Objectives

= Why PL-SQL ?
® | anguage features

® Basic Structure of PL/SQL
program

® Data Types
= Control Flow in PL-SQL
= | oops in PL-SQL



Why PL SQL ?

® PL/SQL stands for Procedural
Language/SQL.

= PL/SQL extends SQL by adding
constructs found in procedural
languages like procedures, loops,
variables, objects etc.

= Resulting a structural language that
Is more powerful than SQL



PL SQL, Is there any
Advantage ?

Server Server
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Client

Client

In case of SQL to send 3 queries we will need three
network trips between client and server.

In PL-SQL we bundle any number of queries in a
block and in single network trip task is done.



Language features

® Supports constructs like any other
4th generation language:

® Variables and Data types

® Loops and Control statements
®* Procedures and Functions

®* Packages

® Triggers

® Objects

® Records (Its like structure in C
language)



PL SQL program structure

Declare

<All Variables, cursors, exception etc are
declared here>

Begin
<All programming logic , queries , program
statements are written here>

Exception

<All Error Handling code is written here>
End;

--It ends the program



PL SQL nested block

<<Quter Block>>
Declare

Begin
<<Inner Block>>
Declare
Begin
Exception
End;

Exception

End;




PL SQL Block

Remember :

Declare is optional and only required when
variables need to be declared.

Exception is optional and required when
Error/Exception handling is done.

Begin and End are mandatory as all logic and
queries are written inside it.

Declare
Begin
Exception
End;



PL SQL program- Sample |

BEGIN

Insert into Dept values(70,’HR’,’Pune’);
Insert into Dept values(80,’PSD’,’Mumbai’);
Insert into Dept values(90,’'ESG’,'Pune’);

END;

--This program will insert three records at the same time in the table dept.



PL SQL program- Sample |

-- This program displays the sum of two numbers

DECLARE

v_num1 Number;
v_num2 Number;
v_sum Number;

BEGIN

V_num1 := &Number1;
V_num2 := &Number2;
V_sum :=v_num1 +v_num2;

Dbms_Output.Put_Line (‘The Sum of numberis ;" || v_sum);

END;




Save , Edit and Execute program

Type your program in SQL * plus

To save : Save <File Name>

Program is saved in the bin directory to save in other
folder give complete path.

Eg: Save ‘C:\ESG\FirstPrg.sql’

To make changes:

Edit <File Name>

To edit program saved in folder other then bin
Edit ‘C:\ESG\FirstPrg.Sql’

To Execute:

@ File Name

To execute program saved in folder other then bin.
@ ‘C:\ESG\FirstPrg.Sql’



Important Keywords

= Following are the keywords in PL-SQL ,
should not be used as a variable name.

DECLARE

BEGIN

END

EXCEPTION
LOOP , END LOOP

IF , ELSE , ELSIF , END IF
CURSOR

PROCEDURE
FUNCTION

Cont..




Important Keywords

= Keywords
* PACKAGE
* TRIGGER
* GRANT
* REVOKE
* FOR
e WHILE
* CASE
* VARRAY
°* TYPE
e OBJECT




Operators

" |mportant operators in PL SQL

Airthmetic : (+,-,%,/)
® Logical: (AND , OR, NOT)
® Comparison: (<=, <, >, =)
® Comments (Two hyphens): --
o

Assignment operator: In PL SQL assignment
operator is

So to assign values we need to write :=

Examples:
Z = X+y
Z.=X
z:=100

name = ‘MBT’




Operators

= |mportant operators in PL SQL

® Line ends with operator:
® To join two strings:
® To accept value:

* Power
2**3 means 2 raise to power 3

® In loop we use
Example:
For Xin 1..5 means
1t0 5

® Non numeric data
(string or date)
IS written in single
quote:

**



Accept a value

= Examples:
* num1 := &Number1;
At run time this will prompt as
Follows

Enter a value for Number1:

Whatever value user will enter
here will be assign to variable
num-




Accept a value

® Examples:
® name = ‘&Name’;
At run time this will prompt as
Follows

Enter a value for Name:

Whatever value user will enter
here will be assign to variable
name

“ ‘s usgd in case if entered data is not
numeric




Display value

= To display on same line:
dbms_output.put()

= To display on new line.
dbms_output.put_line()

= Here dbms_output is a Oracle package its
like header file or library in C language.

