CENTRE : DDU KAUSHAL KENDRA

NAME OF THE

PROGRAMME : B.VOC (AUTOMOBILE TECHNOLOGY)

PROGRAM CODE: 3UABVOC(AT)

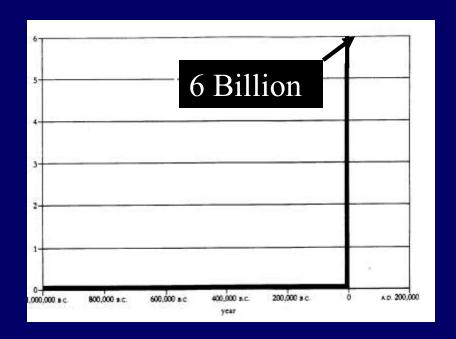
COURSE CODE : TMEEE17402

COURSE NAME : ENVIRONMENTAL STUDIES

SEMESTER : III

FACULTY NAME: DR. PRAKASH SVA

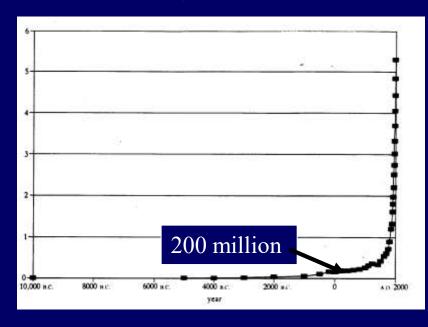
DESIGNATION : GUEST FACULTY


TOPIC : HUMAN POPULATION AND GROWTH

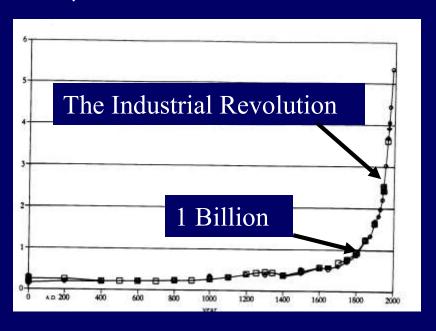
Human Population Growth and the Environment

#Human Population - An Explosive Growth
#Human Needs - Limited Resources
#Our Natural Environment Under Attack
#Roles of Technology and Engineering
#An Uncertain Future

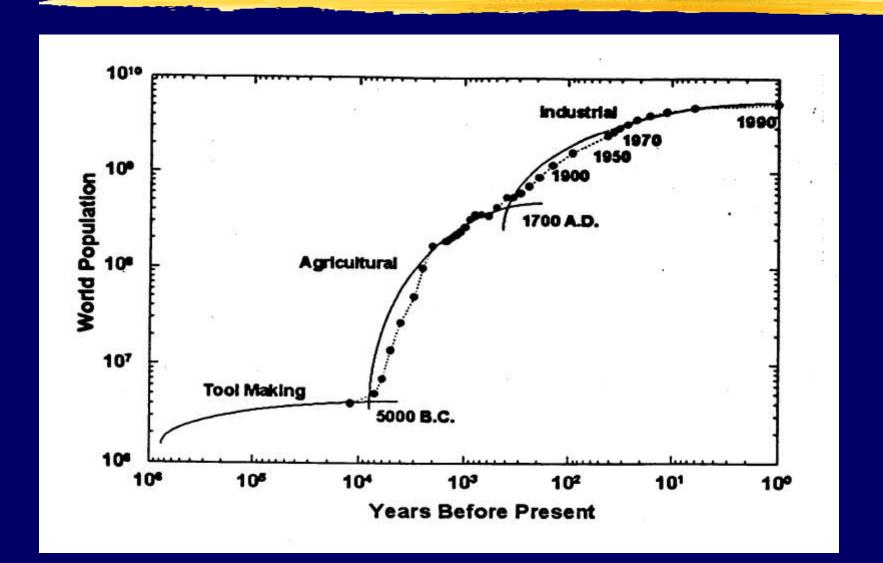
Humans are Recent Arrivals


- **#**Earth 5 Billion Years
- **#** Multi-cell Biota
 - 600 Million Years
- #Human Beings
 - ~ 2 Million Years
- #Human Population
 Growth into Billions
 - Last 200 years

A Million Years Of Human Growth (1)


A Closer Look (1)

#12,000 years


#200 Million by 1 A.D.

