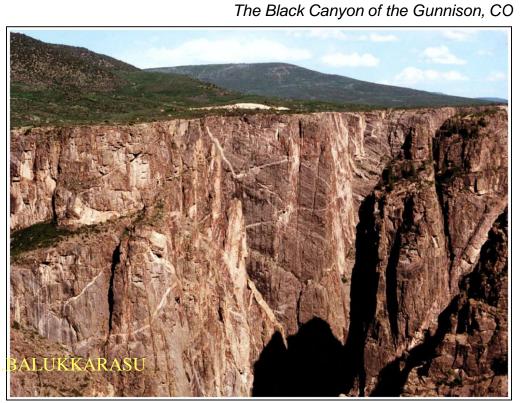
Earth's Composition and Structure:


A Journey to the Center of the Earth

Dr.A.Balukkarasu,
Associate Professor,
Department of Remote Sensing,
Bharathidasan University,
Thiruchirapalli-620 023

Mail id: gsibalu63@gmail.com balukkarasu.a@bdu.ac.in Mobile no.94430 67281

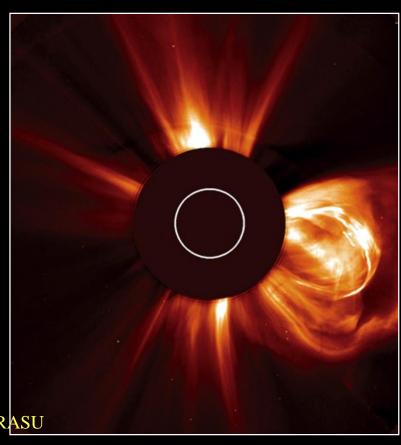
Earth's Surface

- Our experience with Earth is limited to its surface.
- Yet Earth has a complicated interior.
- Earth is characterized by...
 - An internally generated magnetic field.
 - A layered interior
 - Solid and liquid layers.
 - A gaseous envelope.
 - i.e. atmosphere

Dr.A

The Solar System

- Human perceptions have changed.
 - Early history Planets as moving lights.
 - − 1600s − 1st telescopes saw hazy spheres.
 - Today A complex, evolving system.
 - Structure
 - History
- Space probes have photographed and analyzed planets.
- Scientists have hypothesized likely origins of the solar system.


Earth and the Solar System

- What would solar system visitors notice?
 - Magnetic field.
 - Atmosphere.
 - Surface features.
 - Continents.
 - Oceans.
 - Polar ice caps.
 - Evidence of humanity?
 - Structures.
 - » Dams.
 - » Great Wall of China.
 - » Cities.
 - » Roads / canals.
 - Electric lights.

The Celestial Neighborhood

- Interstellar space: a ~vacuum with a virtual absence of matter.
- The amount of matter greatly increases approaching the Sun.
- The Sun ejects matter outward into space as the solar wind.
- Solar wind:
 - Magnetically & electrically charged particles.
 - Stream outward in all directions.
 - Consists of...
 - Protons (+ charge).
 - Electrons (– charge).
- Only a small percentage of the solar wind impinges upon Earth.

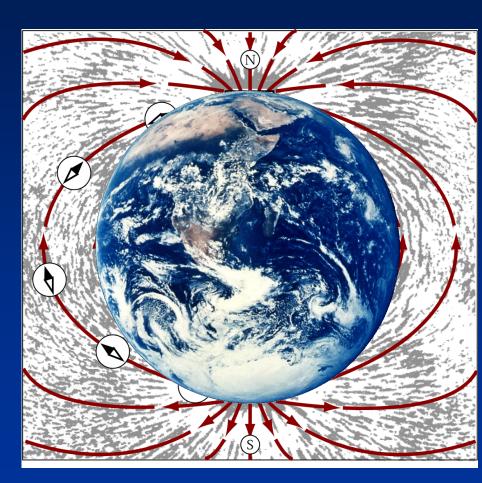
Dr.A.BALUKKARASU

Five Key Characteristics About Earth's Structure:

