Manufacturing Process

Sub Code :17AT104

Program Code: 3UABVOC(AT)

Trade : Automobile

M.Vinoth M.E., Guest Faculty DDU Kaushal Kendra

FUNDAMENTALS OF METAL FORMING

- 1. Material Behavior in Metal Forming
- 2. Overview of Metal Forming
- 3. Temperature in Metal Forming
- 4. Strain Rate Sensitivity
- 5. Friction and Lubrication in Metal Forming

Metal Forming

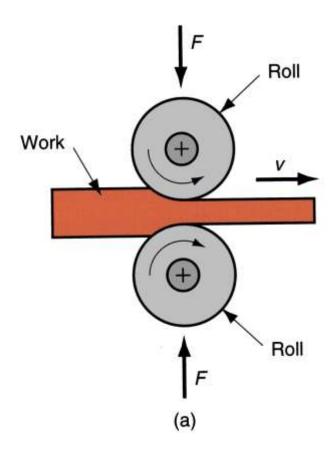
- Large group of manufacturing processes in which plastic deformation is used to change the shape of metal workpieces
- The tool, usually called a *die*, applies stresses that exceed the yield strength of the metal
- The metal takes a shape determined by the geometry of the die

Stresses in Metal Forming

- Stresses to plastically deform the metal are usually compressive
 - Examples: rolling, forging, extrusion
- However, some forming processes
 - Stretch the metal (tensile stresses)
 - Others bend the metal (tensile and compressive)
 - Still others apply shear stresses (shear spinning)

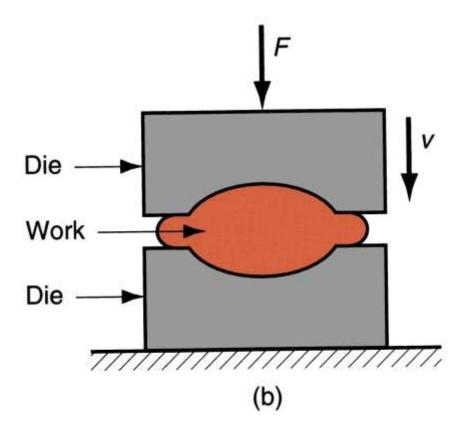
Material Properties in Metal Forming

- Desirable material properties:
 - Low yield strength
 - High ductility
- ▶ These properties are affected by **temperature**:
 - Ductility increases and yield strength decreases when work temperature is raised
- Other factors:
 - Strain rate and friction

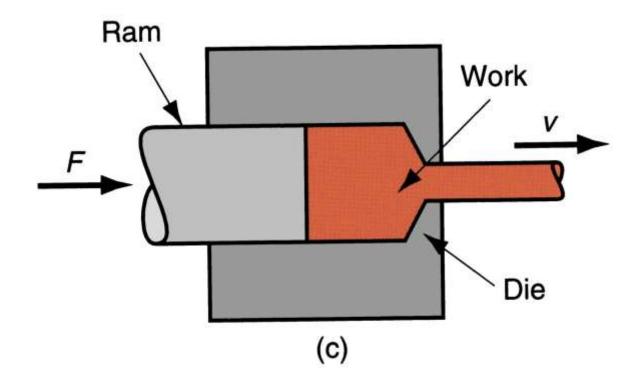

Basic Types of Deformation Processes

- 1. Bulk deformation (stock has high V/A)
 - Rolling
 - Forging
 - Extrusion
 - Wire and bar drawing
- 2. Sheet metalworking (stock has low V/A)
 - Bending
 - Deep drawing
 - Cutting

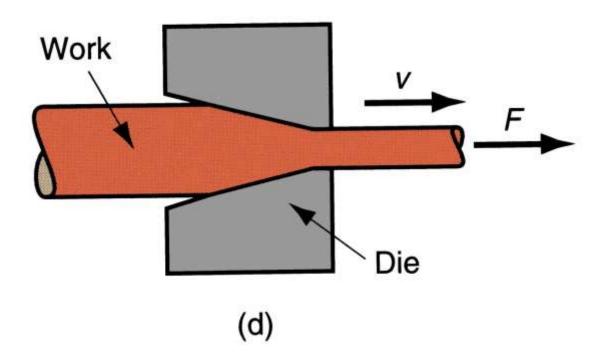
Bulk Deformation Processes


- Characterized by significant deformations and massive shape changes
- "Bulk" refers to workparts with relatively low surface area-to-volume ratios
- Starting work shapes include cylindrical billets and rectangular bars

