
ObjectivesObjectives

 Why PL-SQL ?Why PL-SQL ?
 Language featuresLanguage features
 Basic Structure of PL/SQL Basic Structure of PL/SQL

programprogram
 Data TypesData Types
 Control Flow in PL-SQLControl Flow in PL-SQL
 Loops in PL-SQLLoops in PL-SQL

Why PL SQL ?Why PL SQL ?

 PL/SQL stands for Procedural PL/SQL stands for Procedural
Language/SQL.Language/SQL.

 PL/SQL extends SQL by adding PL/SQL extends SQL by adding
constructs found in procedural constructs found in procedural
languages like procedures, loops, languages like procedures, loops,
variables, objects etc.variables, objects etc.

 Resulting a structural language that Resulting a structural language that
is more powerful than SQLis more powerful than SQL

PL SQL, Is there any PL SQL, Is there any
Advantage ?Advantage ?

 In case of SQL to send 3 queries we will need three In case of SQL to send 3 queries we will need three
network trips between client and server.network trips between client and server.

 In PL-SQL we bundle any number of queries in a In PL-SQL we bundle any number of queries in a
block and in single network trip task is done.block and in single network trip task is done.

SQL
Query1

SQL
Query2

SQL
Query3

Client

Server

SQL
Query1

SQL
Query2

SQL
Query3

Client

Server

PL-SQL Block

Language featuresLanguage features

 Supports constructs like any other Supports constructs like any other
4th generation language:4th generation language:

 Variables and Data typesVariables and Data types
 Loops and Control statementsLoops and Control statements
 Procedures and FunctionsProcedures and Functions
 PackagesPackages
 TriggersTriggers
 ObjectsObjects
 Records (Its like structure in C Records (Its like structure in C

language)language)

PL SQL program structurePL SQL program structure

DeclareDeclare
<All Variables, cursors, exception etc are <All Variables, cursors, exception etc are

declared here>declared here>

BeginBegin
<All programming logic , queries , program <All programming logic , queries , program

statements are written here>statements are written here>

ExceptionException
<All Error Handling code is written here><All Error Handling code is written here>
End; End;
--It ends the program--It ends the program

PL SQL nested blockPL SQL nested block

<<Outer Block>><<Outer Block>>
DeclareDeclare

BeginBegin
<<Inner Block>><<Inner Block>>
DeclareDeclare

BeginBegin

ExceptionException

End;End;

ExceptionException

End; End;

PL SQL BlockPL SQL Block

Remember : Remember :
Declare is optional and only required when Declare is optional and only required when
variables need to be declared.variables need to be declared.

Exception is optional and required when Exception is optional and required when
Error/Exception handling is done.Error/Exception handling is done.

Begin and End are mandatory as all logic and Begin and End are mandatory as all logic and
queries are written inside it.queries are written inside it.

DeclareDeclare
BeginBegin
ExceptionException
End; End;

PL SQL program- Sample IPL SQL program- Sample I

BEGINBEGIN
Insert into Dept values(70,’HR’,’Pune’);Insert into Dept values(70,’HR’,’Pune’);
Insert into Dept values(80,’PSD’,’Mumbai’);Insert into Dept values(80,’PSD’,’Mumbai’);
Insert into Dept values(90,’ESG’,’Pune’);Insert into Dept values(90,’ESG’,’Pune’);

END;END;
--This program will insert three records at the same time in the table dept.--This program will insert three records at the same time in the table dept.

