
Chapter 4: SQL

 Basic Structure

 Set Operations

 Aggregate Functions

 Null Values

 Nested Subqueries

 Derived Relations

 Views

 Modification of the Database

 Joined Relations

 Data Definition Language

 Embedded SQL, ODBC and JDBC

Schema Used in Examples

Basic Structure

 SQL is based on set and relational operations with certain

modifications and enhancements

 A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

 Ais represent attributes

 ris represent relations

 P is a predicate.

 This query is equivalent to the relational algebra expression.

A1, A2, ..., An(P (r1 x r2 x ... x rm))

 The result of an SQL query is a relation.

The select Clause

 The select clause list the attributes desired in the result of a
query

 corresponds to the projection operation of the relational algebra

 E.g. find the names of all branches in the loan relation
select branch-name
from loan

 In the “pure” relational algebra syntax, the query would be:

branch-name(loan)

 NOTE: SQL does not permit the ‘-’ character in names,

 Use, e.g., branch_name instead of branch-name in a real
implementation.

 We use ‘-’ since it looks nicer!

 NOTE: SQL names are case insensitive, i.e. you can use capital
or small letters.

 You may wish to use upper case where-ever we use bold font.

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct

after select.

 Find the names of all branches in the loan relations, and remove

duplicates

select distinct branch-name

from loan

 The keyword all specifies that duplicates not be removed.

select all branch-name

from loan

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”

select *

from loan

 The select clause can contain arithmetic expressions involving

the operation, +, –, , and /, and operating on constants or

attributes of tuples.

 The query:

select loan-number, branch-name, amount  100

from loan

would return a relation which is the same as the loan relations,

except that the attribute amount is multiplied by 100.

The where Clause

 The where clause specifies conditions that the result must

satisfy

 corresponds to the selection predicate of the relational algebra.

 To find all loan number for loans made at the Perryridge branch

with loan amounts greater than $1200.

select loan-number

from loan

where branch-name = ‘Perryridge’ and amount > 1200

 Comparison results can be combined using the logical

connectives and, or, and not.

 Comparisons can be applied to results of arithmetic expressions.

The where Clause (Cont.)

 SQL includes a between comparison operator

 E.g. Find the loan number of those loans with loan amounts

between $90,000 and $100,000 (that is, $90,000 and $100,000)

select loan-number

from loan

where amount between 90000 and 100000

The from Clause

 The from clause lists the relations involved in the query

 corresponds to the Cartesian product operation of the relational algebra.

 Find the Cartesian product borrower x loan

select 

from borrower, loan

 Find the name, loan number and loan amount of all customers

having a loan at the Perryridge branch.

select customer-name, borrower.loan-number, amount

from borrower, loan

where borrower.loan-number = loan.loan-number and

branch-name = ‘Perryridge’

The Rename Operation

 The SQL allows renaming relations and attributes using the as

clause:

old-name as new-name

 Find the name, loan number and loan amount of all customers;

rename the column name loan-number as loan-id.

select customer-name, borrower.loan-number as loan-id, amount

from borrower, loan

where borrower.loan-number = loan.loan-number

Tuple Variables

 Tuple variables are defined in the from clause via the use of the

as clause.

 Find the customer names and their loan numbers for all

customers having a loan at some branch.

select distinct T.branch-name

from branch as T, branch as S

where T.assets > S.assets and S.branch-city = ‘Brooklyn’

 Find the names of all branches that have greater assets than

some branch located in Brooklyn.

select customer-name, T.loan-number, S.amount
from borrower as T, loan as S
where T.loan-number = S.loan-number

String Operations

 SQL includes a string-matching operator for comparisons on character

strings. Patterns are described using two special characters:

 percent (%). The % character matches any substring.

 underscore (_). The _ character matches any character.

 Find the names of all customers whose street includes the substring

“Main”.

select customer-name

from customer

where customer-street like ‘%Main%’

 Match the name “Main%”

like ‘Main\%’ escape ‘\’

 SQL supports a variety of string operations such as

 concatenation (using “||”)

 converting from upper to lower case (and vice versa)

 finding string length, extracting substrings, etc.

Ordering the Display of Tuples

 List in alphabetic order the names of all customers having a loan

in Perryridge branch

select distinct customer-name

from borrower, loan

where borrower loan-number - loan.loan-number and

branch-name = ‘Perryridge’

order by customer-name

 We may specify desc for descending order or asc for ascending

order, for each attribute; ascending order is the default.