#2,000 Years

#1 Billion in 1800 A.D.

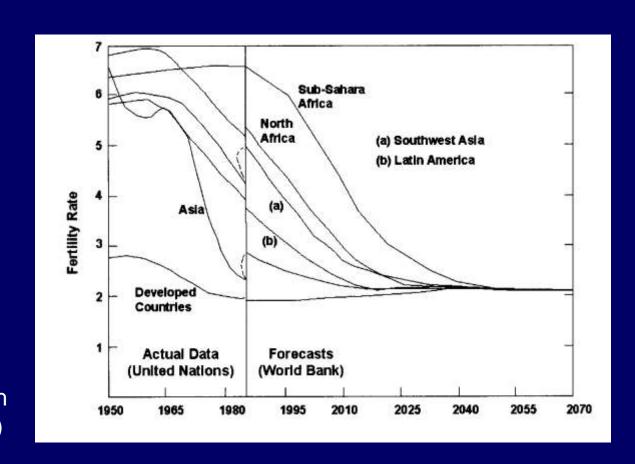
Three Technological Eras (2)

What's Behind Population Growth

#Three Factors

- Fertility
- Longevity

**Animal Domestication and Agriculture

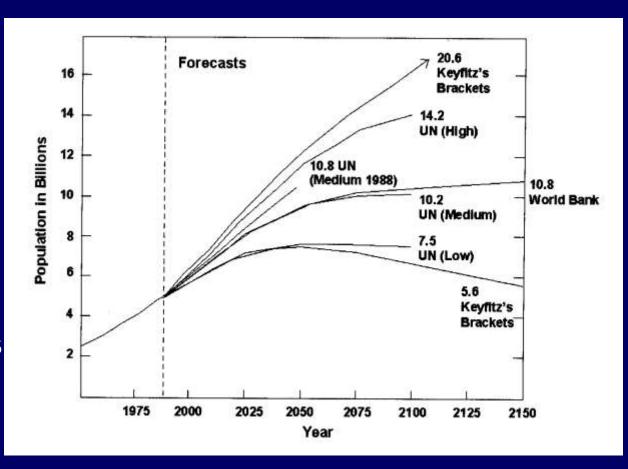

Provided for a few to feed many

#Industrial Revolution

- □Growth of Cities and Infrastructure
 - **W**Water
 - **Energy**
 - **⊠**Transportation
- Increased Productivity
- Sanitation
 ■
 Sanitation
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■

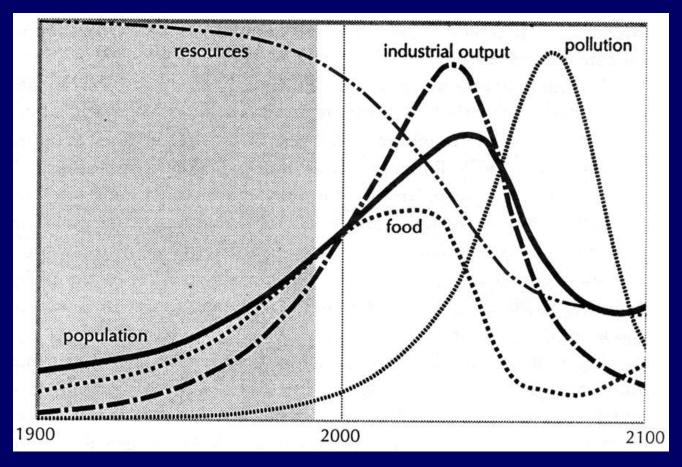
Fertility Trends

- Population predictions are very sensitive to future fertility assumptions
- ** At 1990 fertility rates (constant by region) population would grow to 110 billion in 2100, over 700 billion in 2150 (3)
- Has been dropping since1800 in developed nationsnow at Zero Growth (4)
- Is on its way down in much of the developing world (4)



