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Data Cubes and Spectral Vectors
A spectral cube is a three-dimensional array containing spatial

(image) information on the x and y axes and spectral information
on the z axis. Individual spectra, spectral maps, and full spectral
cubes can be created from a single spectral cube.

Spectral cubes display different stratified, graphical thicknesses in
a three-dimensional perspective that can be a useful tool for
overall image analysis.

Spectral reflectance, R, for
single pixel over the

wavelength region

Axis

Temporal

Spatial Axis Axis

Wavelength

Figure 5.6 Spectral cube and the fundamental components.



Figure 5.7 A typical image cube generated by a hyperspectral imager, with two
spatial dimensions x and y, and one spectral dimension z.



As a result of spatial and spectral sampling, airborne hyperspectral
imaging (HSI) sensors produce a three dimensional (3D) data
structure (with spatial-spatial spectral components), referred to as a
data cube.

The 3D Hypercube Display emphasizes the high spectral content of
the hyperspectral image while allowing you to quickly examine any
of the individual wavelength bands. The 3D Hypercube Display
window portrays the hyperspectral image as a three-dimensional
“image cube”.

If we extract all pixels in the same spatial location and plot their
spectral values as a function of wavelength, the result is the average
spectrum of all the materials in the corresponding ground resolution
cell

The values of all pixels in the same spectral band, plotted in spatial
coordinates, result in a grayscale image depicting the spatial
distribution of the reflectance of the scene in the corresponding
spectral wavelength.



The top and right panels of the cube show the corresponding edge cells of each
wavelength band, with wavelength increasing toward the back of the cube.
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Basic data-cube structure (center) in hyperspectral imaging, illustrating the
simultaneous spatial and spectral character of the data. The data cube can be

visualized as a set of spectra (left), each for a single pixel, or as a stack of
images (right), each for a single spectral channel



Spectral library

The spectral library is a collection of spectra of natural
and man made materials.

These libraries provide a source of reference spectra of
varieties of targets( minerals, rocks, vegetation species)
for remote identification for these targets.

The relative distance between sensor and target does
not affects the results of spectral library.



JHU(John Hopkins University) Laboratory

Minerals (0.4-15 micrometer)
Rocks (2-25 micrometer)

Manmade features (0.3-12.5 micrometer)
Lunar rock samples

USGS Vegetation laboratory
Vegetation ( Visible-near infrared —shortwave domain)

Jet propulsion laboratory for rocks and minerals

Minerals( Visible-near infrared —shortwave domain)
USGS( United States Geological Survey) Spectral laboratory

Minerals( Visible-near infrared —shortwave domain)
Rocks( Thermal domain)
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| Spectral Library Viewer
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Importance of Spectral library development

Spectral signatures of minerals and few vegetation species are
unique. Spectral features help in identifying the elements /
targets.

Characterization of elements based on spectral signatures is
rapid and reliable method.

Spectral profiles of elements (say rocks and minerals) should
be preserved with every details (grain size and semi
quantitative mineralogy etc.).

Spectral features are as reliable as any other semi
quantitative chemical methods.

Reference for target detection-(Known to unknown)



Factors controlling the quality and information in

PaERal factors

¢ Properties of a spectrometer
** Wavelength within which measurements are being made

“* BRDF(Influences the continuum of the spectral curve not
the spectral feature)

“* Intensity of incident radiation( Lamp used in lab or sun
light)

Target/Intrinsic Factors

Atomic processes operative in the target or sample.

Texture(Grain size etc.)



REFLECTANCE + OFFSET

External Factors

Properties of a spectrometer
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Parameters that describe the
capability of a spectrometer:
(1) Spectral range
(2) Spectral bandwidth
(3) Spectral sampling,
(4) signal-to-noise ratio.



1) Spectral range: Spectral range is important to cover enough
diagnostic spectral absorption to solve a desired problem. a)
Ultraviolet (UV): 0.001 to 0.4 um, b) visible: 0.4 to 0.7 um, c) near-
infrared (NIR): 0.7 to 3.0 um, d) the mid-infrared (MIR): 3.0 to 30
um, and d) the far infrared (FIR): 30 um to 1mm

2) Spectral bandwidth: Spectral band width is the width of an
individual spectral channel in the spectrometer. The narrower the
spectral Bandwidth, the narrower the absorption feature the
spectrometer will accurately measure.

3) Spectral sampling:

Spectral sampling is the distance in wavelength between the
spectral band pass profiles for each channel in the spectrometer
as a function of wavelength. The Nyquist theorem states that the
maximum information is obtained by sampling at one-half the
FWHM



Spectral resolution: narrowest spectral features that can be
resolved by a spectrometer(full width at half maximum FWHM)

Relative Signal

50% of peak height

Y
Warvelength

4) signal-to-noise ratio (S/N). The S/N is dependent on the
detector sensitivity, the spectral band width, and intensity of
the light reflected or emitted from the surface being
measured.



