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Data Cubes and Spectral Vectors
A spectral cube is a three-dimensional array containing spatial 
(image) information on the x and y axes and spectral information 
on the z axis. Individual spectra, spectral maps, and full spectral 
cubes can be created from a single spectral cube.

Spectral cubes display different stratified, graphical thicknesses in 
a three-dimensional perspective that can be a useful tool for 
overall image analysis.





As a result of spatial and spectral sampling, airborne hyperspectral 
imaging (HSI) sensors produce a three dimensional (3D) data 
structure (with spatial-spatial spectral components), referred to as a 
data cube.
The 3D Hypercube Display emphasizes the high spectral content of 
the hyperspectral image while allowing you to quickly examine any 
of the individual wavelength bands. The 3D Hypercube Display 
window portrays the hyperspectral image as a three-dimensional 
“image cube”.
If we extract all pixels in the same spatial location and plot their 
spectral values as a function of wavelength, the result is the average 
spectrum of all the materials in the corresponding ground resolution 
cell
The values of all pixels in the same spectral band, plotted in spatial 
coordinates, result in a grayscale image depicting the spatial 
distribution of the reflectance of the scene in the corresponding 
spectral wavelength.



Basic data-cube structure (center) in hyperspectral imaging, illustrating the 
simultaneous spatial and spectral character of the data. The data cube can be 
visualized as a set of spectra (left), each for a single pixel, or as a stack of 
images (right), each for a single spectral channel

The top and right panels of the cube show the corresponding edge cells of each 
wavelength band, with wavelength increasing toward the back of the cube.



Spectral library
The spectral library is a collection of spectra of natural 
and man made materials.

These libraries provide a source of reference spectra of 
varieties of targets( minerals, rocks, vegetation species) 
for remote identification for these targets.

The relative distance between sensor and target does 
not affects the results of spectral library.



Minerals (0.4-15 micrometer)
Rocks (2-25 micrometer)

Manmade features (0.3-12.5 micrometer)
Lunar rock samples

USGS_Vegetation laboratory
Vegetation ( Visible-near infrared –shortwave domain)

JHU(John Hopkins University) Laboratory

Jet propulsion laboratory for rocks and minerals
Minerals( Visible-near infrared –shortwave domain)

USGS( United States Geological Survey) Spectral laboratory

Minerals( Visible-near infrared –shortwave domain)
Rocks( Thermal domain)













Importance of Spectral library development

Spectral signatures of minerals and few vegetation species are 
unique. Spectral features help in identifying the elements / 
targets.

Characterization of elements based on spectral signatures is 
rapid and reliable method.

Spectral profiles of elements (say rocks and minerals) should 
be preserved with every details (grain size and semi 
quantitative mineralogy etc.).

Spectral features are as reliable as any other semi 
quantitative chemical methods.

Reference for target detection-(Known to unknown)



Factors controlling  the quality and information in 
spectra External factors
 Properties of a spectrometer 

 Wavelength within which measurements are being made

 BRDF(Influences the continuum of the spectral curve not 
the spectral feature)

 Intensity of incident radiation( Lamp used in lab or sun 
light)

Target/Intrinsic Factors

Atomic processes operative in the target or sample.

Texture(Grain size etc.)



External Factors

Properties of a spectrometer

Parameters that describe the 
capability of a spectrometer:

(1) Spectral range
(2) Spectral bandwidth
(3) Spectral sampling,
(4) signal-to-noise ratio.



1) Spectral range: Spectral range is important to cover enough 
diagnostic spectral absorption to solve a desired problem. a) 
Ultraviolet (UV): 0.001 to 0.4 μm, b) visible: 0.4 to 0.7 μm, c) near-
infrared (NIR): 0.7 to 3.0 μm, d) the mid-infrared (MIR): 3.0 to 30 
μm, and d) the far infrared (FIR): 30 μm to 1mm

2) Spectral bandwidth: Spectral band width is the width of an 
individual spectral channel in the spectrometer.  The narrower the 
spectral Bandwidth, the narrower the absorption feature the 
spectrometer will accurately measure.

