Chapter 4: SQL

Basic Structure

Set Operations

Aggregate Functions

Null Values

Nested Subqueries

Derived Relations

Views

Modification of the Database
Joined Relations

Data Definition Language
Embedded SQL, ODBC and JDBC

branch

branch-name

branch—city
assets

Schema Used in Examples

account

depositor

customer

account—-number
branch—-name
balance

customer—name
account—number

customer—namnie

customer—street

customer—city

loan

borrower

loan—number

branch—name
amount

customer—name
loan—number

Basic Structure

SQL is based on set and relational operations with certain
modifications and enhancements

A typical SQL query has the form:
select A, A, ..., A
fromr,r, .., r,
where P

n

As represent attributes
rs represent relations
P is a predicate.

This query is equivalent to the relational algebra expression.

HA1,A2,...,An(GP(r1 XTIy X oo X 1)

The result of an SQL query is a relation.

The select Clause

The select clause list the attributes desired in the result of a
query
corresponds to the projection operation of the relational algebra

E.g. find the names of all branches in the loan relation
select branch-name
from loan

In the “pure” relational algebra syntax, the query would be:

1_[branch-name(/ Oan)

NOTE: SQL does not permit the ‘-’ character in names,

Use, e.g., branch_name instead of branch-name in a real
implementation.

We use ‘-’ since it looks nicer!

NOTE: SQL names are case insensitive, i.e. you can use capital
or small letters.

You may wish to use upper case where-ever we use bold font.

The select Clause (Cont.)

SQL allows duplicates in relations as well as in query results.

To force the elimination of duplicates, insert the keyword
distinct after select.

Find the names of all branches in the loan relations, and remove
duplicates

select distinct branch-name
from /oan

The keyword all specifies that duplicates not be removed.

select all branch-name
from /oan

The select Clause (Cont.)

B An asterisk in the select clause denotes “all attributes”

select *
from /oan

B The select clause can contain arithmetic expressions involving
the operation, +, —, *, and /, and operating on constants or
attributes of tuples.

B The query:

select loan-number, branch-name, amount *
100
from /oan

would return a relation which is the same as the loan relations,
except that the attribute amount is multiplied by 100.

The where Clause

The where clause specifies conditions that the result must
satisfy

corresponds to the selection predicate of the relational algebra.

To find all loan number for loans made at the Perryridge branch
with loan amounts greater than $1200.

select /loan-number

from loan

where branch-name = Perryridge’ and amount >
1200

Comparison results can be combined using the logical
connectives and, or, and not.

Comparisons can be applied to results of arithmetic expressions.

The where Clause (Cont.)

B SQL includes a between comparison operator

B E.g. Find the loan number of those loans with loan amounts
between $90,000 and $100,000 (that is, >$90,000 and <$100,000)

select loan-number
from loan
where amount between 90000 and 100000

The from Clause

B The from clause lists the relations involved in the query
corresponds to the Cartesian product operation of the relational algebra.

B Find the Cartesian product borrower x loan
select *
from borrower, loan

B Find the name, loan number and loan amount of all customers
having a loan at the Perryridge branch.

select customer-name, borrower.loan-number, amount
from borrower, loan
where borrower.loan-number = loan.loan-number and
branch-name = ‘Perryridge’

The Rename Operation

B The SQL allows renaming relations and attributes using the as

clause:
old-name as new-name

B Find the name, loan number and loan amount of all customers;
rename the column name loan-number as loan-id.

select customer-name, borrower.loan-number as loan-id, amount

from borrower, loan
where borrower.loan-number = loan.loan-number

Tuple Variables

B Tuple variables are defined in the from clause via the use of the
as clause.

® Find the customer names and their loan numbers for all
customers having a loan at some branch.

select customer-name, T.loan-number, S.amount
from borroweras T, loanas S
where T.loan-number = S.loan-number

B Find the names of all branches that have greater assets than
some branch located in Brooklyn.

select distinct 7.branch-name
from branch as T, branch as S
where T.assels > S.assets and S.branch-city = Brooklyn’

String Operations

SQL includes a string-matching operator for comparisons on character
strings. Patterns are described using two special characters:

percent (%). The % character matches any substring.
underscore (_). The _ character matches any character.

Find the names of all customers whose street includes the substring
“Main”.
select customer-name

from customer
where customer-street like ‘Y%oMain%'

Match the name “Main%”
like ‘Main\%' escape ‘\'
SQL supports a variety of string operations such as
concatenation (using “||”)

converting from upper to lower case (and vice versa)
finding string length, extracting substrings, etc.

