- A measures of central of tendency may be defined as single expression of the net result of a complex group
- There are two main objectives for the study of measures of central tendency
- To get one single value that represent the entire data
- To facilitate comparison

- A measures of central of tendency may be defined as single expression of the net result of a complex group
- There are two main objectives for the study of measures of central tendency
 - To get one single value that represent the entire data
 - To facilitate comparison

 There are three averages or measures of central tendency

✓ Arithmetic mean

✓ Median

✓ Mode

Arithmetic Mean

 The most commonly used and familiar index of central tendency for a set of raw data or a distribution is the mean

The mean is simple arithmetic average

 The arithmetic mean of a set of values is their sum divided by their number

Merits of the Use of Mean

It is easy to understand

It is easy to calculate

It utilizes entire data in the group

It provides a good comparison

Limitations

In the absence of actual data it can mislead

 Abnormal difference between the highest and the lowest score would lead to fallacious conclusions

 A mean sometimes gives such results as appear almost absurd. e.g. 4.3 children

Its value cannot be determined graphically

Types of Averages

- Arithmetic Mean
 (a) Simple AM (b) Weighted AM
- 2. Median
- 3. Mode
- 4. Geometric Mean
- 5. Harmonic Mean

Calculation of Arithmetic Mean

For Ungrouped Data

```
Mean= S<u>um of observations</u>

Number of observations
```

$$= X1+X2+....+Xn$$

n

Calculate mean for 40, 45, 50, 55, 60, 68

$$= 318$$

Mean = 53

Arithmetic Mean

	Individual Series	Discrete Series	Continuous Series
Direct Method	$\overline{X} = \underline{X_1 + X_2 + X_3}$	$\overline{X} = \Sigma f X$ N	$\overline{X} = \underline{\sum f m}$
Shortcut Method	$\overline{X} = A \pm \frac{\Sigma d}{N}$	$\overline{X} = A \pm \frac{\sum f d}{N}$	$\frac{\mathbf{X} = \mathbf{A} \pm \frac{\mathbf{\Sigma} f d}{\mathbf{N}}$
Step Deviation Method	$\overline{X} = A \pm \frac{\Sigma d'}{N} *C$	$\overline{X} = A \pm \frac{\sum f d'}{N} *C$	$\overline{X} = A \pm \frac{\sum f d'}{N} *C$

- For Grouped Data
- Mean = AM + <u>(Σfd)</u> i
 N
- √d(deviation) = X-AM
 i
- √X = Midpoint, AM = Assumed Mean
- √i = Class Interval size
- √fd = Product of the frequency and the corresponding deviation

CI	f	Mid Point	d = X-AM	fd
		X	i	
30 – 40	6	35	-3	-18
40 – 50	8	45	-2	-16
50 – 60	10	55	-1	-10
60 – 70	6	65	0	0
70 – 80	4	75	1	4
80 – 90	3	85	2	6
90 - 100	3	95	3	9
	N=40			Σfd= -25

• Mean = AM + (
$$\Sigma$$
fd) i
N
= 65 + (-25) * 10
40
= 65 - 6.25
Mean = 58.75

Median

- When all the observation of a variable are arranged in either ascending or descending order the middle observation is Median.
- It divides whole data into equal portion. In other words 50% observations will be smaller than the median and 50% will be larger than it.

Merits of Median

Like mean, median is simple to understand

Median is not affected by extreme items

Median never gives absurd or fallacious results

 Median is specially useful in qualitative phenomena

Limitations

It is not suitable for algebraic treatment

 The arrangement of the items in the ascending order or descending order becomes very tedious sometimes

 It cannot be used for computing other statistical measures such as S.D or correlation

Calculation of Median

- Ungrouped data
- a. When there is an odd number of items

 Median = The middle value item

b. When there is an even number of items

Median = Sum of middle two scores

Calculate Median 7, 6, 9, 10, 4
 Arrange the given data in ascending order:

 4, 6, 7, 9, 10

 N = 5 (odd number)

Median =
$$(N+1)/2 \rightarrow Middle term$$

Median = 7

Calculate Median 6, 9, 3, 4, 10, 5

Arrange the given data in ascending order:

N = 6 (even number)

Median =
$$(N+1)/2$$
 th item

Median= Sum of the middle two scores = 5+6

2

2

Median = 5.5

Grouped Data

Median =
$$I + (N/2 - cf)$$
 i

- ✓ Where, I = exact lower limit of the CI in which Median lies
- ✓ cf = Cumulative frequency up to the lower limit of the CI containing Median
- √ f = Frequency of the CI containing Median
- √ i = Size of the class interval

CI	f	Cumulative Frequency	
30 – 40	6	6	
40 – 50	8	14	
50 – 60	10	24	→ N/2=20
60 – 70	6	30	
70 – 80	4	34	
80 – 90	3	37	
90 - 100	3	40	
	N=40		

• Median = I + (N/2 - F) i
fm
Here I = 50 cf = 14 f =

Here,
$$I = 50$$
, cf = 14, f = 10, i = 10
Median = 50 + $(20 - 14)$ * 10
10

$$= 50 + 6$$

Median = 56

Mode

 The observation which occurs most frequently in a series is Mode

Merits of Mode

It can be easily located by mere inspection

It eliminates extreme variations

It is commonly understood

Mode can be determined graphically

Limitations

It is measure having very limited practical value

It is not capable of further mathematical treatment

It is ill-defined and indefinite and so trustworthy

Calculation of Mode

Ungrouped Data

Mode = largest number of times that item appear

Grouped Data

Mode = 3*Median – 2*Mean

- Calculate Mode for 100, 120, 120, 100, 124, 132, 120
 - Mode = 120, since 120 occurs the largest number of times (3 times)
- Calculate Mode for 100, 101, 110, 111, 113, 101, 113, 115
 - Mode = 101 & 113, since 101 and 113 occurs twice

 For grouped data let we consider the previous problem that we solved in Mean and Median

We have, Mean = 58.75 & Median = 56

Mode = 3*Median - 2*Mode

= 3*56 - 2*58.75

= 168 - 117.5

Mode = 50.5

References

Evaluation, Test and Measurement

J.C.Aggarwal

Teaching of Mathematics

- Dr. Anice James

Thank You