 E.g. order by customer-name desc

Duplicates

 In relations with duplicates, SQL can define how many copies of

tuples appear in the result.

 Multiset versions of some of the relational algebra operators –

given multiset relations r1 and r2:

1.  (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies

selections ,, then there are c1 copies of t1 in  (r1).

2. A(r): For each copy of tuple t1 in r1, there is a copy of tuple A(t1)

in A(r1) where A(t1) denotes the projection of the single tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies of tuple

t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1 x r2

Duplicates (Cont.)

 Example: Suppose multiset relations r1 (A, B) and r2 (C)

are as follows:

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}

 Then B(r1) would be {(a), (a)}, while B(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

 SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm
where P

is equivalent to the multiset version of the expression:

 A1,, A2, ..., An(P (r1 x r2 x ... x rm))

Set Operations

 The set operations union, intersect, and except operate on

relations and correspond to the relational algebra operations



 Each of the above operations automatically eliminates

duplicates; to retain all duplicates use the corresponding multiset

versions union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it

occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

Set Operations

 Find all customers who have a loan, an account, or both:

(select customer-name from depositor)
except
(select customer-name from borrower)

(select customer-name from depositor)

intersect

(select customer-name from borrower)

 Find all customers who have an account but no loan.

(select customer-name from depositor)

union

(select customer-name from borrower)

 Find all customers who have both a loan and an account.

Aggregate Functions

 These functions operate on the multiset of values of a column of

a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Aggregate Functions (Cont.)

 Find the average account balance at the Perryridge branch.

 Find the number of depositors in the bank.

 Find the number of tuples in the customer relation.

select avg (balance)

from account

where branch-name = ‘Perryridge’

select count (*)

from customer

select count (distinct customer-name)

from depositor

Aggregate Functions – Group By

 Find the number of depositors for each branch.

Note: Attributes in select clause outside of aggregate functions must

appear in group by list

select branch-name, count (distinct customer-name)

from depositor, account

where depositor.account-number = account.account-number

group by branch-name

Aggregate Functions – Having Clause

 Find the names of all branches where the average account

balance is more than $1,200.

Note: predicates in the having clause are applied after the

formation of groups whereas predicates in the where

clause are applied before forming groups

select branch-name, avg (balance)

from account

group by branch-name

having avg (balance) > 1200

Null Values

 It is possible for tuples to have a null value, denoted by null, for

some of their attributes

 null signifies an unknown value or that a value does not exist.

 The predicate is null can be used to check for null values.

 E.g. Find all loan number which appear in the loan relation with

null values for amount.

select loan-number

from loan

where amount is null

 The result of any arithmetic expression involving null is null

 E.g. 5 + null returns null

 However, aggregate functions simply ignore nulls

 more on this shortly

Null Values and Three Valued Logic

 Any comparison with null returns unknown

 E.g. 5 < null or null <> null or null = null

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true, (unknown or false) = unknown

(unknown or unknown) = unknown

 AND: (true and unknown) = unknown, (false and unknown) =

false,

(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to

unknown

 Result of where clause predicate is treated as false if it

evaluates to unknown

Null Values and Aggregates

 Total all loan amounts

select sum (amount)

from loan

 Above statement ignores null amounts

 result is null if there is no non-null amount, that is the

 All aggregate operations except count(*) ignore tuples with null

values on the aggregated attributes.

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.

 A subquery is a select-from-where expression that is nested

within another query.

 A common use of subqueries is to perform tests for set

membership, set comparisons, and set cardinality.

Example Query

 Find all customers who have both an account and a loan at the

bank.

 Find all customers who have a loan at the bank but do not have

an account at the bank

select distinct customer-name

from borrower

where customer-name not in (select customer-name

from depositor)

select distinct customer-name

from borrower

where customer-name in (select customer-name

from depositor)

Example Query

 Find all customers who have both an account and a loan at the

Perryridge branch

 Note: Above query can be written in a much simpler manner. The

formulation above is simply to illustrate SQL features.

(Schema used in this example)

select distinct customer-name

from borrower, loan

where borrower.loan-number = loan.loan-number and

branch-name = “Perryridge” and

(branch-name, customer-name) in

(select branch-name, customer-name

from depositor, account

where depositor.account-number =

account.account-number)

Set Comparison

 Find all branches that have greater assets than some branch

located in Brooklyn.

