Objectives

= Why PL-SQL ?
® | anguage features

® Basic Structure of PL/SQL
program

® Data Types
= Control Flow in PL-SQL
= | oops in PL-SQL

Why PL SQL ?

® PL/SQL stands for Procedural
Language/SQL.

= PL/SQL extends SQL by adding
constructs found in procedural
languages like procedures, loops,
variables, objects etc.

= Resulting a structural language that
Is more powerful than SQL

PL SQL, Is there any
Advantage ?

Server Server

Qu

SQL SQL SQL

SQL SQL SQL
Query1| |Query2| Query3

ery1l Query2 Query3

PL-SQL Block

Client

Client

In case of SQL to send 3 queries we will need three
network trips between client and server.

In PL-SQL we bundle any number of queries in a
block and in single network trip task is done.

Language features

® Supports constructs like any other
4th generation language:

® Variables and Data types

® Loops and Control statements
®* Procedures and Functions

®* Packages

® Triggers

® Objects

® Records (Its like structure in C
language)

PL SQL program structure

Declare

<All Variables, cursors, exception etc are
declared here>

Begin
<All programming logic , queries , program
statements are written here>

Exception

<All Error Handling code is written here>
End;

--It ends the program

PL SQL nested block

<<Quter Block>>
Declare

Begin
<<Inner Block>>
Declare
Begin
Exception
End;

Exception

End;

PL SQL Block

Remember :

Declare is optional and only required when
variables need to be declared.

Exception is optional and required when
Error/Exception handling is done.

Begin and End are mandatory as all logic and
queries are written inside it.

Declare
Begin
Exception
End;

PL SQL program- Sample |

BEGIN

Insert into Dept values(70,’HR’,’Pune’);
Insert into Dept values(80,’PSD’,’Mumbai’);
Insert into Dept values(90,’'ESG’,'Pune’);

END;

--This program will insert three records at the same time in the table dept.

PL SQL program- Sample |

-- This program displays the sum of two numbers

DECLARE

v_num1 Number;
v_num2 Number;
v_sum Number;

BEGIN

V_num1 := &Number1;
V_num2 := &Number2;
V_sum :=v_num1 +v_num2;

Dbms_Output.Put_Line (‘The Sum of numberis ;" || v_sum);

END;

Save , Edit and Execute program

Type your program in SQL * plus

To save : Save <File Name>

Program is saved in the bin directory to save in other
folder give complete path.

Eg: Save ‘C:\ESG\FirstPrg.sql’

To make changes:

Edit <File Name>

To edit program saved in folder other then bin
Edit ‘C:\ESG\FirstPrg.Sql’

To Execute:

@ File Name

To execute program saved in folder other then bin.
@ ‘C:\ESG\FirstPrg.Sql’

Important Keywords

= Following are the keywords in PL-SQL ,
should not be used as a variable name.

DECLARE

BEGIN

END

EXCEPTION
LOOP , END LOOP

IF , ELSE , ELSIF , END IF
CURSOR

PROCEDURE
FUNCTION

Cont..

Important Keywords

= Keywords
* PACKAGE
* TRIGGER
* GRANT
* REVOKE
* FOR
e WHILE
* CASE
* VARRAY
°* TYPE
e OBJECT

Operators

" |mportant operators in PL SQL

Airthmetic : (+,-,%,/)
® Logical: (AND , OR, NOT)
® Comparison: (<=, <, >, =)
® Comments (Two hyphens): --
o

Assignment operator: In PL SQL assignment
operator is

So to assign values we need to write :=

Examples:
Z = X+y
Z.=X
z:=100

name = ‘MBT’

Operators

= |mportant operators in PL SQL

® Line ends with operator:
® To join two strings:
® To accept value:

* Power
2**3 means 2 raise to power 3

® In loop we use
Example:
For Xin 1..5 means
1t0 5

® Non numeric data
(string or date)
IS written in single
quote:

**

Accept a value

= Examples:
* num1 := &Number1;
At run time this will prompt as
Follows

Enter a value for Number1:

Whatever value user will enter
here will be assign to variable
num-

Accept a value

® Examples:
® name = ‘&Name’;
At run time this will prompt as
Follows

Enter a value for Name:

Whatever value user will enter
here will be assign to variable
name

“ ‘s usgd in case if entered data is not
numeric

Display value

= To display on same line:
dbms_output.put()

= To display on new line.
dbms_output.put_line()

= Here dbms_output is a Oracle package its
like header file or library in C language.