Ordering the Display of Tuples

B List in alphabetic order the names of all customers having a loan
in Perryridge branch

select distinct customer-name

from borrower, loan

where borrower loan-number - loan.loan-number and
branch-name = ‘Perryridge’

order by customer-name

B We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

E.g. order by customer-name desc

Duplicates

B |n relations with duplicates, SQL can define how many copies of
tuples appear in the result.

B Multiset versions of some of the relational algebra operators —
given multiset relations r, and r,:

1. Oy (r): If there are ¢, copies of tuple ¢ in r;, and t, satisfies
selections G ,, then there are ¢, copies of ¢, in G, (r,).

2. I1,(r): For each copy of tuple t, in r,, there is a copy of tuple I1,(t,)
in I1,(r,) where I1,(t,) denotes the projection of the single tuple t,.

3. r, Xr,:Ifthere are c, copies of tuple ¢, in r, and ¢, copies of tuple t,
in r,, there are ¢, x ¢, copies of the tuple t.. t,in r, X r,

Duplicates (Cont.)

B Example: Suppose multiset relations r, (A, B) and r, (C) are
as follows:

rn={1,a 2,a)} r,={@2),(3), ()}
B Then IIgz(r,) would be {(a), (a)}, while I14(r,) x r, would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a3)}
B SQL duplicate semantics:

select A, A, ..., A

fromr,r, .. r,

where P

n

IS equivalent to the multiset version of the expression:

I 4 o ...,An(O-P (R Xr,X..xr,))

Set Operations

B The set operations union, intersect, and except operate on
relations and correspond to the relational algebra operations
U, N, —.

B Each of the above operations automatically eliminates
duplicates; to retain all duplicates use the corresponding multiset
versions union all, intersect all and except all.

Suppose a tuple occurs mtimes in rand ntimes in s, then, it
OCCuUrs:

m + ntimes in runion all s

min(m,n) times in r intersect all s
max(0, m —n) times in rexcept all s

Set Operations

B Find all customers who have a loan, an account, or both:

(select customer-name from depositor)
union
(select customer-name from borrower)

® Find all customers who have both a loan and an account.

(select customer-name from depositor)
intersect
(select customer-name from borrower)

® Find all customers who have an account but no loan.

(select customer-name from depositor)
except
(select customer-name from borrower)

Agdregate Functions

B These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average value

min: minimum value
max: maximum value
sum: sum of values
count: number of values

Aggregate Functions (Cont.)

B Find the average account balance at the Perryridge branch.

select avg (balance)
from account
where branch-name = ‘Perryridge’

B Find the number of tuples in the customer relation.

select count (%)
from customer

® Find the number of depositors in the bank.

select count (distinct customer-name)
from depositor

Aggregate Functions — Group By

B Find the number of depositors for each branch.
select branch-name, count (distinct customer-name)
from depositor, account

where depositor.account-number = account.account-number
group by branch-name

Note: Attributes in select clause outside of aggregate functions must

appear in group by list

Aggregate Functions — Having Clause

B Find the names of all branches where the average account
balance is more than $1,200.

select branch-name, avg (balance)
from account
group by branch-name
having avg (balance) > 1200

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

Null Values

B |t is possible for tuples to have a null value, denoted by null, for
some of their attributes

B null signifies an unknown value or that a value does not exist.

B The predicate is null can be used to check for null values.

E.g. Find all loan number which appear in the /loan relation with
null values for amount.

select loan-number
from /loan
where amountis null

¥ The result of any arithmetic expression involving nullis null
E.g. 5+ null returns null

B However, aggregate functions simply ignore nulls
more on this shortly

Null Values and Three Valued Logic

B Any comparison with null returns unknown
E.g. 5<null or null <>null or null=null

B Three-valued logic using the truth value unknown:

OR: (unknown or true) = true, (unknown or false) = unknown
(unknown or unknown) = unknown

AND: (true and unknown) = unknown, (false and unknown) =
false,
(unknown and unknown) = unknown

NOT: (hot unknown) = unknown

“Pis unknown” evaluates to true if predicate P evaluates to
unknown

B Result of where clause predicate is treated as false if it
evaluates to unknown

Null Values and Aggregates

B Total all loan amounts

select sum (amount)
from loan

Above statement ignores null amounts

result is null if there is no non-null amount, that is the

B All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes.

Nested Subqueries

B SAQL provides a mechanism for the nesting of subqueries.

B A subquery is a select-from-where expression that is nested
within another query.

B A common use of subqueries is to perform tests for set
membership, set comparisons, and set cardinality.

Example Query

B Find all customers who have both an account and a loan at the
bank.

select distinct customer-name
from borrower
where customer-name in (select customer-name
from depositor)

B Find all customers who have a loan at the bank but do not have

an account at the bank
select distinct customer-name
from borrower
where customer-name not in (select customer-name
from depositor)

Example Query

B Find all customers who have both an account and a loan at the
Perryridge branch

select distinct customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number and
branch-name = “Perryridge” and
(branch-name, customer-name) in
(select branch-name, customer-name
from depositor, account
where depositor.account-number =
account.account-number)

¥ Note: Above query can be written in a much simpler manner. The
formulation above is simply to illustrate SQL features.