 Same query using > some clause

select branch-name

from branch

where assets > some

(select assets

from branch

where branch-city = ‘Brooklyn’)

select distinct T.branch-name

from branch as T, branch as S

where T.assets > S.assets and

S.branch-city = ‘Brooklyn’

Definition of Some Clause

 F <comp> some r t  r s.t. (F <comp> t)

Where <comp> can be: 

0
5

6

(5< some) = true

0
5

0

) = false

5

0
5(5  some) = true (since 0  5)

(read: 5 < some tuple in the relation)

(5< some

) = true(5 = some

(= some)  in

However, ( some)  not in

Definition of all Clause

 F <comp> all r t  r (F <comp> t)

0
5

6

(5< all) = false

6
10

4

) = true

5

4
6(5  all) = true (since 5  4 and 5  6)

(5< all

) = false(5 = all

( all)  not in

However, (= all)  in

Example Query

 Find the names of all branches that have greater assets than all

branches located in Brooklyn.

select branch-name

from branch

where assets > all

(select assets

from branch

where branch-city = ‘Brooklyn’)

Test for Empty Relations

 The exists construct returns the value true if the argument

subquery is nonempty.

 exists r  r  Ø

 not exists r  r = Ø

Example Query

 Find all customers who have an account at all branches located

in Brooklyn.

select distinct S.customer-name

from depositor as S

where not exists (

(select branch-name

from branch

where branch-city = ‘Brooklyn’)

except

(select R.branch-name

from depositor as T, account as R

where T.account-number = R.account-number and

S.customer-name = T.customer-name))

 (Schema used in this example)

 Note that X – Y = Ø  X Y

 Note: Cannot write this query using = all and its variants

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any

duplicate tuples in its result.

 Find all customers who have at most one account at the

Perryridge branch.

select T.customer-name
from depositor as T
where unique (

select R.customer-name

from account, depositor as R

where T.customer-name = R.customer-name and

R.account-number = account.account-number and

account.branch-name = ‘Perryridge’)

 (Schema used in this example)

Example Query

 Find all customers who have at least two accounts at the

Perryridge branch.

select distinct T.customer-name

from depositor T

where not unique (

select R.customer-name

from account, depositor as R

where T.customer-name = R.customer-name

and

R.account-number = account.account-number

and

account.branch-name = ‘Perryridge’)

(Schema used in this example)

Views

 Provide a mechanism to hide certain data from the view of

certain users. To create a view we use the command:

create view v as <query expression>

where:

<query expression> is any legal expression

The view name is represented by v

Example Queries

 A view consisting of branches and their customers

 Find all customers of the Perryridge branch

create view all-customer as

(select branch-name, customer-name

from depositor, account

where depositor.account-number = account.account-number)

union

(select branch-name, customer-name

from borrower, loan

where borrower.loan-number = loan.loan-number)

select customer-name

from all-customer

where branch-name = ‘Perryridge’

Derived Relations

 Find the average account balance of those branches where the

average account balance is greater than $1200.

select branch-name, avg-balance

from (select branch-name, avg (balance)

from account

group by branch-name)

as result (branch-name, avg-balance)

where avg-balance > 1200

Note that we do not need to use the having clause, since we

compute the temporary (view) relation result in the from clause,

and the attributes of result can be used directly in the where

clause.

With Clause

 With clause allows views to be defined locally to a query, rather

than globally. Analogous to procedures in a programming

language.

 Find all accounts with the maximum balance

with max-balance(value) as

select max (balance)

from account

select account-number

from account, max-balance

where account.balance = max-balance.value

Complex Query using With Clause

 Find all branches where the total account deposit is greater than

the average of the total account deposits at all branches.

with branch-total (branch-name, value) as

select branch-name, sum (balance)

from account

group by branch-name

with branch-total-avg(value) as

select avg (value)

from branch-total

select branch-name

from branch-total, branch-total-avg

where branch-total.value >= branch-total-avg.value

Modification of the Database – Deletion

 Delete all account records at the Perryridge branch

delete from account

where branch-name = ‘Perryridge’

 Delete all accounts at every branch located in Needham city.