3) Spectral sampling:
Spectral sampling is the distance in wavelength between the 
spectral band pass profiles for each channel in the spectrometer 
as a function of wavelength. The Nyquist theorem states that the 
maximum information is obtained by sampling at one-half the 
FWHM



Spectral resolution: narrowest spectral features that can be 
resolved by a spectrometer(full width at half maximum FWHM)

4) signal-to-noise ratio (S/N). The S/N is dependent on the 
detector sensitivity, the spectral band width, and intensity of 
the light reflected or emitted from the surface being 
measured.



Bidirectional reflectance-distribution function (BRDF)
Bidirectional reflectance-distribution function (BRDF), a mathematical function 
“relating the irradiance incident from one given direction to its contribution to the 
reflected radiance in another direction ”(Nicodemusetal.,1977). Importantly, BRDF 
was defined as a conceptual property of the surface, at infinitesimally small angles



Wavelength domain for reflectance spectroscopic studies 

a)Ultraviolet (UV): 0.001 to 0.4 μm, 
b)visible: 0.4 to 0.7 μm,
c)near-infrared (NIR): 0.7 to 1.0 μm, 
d)short-wave infrared(SWIR): 1.0 to 2.5 μm
e)the mid-infrared (MIR): 2.5 to 30 μm, 
f)the far infrared (FIR): 30 μm to 1

NIR DOMAIN IS IMPORTANT FOR VEGETATION.

SWIR DOMAIN IS IMPORTANT FOR MINERALS





Intrinsic Factor(Target Factor) 

Factors influence the spectral signature Changes in Composition

Reflectance spectra of muscovite showing band shifts 
due to changing aluminum composition



Role of crystallinity 

Subtle spectral 
differences in the 
kaolinite group 
minerals near 2.2-μm. 
KaoliniteCM9 is well 
crystallized (WXL) 
while KGa-2 is poorly 
crystallized (PXL). 
Spectral bandwidth is 
1.9 nm and sampling is 
0.95 nm.



Composition plus crystal structure 

Comparison of calcite and dolomite continuum-removed 
features. The dolomite absorption occurs at a shorter 
wavelength than the calcite absorption.



Role of grain size

cba=Reflectance spectra of pulverized sample(<100 micron) of 
Carbonaceous kimberlite= Reflectance spectra of pulverized sample(60-
100 micron) of carbonaceous kimberlite. c= Reflectance spectra of 
consolidated Carbonaceous kimberlite.





Rock spectra vs Mineral spectra





Laboratory set up

where S is source, L is 
fiber optic lens where H 
refers height of the 
measurement gunfrom 
the sample top and d 
indicates the field of 
view (FOV)of the 
measurement gun.



Calibration Panel

•Perfectly diffuse reflector.
•Performance of the calibration panel is important 
•Maintenance of calibration panel
•Recalibrating the calibration panel.



Sample preparation
•Sample( Intact rock sample; size to be specified)
•Grain size of the powdered sample.
•Soil texture should be maintained.
•For few cases; specific grain sized sample is essential.

Kimberlite Rock sample 
Pulverized Kimberlite Rock sample 



Continuum Removal: Continuum is a imaginary line joins 
highest albedo points in a spectral profile





Continuum-removed chlorophyll 
absorptions for 8 vegetation types 
showing that the continuum removed 
features can show subtle spectral 
differences.





Noise Estimation and dimensionality 
reduction in Hyperspectral Data



 Advances in data collection during past decade Resulting in information 
overload

 Traditional statistical methods breakdown - Due to Increase in number of 
Observations & Variables associated with each observation

 Dimension of the data is the number of variables – measured on each 
observation

 High Dimensional data sets present many challenges
 Major difficulty with high dimensional data
 Not all measured variables are “important” for unraveling phenomena of 

interest

Data Reduction

Commonly used techniques are

Principal Component Analysis – PCA
Minimum Noise Fraction – MNF





Principal Components Transform
Different bands of spectral data are often highly correlated - contain similar 
Information Based on statistical characteristics – data redundancy & 
correlation between bands can be reduced

Principal Components Analysis - Is a widely used technique for dimensionality 
reduction & data compression. 