Set Comparison

B Find all branches that have greater assets than some branch
located in Brooklyn.

select distinct T.branch-name
from branch as T, branch as S
where T.assets > S.assets and
S.branch-city = ‘Brooklyn’

B Same query using > some clause

select branch-name
from branch
where assets > some
(select assets
from branch
where branch-city = '‘Brooklyn’)

Definition of Some Clause

B F <comp>somer< 3dter s.t (F<comp> i)
Where <comp> can be: <, <, >, =, #

0
(b<some| 5 |) =true
6 (read: 5 < some tuple in the relation)
0
(5< some| 5 |) =false
0
(b=some| 5 |)=true
0
(5#some | 5 |) =true (since 0 # 5)

(= some) = in
However, (# some) # not in

Definition of all Clause

B F<comp>allrevier (F<comps> i)

0
(b<all | §5 |) =false
6
6
(5<all | 10|) =true
4
(5=all| 5|)="false
4
(5#all| 6 |)=true (since 5# 4 and 5 # 6)

(+# all) = not in
However, (= all) £ in

Example Query

B Find the names of all branches that have greater assets than all
branches located in Brooklyn.

select branch-name
from branch
where assets > all
(select assets
from branch
where branch-city = ‘Brooklyn’)

Test for Empty Relations

The exists construct returns the value true if the argument
subquery is nonempty.

exists re r Q0
notexistsro r=9d

Example Query

B Find all customers who have an account at all branches located
in Brooklyn.

select distinct S.customer-name

from depositoras S

where not exists (
(select branch-name
from branch
where branch-city = ‘Brooklyn’)

except
(select R.branch-name
from depositor as T, account as R
where T.account-number = R.account-number and
S.customer-name = T.customer-name))

W Notethat X-Y=0 < XcVY
W Note: Cannot write this query using = all and its variants

Test for Absence of Duplicate Tuples

B The unique construct tests whether a subquery has any
duplicate tuples in its result.

B Find all customers who have at most one account at the
Perryridge branch.

select T.customer-name
from depositoras T
where unique (

select R.customer-name

from account, depositor as R

where T.customer-name = R.customer-name and
R.account-number = account.account-number and
account.branch-name = Perryridge’)

Example Query

B Find all customers who have at least two accounts at the
Perryridge branch.

select distinct T.customer-name
from depositor T
where not unique (

select R.customer-name

from account, depositor as R

where T.customer-name = R.customer-name
and

R.account-number = account.account-number
and

account.branch-name = ‘Perryridge’)

Views

B Provide a mechanism to hide certain data from the view of
certain users. To create a view we use the command:

create view v as <query expression>

where:
<query expression> is any legal expression
The view name is represented by v

Example Queries

B A view consisting of branches and their customers

create view all-customer as
(select branch-name, customer-name
from depositor, account
where depositor.account-number = account.account-number)
union
(select branch-name, customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number)

® Find all customers of the Perryridge branch

select customer-name
from all-customer
where branch-name = ‘Perryridge’

Derived Relations

B Find the average account balance of those branches where the
average account balance is greater than $1200.

select branch-name, avg-balance
from (select branch-name, avg (balance)
from account
group by branch-name)
as result (branch-name, avg-balance)
where avg-balance > 1200

Note that we do not need to use the having clause, since we
compute the temporary (view) relation result in the from clause,
and the attributes of result can be used directly in the where
clause.

With Clause

B With clause allows views to be defined locally to a query, rather

than globally. Analogous to procedures in a programming
language.

B Find all accounts with the maximum balance

with max-balance(value) as
select max (balance)
from account
select account-number
from account, max-balance
where account.balance = max-balance.value

Complex Query using With Clause

B Find all branches where the total account deposit is greater than
the average of the total account deposits at all branches.

with branch-total (branch-name, value) as
select branch-name, sum (balance)
from account
group by branch-name
with branch-total-avg(value) as
select avg (value)
from branch-total
select branch-name
from branch-total, branch-total-avg
where branch-total.value >= branch-total-avg.value

Modification of the Database — Deletion

B Delete all account records at the Perryridge branch

delete from account
where branch-name = 'Perryridge’

M Delete all accounts at every branch located in Needham city.

delete from account
where branch-name in (select branch-name

from branch

where branch-city = ‘Needham’)
delete from depositor
where account-number in

(select account-number
from branch, account
where branch-city = ‘Needham’
and branch.branch-name = account.branch-name)