Bidirectional reflectance-distribution function (BRDF)

Bidirectional reflectance-distribution function (BRDF), a mathematical function
“relating the irradiance incident from one given direction to its contribution to the
reflected radiance in another direction ”(Nicodemusetal.,1977). Importantly, BRDF
was defined as a conceptual property of the surface, at infinitesimally small angles
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Wavelength domain for reflectance spectroscopic studies

a)Ultraviolet (UV): 0.001 to 0.4 um,
b)visible: 0.4 to 0.7 um,

c)near-infrared (NIR): 0.7 to 1.0 um,
d)short-wave infrared(SWIR): 1.0 to 2.5 um
e)the mid-infrared (MIR): 2.5 to 30 um,
f)the far infrared (FIR): 30 pm to 1

NIR DOMAIN IS IMPORTANT FOR VEGETATION.

SWIR DOMAIN IS IMPORTANT FOR MINERALS



Source/Illumination: Incident Radiation
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Intrinsic Factor(Target Factor)

Factors influence the spectral signature Changes in Composition
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Reflectance spectra of muscovite showing band shifts
due to changing aluminum composition



Role of crystallinity

SCALED REFLECTANCE

Kaolinite (WXL)

sample: CMS

Kaolinite (PXL) T

sample: KGa-2

Halloysite

NMNH106236

Dickite

NMNH106247
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Subtle spectral
differences in the
kaolinite group

minerals near 2.2-pum.
KaoliniteCM9 is well

crystallized (WXL)
while KGa-2 is poorly
crystallized (PXL).

Spectral bandwidth is
1.9 nm and sampling is
0.95 nm.



Composition plus crystal structure
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Role of grain size

Rellectance
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Nature of mixing (Linear and intimate mixtures)
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Reflectance

Rock spectra vs Mineral spectra
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Collection place : Laboratory set up for spectral data measurement

Most data are
collected with the

Phase angle 45 sensor mounted
degree +/- 5

vertically over the

¥ _~ degree'’ ; :
S surface (nadir
= L\ ,,ﬁ el ViEW).




Laboratory set up

where S is source, L is
fiber optic lens where H
refers height of the
measurement gunfrom
the sample top and d
indicates the field of
view (FOV)of the
measurement gun.



Calibration Panel

ePerfectly diffuse reflector.

ePerformance of the calibration panel is important
eMaintenance of calibration panel

eRecalibrating the calibration panel.




Sample preparation

eSample( Intact rock sample; size to be specified)
eGrain size of the powdered sample.

*Soil texture should be maintained.

*For few cases; specific grain sized sample is essential.

Pulverized Kimberlite Rock sample

Kimberlite Rock sample



Continuum Removal: Continuum is a imaginary line joins

highest albedo points in a spectral profile
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Properties of Spectra
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SCALED REFLECTAMCE
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Spectral database preparation for Narayanpet Kimberlite
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Noise Estimation and dimensionality
reduction in Hyperspectral Data



Data Reduction

1 Advances in data collection during past decade Resulting in information
overload

O Traditional statistical methods breakdown - Due to Increase in number of
Observations & Variables associated with each observation

[ Dimension of the data is the number of variables — measured on each
observation

U High Dimensional data sets present many challenges
U Major difficulty with high dimensional data

M Not all measured variables are “important” for unraveling phenomena of
interest

Commonly used techniques are

Principal Component Analysis — PCA
Minimum Noise Fraction — MNF



Apparent Reflectance

< MNF
PRI
1D >

Map Distribution
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Spatial/Spectral
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Spectral Data
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Spatial Data
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Visualization and
Endmember Selection

Identification
Mapping
Spectral Angle Mapper
Linear Unmixing
Matched Filter &
Mixture-Tuned MF
Spectral Feature Fitting

Figure 5. Standardized Processing methods for hyperspectral data analysis.



Principal Components Transform

Different bands of spectral data are often highly correlated - contain similar
Information Based on statistical characteristics — data redundancy &
correlation between bands can be reduced

Principal Components Analysis - Is a widely used technique for dimensionality
reduction & data compression.

PCA Objective is to reduce dimensionality (i.e. the number of bands) in the
data, and compress as much of the information in the original bands into fewer
bands “NEW" bands that result from this statistical procedure are called
components

Process attempts to maximize (statistically) the amount of information (or
variance) from the original data into least number of new components

Principal Components Analysis
Uses Eigen values determine the significance of PC
Data Reduction is in accordance with associated eigenvalues



First principal component shows the direction and length of the widest transect

of the ellipse, measures the highest variation within the data.