PCA Objective is to reduce dimensionality (i.e. the number of bands) in the 
data, and compress as much of the information in the original bands into fewer 
bands “NEW" bands that result from this statistical procedure are called 
components

Process attempts to maximize (statistically) the amount of information (or 
variance) from the original data into least number of new components

Principal Components Analysis
Uses Eigen values determine the significance of PC
Data Reduction is in accordance with associated eigenvalues



First principal component shows the direction and length of the widest transect 
of the ellipse, measures the highest variation within the data.

Second principal component is the widest transect of the ellipse that is 
orthogonal (perpendicular) to the first principal component Second principal 
component describes the largest amount of variance in the data that is not 
already described by the first principal component In a two-dimensional 
analysis, the second principal component corresponds to the minor axis of the 
ellipse







In n dimensions, there are n principal components 

Each successive principal component: Accounts for a decreasing 
amount of the variation in the data which is not already accounted 
for by previous principal components

Although there are n output bands in a PCA. First few bands 
account for a high proportion of the variance in the data in some 
cases, almost 100%.

PCA is useful for compressing data into fewer bands Useful 
information can be gathered from principal component bands



By seeing this plot we can see that eigen 
values are high for initial few bands and 
after eigen value number 6-7 (band 6-7) 
eigen value is constant. 

Eigen values have direct relation with the 
variance of the data higher the eigen value 
the variance is more and the information 
is more. 

Therefore for further processing only 
these few bands will be selected. The first 
band contains the largest percentage of 
data variance and the second PC band 
contains the second largets data variance 
and so on the last bands appear noise as 
they contain little variance







Issues of PCA

PCA maximizes total image variance with out making distinction 
between Noise & Information

PCA images are ordered by data variance. If bands have 
differing amounts of noise ?

Bands in a hyperspectral image have differing amounts of noise
Principal components may not show usual trend of steadily 
increasing noise with increasing component number





Distinction between information & noise can be made

• Some sensor systems simultaneously acquire dark images. 

• Dark Current images represent electronic noise present in the 
data 

• These dark images can be used as input for noise estimation 

Absence of dark images -If we assume that 

Signal at any point in the image is strongly correlated with the 
signal at neighboring pixels while the noise shows only weak 
spatial correlation 

Near neighbor differences can be averaged to derive noise 
value



Minimum Noise Fraction Transform
Shift Difference method

It is assumed that each pixel contains both signal and noise, 
and that adjacent pixels contain the same signal but different 
noise 

“shift difference” is performed on the data by differencing 
adjacent pixels and averaging the results to obtain the “noise” 
value to assign to the pixel being processed 

Best noise estimate is gathered using the shift-difference 
statistics from a homogeneous area rather than from the 
whole image



Minimum Noise Fraction transform (MNF) orders output components by 
decreasing signal to noise ratio

MNF procedure first estimates the noise in each image band using the 
spatial variations in brightness values 

Then applies two successive principal component transforms

First uses the noise estimates to transform the dataset to a coordinate 
system in which the noise is uncorrelated and is equal in each component

Then a standard principal components transform is applied to the noise-
adjusted data, with output components ordered by decreasing variance

Procedure produces a component set in which noise levels increase 
uniformly with increasing component number

Low-order components should contain most of the image information and 
little image noise









MNF IS PERFORMED SEGREGATING DATA INTO VNIR & 
SWIR SEGEMENTS 





MNF is useful in determining inherent dimensionality of image 
data by segregating noise and reduce computational 
requirements for subsequent processing



Pixel Purity Index
The set of low-order MNF components provides a “distilled” 
version of the hyperspectral image that can be used to rapidly 
identify relatively “pure” image spectra for use as spectral 
endmembers in the further processes. 

The Pixel Purity Index (PPI) operation is the first step in identifying 
these endmember spectra.