Example Query

B Delete the record of all accounts with balances below the
average at the bank.

delete from account
where balance < (select avg (balance)
from account)

Problem: as we delete tuples from deposit, the average balance

changes
Solution used in SQL:
1. First, compute avg balance and find all tuples to delete
2. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

Modification of the Database — Insertion

B Add a new tuple to account

insert into account
values (‘A-9732’, ‘Perryridge’,1200)
or equivalently

insert into account (branch-name, balance, account-number)
values (‘Perryridge’, 1200, ‘A-9732’)

B Add a new tuple to account with balance set to null

insert into account
values (‘A-777,'Perryridge’, null)

Modification of the Database — Insertion

B Provide as a gift for all loan customers of the Perryridge branch, a
$200 savings account. Let the loan number serve as the account
number for the new savings account

insert into account
select loan-number, branch-name, 200
from loan
where branch-name = ‘Perryridge’

insert into depositor
select customer-name, loan-number
from loan, borrower
where branch-name = Perryridge’

and /oan.account-number = borrower.account-number

B The select from where statement is fully evaluated before any of its
results are inserted into the relation (otherwise queries like
insert into tablel select * from tablet
would cause problems

Modification of the Database — Updates

B Increase all accounts with balances over $10,000 by 6%, all
other accounts receive 5%.

Write two update statements:

update account
set balance = balance * 1.06
where balance > 10000

update account
set balance = balance * 1.05
where balance < 10000

The order is important
Can be done better using the case statement (next slide)

Case Statement for Conditional Updates

B Same query as before: Increase all accounts with balances over
$10,000 by 6%, all other accounts receive 5%.

update account
set balance = case
when balance <= 10000 then balance *1.05
else balance * 1.06
end

Update of a View

Create a view of all loan data in loan relation, hiding the amount
attribute

create view branch-loan as
select branch-name, loan-number
from /loan

Add a new tuple to branch-loan

insert into branch-loan
values (‘Perryridge’, ‘L-307’)

This insertion must be represented by the insertion of the tuple
(‘L-307’, ‘Perryridge’, null)
into the /oan relation

Updates on more complex views are difficult or impossible to
translate, and hence are disallowed.

Most SQL implementations allow updates only on simple views
(without aggregates) defined on a single relation

Transactions

A transaction is a sequence of queries and update statements executed
as a single unit

Transactions are started implicitly and terminated by one of

v commit work: makes all updates of the transaction permanent in the
database

v rollback work: undoes all updates performed by the transaction.

Motivating example
Transfer of money from one account to another involves two steps:
v deduct from one account and credit to another
If one steps succeeds and the other fails, database is in an inconsistent state
Therefore, either both steps should succeed or neither should

If any step of a transaction fails, all work done by the transaction can be
undone by rollback work.

Rollback of incomplete transactions is done automatically, in case of
system failures

Transactions (Cont.)

B In most database systems, each SQL statement that executes
successfully is automatically committed.

Each transaction would then consist of only a single statement

Automatic commit can usually be turned off, allowing multi-
statement transactions, but how to do so depends on the database

system

Another option in SQL:1999: enclose statements within
begin atomic

end

Joined Relations

Join operations take two relations and return as a result another
relation.

These additional operations are typically used as subquery
expressions in the from clause

Join condition — defines which tuples in the two relations match,
and what attributes are present in the result of the join.

Join type — defines how tuples in each relation that do not match
any tuple in the other relation (based on the join condition) are
treated.

Join Types Join Conditions
inner join natural

left outer join on <predicate>
right outer join using (A, A,, ..., A)
full outer join

B Relation loan

Joined Relations — Datasets for Examples

loan-number branch-name amount
L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700

M Relation borrower

customer-name

loan-number

Jones L-170
Smith L-230
Hayes | -155

M Note: borrower information missing for L-260 and loan
information missing for L-155

Joined Relations — Examples

® /oan inner join borrower on
loan.loan-number = borrower.loan-number

loan-number branch-name amount customer-name | loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230

B Joan left outer join borrower on
loan.loan-number = borrower.loan-number

loan-number branch-name amount customer-name | loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
| -260 Perryridge 1700 null null

Joined Relations — Examples

B /oan natural inner join borrower

loan-number branch-name amount customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

M loan natural right outer join borrower

loan-number branch-name amount customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
| -155 null null Hayes

Joined Relations — Examples

B J/oan full outer join borrower using (loan-number)

loan-number branch-name amount customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null
L-155 null null Hayes

B Find all customers who have either an account or a loan (but
not both) at the bank.

select customer-name
from (depositor natural full outer join borrower)
where account-number is null or loan-number is null

Data Definition Language (DDL)

Allows the specification of not only a set of relations but also
information about each relation, including:

The schema for each relation.