- 1. Earth has a *dipole* magnetic field that deflects solar wind and protects earth's surface from solar radiation
- 2. Earth has a *stratified* atmosphere, **mainly** composed of nitrogen (N₂) and oxygen (O₂)
- 3. Earth is made of a variety of *minerals*, *glasses*, *melts*, *fluids and volatiles*, all left behind during birth of the solar system
- 4. The Earth has layers: a thin silicate *crust*, a thick iron- & magnesium silicate *mantle*, and a thick metallic *core*
- 5. Physically, the earth can be divided into a rigid outer *lithosphere* and a plastic/ductile *asthenosphere* Dr.A.BALUKKARASU

Earth's Magnetic Field

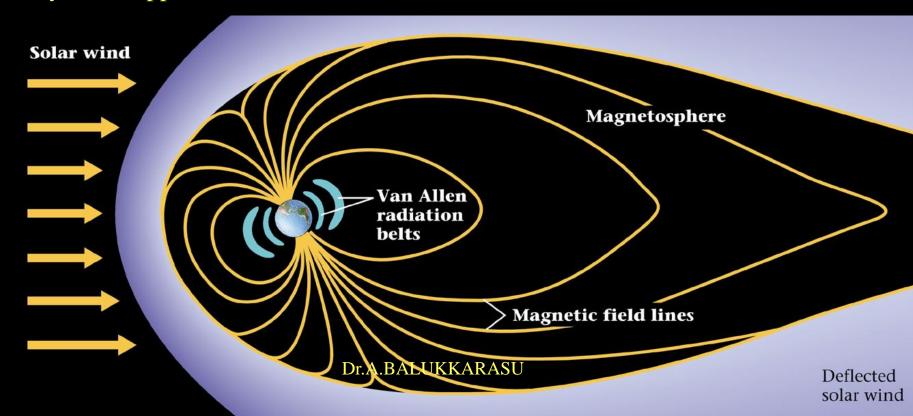
Geodynamo


The Earth's magnetic field is produced by the *geodynamo* -Flow in the <u>liquid iron</u> outer core creates a magnetic field

Magnetic field

- region affected by force emanating from a magnet
- grows stronger as separating distance decreases
- attracts or repels magnetically charged or moving electrically charged objects
- compasses work because Earth is

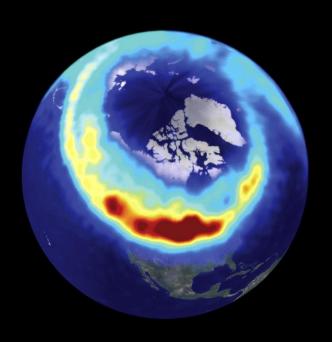
 a large magnet


 Dr.A.BALUKKARASU

Earth's Magnetic Field

Magnetic field

- Like a bar magnet, Earth's magnetic field is a dipole, (has both a N and S pole)
- Solar wind contains electromagnetic particles that are deflected by earth's field. These particles distort the shape of earth's magnetic field in space
- Van Allen belts two belts in the inner magnetic field where high energy cosmic rays are trapped. Protects us from solar radiation!

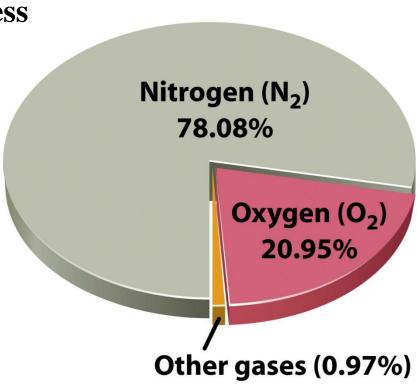

Northern & Southern Lights

Form because of our dipole magnetic field!