= Put and .Put_Line are functions like printf
in ‘C’ language

Display value : Examples

" Dbms_output.put (‘Centre for’);
Dbms_output.put (‘Remote’);
Dbms_output.put (‘Sensing’);
Dbms_output.put_line(‘);

It will display Centre for Remote Sensing on
same line.

Note :

1. On SQL prompt after Login you need to set one command
to see displayed values.

SET SERVEROUTPUT ON

2. Itis important that at least once you write .put_line after
any number of .put functions else values are not displayed.

Display value : Examples

1.

Dbms_output.put_line (‘Centre for’);
Dbms_output.put_line (‘Remote °);
Dbms_output.put_line (‘Sensing’);

It will display

Mahindra

British

Telecom

on different lines.

Note :

On SQL prompt after Login you need to set one command
to see displayed values.

SET SERVEROUTPUT ON

DML operations in PI-SQL

= All DML operations
(Insert/Update/Delete /Select) are to be
written in Begin part of the block.

" No change in the Syntax of Insert , Update
and Delete , it is same as SQL.

" Select syntax is different then SQL , it
contains INTO clause.

" |f Select query can return more then one
rows then you should always use cursors .

Select Syntax for a Single
Row Query.

B Select column1, column2
INTO Variable1,Variable2
From Table Name
Where condition

" The only ch?rogne S as ma g columrgls ou

want to ou nee
dec are ﬂwat many va |a% and use TO

clause.
= All other parts of query are unchanged

- here condition here such t
\évAOr éube usi?jp cor Hen 86%%8%

|t out t at It will give
error.

Data Types in PL SQL

" Scalar Types
¢* Char

CHAR datatype to store fixed-length character
data. Maximum size = 2000 bytes

® Varchar2

VARCHARZ2 datatype to store variable-length character .
Maximum size = 4000 bytes

®* Number

Number types let you store numeric data (integers, real

numbers, and floating-point numbers), represent quantities,
and do calculations.

Data Types in PL SQL

" Scalar Types

* Binary_Integer

The BINARY _INTEGER datatype to store signed
integers (-2**31 to 2**31)

* Date
DATE datatype to store fixed-length datetimes

* Long

The LONG datatype to store variable-length character
strings. The LONG datatype is like the VARCHAR2
datatype, except that the maximum size of a LONG
value is 32760 bytes.

Data Types in PL SQL

" Scalar Types
® NChar

To store multi byte fixed length character data. Its same

as Char only difference is it Is used to store characters
of different language like Japenese , chinese etc.

Number of characters it can store depend on language.

® NVarchar

To store multi byte variable length character data. Its

same as Varchar2 only difference is it is used to store
chtaracters of differentlanguage like Japenese , chinese
etc.

Number of characters it can store depend on language.

Data Types in PL SQL

" Composite Types

® Record

Ic}s like structure in C Language. To be discussed in Second
ay session.

® Table

Ilts like Array in C Language. To be discussed in detail in
Second day session.

This Array type is un-constrained array

® VArray

Its like Array in C Language. To be discussed in detail in
Fourth day Session.

This Array type is constrained array

Data Types in PL SQL

" Reference Types

® Ref Cursor

Its used for dynamic cursor. To be discussed in
Second day session.

Data Types in PL SQL

"LOB
° BLOB

Binary Large Object A column or variable of type BLOB can
store up to 4GB of binary data in each record.

* CLOB

Character Large Object A column or variable of type CLOB
can store up to 4GB of character data in each record.

®* BFILE

It can store a file of size 4GB externally outside database for
each record and can refer to that from inside the database.

Data Types in PL SQL

- LOB

Column or variable of this type can be accessed only
using a Oracle package DBMS_ LOB.

® This should be used only if required to store a large
amount of data in each record of a table

® You should avoid making un-necessary use of LOB’s.

® To be discussed in last session of PL-SQL

Variable Declaration in PL SQL

® Variables are always declared in
DECLARE section of the program.

® Variable Name <Data Type>

® Various way to declare them
v_empno Number;
V_ename varcharz;
v_job Char(10);

Variable Declaration in PL SQL

Dynamic and preferred way to declare a variable
Variable Name TableName.ColName%Type

v_empno Emp.Empno%Type;
V_ename Emp.Ename%Type;
v_deptno Dept.Deptno%Type;

Advantages of declaring in above way.
¢ Variable will always have same datatype as column

®* Any change in column will change the type of variable
also, so we need not have to change and recompile
the program to run.