Second principal component is the widest transect of the ellipse that is
orthogonal (perpendicular) to the first principal component Second principal
component describes the largest amount of variance in the data that is not
already described by the first principal component In a two-dimensional
analysis. the second orincinal comnonent corresponds to the minor axis of the

ellipse
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In n dimensions, there are n principal components

Each successive principal component: Accounts for a decreasing
amount of the variation in the data which is not already accounted
for by previous principal components

Although there are n output bands in a PCA. First few bands
account for a high proportion of the variance in the data in some
cases, almost 100%.

PCA is useful for compressing data into fewer bands Useful
information can be gathered from principal component bands



By seeing this plot we can see that eigen
values are high for initial few bands and
after eigen value number 6-7 (band 6-7)
eigen value is constant.

Eigen values have direct relation with the
variance of the data higher the eigen value
the variance is more and the information
is more.

Therefore for further processing only
these few bands will be selected. The first
band contains the largest percentage of
data variance and the second PC band
contains the second largets data variance
and so on the last bands appear noise as
they contain little variance
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® Siatistics Results: PCA
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Red - 750.38 nm
Green — 655.84 nm
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Issues of PCA

PCA maximizes total image variance with out making distinction
between Noise & Information

PCA images are ordered by data variance. If bands have
differing amounts of noise ?

Bands in a hyperspectral image have differing amounts of noise
Principal components may not show usual trend of steadily
increasing noise with increasing component number






Distinction between information & noise can be made

* Some sensor systems simultaneously acquire dark images.

* Dark Current images represent electronic noise present in the
data

* These dark images can be used as input for noise estimation

Absence of dark images -If we assume that

Signal at any point in the image is strongly correlated with the
signal at neighboring pixels while the noise shows only weak
spatial correlation

Near neighbor differences can be averaged to derive noise
value



Minimum Noise Fraction Transform
Shift Difference method

It is assumed that each pixel contains both signal and noise,
and that adjacent pixels contain the same signal but different
noise

“shift difference” is performed on the data by differencing
adjacent pixels and averaging the results to obtain the “noise”
value to assign to the pixel being processed

Best noise estimate is gathered using the shift-difference
statistics from a homogeneous area rather than from the
whole image



Minimum Noise Fraction transform (MNF) orders output components by
decreasing signal to noise ratio

MNF procedure first estimates the noise in each image band using the
spatial variations in brightness values

Then applies two successive principal component transforms

First uses the noise estimates to transform the dataset to a coordinate
system in which the noise is uncorrelated and is equal in each component

Then a standard principal components transform is applied to the noise-
adjusted data, with output components ordered by decreasing variance

Procedure produces a component set in which noise levels increase
uniformly with increasing component number

Low-order components should contain most of the image information and
little image noise



MNF Eigen Value Plot
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Degradation of the signal all along the MNF components




MNF IS PERFORMED SEGREGATING DATA INTO VNIR &
SWIR SEGEMENTS

MNF File: AVIRIS - VNIR
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MNF is useful in determining inherent dimensionality of image
data by segregating noise and reduce computational
requirements for subsequent processing



Pixel Purity Index

The set of low-order MNF components provides a “distilled”
version of the hyperspectral image that can be used to rapidly
identify relatively “pure” image spectra for use as spectral
endmembers in the further processes.

The Pixel Purity Index (PPIl) operation is the first step in identifying
these endmember spectra.



Pixel Purity Index

The "Pixel-Purity-Index" (PPI) is a means of finding the most
"spectrally pure,"” or extreme, pixels in multispectral and
hyperspectral images. See Boardman et al . (1995).

PPI calculates a spectral purity score for each n-dimensional pixel

in the original data by generating random unit vectors (called
skewers), so that all pixel vectors are projected on to the
skewers and the ones falling at the extremes of each skewer are
counted. After many repeated projections to different skewers,
those pixels that count above a certain cut-off threshold are
declared “pure”

A Pixel Purity Index (PPIl) image is created in which the DN of
each pixel corresponds to the number of times that pixel was
recorded as extreme
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Fig. 3. Toy example illustrating the PPl endmember extraction algorithm in a two-

dimensional space.

pixel

Component 2

Test Vector

Component 1

A two-dimensional illustration
of how the Pixel Purity Index
identifies potential extreme
image spectra (large red dots).



Pixel Purity Select Discard

Index (PPI) Data Low MNFs

Std. Deviation

/ Threshold
Process Data
Maximize
Iterations
Evaluate Display and
PPIResults =~ Histograms
Threshold
PPI to ROI(s)

Endmembers represent pure pixels supposedly representing one feature type
only and these can be collected from image itself



Using PPl images in a n-dimensional visualiser for
endmembers collection

Spectra can be thought of as points in an n-dimensional
scatterplots, where n is the number of bands.

The coordinates of the points in n-space consist of “n” values that
are simply the spectral radiance or reflectance values in each band
for a given pixel.

The distribution of these points in n-space can be used to estimate
the number of spectral endmembers and their pure spectral
signatures.



n-Dimensional Visualizer

To assess the results of the PPl operation we will use the n-
Dimensional Visualizer tool.