PL SQL program- Sample IIPL SQL program- Sample II

-- This program displays the sum of two numbers-- This program displays the sum of two numbers

DECLAREDECLARE
v_num1 Number;v_num1 Number;
v_num2 Number;v_num2 Number;
v_sum Number;v_sum Number;

BEGINBEGIN
V_num1 := &Number1;V_num1 := &Number1;
V_num2 := &Number2;V_num2 := &Number2;

V_sum := v_num1 + v_num2 ;V_sum := v_num1 + v_num2 ;

Dbms_Output.Put_Line (‘The Sum of number is :’ || v_sum);Dbms_Output.Put_Line (‘The Sum of number is :’ || v_sum);

END;END;

Save , Edit and Execute programSave , Edit and Execute program

 Type your program in SQL * plusType your program in SQL * plus

 To save : To save : Save <File Name>Save <File Name>
Program is saved in the bin directory to save in other Program is saved in the bin directory to save in other
folder give complete path.folder give complete path.
Eg: Eg: Save ‘C:\ESG\FirstPrg.sql’Save ‘C:\ESG\FirstPrg.sql’

 To make changes:To make changes:
Edit <File Name>Edit <File Name>
To edit program saved in folder other then bin To edit program saved in folder other then bin
Edit ‘C:\ESG\FirstPrg.Sql’Edit ‘C:\ESG\FirstPrg.Sql’

 To Execute: To Execute:
@ File Name@ File Name
To execute program saved in folder other then bin.To execute program saved in folder other then bin.
@ ‘C:\ESG\FirstPrg.Sql’@ ‘C:\ESG\FirstPrg.Sql’

Important KeywordsImportant Keywords

 Following are the keywords in PL-SQL , Following are the keywords in PL-SQL ,
should not be used as a variable name.should not be used as a variable name.

 DECLARE DECLARE
 BEGINBEGIN
 ENDEND
 EXCEPTIONEXCEPTION
 LOOP , END LOOPLOOP , END LOOP
 IF , ELSE , ELSIF , END IFIF , ELSE , ELSIF , END IF
 CURSORCURSOR
 PROCEDUREPROCEDURE
 FUNCTIONFUNCTION

Cont..Cont..

Important KeywordsImportant Keywords

 KeywordsKeywords
 PACKAGEPACKAGE
 TRIGGERTRIGGER
 GRANTGRANT
 REVOKEREVOKE
 FORFOR
 WHILEWHILE
 CASECASE
 VARRAYVARRAY
 TYPETYPE
 OBJECTOBJECT

OperatorsOperators

 Important operators in PL SQLImportant operators in PL SQL
 Airthmetic : Airthmetic : (+ , - , * , /)(+ , - , * , /)
 Logical: (AND , OR , NOT)Logical: (AND , OR , NOT)
 Comparison: Comparison: (<=, <, >, =)(<=, <, >, =)
 Comments (Two hyphens): Comments (Two hyphens): -- --
 Assignment operator: In PL SQL assignment Assignment operator: In PL SQL assignment

operator is operator is
:=:=

So to assign values we need to write :=So to assign values we need to write :=
Examples:Examples:
z := x + yz := x + y
z := xz := x
z := 100z := 100
name := ‘MBT’ name := ‘MBT’

OperatorsOperators
 Important operators in PL SQLImportant operators in PL SQL

 Line ends with operatorLine ends with operator: : ;;
 To join two strings: To join two strings: ||||
 To accept value:To accept value: &&

 Power Power ****
 2**3 means 2 raise to power 32**3 means 2 raise to power 3

 In loop we use In loop we use
Example:Example:
For X in 1..5 means For X in 1..5 means
1 to 51 to 5

 Non numeric dataNon numeric data
(string or date) (string or date)

 is written in single is written in single
quote:quote: ‘ ‘‘ ‘

Accept a valueAccept a value

 Examples:Examples:
 num1 := &Number1;num1 := &Number1;
At run time this will prompt as At run time this will prompt as
FollowsFollows

Whatever value user will enter Whatever value user will enter
here will be assign to variable here will be assign to variable
num1num1

Enter a value for Number1:Enter a value for Number1:

Accept a valueAccept a value

 Examples:Examples:
 name := ‘&Name’;name := ‘&Name’;
At run time this will prompt as At run time this will prompt as
FollowsFollows

Whatever value user will enter Whatever value user will enter
here will be assign to variable here will be assign to variable
namename
‘ ‘ ‘ ‘ is used in case if entered data is not is used in case if entered data is not

numericnumeric

Enter a value for Name:Enter a value for Name:

Display valueDisplay value

 To display on same line:To display on same line:
dbms_output.put()dbms_output.put()

 To display on new line.To display on new line.
dbms_output.put_line()dbms_output.put_line()

 Here dbms_output is a Oracle package its Here dbms_output is a Oracle package its
like header file or library in C language.like header file or library in C language.

