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Resistance
Definition of an OHM

An ohm is a resistance in a conductor that produces a
potential difference of one volt when a current of one

ampere is flowing through it.
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http://en.wikipedia.org/wiki/Volt
http://en.wikipedia.org/wiki/Ampere

Ohm’s Law

The elactron moves at the

Fermi speed, and has only

a tiny drift velocity superimposed
by the applied electric field.

+

R

Electric current = Voltage / Resistance

oV

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/ohmlaw.html#c1
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Resistance vs Resistivity

Resistance is relevant only to a particular
measurement circuit. Units: Ohms

Resistivity_is an intrinsic property of all
physical materials Units: Ohm-Meters

Apparent Resistivity is a resistivity estimate based on a
assuming a half-space geometry. Units: Ohm-meters
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Electrical Resistivity vs Electrical
Conductivity

Resistance =p (ohm-meters)

Conductivity = o = 1/p (mho/meters)
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Calculating Resistance from
Resistivity

The resistance (R) of a length of wire 1s given by

L ’ :

R=p—. !
where

p = resistivity of the medium composing the wire,
L = length,
A = area of the conducting cross section.

* http://www.cflhd.gov:80/agm/index.htm
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Factors Influencing Electrical
Conductivity in Rocks

Porosity (connected/effective - fractures or pores)
Pore saturation (% air or gas)
Hydrocarbon Fluid Saturation
Water salinity (TDS)

Clay Content
Metallic Sulfide Mineral Content

Fluid temperature

Rock Matrix intrinsic resistivity
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Archie’s Law

The munerals comprising a rock are almost always electrical insulators. Thus, electrical
conduction occurs because of the moisture contained within the pores of the rock or soil. The
resistivity of soil or rocks depends on several parameters. These include the clay content,
moisture salinity, degree of saturation of the pores, and the number, size, and shape of the
interconnecting pores. For soils, the degree of compaction (influencing porosity) is also an
important factor. Archie (1942) developed an empirical formulae relating resistivity to
porosity, degree of saturation and resistivity of the saturating moisture, shown below.

. —m _—n
Po=0aP 5 Py,

where ¢ 1s the fractional pore volume (porosity), s is the fraction of the pores containing
water, pw 1s the resistivity of the water, » 1s approximately 2. ¢ and m are constants with a
varying between 0.5 and 2.5 and m varying between 1.3 and 2.5.
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Formation Factor

Since the conduction of current in soil and rock 1s through the electrolyte contained in the
pores, resistivity 1s governed largely by the porosity, or void ratio, of the material and the
geometry of the pores. Pore space may be in the form of intergranular voids, joint or fracture
openings, and blind pores, such as bubbles or vugs. Only the mterconnected pores
effectively contribute to conductivity, and the geometry of the interconnections, or the
tortuosity of current pathways, further affects it. The resistivity p of a saturated porous

material can be expressed as

JQ — pr‘-

F = formation factor.

Py = resistivity of pore water.
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o, = conductivity of the water.

o, = conductivity of the formation as a whole,

a = empirical constant, typically 1 for unconsolidated sediments,
m = empirical constant. typically 2 for unconsolidated sediments,
¢ = effective porosity. the fraction of interconnected pore space,

F ="formation factor, " related to the volume and tortuaosity of the pore space.

The conductivity of most geological formations can be fit

to Archie’s Law
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Influence of Permeability

A rock with a non-conducting matrix must be permeable (connected pores) as well as porous to
conduct electricity.

av

Darcy's Law: g =— g ]
dh
Ohm's Law: dl;,?'
j=—o—r,
dh
where

q =fluid density,
J =current density,

dv : :
= head or voltage gradient, respectively.

Despite the similarity between Darcy’s and Ohm’s Laws, electric currents have zero

viscosity so even a narrow crack can provide an effective electrical connection between pores that not contribute to hydraulic
permeability.
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Comparison of electric and
hydraulic properties.

Electrical Hydraulic
Transverse resistance: T =X hp, =Hp, Transmissivity: T, =Xhk=KH
Longitudinal conductance: S= Zh/p,= H/p, Leakance: L,=X2k/h, = K/H
Average aquifer resistivities: p,, p, Average hydraulic conductivities: K, K,

http://www.cflhd.gov:80/agm/index.htm
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Effect Qf Water Temperature

Resistivity vs. Temperature
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Resistivity, {2-m

1 1(]1 1[]2 1[]3 1[]":l 1[}3 1{]4

¢l Clay and mari | {

ol Loam

ol Top soil

oh Clayey soils

sm Sandy soils

sp Loose sands H

sw River sand and gravel

gw Glacial Till |
Chalk
Limestones
Sandstones
Basalt
Crystalline rocks

Figure 145. Resistivities of different rock types. (From INS, Elecirical Conductivity of Soils and
Rocks, Geonics Ltd)
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Table 17. Typical electrical resistivities of earth materials.