This tool allows you to create and view an n-dimensional scatterplot
of spectra for an area in the hyperspectral image or MNF
component set. You can view the scatterplot from different
viewpoints and rotate the plot manually or automatically in real
time.

You designate the selected area by drawing a polygon in the
Hyperspectral Image window. You can use this tool to investigate
the spectral properties of different materials in the image and to
search for image cells with extreme spectral values that might
represent pure endmembers



Using PPl images in a n-dimensional visualiser for
endmembers collection

The n-Dimensional visualizer provides an opportunity for interactive
selection of the endmembers in n-space. The n-D visualizer is used
in conjunction with the Minimum Noise Fraction Transform (MNF)
and Pixel Purity index (PPI) tools to locate, identify and cluster the
purest pixels and most extreme spectral responses in a data set.

The n-Dimensional visulizer allows for interactive rotation of data in
n-D space, selection of groups of pixels into different classes
(Boardman, 1993; Boardman and Kruse, 1994). Here in this study
this procedure was followed to isolate different group of pixels
representing different endmembers. The selected classes were
exported to Region of Interest (ROI) and used as input for further
spectral processing.
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The n-D Space — Where Many Algorithms Operate

Each HSI spectrum (or pixel) is an n-D vector that
can be represented as a single point in n-D space.
n-D space is actually where many of our algorithms
operate.

Spectrum (or pixel)=[p,, ;. Ps, P4s P55 Pss PyoeeesPu ]|

1.0
0.9 1

p

0.7
0.6
0.5

Reflectivity,

0.4
0.3 -
0.2

0.4 0.8 1.2 1.6 2.0 2.4
Wavelength (um)
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Four (A-D) Equivalent Notations/Representations
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Some HSI Scatter Plots; Spectra as Points in ‘Hyperspace’




Classification Techniques

1. Full Pixel

2.Sub Pixel

Full Pixel or per pixel classification
Full-pixel analysis methods attempt to determine whther one or more target
materials are abundant within each pixel in the image on the basis of the

spectral similarity between the training (reference) pixel and target
(unknown) spectra Spectral Angle Mapper

1. Spectral Feature Fitting

2. Support Vector Machines



Spectral Angle Mapper or SAM

The spectral angle is the angle between any two vectors
originating from a common origin. The magnitude of the angle
indicates the similarity or dissimilarity of the materials—a smaller
angle correlates to a more similar spectral signature.

This method is relatively insensitive to changes in illumination on
the target material because changes in light will impact the
magnitude but not the direction of the vector. A poorly
illuminated target will cause the points to be plotted closer to the
origin



SAM: n-D Geometry
Angular Distance Metric (Spectral Angle Mapper or SAM)

Assume a two band spectral remote sensing system. Each two point
‘spectrum’ is a point in Band b vs. Band a space.

A 2D scatterplot with 2 spectra:

The angle, 0, between the two

Spectrum s lines connecting each spectrum
2 (point) to the origin is the angular

Band b

Spectrum s, separation of the two spectra.
Smaller angular separations in-
dicate more similar spectra.

Band a



Spectral Angle Mapper — SAM

SAM algorithm Compares Unlabeled pixel With Reference spectrain n
dimensions

Reference spectra may be obtained from Ground based spectroradiometer
measurements OR Image endmembers

material e _
Refrence matenal r

matenal k

spectral angle

given image spectra

reference spectra (endmember)
number of bands




0.02 Radians _ 0.05 Radians 0.1 Radians
Vegetation

> 0.1 Radians

Clinoptilolite

Desert Pavement

Kaolinite
Montmorillonite
Sepiolite

Yellow-tan to orange brown sillstones and sandslone
Well bedded ash-flow tuffs {mainly trachyandesitic and basaltic)
Buff to light brown-fan silts and argillaceous sandstone

0.1 Radians

With

few classes

Misclassification




Pixel Population

SAM Angle (radians)
0.02 IEXE

Pixel Population (%)
Vegetation 0.001 0.797 2.333

Clinoptilolite 0.047 18.951 23.184
Desert Pavement 0.231 46.126 55.429
Kaolinite 0.004 0.101 0.264

Montmorillonite 0.008 0.732 1.398
Sepiolite 0.000 0.290 1.507

Well bedded ash-flow tuffs 0.000 0.268 1.289
(mainly trachyandesitic and basaltic lavas)

Settlement 0.015 2.275 2.534
Road 0.000 0.087 0.636
Yellow-tan to orange brown siltstones and sandstone 0.043 1.551 1.681

Well bedded ash-flow tuffs 0.028 3.085 3.988
(mainly trachyandesitic and basaltic)

Buff to light brown-fan silts and argillaceous 0.148 4949 5.198
sandstone

Unclassified 99.476 20.789 0.558

Smaller the angle — closer to reference spectra — fewer will be the population

Too large an angle — Away from reference spectra - Misclassification




Variance in illumination (up)

Spectral Angle Mapper (middle)

Maximum Likelihood (down)

Variation in illumination
affected more strongly
when the Maximum
Likelihood and
Minimum Distance were
used. The results of the
classification
deteriorated fast while
the Spectral Angle
Mapper and the Spectral
Correlation Mapper
were better in that case.