The domain of values associated with each attribute.
Integrity constraints

The set of indices to be maintained for each relations.
Security and authorization information for each relation.
The physical storage structure of each relation on disk.

Domain Types in SQL

char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified maximum
length n.

int. Integer (a finite subset of the integers that is machine-dependent).

smallint. Small integer (a machine-dependent subset of the integer domain
type).

numeric(p,d). Fixed point number, with user-specified precision of p digits,
with n digits to the right of decimal point.

real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

float(n). Floating point number, with user-specified precision of at least n
digits.

Null values are allowed in all the domain types. Declaring an attribute to be
not null prohibits null values for that attribute.

create domain construct in SQL-92 creates user-defined domain types
create domain person-name char(20) not null

Date/Time Types in SQL (Cont.)

date. Dates, containing a (4 digit) year, month and date
E.g. date 2001-7-27°
time. Time of day, in hours, minutes and seconds.
E.g. time '09:00:30° time °09:00:30.75’
timestamp: date plus time of day
E.g. timestamp 2001-7-27 09:00:30.75’
Interval: period of time
E.g. Interval ‘1’ day
Subtracting a date/time/timestamp value from another gives an interval value
Interval values can be added to date/time/timestamp values
Can extract values of individual fields from date/time/timestamp
E.g. extract (year from r.starttime)
Can cast string types to date/time/timestamp
E.g. cast <string-valued-expression> as date

Create Table Construct

B An SQL relation is defined using the create table command:

create table r (A, D,, A, D,, ..., A, D,
(integrity-constraint,),

(ir;tegrity-constraintk))
ris the name of the relation
each A, is an attribute name in the schema of relation r
D.is the data type of values in the domain of attribute A,
B Example:

create table branch
(branch-name char(15) not null,
branch-city char(30),

assets integer)

Integrity Constraints in Create Table

¥ not null
B primary key (A, ..., A)
B check (P), where Pis a predicate

Example: Declare branch-name as the primary key for
branch and ensure that the values of assets are non-
negative.
create table branch

(branch-namechar(15),

branch-city char(30)

assets integer,

primary key (branch-name),

check (assets >=0))

primary key declaration on an attribute automatically
ensures not null in SQL-92 onwards, needs to be
explicitly stated in SQL-89

Drop and Alter Table Constructs

The drop table command deletes all information about the
dropped relation from the database.

The alter table command is used to add attributes to an
existing relation.

alter table radd A D

where A is the name of the attribute to be added to relation r
and D is the domain of A.

All tuples in the relation are assigned null as the value for the
new attribute.

The alter table command can also be used to drop
attributes of a relation

alter table rdrop A
where A is the name of an attribute of relation r

Dropping of attributes not supported by many databases

Embedded SQL

The SQL standard defines embeddings of SQL in a variety of
programming languages such as Pascal, PL/I, Fortran, C, and
Cobol.

A language to which SQL queries are embedded is referred to
as a hostlanguage, and the SQL structures permitted in the host
language comprise embedded SQL.

The basic form of these languages follows that of the System R
embedding of SQL into PL/I.

EXEC SQL statement is used to identify embedded SQL request
to the preprocessor

EXEC SQL <embedded SQL statement > END-EXEC

Note: this varies by language. E.g. the Java embedding uses
#SQL{....};

Example Query

From within a host language, find the names and cities of
customers with more than the variable amount dollars in some
account.

B Specify the query in SQL and declare a cursor for it
EXEC SQL

declare c cursor for
select customer-name, customer-city
from depositor, customer, account
where depositor.customer-name = customer.customer-name
and depositor account-number = account.account-number
and account.balance > :amount

END-EXEC

Embedded SQL (Cont.)

B The open statement causes the query to be evaluated
EXEC SQL open ¢ END-EXEC

B The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

EXEC SQL fetch cinto :cn, :cc END-EXEC
Repeated calls to fetch get successive tuples in the query result

B A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is available

B The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close ¢ END-EXEC

Note: above details vary with language. E.g. the Java embedding
defines Java iterators to step through result tuples.

Updates Through Cursors

B Can update tuples fetched by cursor by declaring that the cursor
is for update

declare c cursor for

select *

from account

where branch-name = ‘Perryridge’
for update

B To update tuple at the current location of cursor

update account
set balance = balance + 100
where current of ¢

Dynamic SQL

Allows programs to construct and submit SQL queries at run
time.

Example of the use of dynamic SQL from within a C program.

char * sqlprog = ‘update account
set balance = balance *1.05
where account-number = ?”
EXEC SQL prepare dynprog from :sqglprog;
char account [10] = “A-1017;
EXEC SQL execute dynprog using :account;

The dynamic SQL program contains a ?, which is a place holder
for a value that is provided when the SQL program is executed.