 .Put and .Put_Line are functions like printf .Put and .Put_Line are functions like printf
in ‘C’ languagein ‘C’ language

Display value : ExamplesDisplay value : Examples

 Dbms_output.put (‘Centre for’);Dbms_output.put (‘Centre for’);
Dbms_output.put (‘Remote’);Dbms_output.put (‘Remote’);
Dbms_output.put (‘Sensing’);Dbms_output.put (‘Sensing’);
Dbms_output.put_line(‘ ‘);Dbms_output.put_line(‘ ‘);

It will display It will display Centre for Remote Sensing Centre for Remote Sensing on on
same line.same line.

Note :Note :
1.1. On SQL prompt after Login you need to set one command On SQL prompt after Login you need to set one command

to see displayed values.to see displayed values.
SET SERVEROUTPUT ON SET SERVEROUTPUT ON

2.2. It is important that at least once you write .put_line after It is important that at least once you write .put_line after
any number of .put functions else values are not displayed.any number of .put functions else values are not displayed.

Display value : ExamplesDisplay value : Examples

 Dbms_output.put_line (‘Centre for’);Dbms_output.put_line (‘Centre for’);
Dbms_output.put_line (‘Remote ’);Dbms_output.put_line (‘Remote ’);
Dbms_output.put_line (‘Sensing’);Dbms_output.put_line (‘Sensing’);
It will display It will display
Mahindra Mahindra
British British
TelecomTelecom
on different lines.on different lines.

Note :Note :
1.1. On SQL prompt after Login you need to set one command On SQL prompt after Login you need to set one command

to see displayed values.to see displayed values.
SET SERVEROUTPUT ON SET SERVEROUTPUT ON

DML operations in Pl-SQLDML operations in Pl-SQL
 All DML operations All DML operations

(Insert/Update/Delete /Select) are to be (Insert/Update/Delete /Select) are to be
written in Begin part of the block.written in Begin part of the block.

 No change in the Syntax of Insert , Update No change in the Syntax of Insert , Update
and Delete , it is same as SQL.and Delete , it is same as SQL.

 Select syntax is different then SQL , it Select syntax is different then SQL , it
contains INTO clause.contains INTO clause.

 If Select query can return more then one If Select query can return more then one
rows then you should always use cursors .rows then you should always use cursors .

Select Syntax for a Single Select Syntax for a Single
Row Query.Row Query.
 Select column1, column2 Select column1, column2

INTO Variable1,Variable2INTO Variable1,Variable2
From Table NameFrom Table Name
Where condition …..Where condition …..

 The only change is as many columns you The only change is as many columns you
want to get from the query you need to want to get from the query you need to
declare that many variables and use INTO declare that many variables and use INTO
clause. clause.

 All other parts of query are unchangedAll other parts of query are unchanged

 If Where condition here is such that query If Where condition here is such that query
will return multiple records then CURSOR will return multiple records then CURSOR
should be used. Without that it will give should be used. Without that it will give
error.error.

Data Types in PL SQLData Types in PL SQL

 Scalar TypesScalar Types
 CharChar
 CHAR datatype to store fixed-length character CHAR datatype to store fixed-length character

data.data. Maximum size = 2000 bytesMaximum size = 2000 bytes

 Varchar2Varchar2
VARCHAR2 datatype to store variable-length characterVARCHAR2 datatype to store variable-length character . .
Maximum size = 4000 bytesMaximum size = 4000 bytes

 NumberNumber
Number types let you store numeric data (integers, real Number types let you store numeric data (integers, real
numbers, and floating-point numbers), represent quantities, numbers, and floating-point numbers), represent quantities,
and do calculations.and do calculations.