Spectral Correlation Mapper

X = Image Spectrum (DN value) of the pixel in all spectral bands

X = Mean of the DN values of the same pixel over all spectral
bands

Y= Reference Spectrum of a class in all spectral bands

Y = Mean of the reference spectra of a class over all spectral
bands



1. Aim is to classify pixel X

2. Given DN value of pixel X for every band

Y (X -X)Y-Y)

3. Use K=

\/Z(){—E)EZ(Y—?):

to determine R for each class

4. Assign the pixel to the class where the value of R is
maximum
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Support Vector Machine

SVM performs classification by constructing an N-dimensional hyper plane
that optimally separates the data into two categories

Support vector Machines are good candidates for remote sensing
classification in particular hyperspectral image classification in many ways

1.SVM can work well small training data set

2.SVM perform with high classification accuracy for data having hundreds
of dimension as in hyperspectral images

3.The structure of SVM is less complex even with high dimensional data

The SVM aim to maximize the margin between two classes of interest by
placing linear separating hyperplane

The SVM uses structural risk minimization (SRM). The Empirical risk
minimizes the misclassification error and whereas structural risk
minimization minimizes the probability of misclassification.



Support Vector Machine

A set of features that describes one case (i.e., a row of predictor values) is
called avector. So the goal of SVM modeling is to find the optimal
hyperplane that separates clusters of vector in such a way that cases with
one category of the target variable are on one side of the plane and cases
with the other category are on the other size of the plane.

The vectors near the hyperplane are the support vectors. The figure below
presents an overview of the SVM process.

The points lying on the two parallel hyperplanes are called Support Vector
(SV). The margin is defined as the Euclidian distance between the Support
vector and Optimal separating hyperplane (OSH). Maximization of margin
ensures better generalization capability for the test data

SVM are based on the structural risk minimization (SRM) which aims at
minimizing the upper bound of the expected error over the whole data set.

The advantage of SVM is its ability to work with smaller training data sets,
SVM are becoming preferred classification method to classify hyperspectral
imagery



A Two-Dimensional Example

Before considering N-dimensional hyperplanes, let’s look at a simple 2-
dimensional example. Assume we wish to perform a classification, and our data
has a categorical target variable with two categories.

Also assume that there are two predictor variables with continuous values. If
we plot the data points using the value of one predictor on the X axis and the
other on the Y axis we might end up with an image such as shown below. One
category of the target variable is represented by rectangles while the other
category is represented by ovals.
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In this idealized example, the cases with one category are in the lower left
corner and the cases with the other category are in the upper right corner; the
cases are completely separated. The SVM analysis attempts to find a 1-
dimensional hyperplane (i.e. a line) that separates the cases based on their
target categories. There are an infinite number of possible lines; two candidate
lines are shown above. The question is which line is better, and how do we
define the optimal line.

The dashed lines drawn parallel to the separating line mark the distance
between the dividing line and the closest vectors to the line. The distance
between the dashed lines is called the margin. The vectors (points) that
constrain the width of the margin are the support vectors. The following figure
illustrates this.
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Small Margin %rge Margin

Support Vectors



An SVM analysis finds the line (or, in general, hyperplane) that is oriented so
that the margin between the support vectors is maximized. In the figure above,
the line in the right panel is superior to the line in the left panel.

If all analyses consisted of two-category target variables with two predictor
variables, and the cluster of points could be divided by a straight line, it would
be easy. Unfortunately, this is not generally the case, so SVM must deal with
(a) more than two predictor variables, (b) separating the points with non-linear
curves, (c) handling the cases where clusters cannot be completely separated,
and (d) handling classifications with more than two categories.

Flying High on Hyperplanes

In the previous example, we had only two predictor variables, and we were
able to plot the points on a 2-dimensional plane. If we add a third predictor
variable, then we can use its value for a third dimension and plot the points in
a 3-dimensional cube. Points on a 2-dimensional plane can be separated by a
1-dimensional line. Similarly, points in a 3-dimensional cube can be separated
by a 2-dimensional plane.



Separating Plane for the Federalisis Papers - 1 788 (Bc-sch Smith)
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As we add additional predictor variables (attributes), the data points can be represented
in N-dimensional space, and a (N-1)-dimensional hyperplane can separate them.

When Straight Lines Go Crooked
The simplest way to divide two groups is with a straight line, flat plane or an N-

dimensional hyperplane. But what if the points are separated by a nonlinear region such
as shown below?