Population Predictions (4)

Most predictions:9-12B by 205010-15B by 2100# UN (Low) requires


UN (Low) requires global fertility at less than zero growth in 15 years

Large uncertainties

Population May Overshoot

When Population Outpaces Resources

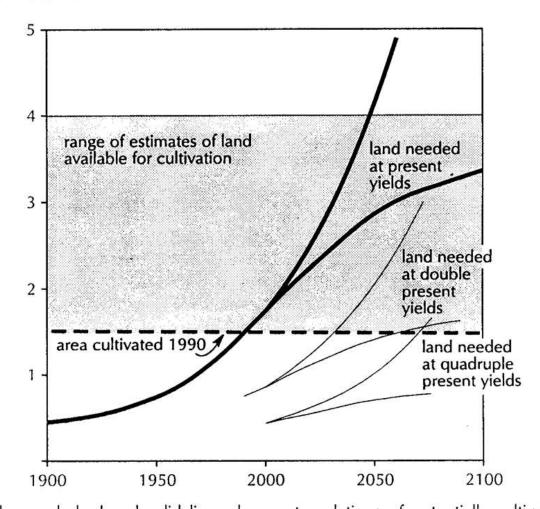
Scenario - current population trend, doubled resources (5)

Resource Consumption (6)

#High
consumption
#Getting worse
#Rate increase
faster than
population
growth

	1970	1990	
Human population	3.6 billion	5.3 billion	
Registered automobiles	250 million	560 million	
Kilometers driven/year (OECD countries only)			
by passenger cars	2584 billion	4489 billion	
by trucks	666 billion	1536 billion	
Oil consumption/year	17 billion barrels	24 billion barrels	
Natural gas consumption/year	31 trillion cubic feet	70 trillion cubic fee	
Coal consumption/year	2.3 billion tons	5.2 billion tons	
Electric generating capacity	1.1 billion kilowatts	2.6 billion kilowatts	
Electricity generation/year by nuclear power plants	79 terawatt-hours	1884 terawatt-hour	
Soft drink consumption/year (U.S. only)	150 million barrels	364 million barrels	
Beer consumption/year (U.S. only)	125 million barrels	187 million barrels	
Aluminum used/year for beer and soft drink containers (U.S. only)	72,700 tonnes	1,251,900 tonnes	
Municipal waste generated/year (OECD countries only)	302 million tonnes	420 million tonnes	

Resource Limits - Land (7)


#Deforesting to acquire more arable land

Would run out in next century at current yields

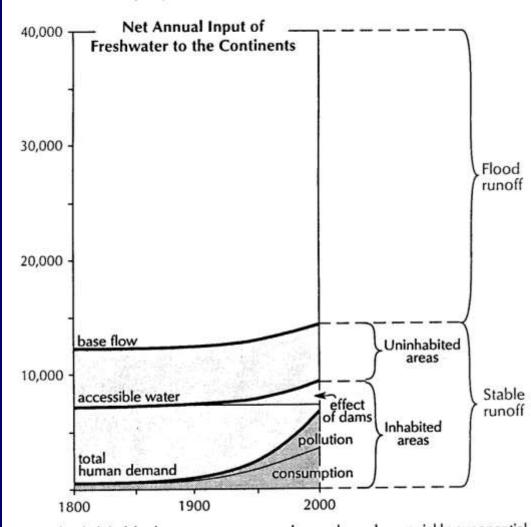
#Probably need to double yields

Figure 3-4 Possible Land Futures

Billion hectares

Resource Limits - Water (8)