Data Types in PL SQLData Types in PL SQL

 Scalar TypesScalar Types
 Binary_IntegerBinary_Integer

The BINARY_INTEGER datatype to store signed The BINARY_INTEGER datatype to store signed
integers (-2**31 to 2**31)integers (-2**31 to 2**31)

 DateDate
DATE datatype to store fixed-length datetimesDATE datatype to store fixed-length datetimes

 LongLong
The LONG datatype to store variable-length character The LONG datatype to store variable-length character
strings. The LONG datatype is like the VARCHAR2 strings. The LONG datatype is like the VARCHAR2
datatype, except that the maximum size of a LONG datatype, except that the maximum size of a LONG
value is 32760 bytes. value is 32760 bytes.

Data Types in PL SQLData Types in PL SQL

 Scalar TypesScalar Types
 NCharNChar

To store multi byte fixed length character data. Its same To store multi byte fixed length character data. Its same
as Char only difference is it is used to store characters as Char only difference is it is used to store characters
of different language like Japenese , chinese etc. of different language like Japenese , chinese etc.

Number of characters it can store depend on language.Number of characters it can store depend on language.

 NVarcharNVarchar
To store multi byte variable length character data. Its To store multi byte variable length character data. Its
same as Varchar2 only difference is it is used to store same as Varchar2 only difference is it is used to store
characters of different language like Japenese , chinese characters of different language like Japenese , chinese
 etc. etc.

Number of characters it can store depend on language.Number of characters it can store depend on language.

Data Types in PL SQLData Types in PL SQL

 Composite TypesComposite Types
 RecordRecord

Its like structure in C Language. To be discussed in Second Its like structure in C Language. To be discussed in Second
day session.day session.

 TableTable
Its like Array in C Language. To be discussed in detail in Its like Array in C Language. To be discussed in detail in
Second day session. Second day session.
This Array type is un-constrained arrayThis Array type is un-constrained array

 VArrayVArray
Its like Array in C Language. To be discussed in detail in Its like Array in C Language. To be discussed in detail in
Fourth day session.Fourth day session.

This Array type is constrained arrayThis Array type is constrained array

Data Types in PL SQLData Types in PL SQL

 Reference TypesReference Types
 Ref CursorRef Cursor

Its used for dynamic cursor. To be discussed in Its used for dynamic cursor. To be discussed in
Second day session.Second day session.

Data Types in PL SQLData Types in PL SQL

 LOBLOB
 BLOBBLOB

Binary Large Object A column or variable of type BLOB can Binary Large Object A column or variable of type BLOB can
store up to 4GB of binary data in each record.store up to 4GB of binary data in each record.

 CLOBCLOB
Character Large Object A column or variable of type CLOB Character Large Object A column or variable of type CLOB
can store up to 4GB of character data in each record.can store up to 4GB of character data in each record.

 BFILEBFILE
 It can store a file of size 4GB externally outside database for It can store a file of size 4GB externally outside database for
 each record and can refer to that from inside the database.each record and can refer to that from inside the database.

Data Types in PL SQLData Types in PL SQL

 LOBLOB
 Column or variable of this type can be accessed only Column or variable of this type can be accessed only

using a Oracle package DBMS_LOB.using a Oracle package DBMS_LOB.
 This should be used only if required to store a large This should be used only if required to store a large

amount of data in each record of a tableamount of data in each record of a table

 You should avoid making un-necessary use of LOB’s.You should avoid making un-necessary use of LOB’s.

 To be discussed in last session of PL-SQLTo be discussed in last session of PL-SQL

Variable Declaration in PL SQLVariable Declaration in PL SQL

 Variables are always declared in Variables are always declared in
DECLARE section of the program.DECLARE section of the program.