Dr.A.BALUKKARASU

<u>Aurorae</u>

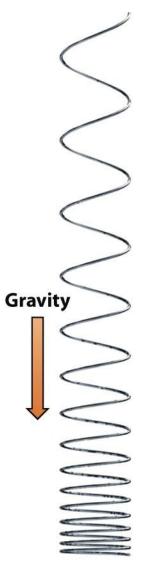
- Some ions escape Van Allen belts.
 - These ions are pulled to the magnetic poles.
 - The ions create light in the upper atmosphere.
- Spectacular aurora follow solar flares.
 - Aurora borealis Northern lights.
 - Aurora australis Southern lights.



Distinct layers of gas surround the solid portion of the earth.

 Composition is ~uniform regardless of altitude

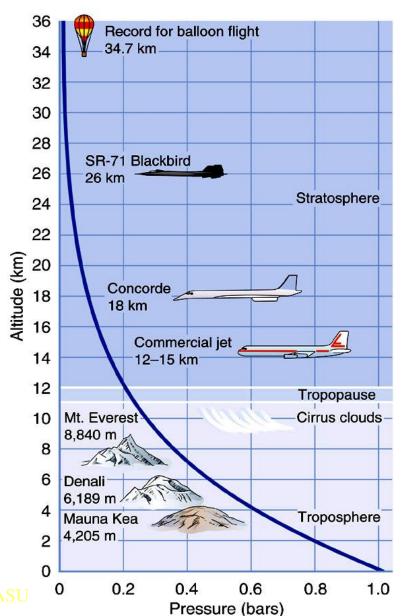
- o 78% N₂
- o 21% O₂
- All others ~1%
 - o Ar, CO₂, CH₄, H₂O, Ne, CO, SO₂
- Some other Planets have atmospheres too!
 - \circ None have $N_2 \& O_2$ as dominant gasses
- Earth was oxygen-free until ~2.5 Ga


Pressure decreases with increasing altitude

- Reflects # of molecules/volume
- Lower pressure = less molecules/volume
- O Air pressure @ sea level = $14.7 \text{ lb/in}^2 = 1 \text{ bar}$

Pressure is caused by the weight of overlying material

- o Upper atmosphere has less material above it
 - o Pressure is lower
- o 99% of atmosphere is below 50 km, the rest is between 50 and 500 km.


Dr.A.BALUKKARASU

(a)

(b)

Earth's Atmosphere is divided into distinct layers based on altitude

- Exosphere (very thin ~500 km)
 - Atmosphere merges with space
- Thermosphere (>90 km)
 - Where space shuttles orbit
- Mesosphere (50-90 km)
 - Meteors burn up here
- o Stratosphere (12-50 km)
 - Stable air; good for jets
- o Tropopause (11-12 km)
- o <u>Troposphere (0-11 km)</u>
 - o Mixing layer
 - All weather is limited to this layer
 - o "Tropo" = Greek for "turning"