ODBC

B Open DataBase Connectivity(ODBC) standard

standard for application program to communicate with a database
server.

application program interface (API) to
v open a connection with a database,
v send queries and updates,
v get back results.

B Applications such as GUI, spreadsheets, etc. can use ODBC

ODBC (Cont.)

Each database system supporting ODBC provides a "driver" library that
must be linked with the client program.

When client program makes an ODBC API call, the code in the library
communicates with the server to carry out the requested action, and fetch
results.

ODBC program first allocates an SQL environment, then a database
connection handle.

Opens database connection using SQLConnect(). Parameters for
SQLConnect:

connection handle,
the server to which to connect
the user identifier,
password
Must also specify types of arguments:
SQL_NTS denotes previous argument is a null-terminated string.

ODBC Code

B int ODBCexample()
{
RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */
SQLAllocEnv(&env);
SQLAllocConnect(env, &conn);

SQLConnect(conn, "aura.bell-labs.com”, SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);

{.... Do actual work ... }

SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);

ODBC Code (Cont.)

B Program sends SQL commands to the database by using SQLExecDirect
B Result tuples are fetched using SQLFetch()

B SQLBindCol() binds C language variables to attributes of the query result

v When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

v Arguments to SQLBindCol()
ODBC stmt variable, attribute position in query result
The type conversion from SQL to C.
The address of the variable.
For variable-length types like character arrays,
» The maximum length of the variable
» Location to store actual length when a tuple is fetched.

» Note: A negative value returned for the length field indicates null
value

B Good programming requires checking results of every function call for
errors; we have omitted most checks for brevity.

ODBC Code (Cont.)

B Main body of program

char branchname[80];
float balance;
int lenOut1, lenOut2;
HSTMT stmt;

SQLAllocStmt(conn, &stmt);

char * sglquery = "select branch_name, sum (balance)
from account

group by branch_name";
error = SQLExecDirect(stmt, sglquery, SQL_NTS);

if (error == SQL_SUCCESS) {

SQLBindCol(stmt, 1, SQL_C_CHAR, branchname, 80, &lenOut1);
SQLBindCol(stmt, 2, SQL_C_FLOAT, &balance, 0, &lenOut2);

while (SQLFetch(stmt) >= SQL_SUCCESS) {
printf (" %s %g\n", branchname, balance);
}
}
SQLFreeStmt(stmt, SQL_DROP);

More ODBC Features

B Prepared Statement
SQL statement prepared: compiled at the database
Can have placeholders: E.g. insert into account values(?,?,?)
Repeatedly executed with actual values for the placeholders

B Metadata features
finding all the relations in the database and

finding the names and types of columns of a query result or a relation in
the database.

B By default, each SQL statement is treated as a separate transaction
that is committed automatically.

Can turn off automatic commit on a connection
v SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)}
transactions must then be committed or rolled back explicitly by
v SQLTransact(conn, SQL_COMMIT) or
v SQLTransact(conn, SQL_ROLLBACK)

ODBC Conformance Levels

B Conformance levels specify subsets of the functionality defined
by the standard.

Core
Level 1 requires support for metadata querying

Level 2 requires ability to send and retrieve arrays of parameter
values and more detailed catalog information.

B SQL Call Level Interface (CLI) standard similar to ODBC
interface, but with some minor differences.

JDBC

JDBC is a Java API for communicating with database systems
supporting SQL

JDBC supports a variety of features for querying and updating
data, and for retrieving query results

JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes

Model for communicating with the database:
Open a connection
Create a “statement” object

Execute queries using the Statement object to send queries and
fetch results

Exception mechanism to handle errors

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)

{

try {
Class.forName ("oracle.jdbc.driver.OracleDriver");

Connection conn =
DriverManager.getConnection("jdbc:oracle:thin:@aura.bell-

labs.com:2000:bankdb", userid, passwd);
Statement stmt = conn.createStatement();
... Do Actual Work
stmt.close();
conn.close();
}
catch (SQLException sqgle) {
System.out.printin("SQLException : " + sqgle);

JDBC Code (Cont.)

B Update to database

try {

stmt.executeUpdate("insert into account values
('A-9732', 'Perryridge’, 1200)");

} catch (SQLException sqgle) {
System.out.printin("Could not insert tuple. " + sgle);

}
B Execute query and fetch and print results

ResultSet rset = stmt.executeQuery("select branch_name, avg(balance)
from account
group by branch_name");

while (rset.next()) {

System.out.printin(
rset.getString("branch_name") +

+ rset.getFloat(2));

JDBC Code Details

B Getting result fields:

rs.getString(“branchname”) and rs.getString(1) equivalent if
branchname is the first argument of select result.