 Variable Name <Data Type>Variable Name <Data Type>

 Various way to declare themVarious way to declare them
v_empno Number;v_empno Number;
V_ename varchar2;V_ename varchar2;
v_job Char(10);v_job Char(10);

Variable Declaration in PL SQLVariable Declaration in PL SQL

 Dynamic and preferred way to declare a variableDynamic and preferred way to declare a variable

Variable Name TableName.ColName%TypeVariable Name TableName.ColName%Type

v_empno Emp.Empno%Type;v_empno Emp.Empno%Type;
V_ename Emp.Ename%Type;V_ename Emp.Ename%Type;
v_deptno Dept.Deptno%Type;v_deptno Dept.Deptno%Type;

 Advantages of declaring in above way.Advantages of declaring in above way.
 Variable will always have same datatype as columnVariable will always have same datatype as column

 Any change in column will change the type of variable Any change in column will change the type of variable
also, so we need not have to change and recompile also, so we need not have to change and recompile
the program to run.the program to run.

Variable Declaration in PL SQLVariable Declaration in PL SQL

 %RowType%RowType

Variable Name TableName%RowTypeVariable Name TableName%RowType

v_emp Emp%RowType;v_emp Emp%RowType;

 Advantages of declaring in above way.Advantages of declaring in above way.
 Variable will become like a structure variable in Variable will become like a structure variable in

C (i.e. v_emp will have same structure like Emp C (i.e. v_emp will have same structure like Emp
Table) and you can refer to individual element Table) and you can refer to individual element
as follows:as follows:
v_emp.empnov_emp.empno
v_emp.enamev_emp.ename
v_emp.salv_emp.sal

Variable Declaration in PL SQLVariable Declaration in PL SQL

 Type : Type : You can also make your own type in You can also make your own type in
program and use in the declare section to declare program and use in the declare section to declare
variable.variable.

Type t_name is Varchar2(50);Type t_name is Varchar2(50);

-- now you can make variable of this type-- now you can make variable of this type
v_name v_name t_name; t_name;
v_name2 v_name2 t_name; t_name;

 v_name and v_name2 both will become varchar2(50)v_name and v_name2 both will become varchar2(50)

Conditional StatementsConditional Statements
 IF … Then … ELSEIF … Then … ELSE

If <condition1> ThenIf <condition1> Then
<Code><Code>

ELSIF <Condition2> ThenELSIF <Condition2> Then
<Code><Code>

ELSEELSE
<Code><Code>

END IF;END IF;

 Note here that for one IF we only need one END IF;Note here that for one IF we only need one END IF;
 No END IF is required for ELSIF i.e for one set of IF No END IF is required for ELSIF i.e for one set of IF

condition only one END IF; is requiredcondition only one END IF; is required

Conditional StatementsConditional Statements

 IF … Then … ELSEIF … Then … ELSE

If v_deptno = 10 ThenIf v_deptno = 10 Then
DBMS_OUTPUT.PUT_LINE DBMS_OUTPUT.PUT_LINE

('Accounting'); ('Accounting');
ELSIF v_deptno = 20 ThenELSIF v_deptno = 20 Then
 DBMS_OUTPUT.PUT_LINE (‘ESG'); DBMS_OUTPUT.PUT_LINE (‘ESG');

ELSEELSE
 DBMS_OUTPUT.PUT_LINE (‘Invalid'); DBMS_OUTPUT.PUT_LINE (‘Invalid');

END IF;END IF;

Conditional StatementsConditional Statements
 CASE : This is available from ORACLE 8i CASE : This is available from ORACLE 8i

onwards only , not in ORACLE 8 and version onwards only , not in ORACLE 8 and version
prior to that.prior to that.

CASECASE
 WHEN <Variable> = <Value1> ThenWHEN <Variable> = <Value1> Then
<Code><Code>
WHEN <Variable> = <Value2> ThenWHEN <Variable> = <Value2> Then
<Code><Code>
ELSEELSE
<Code><Code>

END CASE;END CASE;

Conditional StatementsConditional Statements
 CASE : CASE :

CASE CASE
When v_deptno =10 ThenWhen v_deptno =10 Then

DBMS_OUTPUT.PUT_LINE DBMS_OUTPUT.PUT_LINE
('Accounting'); ('Accounting');

When v_deptno =20 ThenWhen v_deptno =20 Then
 DBMS_OUTPUT.PUT_LINE (‘ESG');DBMS_OUTPUT.PUT_LINE (‘ESG');
ELSEELSE