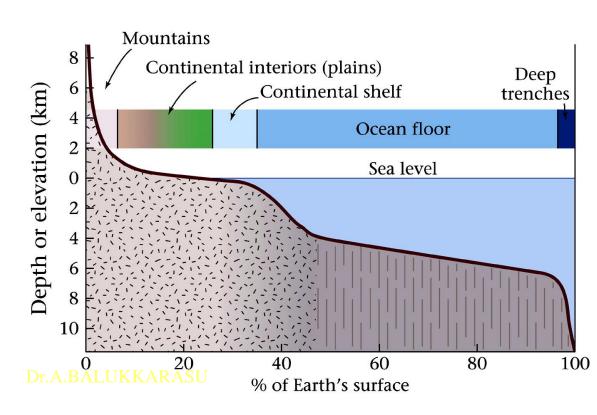
Dr.A.BALUKKARASU

Troposphere

 A well-mixed layer dominated by <u>convection</u> of air masses

Convection

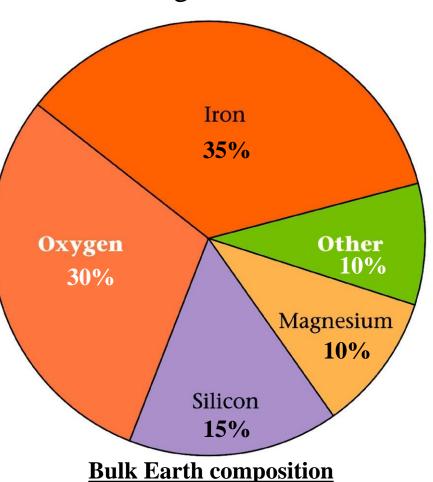
- Method of heat transfer in a fluid
 - o Think lava lamp!
- Cold is more dense = sinks
- Hot is less dense = rises
- This process results in circular convection cells
- Also causes pressure gradients which create wind!
- Also applies to the interior of the Earth



Dr.A.BALUKKARASU

...this guy likes convection

Earth's Components


- \circ Earth's surface = $\sim 30\%$ land, $\sim 70\%$ water
 - o unlike any other known planet
- Hydrosphere = includes oceans, lakes, seas, rivers, & groundwater
- Cryosphere = glaciers, snow, and sea ice
- Earth's surface is not flat; it has <u>topography</u>
- Ignoring oceans, Earth's surface is dominated by two distinct elevations:
 - Most land is 0-2 km above sea level
 - Most of the sea floor is3-5 km below sea level

Earth's Components

 Earth's elemental composition reflects mostly heavier elements not blown away by solar wind during formation of the solar system

- Most abundant elements
 - o Fe, O, Si, Mg
- Most common minerals consist of silica (SiO₂) mixed in varying proportions with other elements such as Fe, Mg, Al, Ca, K, Na
 - Felsic = more silica (less Fe/Mg)& less dense
 - o E.g. Granite
 - Mafic = less silica (more Fe/Mg)
 & more dense
 - o E.g. Gabbro / Basalt Dr.A.BALUKKARAS
 - Range: Felsic / Intermediate / Mafic / Ultramafic

Earth Materials

- Elements combine in a variety of Earth materials.
 - Organic compounds Carbon-containing compounds.
 - Most are residue from once-living creatures.
 - Include wood, peat, lignite, coal, and oil.
 - Geologically rare (decomposes in contact with oxygen).

Earth Materials

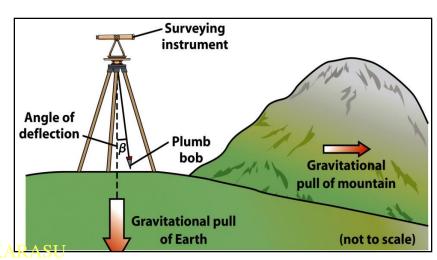
- Elements combine in a variety of Earth materials.
 - Minerals Inorganic crystalline solids.
 - Comprise rocks and, hence, most of the Earth.
 - Most rocks on Earth are silicates (based on Si and O).
 - Glasses Non-crystalline mineral-like matter.
 - Cool too quickly to form structure
 - Rocks Aggregates of minerals. There are many types.
 - Igneous Cooled from a liquid (melt).
 - Sedimentary Debris cemented from pre-existing rock.
 - Metamorphic Rock altered by pressure and temperature.

Earth Materials

- Metals Solids made of metallic elements.
- Melts Rocks that have been heated to a liquid.
 - Magma Molten rock beneath the surface.
 - Lava Molten rock at the surface.
- Volatiles Materials that turn into gas at surface temps.
 - H₂O, CO₂, CH₄, and SO₂
 - Volatiles are released from volcanic eruption.

A Layered Earth

- We live on the thin outer skin of Earth.
- Early perceptions about Earth's interior were wrong.
 - Open caverns filled with magma, water, and air.
 - Furnaces and flames.
- We now know that Earth is comprised of layers.
 - The Crust.
 - The Mantle.
 - The Core.
 - Outer Core.
 - Inner Core.
- Some basic rules of physics give some clues...