B Dealing with Null values
int a = rs.getint(“a”);
if (rs.wasNull()) Systems.out.printin(“Got null value”);

Prepared Statement

B Prepared statement allows queries to be compiled and executed
multiple times with different arguments

PreparedStatement pStmt = conn.prepareStatement(
“insert into account

values(?,?,?)”); pStmt.setString(1, "A-9732");

pStmt.setString(2, "Perryridge");

pStmt.setint(3, 1200);

pStmt.executeUpdate();

pStmt.setString(1, "A-9733");
pStmt.executeUpdate();

W Beware: If value to be stored in database contains a single quote or
other special character, prepared statements work fine, but creating
a query string and executing it directly would result in a syntax

error!

Other SQL Features

B SQL sessions
client connects to an SQL server, establishing a session

executes a series of statements
disconnects the session

can commit or rollback the work carried out in the session

B An SQL environment contains several components,
iIncluding a user identifier, and a schema, which
identifies which of several schemas a session is using.

Schemas, Catalogs, and Environments

Three-level hierarchy for naming relations.
Database contains multiple catalogs
each catalog can contain multiple schemas

SQL objects such as relations and views are contained within a
schema

e.g. catalog5.bank-schema.account

Each user has a default catalog and schema, and the
combination is unique to the user.

Default catalog and schema are set up for a connection
Catalog and schema can be omitted, defaults are assumed

Multiple versions of an application (e.g. production and test) can
run under separate schemas

Procedural Extensions and Stored
Procedures

B SQL provides a module language

permits definition of procedures in SQL, with if-then-else statements,
for and while loops, etc.

more in Chapter 9

M Stored Procedures
Can store procedures in the database
then execute them using the call statement

permit external applications to operate on the database without
knowing about internal details

B These features are covered in Chapter 9 (Object Relational
Databases)

Extra Material on JDBC and
Application Architectures

Transactions in JDBC

As with ODBC, each statement gets committed automatically in
JDBC

To turn off auto commit use
conn.setAutoCommit(false);

To commit or abort transactions use
conn.commit() or conn.rollback()

To turn auto commit on again, use
conn.setAutoCommit(true);

Procedure and Function Calls in JDBC

B JDBC provides a class CallableStatement which allows SQL stored
procedures/functions to be invoked.

CallableStatement cs1 = conn.prepareCall(“{call proc (?,?7)}") ;
CallableStatement cs2 = conn.prepareCall(“{? = call func (?,7)}”);

Result Set MetaData

The class ResultSetMetaData provides information about all the
columns of the ResultSet.

Instance of this class is obtained by getMetaData() function of
ResultSet.

Provides Functions for getting number of columns, column

name, type, precision, scale, table from which the column is
derived etc.

ResuliSetMetaData rsmd = rs.getMetaData ();

for (inti=1;i<=rsmd.getColumnCount(); i++) {
String name = rsmd.getColumnName(i);
String typeName = rsmd.getColumnTypeName(i);

Database Meta Data

B The class DatabaseMetaData provides information about database relations

B Has functions for getting all tables, all columns of the table, primary keys etc.
B E.g.to print column names and types of a relation

DatabaseMetaData domd = conn.getMetaData();

ResultSet rs = domd.getColumns(null, “BANK-DB”, “account”,
“%”);

//Arguments: catalog, schema-pattern, table-pattern, column-pattern
// Returns: 1 row for each column, with several attributes such as
// COLUMN_NAME, TYPE_NAME, etc.

while (rs.next()) {

System.out.printin(rs.getString(“COLUMN_NAME”) ,

rs.getString(“TYPE_NAME”);
}

® There are also functions for getting information such as
Foreign key references in the schema

Database limits like maximum row size, maximum no. of connections, etc

Application Architectures

B Applications can be built using one of two architectures
Two tier model

v Application program running at user site directly uses
JDBC/ODBC to communicate with the database

Three tier model

v Users/programs running at user sites communicate with an
application server. The application server in turn communicates
with the database

Two-tier Model

B E.g. Java code runs at client site and uses JDBC to
communicate with the backend server

B Benefits:
flexible, need not be restricted to predefined queries
¥ Problems:

Security: passwords available at client site, all database operation
possible

More code shipped to client

Not appropriate across organizations, or in large ones like
universities

Three Tier Model

[CGI Program]

Application/HTTP Servlets W JDBC Database
Server J Server

_

HTTP/Application Specific Protocol

Client Client Client

Three-tier Model (Cont.)