In 1950 people used half of accessible water


#Are now dependent on dams

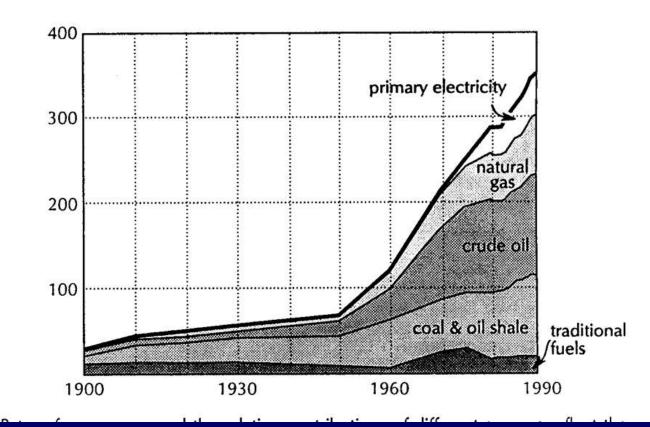
#Pollution loses 33% of potential water

#Getting close to limits

Figure 3-5 FRESH WATER RESOURCES

Cubic kilometers per year

Energy Consumption (9)

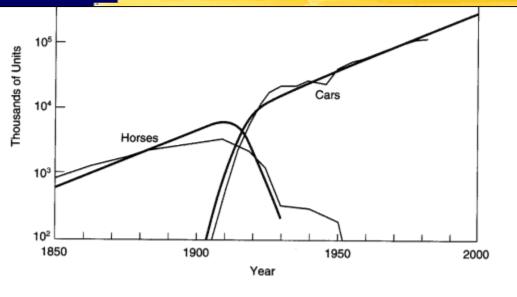

#Energy growth very high last fifty years

Mostlyhydrocarbon
fuels

**Nonrenewable resource consumption and climate change issues

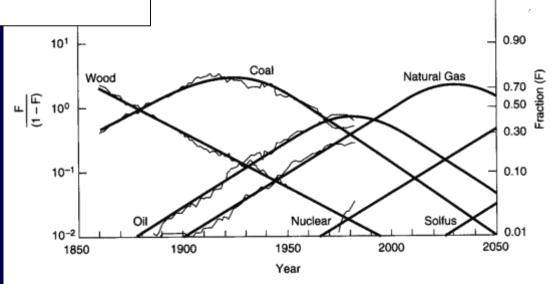
Figure 3-9 WORLD ENERGY USE

Millions of terajoules per year



Fossil Fuel Reserves (9)

Table 3-1 Annual Production and Reserve/Production Ratios for Oil, Coal, and Gas, 1970 and 1989					
Fuel	1970 production (per year)	1970 R/P (years)	1989 production (per year)	1989 R/P (years)	
Oil	16.7 billion barrels	31	21.4 billion barrels	41	
Coal	2.2 billion tons	2300	5.2 billion tons	326 (hard coa 434 (soft coal	
Gas	30 trillion cu. ft.	38	68 trillion cu. ft.	60	

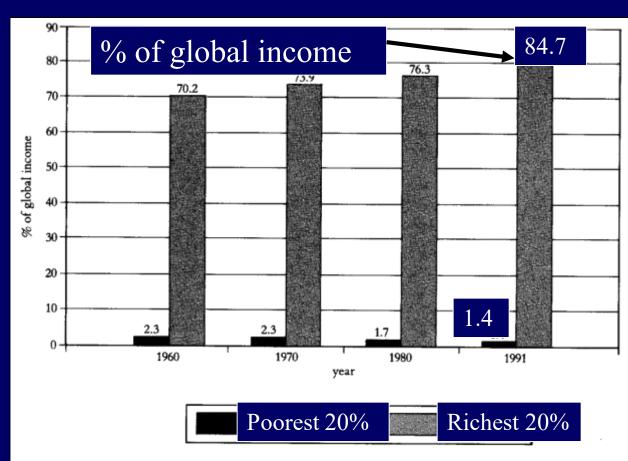

- •Lots of coal but heavy CO2 contributor
- •Look for alternative forms of energy to emerge