 DBMS_OUTPUT.PUT_LINE (‘Invalid'); DBMS_OUTPUT.PUT_LINE (‘Invalid');
END CASE;END CASE;

TYPES OF LOOPSTYPES OF LOOPS

 Simple LoopSimple Loop

LoopLoop
Exit When <Condition>Exit When <Condition>
<Code><Code>
End Loop;End Loop;

 Exit when is required to give the condition to end Exit when is required to give the condition to end
the loopthe loop

 It is pre tested as condition is checked first and It is pre tested as condition is checked first and
then code is executedthen code is executed

TYPES OF LOOPSTYPES OF LOOPS

 Simple Loop Simple Loop

LoopLoop
Exit When i = 10Exit When i = 10
dbms_output.put_line (i);dbms_output.put_line (i);

End Loop;End Loop;

--Pre Tested--Pre Tested

TYPES OF LOOPSTYPES OF LOOPS

 Simple LoopSimple Loop

LoopLoop
<Code><Code>
Exit When <Condition>Exit When <Condition>

End Loop;End Loop;

 Exit when is required to give the condition to end Exit when is required to give the condition to end
the loopthe loop

 It is post tested as condition is checked after the It is post tested as condition is checked after the
code is executedcode is executed

TYPES OF LOOPSTYPES OF LOOPS

 Simple Loop Simple Loop

LoopLoop
dbms_output.put_line (i);dbms_output.put_line (i);
Exit When i = 10Exit When i = 10

End Loop;End Loop;

--Post Tested--Post Tested

TYPES OF LOOPSTYPES OF LOOPS

 While LoopWhile Loop

While <Condition>While <Condition>
LoopLoop
<Code><Code>
End Loop;End Loop;

 While is required for condition to end the LoopWhile is required for condition to end the Loop
 This is also pre tested.This is also pre tested.

TYPES OF LOOPSTYPES OF LOOPS

 While LoopWhile Loop

While i < 10While i < 10
LoopLoop

dbms_output.put_line (i);dbms_output.put_line (i);
End Loop;End Loop;

TYPES OF LOOPSTYPES OF LOOPS

 FOR LoopFOR Loop

FOR <Variable> IN <Min> .. <Max>FOR <Variable> IN <Min> .. <Max>
LoopLoop
<Code><Code>
End Loop;End Loop;

 This Loop is used when we know the number This Loop is used when we know the number
of time the loop is to be executed.of time the loop is to be executed.

 This is also pre tested.This is also pre tested.

TYPES OF LOOPSTYPES OF LOOPS

 FOR LoopFOR Loop

FOR i IN 1 .. 100FOR i IN 1 .. 100
LoopLoop

<Code><Code>
End Loop;End Loop;

 This Loop will execute the given code 100 This Loop will execute the given code 100
times for i = 1 to 100times for i = 1 to 100

TYPES OF LOOPSTYPES OF LOOPS

 FOR Loop ReverseFOR Loop Reverse

FOR i IN Reverse 1 .. 100FOR i IN Reverse 1 .. 100
LoopLoop
<Code><Code>
End Loop;End Loop;

 This Loop will execute the given code 100 This Loop will execute the given code 100
times for i = 100 to 1 times for i = 100 to 1

 This is reverse i.e from last value to first valueThis is reverse i.e from last value to first value

	Objectives
	Why PL SQL ?
	PL SQL, Is there any Advantage ?
	Language features
	PL SQL program structure
	PL SQL nested block
	PL SQL Block
	PL SQL program- Sample I
	PL SQL program- Sample II
	Save , Edit and Execute program
	Important Keywords
	Slide 12
	Operators
	Slide 14
	Accept a value
	Slide 16
	Display value
	Display value : Examples
	Slide 19
	DML operations in Pl-SQL
	Select Syntax for a Single Row Query.
	Data Types in PL SQL
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Variable Declaration in PL SQL
	Slide 30
	Slide 31
	Slide 32
	Conditional Statements
	Slide 34
	Slide 35
	Slide 36
	TYPES OF LOOPS
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