Earth's Density

• Earth's Density gives us clues about its internal structure

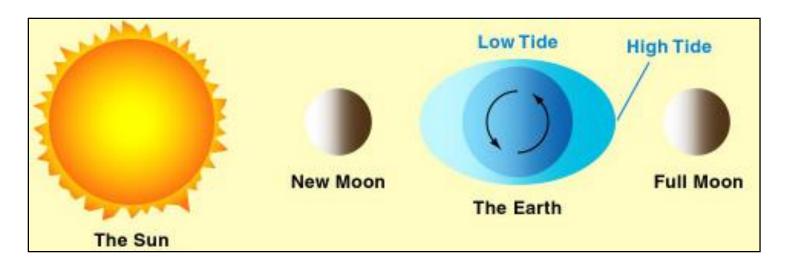
- **Density** = Mass/Volume
 - Measures how much mass is in a given volume.
 - Expressed in units of mass/volume e.g. g/cm³
 - Ice floats...why?

- Estimates of earth's mass and volume give a whole earth density of ~5.5 g/cm³
- Typical rocks at the surface of the Earth have a density of 2.0-2.5 g/cm³
- What does this require of the density of material in the Earth's interior? A.BALUK

Earth's Density

Earth's shape as a clue to the internal structure of the Earth

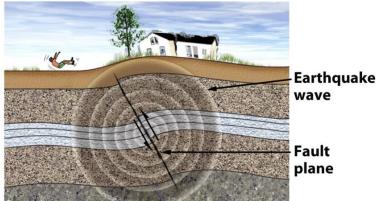
If density increased gradually and uniformly towards the center, a significant portion of Earth's mass would be near the outer edges....

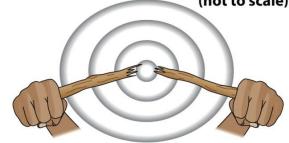


Then *centrifugal* force (not centripetal) would cause the planet to flatten into a disk. This has (obviously) not happenedal_ukkarasu

Earth's Layers

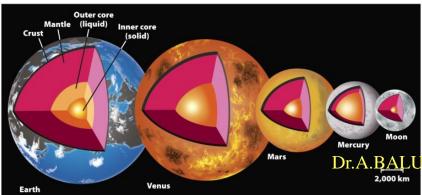
Earth's shape as a clue to the layering of the earth

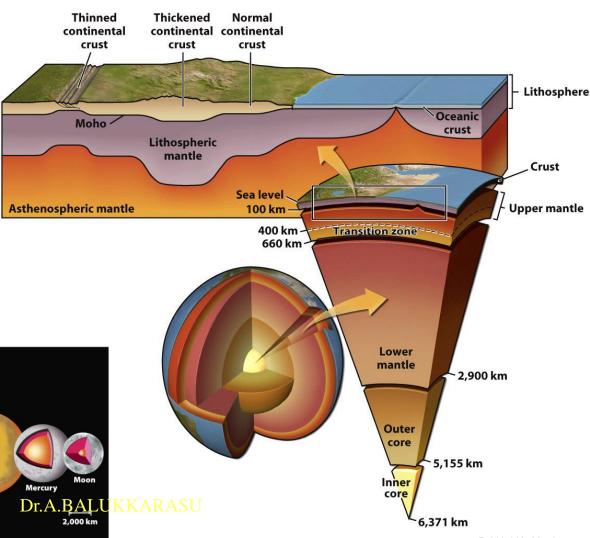

• If the Earth consisted of a thin solid shell over a thick liquid center, then the surface would rise and fall with tides like the ocean – This does not happen; only the oceans rise and fall.


