocatalyst. the comparison bar
chart of kinetic current for Cu, Co, Cu-Co MOFs and bare Ni plate in
Fig. 8d. Cu-Co MOF exhibits higher kinetic current compared to bare Cu
and Co MOFs, comparable to bare Ni Plate. Consequently, the compar-
ison bar chat of 11.5 mM Cu-Co MOF plotted with 7.5, 9.5 and 13.5 mM,
as shown in Fig. S2c. Fig. 8e shows the chronoamperometry study of
11.5 mM Cu-Co MOF materials, which is higher stability for 12 hrs.
Hence, the Cu-Co MOF (11.5 mM) shows low onsetpotential of 1.44 V
compared to Pt/C, as shown in Fig. S5. Moreover, we calculated the
electrochemical surface-active sites (ESCA) using OER cyclic voltametric
technique for Cu, Co and Cu-Co MOFs (Fig. S6).

3.6.2. HER

To evaluate the HER process over the samples, we used the same OER
conditions as mentioned above. In Fig. 9a, the LSV curve for Cu, Co, Cu-
Co MOFs, and bare Ni plate is presented. An onset potential of —0.59 V
was obtained for Cu-Co MOF (11.5 mM), which is lower than that of bare
Cu (—0.99 V) and Co (—0.71 V) MOFs, but comparable to the onset
potential of the bare Ni plate (—0.40 V). Additionally, the lower onset
potential of Cu-Co MOF (11.5 mM) is compared with other concentra-
tions, such as Cu-Co MOF (7.5 mM) (—0.70 V), Cu-Co MOF (9.5 mM)
(—0.67 V), and Cu-Co MOF (13.5 mM) (—0.65 V) (as shown in Fig. S3a).
Furthermore, the Tafel slope values of these catalysts were plotted from
LSV data to estimate the aspects of the reaction kinetics. Fig. 9b shows

the Tafel slope values of Cu, Co, Cu-Co MOF (11.5 mM), and bare Ni
plate, which are 347 mV/dec, 93 mV/dec, 87 mV/dec, and 63 mV/dec,
respectively. Moreover, the Tafel value of Cu-Co MOF (11.5 mM) is
compared with Cu-Co MOF (7.5 mM, —114 mV/dec), Cu-Co MOF (9.5
mM, —99 mV/dec), and Cu-Co MOF (13.5 mM, —95 mV/dec), as shown
in Fig. S3b. The Cu-Co MOF (11.5 mM) exhibits a lower Tafel value
compared to other MOFs, highlighting its suitability for the HER process.
Fig. 9c represents the comparison plot (onset potential, @10 mA onset
potential, and @10 mA overpotential) of all the above samples. From
this plot, Cu-Co MOF (11.5 mM) exhibits lower values compared to other
catalysts, which is more favorable for HER. Hence, the comparison bar
chart of kinetic current for Cu, Co, Cu-Co MOFs (11.5 mM), and bare Ni
plate is shown in Fig. 9d. Cu-Co MOF (11.5 mM) exhibits a higher kinetic
current compared to Cu and Co MOFs for the HER process. In Fig. S3c,
the comparison bar chart is plotted for onset potential, @10 mA onset
potential, and @10 mA overpotential for Cu-Co MOF (7.5 mM), Cu-Co
MOF (9.5 mM), Cu-Co MOF (11.5 mM), and Cu-Co MOF (13.5 mM).
Moreover, Cu-Co MOF (11.5 mM) shows good stability for 12hina 1M
KOH electrolyte (Fig. 9e). Hence, Cu-Co MOF (11.5 mM) exhibits a
higher current density of 140 mA c¢cm-2 compared to Pt/C, as shown in
Fig. S5. Moreover, we calculate the electrochemical surface-active sites
(ESCA) using HER cyclic voltammetry for Cu, Co, and Cu-Co MOFs
(Fig. S7). According to the electrochemical results, Cu-Co MOF (11.5
mM) could be utilized as a bifunctional electrocatalyst for overall water
splitting in an alkaline medium, making it very suitable for replacing
noble metals in large-scale applications.

Cu-Co MOF (11.5 mM) demonstrates excellent bifunctional activity
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for OER and HER in an alkaline medium. We conducted a full cell water
electrolyzer using Cu-Co MOF electrocatalyst (11.5 mM) as anode and
cathode materials in a 1 M KOH electrolyte solution. The area of the
water electrolyzer cell is 25 cm?. The electrocatalyst exhibits a current
density of 11.9 A cm 2 at 1.9 V, as shown in Fig. 10. The results of the
full cell water electrolyzer confirm that Cu-Co MOF electrocatalyst is one
of the best and most cost-effective catalysts for overall water splitting in
an alkaline medium. Furthermore, Table S1 shows a comparison of the
onset potential of Cu-Co MOF (11.5 mM) with other works.

3.6.3. Electrochemical impedance spectroscopic

Electrochemical impedance spectroscopic (EIS) analysis was carried
out to gain further insight into the high OER and HER activities of bare
Cu, Co, and Cu-Co MOFs (11.5 mM) through Nyquist plots. The Nyquist
plots of bare Cu, Co, and Cu-Co MOF (11.5 mM) were obtained under the
same OER and HER conditions (versus Hg/HgO) in 1.0 M KOH, applying
the frequency ranging from 10 Hz to 1 MHz with an AC amplitude of 5

mV (Fig. 11). The smallest semicircle value is observed with Cu-Co MOF
(11.5 mM), indicating its good catalytic activity and quicker electron
transport rate, leading to the smallest Tafel slope value, as shown in
Fig. 11.

4, Conclusion

In this work, we developed Cu-Co MOF through a self-assembling
solvothermal method, acting as a bifunctional electrocatalyst for OER
and HER in an alkaline medium. Moreover, the amount of Co was
optimized to enhance the catalytic activity of Cu MOF by varying the
concentration of CO(NO3)2-6H20. The Cu-Co MOF (11.5 mM) exhibited
high activity with overpotential of 0.21 V (OER) and —0.71 V (HER) ata
current density of 10 mA cm-2, outperforming bare Cu, Co, and other
concentration MOFs. The EIS study revealed a smaller diameter semi-
circle for Cu-Co MOF compared to bare Cu and Co, indicating lower
charge transfer resistance for Cu-Co (11.5 mM) MOF. Furthermore, Cu-

Fig 10. Cu-Co MOF is used as an anode and cathode in a full cell water electrolyzer.
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Co (11.5 mM) MOF demonstrated stability for 12 h in a 1 M KOH so-
lution. The developed catalyst offers bifunctionality, high activity, low
cost, and stability for overall water splitting in an alkaline medium. This
presents a new opportunity to replace noble metals towards enhancing
OER and HER.
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