delete from account

where branch-name in (select branch-name

from branch

where branch-city = ‘Needham’)

delete from depositor

where account-number in

(select account-number

from branch, account

where branch-city = ‘Needham’

and branch.branch-name = account.branch-name)

 (Schema used in this example)

Example Query

 Delete the record of all accounts with balances below the

average at the bank.

delete from account

where balance < (select avg (balance)

from account)

 Problem: as we delete tuples from deposit, the average balance

changes

 Solution used in SQL:

1. First, compute avg balance and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

Modification of the Database – Insertion

 Add a new tuple to account

insert into account

values (‘A-9732’, ‘Perryridge’,1200)

or equivalently

insert into account (branch-name, balance, account-number)

values (‘Perryridge’, 1200, ‘A-9732’)

 Add a new tuple to account with balance set to null

insert into account

values (‘A-777’,‘Perryridge’, null)

Modification of the Database – Insertion

 Provide as a gift for all loan customers of the Perryridge branch, a

$200 savings account. Let the loan number serve as the account

number for the new savings account

insert into account

select loan-number, branch-name, 200

from loan

where branch-name = ‘Perryridge’

insert into depositor

select customer-name, loan-number

from loan, borrower

where branch-name = ‘Perryridge’

and loan.account-number = borrower.account-number

 The select from where statement is fully evaluated before any of its

results are inserted into the relation (otherwise queries like

insert into table1 select * from table1

would cause problems

Modification of the Database – Updates

 Increase all accounts with balances over $10,000 by 6%, all

other accounts receive 5%.

 Write two update statements:

update account

set balance = balance  1.06

where balance > 10000

update account

set balance = balance  1.05

where balance  10000

 The order is important

 Can be done better using the case statement (next slide)

Case Statement for Conditional Updates

 Same query as before: Increase all accounts with balances over

$10,000 by 6%, all other accounts receive 5%.

update account

set balance = case

when balance <= 10000 then balance *1.05

else balance * 1.06

end

Update of a View

 Create a view of all loan data in loan relation, hiding the amount

attribute

create view branch-loan as

select branch-name, loan-number

from loan

 Add a new tuple to branch-loan

insert into branch-loan

values (‘Perryridge’, ‘L-307’)

This insertion must be represented by the insertion of the tuple

(‘L-307’, ‘Perryridge’, null)

into the loan relation

 Updates on more complex views are difficult or impossible to

translate, and hence are disallowed.

 Most SQL implementations allow updates only on simple views

(without aggregates) defined on a single relation

Transactions

 A transaction is a sequence of queries and update statements executed

as a single unit

 Transactions are started implicitly and terminated by one of

 commit work: makes all updates of the transaction permanent in the

database

 rollback work: undoes all updates performed by the transaction.

 Motivating example

 Transfer of money from one account to another involves two steps:

 deduct from one account and credit to another

 If one steps succeeds and the other fails, database is in an inconsistent state

 Therefore, either both steps should succeed or neither should

 If any step of a transaction fails, all work done by the transaction can be

undone by rollback work.

 Rollback of incomplete transactions is done automatically, in case of

system failures

Transactions (Cont.)

 In most database systems, each SQL statement that executes

successfully is automatically committed.

 Each transaction would then consist of only a single statement

 Automatic commit can usually be turned off, allowing multi-

statement transactions, but how to do so depends on the database

system

 Another option in SQL:1999: enclose statements within

begin atomic

…

end

Joined Relations

 Join operations take two relations and return as a result another

relation.

 These additional operations are typically used as subquery

expressions in the from clause

 Join condition – defines which tuples in the two relations match,

and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not match

any tuple in the other relation (based on the join condition) are

treated.

Join Types

inner join

left outer join

right outer join

full outer join

Join Conditions

natural

on <predicate>

using (A1, A2, ..., An)