• Thus, the Crust does not float over a liquid interior

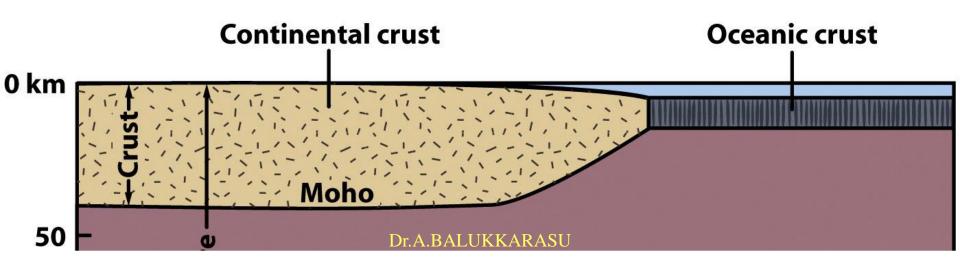
A Layered Earth

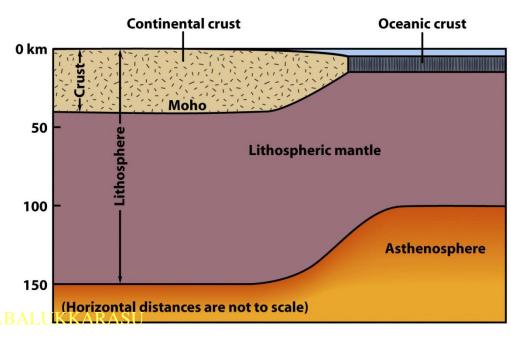
- Earthquake clues Earthquake energy transmitted as seismic waves that pass through Earth.
 - Seismic waves have been used to probe the interior.
 - Wave velocity changes with density.
 - Velocity changes give depth of layer changes.
- Changes with depth.
 - Pressure.
 - Temperature.



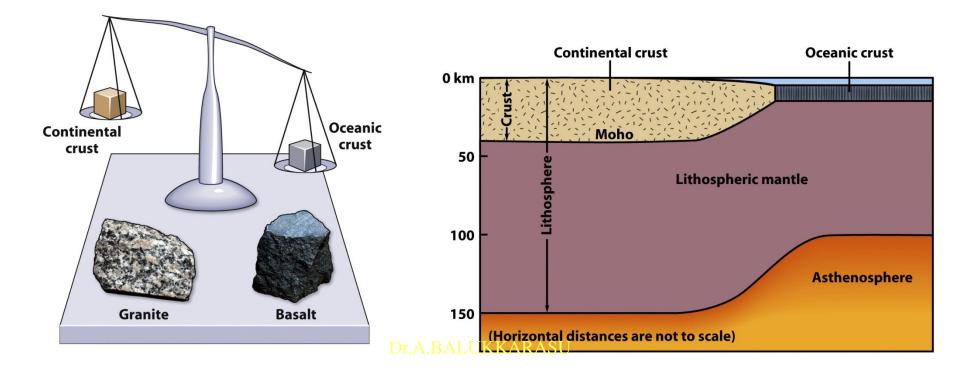

(not to scale)