In this case we need a nonlinear dividing line.

Rather than fitting nonlinear curves to the
data, SVM handles this by using a kernel
function to map the data into a different space
where a hyperplane can be used to do the
separation.

The kernel function may transform the data into a higher dimensional space to
make it possible to perform the separation.



Separation may be easier in higher dimensions

complex in low dimensions simple in higher dimensions



The concept of a kernel mapping function is very powerful. It allows SVM models to
perform separations even with very complex boundaries such as shown below

Many kernel mapping functions can be used — probably an infinite number. But a
few kernel functions have been found to work well in for a wide variety of
applications. The default and recommended kernel function is the Radial Basis

Function (RBF).



Th
e SVM algorithm
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SVM Classified Image

Classified Image Original Image

Overall Accuracy: ~98%
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Kernel function transforms the data into a higher dimensional
space to make it possible to perform the separation

Separation may be easier in higher dimensions

feature
map

®*Points misclassified by

linear separation bound-
/ ary are textured
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Spectral Feature Fitting

To match target and reference pixel spectra by examining specific absorption
features in the spectra (continuum removed spectrum)

User specifies a range of wavelengths within a unique absorption feature exists
for the chosen target

Reference (training) spectra are then compared to the target spectrum using
two measurements:

U The depth of the feature in the target is compared
to the depth of the feature in the reference, and

1 The shape of the feature in the target is compared
to the shape of the feature in the reference (using a
least-squares technique)



Continuum Removal

d Continuum Removal normalizes reflectance spectra to allow comparison of
individual absorption features from a common baseline

Reflectance

d Continuum is a convex hull fit over the top of a spectrum utilizing straight-
line segments that connect local spectra maxima

d Continuum is removed by dividing it into the actual spectrum for each pixel
in the image

d The resulting image spectra are equal to 1.0 where the continuum and the
spectra match and less than 1.0 where absorption features occur

1.0

0.2

0.0

0.5

M M M M 1 M
1.0 1.5 2.0
Wavelength micrometers

Kaolinite reflectance spectra

Absorption

1.0

3.0

T T T T T T T T T T

0.8
0.6
0.4

0.2

M 1 M L L
1.0 1.5 2.0 2.5
Wavelength micrometers

Continuum removed spectra



Band depth

The apparent depth of an absorption feature, relative to the surrounding

continuum in a reflectance or emittance spectrum

1 1 I 1 1 1 1 I 1 1 1 1 I 1 1
Kaolinite KGa-2
D.45 -
Band Depth: j
D=1-R,/R, 1
1] i Left -
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e . Interval Right
U i - Continuum 7
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WAVELENGTH (pm)
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Rvis the reflectance
at the absorption-
band center (the
minimum in the
continuum-removed
feature), and

Rcis the reflectance
value of the
continuum at the
wavelength of the
band center

If the features one is looking for have weak absorption Continuum removal

suppresses them



Spectral Feature Fitting Image

Cuprite Nevada, AVIRIS

R-2.1010 pm RMS image for Alunite
G -2.2008 um Bright — good fit ; Dark — Bad Fit
B -2.3402 ym




Spectral Unmixing - Sub-Pixel analysis

Mixed pixels are generated if the size of the pixel includes more
than one type of terrain cover

Measured spectral radiance of a pixel is the integration of the
radiance reflected from all the type of terrain covers within the
ground instantaneous field of view (GIFOV)

Spectral mixing is inherent in any finite-resolution digital
imagery

Mixed pixel problem not well addressed with multispectral data
because distinctions with limited band numbers were clear to
differentiate classes

Unmixing has particular relevance for something like mineral
mapping where abundance of minerals is desired parameter
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Number of outputs for
each spatial unit

Hard (crisp) Soft (fuzzy)
classification classification
each pixel is forced or constrained to each pixel may display multiple and

show membership to a single class. partial class membership.

Soft classification is an alternative to hard classification because of its ability to
deal with mixed pixels.



Spectral unmixing Is a procedure by which the measured spectrum
of a mixed pixel is decomposed into a collection of constituent
spectra, or endmembers, and

a set of corresponding fractions, or abundances, indicating the
proportion of each endmember present in the pixel.



LINEAR

NON - LINEAR

Depending on the mixing scales at each pixel,
the observed mixture is either linear or
nonlinear

A linear mixing model holds approximately
when the mixing scale is macroscopic and
there is negligible interaction among distinct
endmembers

If the mixing scale is microscopic and the
Incident solar radiation is scattered by the
scene through multiple bounces involving
several endmembers, the linear model is no
longer accurate

Linear mixture

.>_-\

(a) The linear mixing model assumes a well-
defined proportional checkerboard mixture of
materials, with a single reflection of the
illuminating solar radiation

N onlinear mixture

(b) Nonlinear mixing models assume a
randomly distributed, homogeneous mixture of
materials, with multiple reflections of the
illuminating radiation



FULL UNMIXING PARTIAL UNMIXING

Complete spectral ununixing of a hyper spectral scene may not always be possible or
even desired

Spectrally complex & very high dimensional data are difficult to fully unravel
Partial unmixing provides a way of mapping endmembers of interest

Many applications of imaging spectrometry can be cast in the form of the following
question:

“‘Are my target signatures present in the scene, and if so, how much of each target
material is present in each pixel?”