Pixel Purity Index

The "Pixel-Purity-Index" (PPI) is a means of finding the most 
"spectrally pure," or extreme, pixels in multispectral and 
hyperspectral images. See Boardman et al . (1995). 

PPI calculates a spectral purity score for each n-dimensional pixel 
 in the original data by generating random unit vectors (called 
skewers), so that all pixel vectors are projected on to the 
skewers and the ones falling at the extremes of each skewer are 
counted. After many repeated projections to different skewers, 
those pixels that count above a certain cut-off threshold are 
declared  ‘‘pure’’ 

A Pixel Purity Index (PPI) image is created in which the DN of 
each pixel corresponds to the number of times that pixel was 
recorded as extreme



A two-dimensional illustration 
of how the Pixel Purity Index 
identifies potential extreme 
image spectra (large red dots).



Endmembers represent pure pixels supposedly representing one feature type 
only and these can be collected from image itself 



Using PPI images in a n-dimensional visualiser for 
endmembers collection

Spectra can be thought of as points in an n-dimensional 
scatterplots, where n is the number of bands. 

The coordinates of the points in n-space consist of “n” values that 
are simply the spectral radiance or reflectance values in each band 
for a given pixel. 

The distribution of these points in n-space can be used to estimate 
the number of spectral endmembers and their pure spectral 
signatures. 



To assess the results of the PPI operation we will use the n-
Dimensional Visualizer tool. 

This tool allows you to create and view an n-dimensional scatterplot 
of spectra for an area in the hyperspectral image or MNF 
component set. You can view the scatterplot from different 
viewpoints and rotate the plot manually or automatically in real 
time. 

You designate the selected area by drawing a polygon in the 
Hyperspectral Image window. You can use this tool to investigate 
the spectral properties of different materials in the image and to 
search for image cells with extreme spectral values that might 
represent pure endmembers

n-Dimensional Visualizer



Using PPI images in a n-dimensional visualiser for 
endmembers collection

The n-Dimensional visualizer provides an opportunity for interactive 
selection of the endmembers in n-space. The n-D visualizer is used 
in conjunction with the Minimum Noise Fraction Transform (MNF) 
and Pixel Purity index (PPI) tools to locate, identify and cluster the 
purest pixels and most extreme spectral responses in a data set. 

The n-Dimensional visulizer allows for interactive rotation of data in 
n-D space, selection of groups of pixels into different classes 
(Boardman, 1993; Boardman and Kruse, 1994). Here in this study 
this procedure was followed to isolate different group of pixels 
representing different endmembers. The selected classes were 
exported to Region of Interest (ROI) and used as input for further 
spectral processing.









The n-D Space — Where Many Algorithms Operate

Each HSI spectrum (or pixel) is an n-D vector that
can be represented as a single point in n-D space.
n-D space is actually where many of our algorithms
operate.
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Some HSI Scatter Plots; Spectra as Points in ‘Hyperspace’



Classification Techniques

1. Full Pixel 

2.Sub Pixel

Full Pixel or per pixel classification

Full-pixel analysis methods attempt to determine whther one or more target 
materials are abundant within each pixel in the image on the basis of the 
spectral similarity between the training (reference) pixel and target 
(unknown) spectra Spectral Angle Mapper 

1. Spectral Feature Fitting

2. Support Vector Machines 



The spectral angle is the angle between any two vectors 
originating from a common origin. The magnitude of the angle 
indicates the similarity or dissimilarity of the materials—a smaller 
angle correlates to a more similar spectral signature. 

This method is relatively insensitive to changes in illumination on 
the target material because changes in light will impact the 
magnitude but not the direction of the vector. A poorly 
illuminated target will cause the points to be plotted closer to the 
origin

Spectral Angle Mapper or SAM



SAM: n-D Geometry

A 2D scatterplot with 2 spectra:

Band a

Ba
nd

 b

Spectrum s1

Spectrum s2



Angular Distance Metric (Spectral Angle Mapper or SAM)

Assume a two band spectral remote sensing system.  Each two point
‘spectrum’ is a point in Band b vs. Band a space.