Earth's Interior Layers

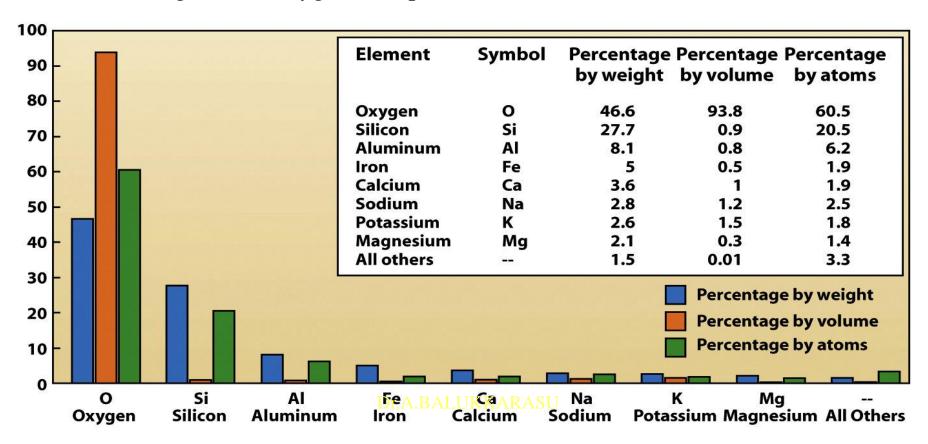

- The Earth (and other planets) have layered interiors.
 - Crust
 - Continental
 - Oceanic
 - Mantle
 - Upper
 - Lower
 - Core
 - Outer Liquid
 - Inner Solid


The Crust

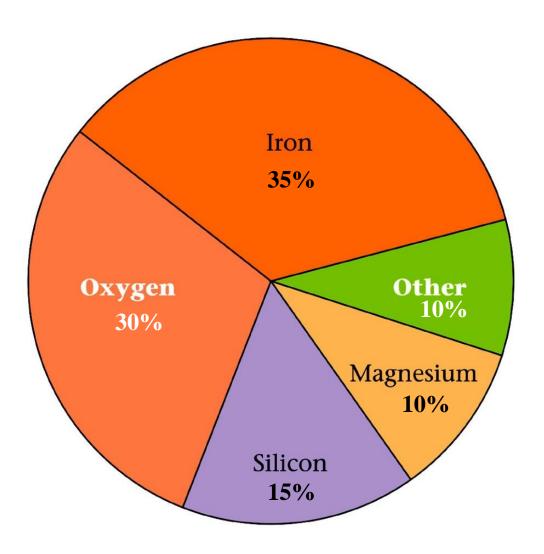
- The outermost "skin" of Earth with variable thickness.
 - Thickest under mountain ranges (70 km 40 miles).
 - Thinnest under mid-ocean ridges (3 km 2 miles).
- The Mohorovičić discontinuity or "Moho" is the lower boundary.
 - Separates the crust from the upper mantle.
 - Discovered in 1909 by Andrija Mohorovicic.
 - Marked by a change in the velocity of seismic P waves.


Two Types of Crust

- Continental crust Underlies the continents.
 - Avg. rock density about 2.7 g/cm³.
 - Avg. thickness 35-40 km.
 - Felsic composition. Avg. rock type = Granite
- Oceanic crust Underlies the ocean basins.
 - Density about 3.0 g/cm³.
 - Avg. thickness 7-10 km.
 - Mafic compositionAvg. rock type =Basalt/Gabbro

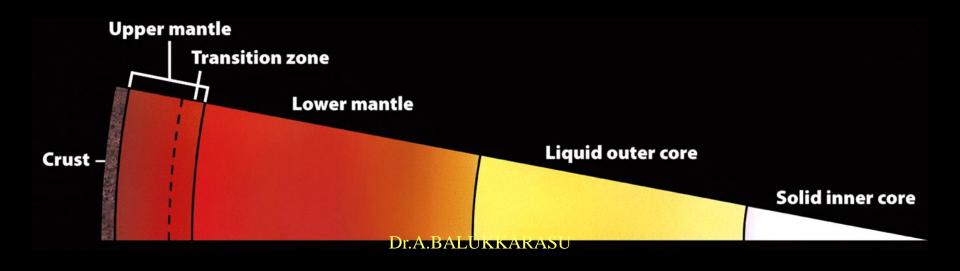

Two Types of Crust

- Crustal density controls surface position.
 - Continental crust
 - Less dense; "floats higher."
 - Oceanic crust
 - More dense: "floats lower."



Crustal Composition

- 98.5% of the crust is comprised of just 8 elements.
- Oxygen is (by far!) the most abundant element in the crust.
 - − This reflects the importance of silicate (SiO₂-based) minerals.
 - As a large atom, oxygen occupies ~93% of crustal volume.