= Put and .Put_Line are functions like printf
in ‘C’ language




Display value : Examples

" Dbms_output.put (‘Centre for’);
Dbms_output.put (‘Remote’);
Dbms_output.put (‘Sensing’);
Dbms_output.put_line(‘ );

It will display Centre for Remote Sensing on
same line.

Note :

1. On SQL prompt after Login you need to set one command
to see displayed values.

SET SERVEROUTPUT ON

2. Itis important that at least once you write .put_line after
any number of .put functions else values are not displayed.




Display value : Examples

1.

Dbms_output.put_line (‘Centre for’);
Dbms_output.put_line (‘Remote °);
Dbms_output.put_line (‘Sensing’);

It will display

Mahindra

British

Telecom

on different lines.

Note :

On SQL prompt after Login you need to set one command
to see displayed values.

SET SERVEROUTPUT ON



DML operations in PI-SQL

= All DML operations
(Insert/Update/Delete /Select) are to be
written in Begin part of the block.

" No change in the Syntax of Insert , Update
and Delete , it is same as SQL.

" Select syntax is different then SQL , it
contains INTO clause.

" |f Select query can return more then one
rows then you should always use cursors .




Select Syntax for a Single
Row Query.

B Select column1, column2
INTO Variable1,Variable2
From Table Name
Where condition .....

" The only ch?rogne S as ma g columrgls ou

want to ou nee
dec are ﬂwat many va |a% and use TO

clause.
= All other parts of query are unchanged

- here condition here such t
\évAOr éube usi?jp cor Hen 86%%8%

|t out t at It will give
error.




Data Types in PL SQL

" Scalar Types
¢* Char

CHAR datatype to store fixed-length character
data. Maximum size = 2000 bytes

® Varchar2

VARCHARZ2 datatype to store variable-length character .
Maximum size = 4000 bytes

®* Number

Number types let you store numeric data (integers, real

numbers, and floating-point numbers), represent quantities,
and do calculations.




Data Types in PL SQL

" Scalar Types

* Binary_Integer

The BINARY _INTEGER datatype to store signed
integers (-2**31 to 2**31)

* Date
DATE datatype to store fixed-length datetimes

* Long

The LONG datatype to store variable-length character
strings. The LONG datatype is like the VARCHAR2
datatype, except that the maximum size of a LONG
value is 32760 bytes.




Data Types in PL SQL

" Scalar Types
® NChar

To store multi byte fixed length character data. Its same

as Char only difference is it Is used to store characters
of different language like Japenese , chinese etc.

Number of characters it can store depend on language.

® NVarchar

To store multi byte variable length character data. Its

same as Varchar2 only difference is it is used to store
chtaracters of differentlanguage like Japenese , chinese
etc.

Number of characters it can store depend on language.



Data Types in PL SQL

" Composite Types

® Record

Ic}s like structure in C Language. To be discussed in Second
ay session.

® Table

Ilts like Array in C Language. To be discussed in detail in
Second day session.

This Array type is un-constrained array

® VArray

Its like Array in C Language. To be discussed in detail in
Fourth day Session.

This Array type is constrained array




Data Types in PL SQL

" Reference Types

® Ref Cursor

Its used for dynamic cursor. To be discussed in
Second day session.




Data Types in PL SQL

"LOB
° BLOB

Binary Large Object A column or variable of type BLOB can
store up to 4GB of binary data in each record.

* CLOB

Character Large Object A column or variable of type CLOB
can store up to 4GB of character data in each record.

®* BFILE

It can store a file of size 4GB externally outside database for
each record and can refer to that from inside the database.



Data Types in PL SQL

- LOB

Column or variable of this type can be accessed only
using a Oracle package DBMS_ LOB.

® This should be used only if required to store a large
amount of data in each record of a table

® You should avoid making un-necessary use of LOB’s.

® To be discussed in last session of PL-SQL




Variable Declaration in PL SQL

® Variables are always declared in
DECLARE section of the program.