The angle, , between the two
lines connecting each spectrum

(point) to the origin is the angular
separation of the two spectra.  
Smaller angular separations in-

dicate more similar spectra.









Variation in illumination
affected more strongly 
when the Maximum 
Likelihood and 
Minimum Distance were 
used. The results of the 
classification
deteriorated fast while 
the Spectral Angle 
Mapper and the Spectral 
Correlation Mapper 
were better in that case.



Spectral Correlation Mapper

X = Image Spectrum (DN value) of the pixel in all spectral bands 
_
X = Mean of the DN values of the same pixel over all spectral 
bands

Y= Reference Spectrum of a class in all spectral bands
_
Y = Mean of the reference spectra of a class over all spectral 
bands 



1. Aim is to classify pixel X

2. Given DN value of pixel X for every band

3. Use 

to determine R for each class

4. Assign the pixel to the class where the value of R is 
maximum 





Support Vector Machine

SVM performs classification by constructing an N-dimensional hyper plane 
that optimally separates the data into two categories

Support vector Machines are good candidates for remote sensing 
classification in particular hyperspectral image classification in many ways

1.SVM can work well small training data set 
2.SVM perform with high classification accuracy for data having hundreds 
of dimension as in hyperspectral images
3.The structure of SVM is less complex even with high dimensional data

The SVM aim to maximize the margin between two classes of interest by 
placing linear separating hyperplane 

The SVM uses structural risk minimization (SRM). The Empirical risk 
minimizes the misclassification error and whereas structural risk 
minimization minimizes the probability of misclassification.



Support Vector Machine
A set of features that describes one case (i.e., a row of predictor values) is 
called a vector. So the goal of SVM modeling is to find the optimal 
hyperplane that separates clusters of vector in such a way that cases with 
one category of the target variable are on one side of the plane and cases 
with the other category are on the other size of the plane. 

The vectors near the hyperplane are the support vectors. The figure below 
presents an overview of the SVM process.  

The points lying on the two parallel hyperplanes are called Support Vector 
(SV). The margin is defined as the Euclidian distance between the Support 
vector and Optimal separating hyperplane (OSH). Maximization of margin 
ensures better generalization capability for the test data

SVM are based on the structural risk minimization  (SRM) which aims at 
minimizing the upper bound of the expected error over the whole data set.

The advantage of SVM is its ability to work with smaller training data sets, 
SVM are becoming preferred classification method to classify hyperspectral 
imagery



A Two-Dimensional Example

Before considering N-dimensional hyperplanes, let’s look at a simple 2-
dimensional example. Assume we wish to perform a classification, and our data 
has a categorical target variable with two categories. 

Also assume that there are two predictor variables with continuous values. If 
we plot the data points using the value of one predictor on the X axis and the 
other on the Y axis we might end up with an image such as shown below. One 
category of the target variable is represented by rectangles while the other 
category is represented by ovals.



In this idealized example, the cases with one category are in the lower left 
corner and the cases with the other category are in the upper right corner; the 
cases are completely separated. The SVM analysis attempts to find a 1-
dimensional hyperplane (i.e. a line) that separates the cases based on their 
target categories. There are an infinite number of possible lines; two candidate 
lines are shown above. The question is which line is better, and how do we 
define the optimal line.

The dashed lines drawn parallel to the separating line mark the distance 
between the dividing line and the closest vectors to the line. The distance 
between the dashed lines is called the margin. The vectors (points) that 
constrain the width of the margin are the support vectors. The following figure 
illustrates this.



An SVM analysis finds the line (or, in general, hyperplane) that is oriented so 
that the margin between the support vectors is maximized. In the figure above, 
the line in the right panel is superior to the line in the left panel.

If all analyses consisted of two-category target variables with two predictor 
variables, and the cluster of points could be divided by a straight line, it would 
be easy. Unfortunately, this is not generally the case, so SVM must deal with 
(a) more than two predictor variables, (b) separating the points with non-linear 
curves, (c) handling the cases where clusters cannot be completely separated, 
and (d) handling classifications with more than two categories.

