
FACTOR ANALYSIS



Introduction
• The purpose of factor analysis is to describe the 

variation among many variables in terms of a few 
underlying but unobservable random variables 
called factors

• All the covariance or correlations are explained by 
the common factors

• Any portion of the variance unexplained by the 
common factors is assigned to residual errors terms 
which are called unique factors



Terminology

• Common Factor:共同因素
• Factor loading:因素負荷量
• Explanatory factor analysis:探索性因素分
析

• Confirmatory factor analysis:驗證性因素
分析



Concept

• Factor analysis can be viewed as a statistical 
procedure for grouping variables into subsets 
such that the variables with each set are 
mutually highly correlated, whereas at the 
same time variables in different subsets are 
relatively uncorrelated.



Model

• Common factor analysis is composed of 3 
sets of variables
– A set of p observed variables X1, X2,…,Xp with 

mean vector  (p1) and covariance matrix  
(pp) 

– A set of  unobserved variables called common 
factor F1, F2 ,…,F  where  p

– A set of p unique but unobserved factors U1, U2 ,
…,Up



(X11)a11F1+a12F2+…+a1rFr+U1

(X22)a21F1+a22F2+…+a2rFr+U2

            .

           .

             .

(Xpp)ap1F1+ap2F2+…+aprFr+Up

Or

        (X)Af+U



Notation

• (X) is the (p1) vector of elements
 (Xii), i=1,2,…,p;

• f is the  1 vector of linearly independent common 
factors, Fj, i=1,2,…, 

• A is the p   factor pattern matrix (consisting of the 
unknown factor loadings) aij, i=1,2,…,p; i=1,2,…, ; 
and

• U is the p1 vector of unique factors Ui, i=1,2,…,p



FFF ,, 21 are common to all p X 
variables,

iU is unique to iX

Assumptions:
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Factor structure matrix: AfxCov ),(
If the X variables are standardized, the 
elements of A represent correlations 
between the X variables and the factors.
The variance of each Xi can be written 
as
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ija is the variance explained by the common 

factors, and is usually called communality.
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iu is usually called unique variance or specific 
variance. 



Estimation of the Factor Model Using the 
Principal Components

• Given an observed data matrix X (np), the 
factor model can be expressed as
                       X=FA'+U
where 
F (n ) is the unobserved matrix of vales of the common 
factors for the n observational units;
A´ is the (  p) unknown factor pattern or loading matrix; 
and
U is the (n  p) matrix of unobserved errors or values of 
unique factors for the n observational units.



Eigenvalues
• Consider equation Au=u, 

where u is a vector and  is a scalar
• Question: under what conditions (other than u=0) can 

u and exist so thatthe equation is true?
• Rewrite (A-I)u=0. If (A-I) is non-singular, the only 

solution is u=0. But if it’s singular, a non-null solution 
for u can be obtain by
u=[(A-I)¯ (A-I) -I]z, z is arbitrary.

• So we can use | A-I |=0 to find the solutions, this is 
called characteristic equation of A.The roots … n 
are called latent roots, characteristic roots, 
eigenvalues…



Example of Calculating Eignvalues
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Calculating Eigenvectors
• Calculating an eigenvector corresponding to 
k requires finding a non-null v to satisfy Av= 
kv, equivalent to solving 
AkIv

• From the example, we have 
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  v   v

Solve the equation, we will get v.



Estimating Factors
• We use the relation for correlation matrix 


• ased on principle component, we can 
write X=ZV, where V is the matrix of 
eigenvectors of XX.

• Then, X=(Z-1/2)(V), let
~
F(Z-1/2), and 

~
A(V)

Since factors are of smaller dimension than the 
observed values, we can partition Z into r and p-r 
components.



Determining the Number of Factors
• Eigenvalues exceed 1: the eigenvalue of 1 is the arithmetic 

mean of the eigenvalues of a correlation matrix. It’s also the 
variance of each of the X variables. Hence the eigenvalue-one-
criterion suggests a factor re retained if it explains at least as 
much as a single variable. 

• The test for zero correlation: if the correlation matrix is 
diagonal, there are no common factors

• Scree test: plot eigenvalues vs. eigenvalue number. Typically, 
this shape of a scree graph consists of two parts, a rapidly 
downward sloping followed by a second part which is almost 
horizontal. (example: 4 factors)



Cut-off

This example the eigenvalue-one-
criteria agrees with the scree plot.

But they don’t always agree. 



Factor Rotation
• Since there is no unique solution the the factor 

analysis, rotation can be used to obtain factors 
that are easily interpretable.
– Orthogonal transformation: rigid
– Varimax: the most commonly used method of rotation. 

It maximizes the squared ratio of each factor loading to 
communality of X

– Oblique: permits a minor amount of correlation among 
factors. However, there is no single popular method of 
this type of rotations. It requires considerable 
expertise.



Constructing factors
• Observed variables should fall into mutually 

exclusive categories in such a way that the 
variables in a given category exhibit 
loadings that are high on the same single 
factor, moderate to low on a very few 
factors and negligible on the remaining 
factors.

• Some use the criteria of factor loading 
greater than 0.3 or 0.4.
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