Variable Declaration in PL SQL

%RowType
Variable Name TableName%RowType
v_emp Emp%RowType;

Advantages of declaring in above way.

® Variable will become like a structure variable in
C (i.e. v_emp will have same structure like Emp
Table) and you can refer to individual element
as follows:

V_emp.empno
V_emp.ename
v_emp.sal

Variable Declaration in PL SQL

» Type . You can also make your own type in
program and use in the declare section to declare
variable.

Type t name is Varchar2(50);

-- now you can make variable of this type
V_name t name;
V_name2 t name;

v_name and v_name2 both will become varchar2(50)

Conditional Statements

" |F ... Then ... ELSE

If <condition1> Then
<Code>

ELSIF <Condition2> Then
<Code>

ELSE
<Code>

END IF;

" Note here that for one IF we only need one END IF;

" No END IF is required for ELSIF i.e for one set of IF
condition only one END IF; is required

Conditional Statements

" |F...Then ... ELSE

If v_deptno =10 Then

DBMS OUTPUT.PUT LINE
('Accounting);

ELSIF v_deptno = 20 Then
DBMS_OUTPUT.PUT_LINE (‘ESG);

ELSE
DBMS_OUTPUT.PUT_LINE (‘Invalid');

END IF;

Conditional Statements

. ® CASE : This is available from ORACLE 8i
12 ™ onwards only , not in ORACLE 8 and version
) prior to that.

CASE

WHEN <Variable> = <VValue1> Then
<Code>

WHEN <Variable> = <Value2> Then
<Code>

ELSE

<Code>

END CASE;

Conditional Statements

" CASE:

CASE
When v_deptno =10 Then

DBMS OUTPUT.PUT LINE
('Accounting');

When v_deptno =20 Then
DBMS_OUTPUT.PUT_LINE (‘ESG");
ELSE
DBMS_OUTPUT.PUT_LINE (‘Invalid");
END CASE;

TYPES OF LOOPS

= Simple Loop

Loop

Exit When <Condition>
<Code>

End Loop;

= Exit when is required to give the condition to end
the loop

= |tis pre tested as condition is checked first and
then code is executed

TYPES OF LOOPS

= Simple Loop

Loop

Exit Wheni=10
dbms_output.put_line (i);
End Loop;

--Pre Tested

TYPES OF LOOPS

= Simple Loop

Loop

<Code>

Exit When <Condition>
End Loop;

= Exit when is required to give the condition to end
the loop

" |tis post tested as condition is checked after the
code is executed

TYPES OF LOOPS

= Simple Loop
Loop
dbms_output.put_line (i);
Exit Wheni=10
End Loop;

--Post Tested

TYPES OF LOOPS

= While Loop

While <Condition>
Loop

<Code>

End Loop;

= While is required for condition to end the Loop
® This is also pre tested.

TYPES OF LOOPS

= While Loop

While i <10
Loop

dbms_output.put_line (i);
End Loop;

TYPES OF LOOPS

"= FOR Loop

FOR <Variable> IN <Min> .. <Max>
Loop

<Code>

End Loop;

® This Loop is used when we know the number
of time the loop is to be executed.

® This is also pre tested.

TYPES OF LOOPS

"= FOR Loop

FOR iIN1..100

Loop
<Code>

End Loop;

" This Loop will execute the given code 100
times fori=1to 100

TYPES OF LOOPS

® FOR Loop Reverse

FOR iIN Reverse 1 .. 100
Loop

<Code>

End Loop;

® This Loop will execute the given code 100
times fori =100 to 1

® This is reverse i.e from last value to first value

	Objectives
	Why PL SQL ?
	PL SQL, Is there any Advantage ?
	Language features
	PL SQL program structure
	PL SQL nested block
	PL SQL Block
	PL SQL program- Sample I
	PL SQL program- Sample II
	Save , Edit and Execute program
	Important Keywords
	Slide 12
	Operators
	Slide 14
	Accept a value
	Slide 16
	Display value
	Display value : Examples
	Slide 19
	DML operations in Pl-SQL
	Select Syntax for a Single Row Query.
	Data Types in PL SQL
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Variable Declaration in PL SQL
	Slide 30
	Slide 31
	Slide 32
	Conditional Statements
	Slide 34
	Slide 35
	Slide 36
	TYPES OF LOOPS
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