Material

Clay

Resistivity (£2m)
1-20

Sand. wet to moist

20-200

Shale

1-500

Porous limestone

100-1,000

Dense limestone

1,000-1,000,000

Metamorphic rocks

50-1,000,000

Ieneous rocks

100-1,000,000

http://www.cflhd.gov:80/agm/index.htm
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Table 8. Cation Exchange Capacities (CEC) of common clay types.

Clay type Cation Exchange Capacity
Kaolinite 3-15
Chlorite 10 - 40
Ilite 10 - 40
Montmorillonite 80 - 150
Vermiculite 100 - 150

This table shows that kaolinite has the least influence on conductivity, and vermiculite has the
greatest influence. However, other factors influence conductivity values, including the degree
of saturation and the salinity of the saturating fluid.

Central Federal Lands Highway Division

http://ww%:éﬁé Pg%K\'/A:%?éng/index.htm



Resistance vs Resistivity

Resistance is relevant only to a particular
measurement circuit. Units: Ohms

Resistivity_is an intrinsic property of all
physical materials Units: Ohm-Meters

Apparent Resistivity is a resistivity estimate based on a
assuming a half-space geometry. Units: Ohm-meters
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Calculating Resistance from
Resistivity

The resistance (R) of a length of wire 1s given by

L ’ :

R=p—. !
where

p = resistivity of the medium composing the wire,
L = length,
A = area of the conducting cross section.

* http://www.cflhd.gov:80/agm/index.htm
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Four Electrode Resistivity Measurement on
rock sample

... are used to avoid electrode contact resistance effects
seen in two electrode measurements.

a current | |
L [\
R=p—,
f A

P1 ®v P2 ‘ C2
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Four electrode resistivity arrays

Electrode arrays
i i Lipole dipole i i
To remote : rrent electrode
1 Fole dipole i i

To remote current electrode To remote current electrode
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The Basic
Concept of an
Earth
Resistivity
Measurement

http://www.cflhd.gov/agm/images/fig91.jpg Dr.A.BALUKK
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Electrode Contact Resistance is typically much
higher than the intrinsic earth resistivity

Equipotential surfaces
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Electrode Contact Resistance is concentrated
around each electrode

Current flow
Equipotential surfaces
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If a standard two electrode resistivity meter were
used to measure the earth’s “resistance” we only
obtain information on the quality of the electrode
contacts — not the earth’s resistivity

Current flow
Equlpoten 1al surfaces
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Pole-Pole Array

http://appliedgeophysics.berkeley.edu:7057/dc/em44.pdf
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Pole-Dipole Array

If only one of the current electrodes 1s placed at “infinity” the
configuration and the apparent resistivity are as shown:

http://appliedgeophysics.berkeley.edu:7057/dc/em44.pdf
Dr.A.BALUKKARASU



Pole-Dipole Array

This array 1s used frequently in resistivity surveying and the spacings are
usually described, and taken, in integer multiples of the voltage electrode
spacing b. The standard nomenclature 1s to call the potential electrode
spacing a so the configuration and apparent resistivity become:

-

Py =27 an(11+])%

http://appliedgeophysics.berkeley.edu:7057/dc/em44.pdf
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Wenner Array

The Wenner array 1s now seen to be a simple variant of the pole-
dipole 1 which the distant pole at infinity 1s brought 1 and all the electrodes
are given the same spacing, a, as seen in the following configuration

@
®
a l a L a
A M N B
\.-'?

http://appliedgeophysics.berkeley.edu:7057/dc/em44.pdf
Dr.A.BALUKKARASU



Schlumberger

o]

a
M N

V _b(b+a) V _b* |
Po =—T ( q)-::: T if a<<b
‘ | a I a
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Dipole-Dipole Array

A B M N

The apparent resistivity 1s given by:

Pa :%ﬁ an(n+1)n+2).
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The electric potential varies as 1/r around a single
current electrode on a homogeneous half-space

i -
| I | I » OO
| 5
Ci D ¢
Current flow
4 p
Equipotential surfaces
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. Copyright © 2006 W. W. Norton & Company
FIGURE 5.4g
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Equal potential voltage surfaces between the electrodes
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Depth of current flow between two current electrodes