Joined Relations – Datasets for Examples

 Relation loan

 Relation borrower

customer-name loan-number

Jones

Smith

Hayes

L-170

L-230

L-155

amount

3000

4000

1700

branch-name

Downtown

Redwood

Perryridge

loan-number

L-170

L-230

L-260

 Note: borrower information missing for L-260 and loan

information missing for L-155

Joined Relations – Examples

 loan inner join borrower on

loan.loan-number = borrower.loan-number

 loan left outer join borrower on

loan.loan-number = borrower.loan-number

branch-name amount

Downtown

Redwood

3000

4000

customer-name loan-number

Jones

Smith

L-170

L-230

loan-number

L-170

L-230

branch-name amount

Downtown

Redwood

Perryridge

3000

4000

1700

customer-name loan-number

Jones

Smith

null

L-170

L-230

null

loan-number

L-170

L-230

L-260

Joined Relations – Examples

 loan natural inner join borrower

 loan natural right outer join borrower

branch-name amount

Downtown

Redwood

3000

4000

customer-name

Jones

Smith

loan-number

L-170

L-230

branch-name amount

Downtown

Redwood

null

3000

4000

null

customer-name

Jones

Smith

Hayes

loan-number

L-170

L-230

L-155

Joined Relations – Examples

 loan full outer join borrower using (loan-number)

 Find all customers who have either an account or a loan (but

not both) at the bank.

branch-name amount

Downtown

Redwood

Perryridge

null

3000

4000

1700

null

customer-name

Jones

Smith

null

Hayes

loan-number

L-170

L-230

L-260

L-155

select customer-name

from (depositor natural full outer join borrower)

where account-number is null or loan-number is null

Data Definition Language (DDL)

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

 The set of indices to be maintained for each relations.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

Allows the specification of not only a set of relations but also

information about each relation, including:

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified maximum
length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer
domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p digits,
with n digits to the right of decimal point.

 real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at least n
digits.

 Null values are allowed in all the domain types. Declaring an attribute to be
not null prohibits null values for that attribute.

 create domain construct in SQL-92 creates user-defined domain types

create domain person-name char(20) not null

Date/Time Types in SQL (Cont.)

 date. Dates, containing a (4 digit) year, month and date

 E.g. date ‘2001-7-27’

 time. Time of day, in hours, minutes and seconds.

 E.g. time ’09:00:30’ time ’09:00:30.75’

 timestamp: date plus time of day

 E.g. timestamp ‘2001-7-27 09:00:30.75’

 Interval: period of time

 E.g. Interval ‘1’ day

 Subtracting a date/time/timestamp value from another gives an interval value

 Interval values can be added to date/time/timestamp values

 Can extract values of individual fields from date/time/timestamp

 E.g. extract (year from r.starttime)

 Can cast string types to date/time/timestamp

 E.g. cast <string-valued-expression> as date

Create Table Construct

 An SQL relation is defined using the create table

command:

create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),

...,

(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

 Example:

create table branch

(branch-name char(15) not null,

branch-city char(30),

assets integer)

Integrity Constraints in Create Table

 not null

 primary key (A1, ..., An)

 check (P), where P is a predicate

Example: Declare branch-name as the primary key for

branch and ensure that the values of assets are non-

negative.

create table branch

(branch-namechar(15),

branch-city char(30)

assets integer,

primary key (branch-name),

check (assets >= 0))

primary key declaration on an attribute automatically

ensures not null in SQL-92 onwards, needs to be

explicitly stated in SQL-89

Drop and Alter Table Constructs

 The drop table command deletes all information about the

dropped relation from the database.

 The alter table command is used to add attributes to an

existing relation.

alter table r add A D

where A is the name of the attribute to be added to relation r

and D is the domain of A.

 All tuples in the relation are assigned null as the value for the

new attribute.

 The alter table command can also be used to drop attributes

of a relation

alter table r drop A

where A is the name of an attribute of relation r

 Dropping of attributes not supported by many databases

Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of

programming languages such as Pascal, PL/I, Fortran, C, and

Cobol.

 A language to which SQL queries are embedded is referred to as

a host language, and the SQL structures permitted in the host

language comprise embedded SQL.

 The basic form of these languages follows that of the System R

embedding of SQL into PL/I.

 EXEC SQL statement is used to identify embedded SQL request

to the preprocessor

EXEC SQL <embedded SQL statement > END-EXEC

Note: this varies by language. E.g. the Java embedding uses

SQL { …. } ;

Example Query

 Specify the query in SQL and declare a cursor for it

EXEC SQL

declare c cursor for

select customer-name, customer-city

from depositor, customer, account

where depositor.customer-name = customer.customer-name

and depositor account-number = account.account-number

and account.balance > :amount

END-EXEC

From within a host language, find the names and cities of

customers with more than the variable amount dollars in some

account.

Embedded SQL (Cont.)