Number of unmixing endmembers is one greater than the number of spectrally
defined target materials

One additional endmember can be thought of as the composite of all the other
scene materials, or “everything else”
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Conceptual diagram of end-to-end spectral Unmixing

Hyperspectral Cube
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50 bands

Endmembers Signatures

Dimensional
reduction

Endmember
determination

¥

‘ Inversion

i — -
o —
FJ e, T e
. e —'J
s o s

Abundance Map




Linear - Constrained Unmixing

N
R = zfiRi
i=1

where,
R is the effective reflectance of the mixed pixel,

R. is the reflectance of the it" material (end member),
f. is the spatial fraction covered by the i"" material and

N is the number of materials in the pixel



Linear - Constrained Unmixing

Given an M spectral band sensor with the
bands designated with a | subscript, we can
write M equations of the form

N
R; = > .f;R; inreflectance space
i=1

N
orL; =) fL; inradiance space
=1



Linear -Constrained Unmixing

If we can claim to know the spectral reflectance or radiance for
the materials potentially in each pixel (i.e., the endmember) we
can write M simultaneous linear equations in N unknowns (i.e.,the

fractions are the only unknowns).

In matrix/vector form, this looks like

_Ll | _Lll L21 LNI __tfl. |
Ly| | Ly L o Ly || /i
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Linear - Constrained Unmixing

Take a simple 3-band 3-end member case
with end member reflectance vectors.

4 16 4 4 16 4
Guater =| 2 | E1ang =| 20 |, 6yeq =|8 |SOE=[2 20 8
2 24 4 2 24 4

7 7 = 4f, + 161, + 4f,

X
[l
(@)

yielding 8 = 2f, + 20f, + 8f;
8 = 2f, + 24f, + 4f;

<«<—00

For any Pixel



Linear - Constrained Unmixing

Solving for f1, f2, and {3 yields

(0.5°
F=|0.25
0.25

When we add error into the system, we must
recognize that without constraining the system,

a least squares solution may vyield a best
estimate for the fractions

For avoiding instances like



Two very different types of unmixing are typically used: Using
“known” endmembers and using “derived” endmembers.

Using known endmembers, one seeks to derive the apparent fractional
abundance of each endmember material in each pixel, given a set of “known” or
assumed spectral ndmembers.

These known endmembers can be drawn from the data (averages of regions
picked using previous knowledge), drawn from a library of pure materials by
interactively browsing through the imaging spectrometer data to determine
what pure materials exist in the image



Fraction Images

Agriculture Urban Forest Grass Sand



Matched filtering

The technique is a unique approach to spectral mixture modelling

in that it does not require knowledge of the spectral signatures of
other component materials (Boardman 1998). A type of unmixing
in which only user chosen targets are mapped

Unlike Complete Unmixing, to find the spectra of all endmembers
in the scene to get an accurate analysis (hence, this type of
analysis is often called a “partial unmixing” because the unmixing
equations are only partially solved)

Matched Filtering “filters” the input image for good matches to the
chosen target spectrum by maximizing the response of the target
spectrum within the data and suppressing the response of
everything else (which is treated as a composite unknown
background to the target)

Pixel value in the output image is proportional to the fraction of
the pixel that contains the target material



Matched filtering

MF vector equates to target abundance estimations that range
from 0 to 100% (Mundt et al. 2007). Spectra that closely match the
training spectrum will have a score near one while background
noise will have a score near zero. Any pixel with a value of 0 or
less would be interpreted as background (i.e., none of the target is
present).

One potential problem with Matched Filtering is that it is possible
to end up with false positive results

One solution to this problem that is available in ENVI is to calculate
an additional measure called “infeasibility”. Which is the method
called MTMF

Is a hybrid method based on the combination of the matched filter
method (no requirement to know all the endmembers) and linear
mixture theory



Mixture Tuned Matched Filtering (MTMF)

The results are two images:
v" MF score image with 0 to 1 (perfect match), and
v Infeasibility image, the smaller the better match

X Infeasibility is based on both noise and image statistics and indicates the
degree to which the Matched Filtering result is a feasible mixture of the
target and the background

o Pixels with high infeasibilities are likely to be false positives regardless of
their matched filter value

X Use 2-D scatter plot to locate those pixels in image

10 20 sigma
matchéd. filtet
false positive

0.75

=100’ DN sig




This technique may find some “false positives” that shows high values in
terms of matching score for rare materials which is taken care of by an
output “infeasibility” image to the results.

