DISPERSION

Standard Deviation

Standard Deviation

The Standard Deviation is a measure of how spread out numbers are.

Its symbol is σ (the greek letter sigma)

Calculation of S.D from Actual Mean – Individual Series

Values (X)	x-x	(X-X) ²
14		
22		
9		
15		
20		
17		
12		
11		
Σ X = ?		$\Sigma (X-X)^2 = ?$

Calculation of S.D from Assumed Mean - Individual Series

The Table below gives the marks obtained by 10 M.Tech Students in statistics examination. Calculate Standard Deviation

Nos										
Marks	43	48	65	57	31	60	37	48	78	59

R. Nos	Marks	d= X- A	d ²
1	43		
2	48		
3	65		
4	57		
5	31		
6	60		
7	37		
8	48		
9	78		
10	59		

Calculation of S.D from Actual Mean –Discrete Series

Markş (X)	f	fX	$\frac{d = X - \overline{X}}{\overline{X}} = 30.8$	d^2	f d 2
10	8	80	-20.8	432.64	3461.12
20	12	240	-10.8	116.64	1399.68
30	20	600	-0.8	0.64	12.8
40	10	400	9.2	84.64	846.4
50	7	350	19.2	3668.84	2580.48
60	3	180	29.2	852.64	2557.92
$\Sigma X = 210$	<i>𝒦</i> = 60	$\sum f X = 1850$			$\Sigma f d^2 = 10858.40$

Arithmetic Mean for Discrete Series

Standard
Deviation
$$\overline{X} = \frac{\sum fX}{N}$$

$$\overline{X} = 1850 / 60 = 30.8$$

$$\overline{X} = 1850 / 60 = 30.8$$

$$= \sqrt{\frac{\sum f d^2}{N}}$$

$$= \sqrt{10858.40 / 60} = 13.45$$

Calculation of S.D from Assumed Mean –Discrete Series

Marks (X)	f	d=X-A (A=30)	fd	f d 2
10	8			
20	12			
30	20			
40	10			
50	7			
60	3			
	N= 60		$\Sigma fd =$	$\Sigma f d^2 =$

$$\frac{\sum f d^2}{N} - \left(\frac{\sum f d}{N}\right)^2$$

 $\sigma = ?$

Check the Answer with the previous

sum. Both answer should be same

Calculation of S.D from Step Deviation Mean –Discrete Series

Markş (X)	f	d=(X-A)	d' = d / C	<i>f</i> d'	<i>f</i> d'²
10	8				
20	12				
30	20				
40	10				
50	7				
60	3				
	N = 60			<i>Σf</i> d' =	Σ fd'²=

$$\frac{\sigma}{=} \sqrt{\frac{\sum f d'^2}{N} - \left(\frac{\sum f d'}{N}\right)^2} \times \sigma$$

The Check the Answer with the previous sum. Both answer should be same

Calculation of S.D from Step Deviation Mean -Continuous

Markş (X)	f	Mid Value (m)	d=(m-A)	d' = d / C	<i>∱</i> d'	<i>f</i> d'²
0-10	8					
10-20	12					
20-30	17					
30-40	14					
40-50	9					
50-60	7					
60-70	4					
	N= 60				Σ /d' =	Σ <i>f</i> d'²=

$$\frac{\sigma}{=} \sqrt{\frac{\sum f d'^2}{N} - \left(\frac{\sum f d'}{N}\right)^2} \times c$$

$$\sigma = ?$$

Variance

- Square of standard deviation is called variance
- Formula:

variance =
$$\sigma^2$$

Co-efficient of Variance =
$$----x$$
 100

Example: 2

From the following data verify which group of student is consistent in their studies and which group of students having greater variability

Marks No. of Students	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80
No. of Students (Group A)	5	7	15	22	14	8	7	2
No. of Students (Group B)	3	8	13	21	29	22	11	3

Marks	Group A (f)	Midvalue (X)	d' = (X-A) / C (A=45,C=10)	fd'	fd'²
0-10	5	5	-4	-20	80
10-20	7	15	-3	-21	63
20-30	15	25	-2	-30	60
30-40	22	34	-1	-22	22
40-50	14	45	0	0	0
50-60	8	55	1	8	8
	7	65	2	14	28
60-70					
70-80	2	75	3	6	18
	N=80			Σfd' = -65	Σ <i>f</i> d'²=279

$$X = A \pm \frac{\sum f d'}{N} *C$$

$$\int \frac{\sum f d'^2}{N} - \left(\frac{\sum f d'}{N}\right)^2 \times C$$

$$\sigma = ?$$

Example: 3

In two factories A and B engaged in the same industry in the area, the average weekly wages (in Rs.) and the standard deviations are as follows:

	Factory A	Factory B
No. Of Employees	476	524
Mean Wages	34.5	28.5
Standard Deviation	5	4.5

- (a) Which factory A or B pays out a larger amount as weekly wages?
- (b) Which factory A or B has greater variability in industrial wages?