TINSEE,

¢
100 2 N7
i L ~=_-_9. ,-_-__.:,
) 80 EE’—%////III 40% \\\\\\\\Qg—a
- S 0 smiminisismirin ' -—// -
; . EoE /ll
5 601 ' -9 l
“ : -/ 60%
: | L
‘g 40 - 7=4 '
g : 70%
a . |
20 :
0 | i | | | “
0.0 0.5 1.0 1.5 2.0 -
Depth / current electrode separation
FIGURE 5.7 R | i

Dr.A.BALUKKARASU

Introduction to Applied Ge
Copyright © 2006 W. W. Nortc



Current flow lines — homogeneous subsurface Py > P

Current flow lines — horizontal interface
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FIGURE 5 . 1 4g Copyright © El'fl(f)\’u’. W. Norton f & n;nmany
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Current flow lines
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Current flow lines
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Current flow lines
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Current flow lines — homogeneous subsurface Py > P

Current flow lines — horizontal interface
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Electrode spacing a (m) >
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Electrode spacing a (m) >
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Current flow lines — homogeneous subsurface Py > P

Current flow lines — horizontal interface
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FIGURE 5 . 1 4g Copyright © El'fl(f)\’u’. W. Norton f & n;nmany




Electrode spacing a (m) >
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Electrode spacing a (m) >
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FIGURE 5.15g (b) T opaeg© 200 w.W. Noton & Conpany
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a=1m

z =20m

p,; =10 Q2-m
p2=100 Q-m

FIGURE 5.18g (b)
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a=1m

z =20m
p; = 10 Q2-m
p2=100 Qm
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p] =10 Q-m

Depth of interface = 20 m
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Electrode spacing a (m)
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FIGURE 5.21g (b) T Copeh © 2008 W.W. Novon  Company




K

/ /01< P2>P3

FIGURE 5.21¢g (c)

10" 10°

Electrode spacing a (m)

Dr.A.BALUKKARASU

Introduction to Applied Geophysics
Copyright © 2006 W. W. Norton & Company




10"

Electrode spacing a (m)

Dr.A.BALUKKARASU Introduction to Applied Geophysics
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Section
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Electrode spread (a) in m

Dr.A.BALUKKARASU Introduction to Applied Geophysi
FIGURE 5.24g (c) T Copmeh© 2004 W.W. Noron & Conpay




Dr.A.BALUKKARASU Introduction to Applied Geophysics
FIGURE 5.25g (a) Copyright © 20{:})(?\’9'. W. Norton ECL;HID}]D}'




1 X 1

-2 —1 0 1

x — spread center to contact’s center (m)

Dr.A.BALUKKARASU Introduction to Applied Geophysics
FIGURE 5.25g ( b) T P ©2008 W.W. Noon & Company




Dr.A.BALUKKARASU Introduction to Applied Geophysics
FIGURE 5.26g Copyright © El'fl({)\’u’. W. Norton i) C.L’)]ll]"lé]l’l_‘,"




Dr.A.BALUKKARASU Introduction to Applied Geophysics
FIG’URE 5.27g (a) Copyright © 20{36;1\’. W. Norton i) Cf'nnpany




Dip=15
(quahtatwe)

\

_*—
5

x — spread center to dipping contact (m)

Dr.A.BALUKKARASU Introduction to Applied Geophysics
FIGURE 5.27g (b) T P ©2008 W.W. Noon & Company




Connecting wire

Current electrode

FIGURE 5.28g
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Potential electrode
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Wenner

Wenner/Lee
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Schlumberger
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Dipole—dipole
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Electrode spacing (L) ——>
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Resistivity index
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../../../../C:/Burger_Geophysics_software/Geo-CD-ROM.exe

AEM Resistivity 900 hz - m-Meters
Dighem helicopter survey for Washoe Co. M Widmer 1995
Contour Interval: 0.2 on Log10 = 58.4% change per contour

Smallest Conteur 0.4 = 2.5 Chm-m (skin depth 26 m)
Cantour 1 = 10 Ohm-m (skin depth 53 m)
Contour 2 = 100 TUhm-m { skin depth 167 m)
Largest Contour 2.8 = &31 Ohm-m {skin depth 418 m)

Plot by GLO, Mar 06 N
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Skin depth, ¢

> |s defined as the

depth at which the e =037=-03B1%)
electric amplitude is T
decreased to 37% e =€ dlz= /0>
skin depth.
- [ 2 'I 2p I_
5= = | ~ 500,/
\Vouo  \2nfax-107’ Vf

where 0 1s 1n meters. p 1n Ohm-m and f1n Hz.
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