® Variable Name <Data Type>

® Various way to declare them
v_empno Number;
V_ename varcharz;
v_job Char(10);




Variable Declaration in PL SQL

Dynamic and preferred way to declare a variable
Variable Name TableName.ColName%Type

v_empno Emp.Empno%Type;
V_ename Emp.Ename%Type;
v_deptno Dept.Deptno%Type;

Advantages of declaring in above way.
¢ Variable will always have same datatype as column

®* Any change in column will change the type of variable
also, so we need not have to change and recompile
the program to run.



Variable Declaration in PL SQL

%RowType
Variable Name TableName%RowType
v_emp Emp%RowType;

Advantages of declaring in above way.

® Variable will become like a structure variable in
C (i.e. v_emp will have same structure like Emp
Table) and you can refer to individual element
as follows:

V_emp.empno
V_emp.ename
v_emp.sal



Variable Declaration in PL SQL

» Type . You can also make your own type in
program and use in the declare section to declare
variable.

Type t name is Varchar2(50);

-- now you can make variable of this type
V_name t name;
V_name2 t name;

v_name and v_name2 both will become varchar2(50)




Conditional Statements

" |F ... Then ... ELSE

If <condition1> Then
<Code>

ELSIF <Condition2> Then
<Code>

ELSE
<Code>

END IF;

" Note here that for one IF we only need one END IF;

" No END IF is required for ELSIF i.e for one set of IF
condition only one END IF; is required




Conditional Statements

" |F...Then ... ELSE

If v_deptno =10 Then

DBMS OUTPUT.PUT LINE
('Accounting);

ELSIF v_deptno = 20 Then
DBMS_OUTPUT.PUT_LINE (‘ESG);

ELSE
DBMS_OUTPUT.PUT_LINE (‘Invalid');

END IF;




Conditional Statements

. ® CASE : This is available from ORACLE 8i
12 ™ onwards only , not in ORACLE 8 and version
) prior to that.

CASE

WHEN <Variable> = <VValue1> Then
<Code>

WHEN <Variable> = <Value2> Then
<Code>

ELSE

<Code>

END CASE;




Conditional Statements

" CASE:

CASE
When v_deptno =10 Then

DBMS OUTPUT.PUT LINE
('Accounting');

When v_deptno =20 Then
DBMS_OUTPUT.PUT_LINE (‘ESG");
ELSE
DBMS_OUTPUT.PUT_LINE (‘Invalid");
END CASE;




TYPES OF LOOPS

= Simple Loop

Loop

Exit When <Condition>
<Code>

End Loop;

= Exit when is required to give the condition to end
the loop

= |tis pre tested as condition is checked first and
then code is executed




TYPES OF LOOPS

= Simple Loop

Loop

Exit Wheni=10
dbms_output.put_line (i);
End Loop;

--Pre Tested




TYPES OF LOOPS

= Simple Loop

Loop

<Code>

Exit When <Condition>
End Loop;

= Exit when is required to give the condition to end
the loop

" |tis post tested as condition is checked after the
code is executed




TYPES OF LOOPS

= Simple Loop
Loop
dbms_output.put_line (i);
Exit Wheni=10
End Loop;

--Post Tested




TYPES OF LOOPS

= While Loop

While <Condition>
Loop

<Code>

End Loop;

= While is required for condition to end the Loop
® This is also pre tested.




TYPES OF LOOPS

= While Loop

While i <10
Loop

dbms_output.put_line (i);
End Loop;




TYPES OF LOOPS

"= FOR Loop

FOR <Variable> IN <Min> .. <Max>
Loop

<Code>

End Loop;

® This Loop is used when we know the number
of time the loop is to be executed.

® This is also pre tested.




TYPES OF LOOPS

"= FOR Loop

FOR iIN1..100

Loop
<Code>

End Loop;

" This Loop will execute the given code 100
times fori=1to 100




TYPES OF LOOPS

® FOR Loop Reverse

FOR iIN Reverse 1 .. 100
Loop

<Code>

End Loop;

® This Loop will execute the given code 100
times fori =100 to 1

® This is reverse i.e from last value to first value
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