The infeasibility image is used to reduce the number of “false positives”
that are sometimes found using matched filtering technique. Pixels with
a high infeasibility are likely to be matched filter false positives.
Correctly mapped pixels will have a high matched filter score and a low
infeasibility value where as Pixels with a high matched filter result and
high infeasibility are “false positive” pixels and do not match the target.
The infeasibility values are in noise sigma units which vary in digital
number scale with matched filter score and indicate the feasibility of the
matched filter results (Harsanyi & Chang, 1994; Chen & Reed, 1987).

Mixture Tuned Matched Filtering technique combines the best part of
the linear spectral unmixing model and the statistical matched filter
model while avoiding the drawbacks of each model. From matched
filtering it inherits the advantage of its ability to map a single known
target without knowing the other background endmember signatures,
unlike traditional spectral mixing models.



MTMF (Mixture-Tuned Matched Filtering )

O Is a hybrid method based on the combination of the
matched filter method (no requirement to know all
the endmembers) and linear mixture theory.

O The results are two 1mages:
a MF score image with 0 to 1 (1 1s perfect match), and

A infeasibility image, the smaller the better match.

O Infeasibility 1s based on both noise and image statistics and
indicates the degree to which the Matched Filtering result is a
feasible mixture of the target and the background. Pixels with
high infeasibilities are likely to be false positives regardless of
their matched filter value.

Use 2-D scatter plot to locate those pixels in an image.



Mixture Tuned Matched Filtering (MTMF)

Infeasibility Value
I

MF Sbnre

FCC - MF Score image

Sandstone




Spectral Derivative Analysis

Benefited from the high spectral resolution of hyperspectral data, the reflectance could
construct a comparatively continuous curve, and thus the derivative method is likely to
be used for data analysis.

From one hand, the derivative processing could enhance the small variations of spectral
curve (Li, 2006). And from the other hand, the derivatives could also be relatively less
sensitive to the spectral variations of sunlight and skylight (Tsai and Philpot, 1998), and
also eliminate background signals (Becker et al, 2005).

The First Derivative Reflectance (FDR) and Second Derivative Reflectance (SDR) were
calculated according to Eq. (1) and Eq. (2). For FDR method,



dR le+a_ o R}‘Lj

FDR, = — = (1)
Ada AL
d°r d drv R, _ —2R, +R,
SDR} — e — ( ) — .n-"‘l.j+L .l-'ll-j+__ ';l"] (2)
* dAs  dA\dA (AM)?
Where

FDR,, The FDR between band j and band

j+1, where wavelength equals to 7;

SDR,, The SDR between band j and band

R}f] > R.}g'-l-l > R}\j—Z
AN

j+2, where wavelength equals to 7;
Reflectance of band j, j+1, j+2:

Difference of wavelength between
band j and band j+1.
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Figure 4. Comparison of the FDR curves for 11 wetland species.



Continuum Removal (CR)
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Figure 6. Comparison of the CR curves for 11 wetland species.
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Fig. 6. (Left) Original spectrum and its second derivative of a water sample containing a
unique phytoplankton algal culture (Alexandrium minitum), acquired by a miniature
hyperspectral CCD-array spectrometer. (Right) Second derivatives computed for several
values of band separation ( BS ), each of them leading to spectral features at different scales.
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Spectral parameters

Radius of curvature
* Radius of curvature of NIR absorption
trough
* Radius of curvature of Al absorption
trough
Slope
* Slope (685-725nm)
* Slope (850-1000nm)

FWHM

Distance from the reference line
* Distance to NIR absorption trough
* Distance to Al absorption trough
Area Under Curve
* AUC(350-2500nm)
* AUC(750-1000 nm)
* AUC(2130-2230nm)

“*Area Above Curve
* AAC (Area Above Curve)-NIR
* AAC (Area Above Curve)-(2130-
2230nm)

“*Position of Peak/Trough
*Position-NIR absorption trough
*Position-VNIR reflectance peak
*Position-Al absorption trough

“*Distance/Strength of absorption

*Distance to NIR absorption trough
*Distance-Al-Trough (2130-2230nm)

“*Derivative spectra

“*Spectral indices



11

NORMALIZED
1.0 CONTINUUM Bty rtrrrtarmmiainian C R s R aEE AR R

0.9+ 1/2 DEPTH

0.8
DEPTH

0.7 1

NORMALIZED REFLECTANCE

0.6 1

AEEAREI A REARAR R BT R AR IEREET TR

POSITION

0.5 ——— ———

21 2.2 2.3
WAVELENGTH (Micrometers)

FIGURE 4 Plot showing the absorption band attributes position, depth, and full-width-hall-max
(FWHM).
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FIGURE 5 Schematic showing the absorption band attribute asymmetry. Note the distribution of
the areas to the left and right of the selected absorption minimum.
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