Rolling


Basic bulk deformation processes: rolling

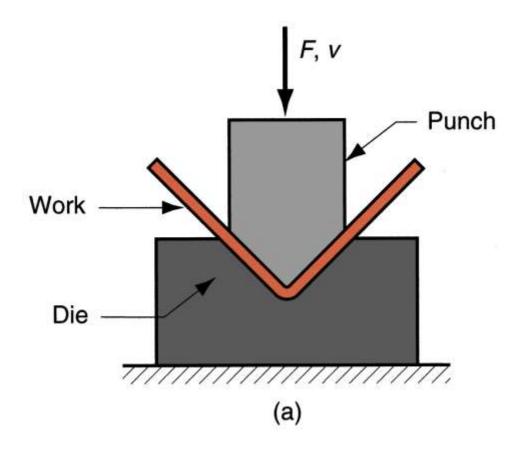
Forging


Basic bulk deformation processes: forging

Extrusion

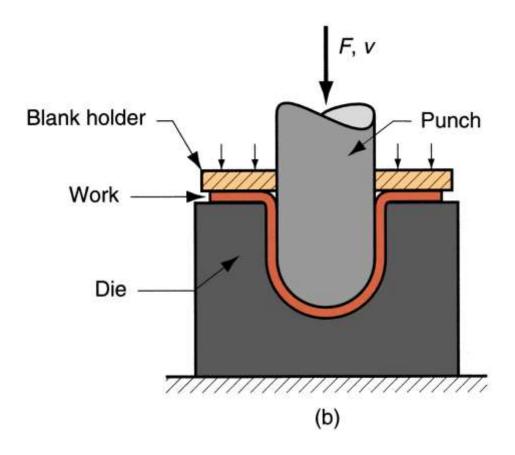
Basic bulk deformation processes: (c) extrusion

Wire and Bar Drawing

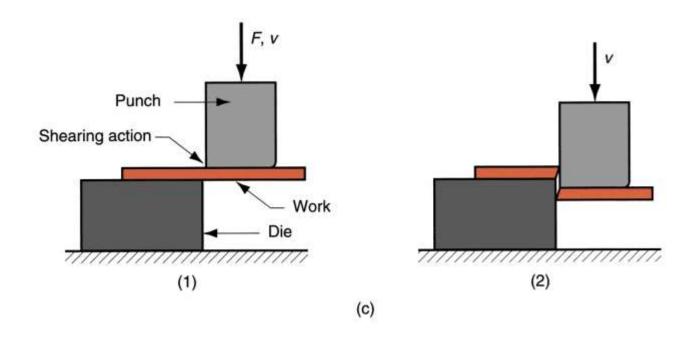


Basic bulk deformation processes: (d) drawing

Sheet Metalworking


- Forming and related operations performed on metal sheets, strips, and coils
- High surface area-to-volume ratio of starting metal, which distinguishes these from bulk deformation
- Often called *pressworking* because presses perform these operations
 - Parts are called stampings
 - Usual tooling: punch and die

Sheet Metal Bending


Basic sheet metalworking operations: bending

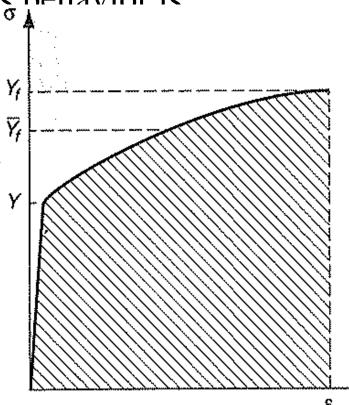
Deep Drawing

Basic sheet metalworking operations: drawing

Shearing of Sheet Metal

Basic sheet metalworking operations: shearing

Material Behavior in Metal Forming


 Plastic region of stress-strain curve is primary interest because material is plastically deformed

True stress

In plastic region, metal's behavior is expressed by the flow $Y_f = K\varepsilon^n$

where K = strength coefficient; and n = strain hardening exponent

• Flow curve based on true stress and true strain

Flow Stress

- For most metals at room temperature, strength increases when deformed due to strain hardening
- ► *Flow stress* = instantaneous value of stress required to continue deforming the material

$$Y_f = K\varepsilon^n$$

where Y_f = flow stress, i.e., the yield strength as a function of strain

Average Flow Stress

 Determined by integrating the flow curve equation between zero and the final strain value defining the range of interest

$$\overline{Y_f} = \frac{K\varepsilon^n}{1+n}$$

where = average flow stress; and $\varepsilon =$ maximum strain during deformation process. n = strain hardening exponent

Temperature in Metal Forming

- For any metal, *K* and *n* in the flow curve depend on temperature
 - Both strength (*K*) and strain hardening (*n*) are reduced at higher temperatures
 - In addition, ductility is increased at higher temperatures

Temperature in Metal Forming

- Any deformation operation can be accomplished with lower forces and power at elevated temperature
- ▶ Three temperature ranges in metal forming:
 - Cold working
 - Warm working
 - Hot working

1. Cold Working

- Performed at room temperature or slightly above
- Many cold forming processes are important mass production operations
- Minimum or no machining usually required

Advantages of Cold Forming

- Better accuracy, closer tolerances
- Better surface finish
- Strain hardening increases strength and hardness
- No heating of work required

Disadvantages of Cold Forming

- Higher forces and power required in the deformation operation
- Ductility and strain hardening limit the amount of forming that can be done
 - In some cases, metal must be annealed to allow further deformation
 - In other cases, metal is simply not ductile enough to be cold worked

Why Hot Working?

Capability for substantial plastic deformation of the metal - far more than possible with cold working or warm working

▶ Why?

- Strength coefficient (*K*) is substantially less than at room temperature
- Strain hardening exponent (n) is zero (theoretically)
- Ductility is significantly increased

Advantages of Hot Working

- Workpart shape can be significantly altered
- Lower forces and power required
- Metals that usually fracture in cold working can be hot formed
- Strength properties of product are generally isotropic
- No work hardening occurs during forming

Disadvantages of Hot Working

- Lower dimensional accuracy in case of bulk forming
- Higher total energy required (due to the thermal energy to heat the workpiece)
- Work surface oxidation (scale), poorer surface finish
- Shorter tool life