Flying High on Hyperplanes

In the previous example, we had only two predictor variables, and we were 
able to plot the points on a 2-dimensional plane. If we add a third predictor 
variable, then we can use its value for a third dimension and plot the points in 
a 3-dimensional cube. Points on a 2-dimensional plane can be separated by a 
1-dimensional line. Similarly, points in a 3-dimensional cube can be separated 
by a 2-dimensional plane.



As we add additional predictor variables (attributes), the data points can be represented 
in N-dimensional space, and a (N-1)-dimensional hyperplane can separate them.

When Straight Lines Go Crooked
The simplest way to divide two groups is with a straight line, flat plane or an N-
dimensional hyperplane. But what if the points are separated by a nonlinear region such 
as shown below?



In this case we need a nonlinear dividing line.

Rather than fitting nonlinear curves to the 
data, SVM handles this by using a kernel 
function to map the data into a different space 
where a hyperplane can be used to do the 
separation.

The kernel function may transform the data into a higher dimensional space to 
make it possible to perform the separation.





The concept of a kernel mapping function is very powerful. It allows SVM models to 
perform separations even with very complex boundaries such as shown below

Many kernel mapping functions can be used – probably an infinite number. But a 
few kernel functions have been found to work well in for a wide variety of 
applications. The default and recommended kernel function is the Radial Basis 
Function (RBF).









Spectral Feature Fitting

To match target and reference pixel spectra by examining specific absorption 
features in the spectra (continuum removed spectrum) 

User specifies a range of wavelengths within a unique absorption feature exists 
for the chosen target 

Reference (training) spectra are then compared to the target spectrum using 
two measurements: 

 The depth of the feature in the target is compared 
to the depth of the feature in the reference, and

 The shape of the feature in the target is compared 
to the shape of the feature in the reference (using a 
least-squares technique)



Continuum Removal
 Continuum Removal normalizes reflectance spectra to allow comparison of 

individual absorption features from a common baseline
 Continuum is a convex hull fit over the top of a spectrum utilizing straight-

line segments that connect local spectra maxima
 Continuum is removed by dividing it into the actual spectrum for each pixel 

in the image
 The resulting image spectra are equal to 1.0 where the continuum and the 

spectra match and less than 1.0 where absorption features occur 

Kaolinite reflectance spectra Continuum removed spectra



Band depth
The apparent depth of an absorption feature, relative to the surrounding 
continuum in a reflectance or emittance spectrum

Rb is the reflectance 
at the absorption-
band center (the 
minimum in the 
continuum-removed 
feature), and
Rc is the reflectance 
value of the 
continuum at the 
wavelength of the 
band center

If the features one is looking for have weak absorption Continuum removal 
suppresses them 





Spectral Unmixing - Sub-Pixel analysis

Mixed pixels are generated if the size of the pixel includes more 
than one type of terrain cover 
Measured spectral radiance of a pixel is the integration of the 
radiance reflected from all the type of terrain covers within the 
ground instantaneous field of view (GIFOV) 
Spectral mixing is inherent in any finite-resolution digital 
imagery
Mixed pixel problem not well addressed with multispectral data 
because distinctions with limited band numbers were clear to 
differentiate classes
Unmixing has particular relevance for something like mineral 
mapping where abundance of minerals is desired parameter



a: Presence of small or sub-pixel 
targets
b: Presence of boundaries of 
discrete parcels
c: Gradual transition between 
land cover classes
d: Contribution of areas outside 
the area represented by a pixel





Spectral unmixing Is a procedure by which the measured spectrum 
of a mixed pixel is decomposed into a collection of constituent 
spectra, or endmembers, and

a set of corresponding fractions, or abundances, indicating the 
proportion of each endmember present in the pixel. 















Linear -Constrained Unmixing
If we can claim to know the spectral reflectance or radiance for 
the materials potentially in each pixel (i.e., the endmember) we 
can write M simultaneous linear equations in N unknowns (i.e.,the 
fractions are the only unknowns).