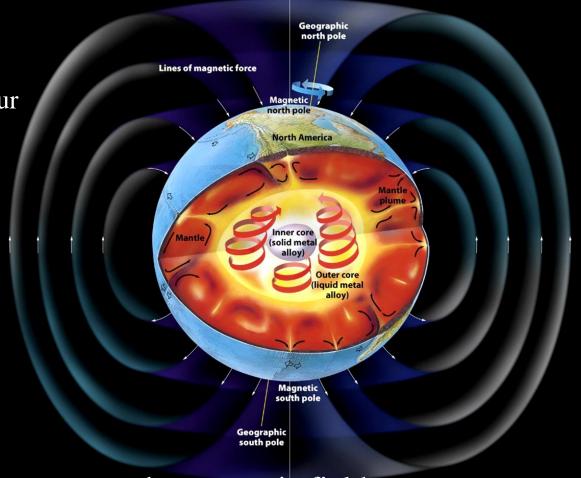

Bulk Earth Composition

Dr.A.BALUKKARASU

Earth's Mantle

- Solid rock layer between the crust and the core.
- 2,885 km thick, the mantle is 82% of Earth's volume.
- Mantle composition = ultramafic rock called <u>peridotite</u>.
- Below ~100-150 km, the rock is hot enough to flow.
- It convects: hot mantle rises, cold mantle sinks.
- Three subdivisions: upper, transitional, and lower.

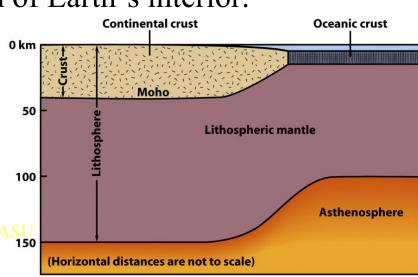
The Core


- An iron-rich sphere with a radius of 3,471 km.
- 2 components with differing seismic wave behavior.

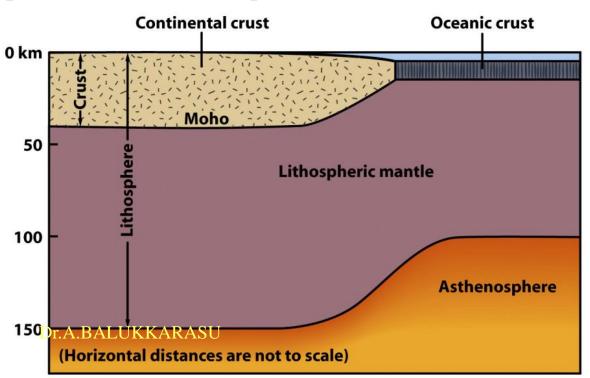
Outer core

- Liquid iron-nickel-sulfur
- 2,255 km thick
- Density $-10-12 \text{ g/cm}^3$

Inner core


- Solid iron-nickel alloy
- Radius of 1,220 km.
- Density -13 g/cm^3

• Flow in the outer core generates the magnetic field.


Lithosphere-Asthenosphere

- The Crust, Mantle, Core boundaries
 - defined by composition
 - ...but sometimes we want to divide the layers of the Earth by their behavior or physical properties
- Lithosphere The brittle portion of Earth's interior.
 - Behaves as a non-flowing, rigid material.
 - The material that moves as tectonic plates.
 - Made of 2 components: crust and upper mantle.
- Asthenosphere The ductile portion of Earth's interior.
 - Shallower under oceanic lithosphere.
 - Deeper under continental lithosphere.
 - Flows as a soft <u>ductile solid</u>.
 - Contains a small percentage of melt (< 2%)

Boundaries Between Layers

- The Crust-Mantle boundary = Moho
 - defined by seismic discontinuity indicating significant <u>change in</u> <u>composition</u>.
- Brittle-ductile transition
 - Defined by a significant <u>change in rock physical properties</u> (viscosity)
 - Also defined as the depth below which earthquakes do not occur.
- Lithosphere ≠ Crust