Technology Evolves (10)

•Cars replaced horses as transportation needs grew

- •Energy forms have changed to meet changing needs
- •New economic and environmental needs are emerging

Economics and Resources (11)


1.1 billion people suffer from malnutrition

#Impact = P*A*T

Population

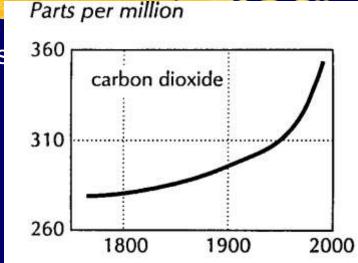
Affluence

#US - 5% ofglobal population
but 20-25% of
environmental
impact

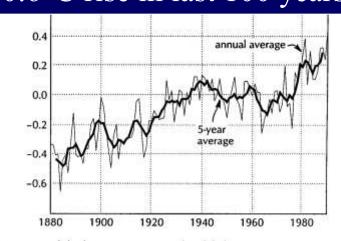
Planet Earth is Impacted (12)

- **#**Ecological Footprints
 - United States 5 hectares/person
 - Developing nations 0.5 hectare/person
- #For everyone to live at today's US footprint would require 3 planet Earths
- #Increasing affluence and population is damaging Earth's essential ecology

Our 'Commons' are in Danger

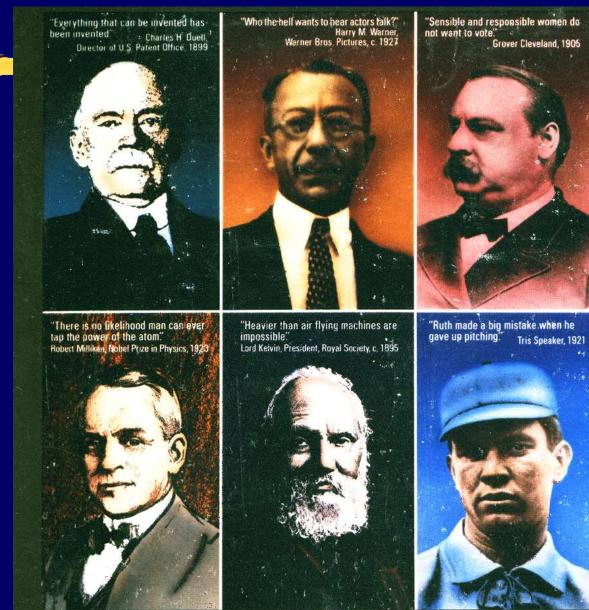

XAtmospheric pollution and climate change **#Water pollution, including ground aquifers #Deforestation and loss of oxygenation X**The oceans, coral reefs and their bounty **#National parks**, wildernesses and wetlands ****Nonrenewable natural resource depletion** Fossil fuels, mineral ores, topsoil.....

Biodiversity is in Danger (13)


- #Humanity has spawned a species extinction to rival the 5 great extinctions of 65 440 million years ago
- ****Recovery times from the great extinctions** took 10's of millions of years
- **#Biodiversity is essential to life on Earth** and holds untold treasures for the future
- **#**An ecological ethic is emerging

Global Warming - A Good Example

- # Atmospheric CO2 is increasing, and creates greenhouse effect.(14)
- 3-5°C rise predicted by computer models for this century would have major environmental impact. (15)
- # Observed change of 0.25-0.4°surface and 0.0-0.2°C troposphere rise in last 20 years doesn't agree with models and may or may not be due to CO2.(16)
- # Humans 6 billion tons/year of CO2 (up 500% from 1950, and increasing) (17)
 - Other sources 200B tons/year



0.6°C rise in last 100 years

Predicting the Future - Be Careful

- •Don't assume it cant be done
- •Leave room for the unknown
- •Consider alternatives carefully
- •Pursue all potential solutions

