FACTOR ANALYSIS



Introduction

* The purpose of factor analysis is to describe the
variation among many variables in terms of a few
underlying but unobservable random variables
called factors

* All the covariance or correlations are explained by
the common factors

* Any portion of the variance unexplained by the
common factors is assigned to residual errors terms
which are called unique factors



Terminology

e Common Factor: B HZ*E
* Factor loading: IZ 8 FE

* Explanatory factor analysis: B R 4% [E
r

* Confirmatory factor analysis: B £ H =

S3H



Concept

* Factor analysis can be viewed as a statistical
procedure for grouping variables into subsets
such that the variables with each set are
mutually highly correlated, whereas at the
same time variables in different subsets are

relatively uncorrelated.



Model

* Common factor analysis is composed of 3
sets of variables

— A set of p observed variables X, X,,.. X with
mean vector u (px1) and covariance matrix X
(pxp)

— A set of y unobserved variables called common
factor F, F,, ., F where yll p

— A set of p unique but unobserved factors U,, U,,
..U

p



(X,—u,)=a,,F+a F+...+a, F+U,

1r r

F+U,

2r r

(XZ—H2)=021F1+0’22F2+- ..+a

(Xp—yp):ap1F1+ap2F2+. : .+aerr+Up

Or

(X—pu)=Af+U



Notation

(X—p) is the (px1) vector of elements
(X—u), i=1,2,...,p;
fis the y x1 vector of linearly independent common
factors, F i=12,..,y
A is the p x yfactor pattern matrix (consisting of the

unknown factor loadings) a,, i=1,2,...,p; i=1,2,..., ¥
and

ij)

U is the px1 vector of unique factors U, i=1,2,...,p



£, F, are common to all p X
U, is unique Yariaples,
Assumptions:

E[f]=0

f1=1,7 %y identity matrix

u]=0;

uu =Y, px p, diagonal matrix with
diagonal elements &

E[uf"] = 0, no correlation between unique
factors and common factors

Oy Iy



Factor structure matrix: Cov(x, 1) = 4
If the X variables are standardized, the

elements of A represent correlations
between the X variables and the factors.

The variance of each X. can be written

as ,
> > >
o, =2 a; + o,

J=1

342 IS the variance explained by the common
= " factors, and is usually called communality.

Gi is usually called unique variance or specific
variance.



Estimation of the Factor Model Using the
Principal Components

* Given an observed data matrix X (nxp), the

factor model can be expressed as
X=FA'+U
where

F (n xy) is the unobserved matrix of vales of the y common
factors for the n observational units;

A’ is the (¥ xp) unknown factor pattern or loading matrix;
and

U is the (n x p) matrix of unobserved errors or values of
unique factors for the n observational units.



Eigenvalues

Consider equation Au=Au,
where u is a vector and A is a scalar

Question: under what conditions (other than u=0) can
u and A exist so that the equation is true?

Rewrite (A-AI)u=0. If (A-AI) is non-singular, the only
solution is u=0. But if it’s singular, a non-null solution
for u can be obtain by

u=[(A-AI)” (A-AI) -I]z, z is arbitrary.

So we can use | A-AI |=0 to find the solutions, this is

called characteristic equation of A.The roots A, A,... A
are called latent roots, characteristic roots,
eigenvalues...

n



Example of Calculating Eignvalues

~3 242
A=l,pn ;|
-3 22 A0
A-M=1, 5 ] 0 /1]

IA-AI|=(=3-A)(=1-A)—(2 ~/2)?
=A2+4)\—5
=(A+5)(A-1)
A=-5, A=1 are eigenvalues of A



Calculating Eigenvectors

* Calculating an eigenvector corresponding to
A, requires finding a non-null v to satisfy Av=

AV, equivalent to solving
(A—A, )v=0
* From the example, we have

[9 l]V:—SV

Solve the equation, we will get v.



Estimating Factors

* We use the relation for correlation matrix
p=AA'+Y¥Y
* Based on principle component, we can

write X=7ZV', where V is the matrix of
eigenvectors of X'X.

* Then, X=(ZAY?)(A"*V'), let
=(ZA1?), and A= (A"V')
Since factors are of smaller dimension than the

observed values, we can partition Z into » and p-r
components.



Determining the Number of Factors

Eigenvalues exceed 1: the eigenvalue of 1 is the arithmetic
mean of the eigenvalues of a correlation matrix. It’s also the
variance of each of the X variables. Hence the eigenvalue-one-
criterion suggests a factor re retained if it explains at least as
much as a single variable.

The test for zero correlation: if the correlation matrix is
diagonal, there are no common factors

Scree test: plot eigenvalues vs. eigenvalue number. Typically,
this shape of a scree graph consists of two parts, a rapidly
downward sloping followed by a second part which is almost
horizontal. (example: 4 factors)



EIGE”‘;“LUES This example the eigenvalue-one-
criteria agrees with the scree plot.

** But they don't always agree.
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Factor Rotation

* Since there is no unique solution the the factor
analysis, rotation can be used to obtain factors
that are easily interpretable.

— Orthogonal transformation: rigid

— Varimax: the most commonly used method of rotation.
It maximizes the squared ratio of each factor loading to
communality of X

— Oblique: permits a minor amount of correlation among
factors. However, there is no single popular method of
this type of rotations. It requires considerable
expertise.



Constructing factors

* Observed variables should fall into mutually
exclusive categories in such a way that the
variables in a given category exhibit
loadings that are high on the same single
factor, moderate to low on a very few
factors and negligible on the remaining
factors.

* Some use the criteria of factor loading
greater than 0.3 or 0.4.
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