Two very different types of unmixing are typically used: Using 
“known” endmembers and using “derived” endmembers.

Using known endmembers, one seeks to derive the apparent fractional 
abundance of each endmember material in each pixel, given a set of “known” or 
assumed spectral ndmembers.

These known endmembers can be drawn from the data (averages of regions 
picked using previous knowledge), drawn from a library of pure materials by 
interactively browsing through the imaging spectrometer data to determine 
what pure materials exist in the image





Matched filtering

The technique is a unique approach to spectral mixture modelling
in that it does not require knowledge of the spectral signatures of 
other component materials (Boardman 1998). A type of unmixing 
in which only user chosen targets are mapped
Unlike Complete Unmixing, to find the spectra of all endmembers 
in the scene to get an accurate analysis (hence, this type of 
analysis is often called a “partial unmixing” because the unmixing 
equations are only partially solved)
Matched Filtering “filters” the input image for good matches to the 
chosen target spectrum by maximizing the response of the target 
spectrum within the data and suppressing the response of 
everything else (which is treated as a composite unknown 
background to the target)
Pixel value in the output image is proportional to the fraction of 
the pixel that contains the target material



Matched filtering

MF vector equates to target abundance estimations that range 
from 0 to 100% (Mundt et al. 2007). Spectra that closely match the 
training spectrum will have a score near one while background 
noise will have a score near zero.  Any pixel with a value of 0 or 
less would be interpreted as background (i.e., none of the target is 
present). 
One potential problem with Matched Filtering is that it is possible 
to end up with false positive results
One solution to this problem that is available in ENVI is to calculate 
an additional measure called “infeasibility”. Which is the method 
called MTMF
Is a hybrid method based on the combination of the matched filter 
method (no requirement to know all the endmembers) and linear 
mixture theory





This technique may find some “false positives” that shows high values in 
terms of matching score for rare materials which is taken care of by an 
output “infeasibility” image to the results. 

The infeasibility image is used to reduce the number of “false positives” 
that are sometimes found using matched filtering technique. Pixels with 
a high infeasibility are likely to be matched filter false positives. 
Correctly mapped pixels will have a high matched filter score and a low 
infeasibility value where as Pixels with a high matched filter result and 
high infeasibility are “false positive” pixels and do not match the target. 
The infeasibility values are in noise sigma units which vary in digital 
number scale with matched filter score and indicate the feasibility of the 
matched filter results (Harsanyi & Chang, 1994; Chen & Reed, 1987).

Mixture Tuned Matched Filtering technique combines the best part of 
the linear spectral unmixing model and the statistical matched filter 
model while avoiding the drawbacks of each model. From matched 
filtering it inherits the advantage of its ability to map a single known 
target without knowing the other background endmember signatures, 
unlike traditional spectral mixing models.



MTMF (Mixture-Tuned Matched Filtering )
 Is a hybrid method based on the combination of the 

matched filter method (no requirement to know all 
the endmembers) and linear mixture theory.

 The results are two images:
 a MF score image with 0 to 1 (1 is perfect match), and 
 A infeasibility image, the smaller the better match.

 Infeasibility is based on both noise and image statistics and 
indicates the degree to which the Matched Filtering result is a 
feasible mixture of the target and the background. Pixels with 
high infeasibilities are likely to be false positives regardless of 
their matched filter value.

 Use 2-D scatter plot to locate those pixels in an image.





Spectral Derivative Analysis

Benefited from the high spectral resolution of hyperspectral data, the reflectance could 
construct a comparatively continuous curve, and thus the derivative method is likely to 
be used for data analysis.

From one hand, the derivative processing could enhance the small variations of spectral 
curve (Li, 2006). And from the other hand, the derivatives could also be relatively less 
sensitive to the spectral variations of sunlight and skylight (Tsai and Philpot, 1998), and 
also eliminate background signals (Becker et al, 2005).

The First Derivative Reflectance (FDR) and Second Derivative Reflectance (SDR) were 
calculated according to Eq. (1) and Eq. (2). For FDR method,
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