E.g. Web client + Java Servlet using JDBC to talk with database
server

Client sends request over http or application-specific protocol
Application or Web server receives request
Request handled by CGI program or servlets

Security handled by application at server
Better security
Fine granularity security

Simple client, but only packaged transactions

End of Chapter

The loan and borrower Relations

loan-number

branch-name

customer-name | loan-number

L-170
L-230
L-260

Downtown
Redwood
Perryridge

Jones
Smith
Hayes

L-170
[-230
L-155

loan

borrower

The Result of loan inner join borrower
on loan.loan-number = borrower.loan-
number

[-330 Keqmooq cItH [-330
r-1M0 DOMUFOMY Jouee r-1)0
JOUM-MINIREL | PLENCYI-IHING CIN2LOMIEL-NUING | [OWM-1TNDEL.

The Result of loan left outer join
borrower on loan-number

loan-number

branch-name

customer-name

loan-number

L-170
L-230
L-260

Downtown
Redwood
Perryridge

Jones
Smith
null

[-170
[L-230
null

The Result of loan natural inner join
borrower

loan-number

branch-name

amount

customer-name

L-170
L-230

Downtown
Redwood

3000
4000

Jones
Smith

Join Types and Join Conditions

Join types Join Conditions
inner join natural

left outer join on < predicate>
right outer join using (A, Ay, ..., A))
full outer join

The Result of /loan natural right outer
join borrower

loan-number | branch-name customer-name

L-170 Downtown Jones

[.-230 Redwood Smith
L-155 null Hayes

The Result of /oan full outer join
borrower usingd(loan-number)

loan-number

branch-name

amount

customer-name

L-170
L-230
L-260
L-155

Downtown
Redwood
Perryridge
null

3000
4000
1700
null

Jones
Smith
null
Hayes

SQL Data Definition for Part of the Bank Database

create table customer
(customer-name char(20),
customer-street char(30),
customer-city ~ char(30),
primary key (customer-name))

create table branch
(branch-name char(15),
branch-city char(30),
assets integer,
primary key (branch-name),
check (assets >= 0))

create table account
(account-number char(10),
branch-name char(15),
balance integer,
primary key (account-number),
check (balance > = 0))

create table depositor
(customer-name char(20),
account-number char(10),
primary key (customer-name, account-number))

	Chapter 4: SQL
	Schema Used in Examples
	Basic Structure
	The select Clause
	The select Clause (Cont.)
	Slide 6
	The where Clause
	The where Clause (Cont.)
	The from Clause
	The Rename Operation
	Tuple Variables
	String Operations
	Ordering the Display of Tuples
	Duplicates
	Duplicates (Cont.)
	Set Operations
	Slide 17
	Aggregate Functions
	Aggregate Functions (Cont.)
	Aggregate Functions – Group By
	Aggregate Functions – Having Clause
	Null Values
	Null Values and Three Valued Logic
	Null Values and Aggregates
	Nested Subqueries
	Example Query
	Slide 27
	Set Comparison
	Definition of Some Clause
	Definition of all Clause
	Slide 31
	Test for Empty Relations
	Slide 33
	Test for Absence of Duplicate Tuples
	Slide 35
	Views
	Example Queries
	Derived Relations
	With Clause
	Complex Query using With Clause
	Modification of the Database – Deletion
	Slide 42
	Modification of the Database – Insertion
	Slide 44
	Modification of the Database – Updates
	Case Statement for Conditional Updates
	Update of a View
	Transactions
	Transactions (Cont.)
	Joined Relations
	Joined Relations – Datasets for Examples
	Joined Relations – Examples
	Joined Relations – Examples
	Slide 54
	Data Definition Language (DDL)
	Domain Types in SQL
	Date/Time Types in SQL (Cont.)
	Create Table Construct
	Integrity Constraints in Create Table
	Drop and Alter Table Constructs
	Embedded SQL
	Slide 62
	Embedded SQL (Cont.)
	Updates Through Cursors
	Dynamic SQL
	ODBC
	ODBC (Cont.)
	ODBC Code
	ODBC Code (Cont.)
	Slide 70
	More ODBC Features
	ODBC Conformance Levels
	JDBC
	JDBC Code
	JDBC Code (Cont.)
	JDBC Code Details
	Prepared Statement
	Other SQL Features
	Schemas, Catalogs, and Environments
	Procedural Extensions and Stored Procedures
	Extra Material on JDBC and Application Architectures
	Transactions in JDBC
	Procedure and Function Calls in JDBC
	Result Set MetaData
	Database Meta Data
	Application Architectures
	Two-tier Model
	Three Tier Model
	Three-tier Model (Cont.)
	End of Chapter
	The loan and borrower Relations
	The Result of loan inner join borrower on loan.loan-number = borrower.loan-number
	The Result of loan left outer join borrower on loan-number
	The Result of loan natural inner join borrower
	Join Types and Join Conditions
	The Result of loan natural right outer join borrower
	The Result of loan full outer join borrower using(loan-number)
	SQL Data Definition for Part of the Bank Database