 The open statement causes the query to be evaluated

EXEC SQL open c END-EXEC

 The fetch statement causes the values of one tuple in the query

result to be placed on host language variables.

EXEC SQL fetch c into :cn, :cc END-EXEC

Repeated calls to fetch get successive tuples in the query result

 A variable called SQLSTATE in the SQL communication area

(SQLCA) gets set to ‘02000’ to indicate no more data is available

 The close statement causes the database system to delete the

temporary relation that holds the result of the query.

EXEC SQL close c END-EXEC

Note: above details vary with language. E.g. the Java embedding

defines Java iterators to step through result tuples.

Updates Through Cursors

 Can update tuples fetched by cursor by declaring that the cursor

is for update

declare c cursor for

select *

from account

where branch-name = ‘Perryridge’

for update

 To update tuple at the current location of cursor

update account

set balance = balance + 100

where current of c

Dynamic SQL

 Allows programs to construct and submit SQL queries at run

time.

 Example of the use of dynamic SQL from within a C program.

char * sqlprog = “update account

set balance = balance * 1.05

where account-number = ?”

EXEC SQL prepare dynprog from :sqlprog;

char account [10] = “A-101”;

EXEC SQL execute dynprog using :account;

 The dynamic SQL program contains a ?, which is a place holder

for a value that is provided when the SQL program is executed.

ODBC

 Open DataBase Connectivity(ODBC) standard

 standard for application program to communicate with a database

server.

 application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

ODBC (Cont.)

 Each database system supporting ODBC provides a "driver" library that

must be linked with the client program.

 When client program makes an ODBC API call, the code in the library

communicates with the server to carry out the requested action, and

fetch results.

 ODBC program first allocates an SQL environment, then a database

connection handle.

 Opens database connection using SQLConnect(). Parameters for

SQLConnect:

 connection handle,

 the server to which to connect

 the user identifier,

 password

 Must also specify types of arguments:

 SQL_NTS denotes previous argument is a null-terminated string.

ODBC Code

 int ODBCexample()

{

RETCODE error;

HENV env; /* environment */

HDBC conn; /* database connection */

SQLAllocEnv(&env);

SQLAllocConnect(env, &conn);

SQLConnect(conn, "aura.bell-labs.com", SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);

{ …. Do actual work … }

SQLDisconnect(conn);

SQLFreeConnect(conn);

SQLFreeEnv(env);

}

ODBC Code (Cont.)

 Program sends SQL commands to the database by using SQLExecDirect

 Result tuples are fetched using SQLFetch()

 SQLBindCol() binds C language variables to attributes of the query result

 When a tuple is fetched, its attribute values are automatically stored in
corresponding C variables.

 Arguments to SQLBindCol()

– ODBC stmt variable, attribute position in query result

– The type conversion from SQL to C.

– The address of the variable.

– For variable-length types like character arrays,

» The maximum length of the variable

» Location to store actual length when a tuple is fetched.

» Note: A negative value returned for the length field indicates null
value

 Good programming requires checking results of every function call for
errors; we have omitted most checks for brevity.

ODBC Code (Cont.)

 Main body of program

char branchname[80];

float balance;

int lenOut1, lenOut2;

HSTMT stmt;

SQLAllocStmt(conn, &stmt);

char * sqlquery = "select branch_name, sum (balance)

from account

group by branch_name";

error = SQLExecDirect(stmt, sqlquery, SQL_NTS);

if (error == SQL_SUCCESS) {

SQLBindCol(stmt, 1, SQL_C_CHAR, branchname , 80, &lenOut1);

SQLBindCol(stmt, 2, SQL_C_FLOAT, &balance, 0 , &lenOut2);

while (SQLFetch(stmt) >= SQL_SUCCESS) {

printf (" %s %g\n", branchname, balance);

}

}

SQLFreeStmt(stmt, SQL_DROP);

More ODBC Features

 Prepared Statement

 SQL statement prepared: compiled at the database

 Can have placeholders: E.g. insert into account values(?,?,?)

 Repeatedly executed with actual values for the placeholders

 Metadata features

 finding all the relations in the database and

 finding the names and types of columns of a query result or a relation in

the database.

 By default, each SQL statement is treated as a separate transaction

that is committed automatically.

 Can turn off automatic commit on a connection

 SQLSetConnectOption(conn, SQL_AUTOCOMMIT, 0)}

 transactions must then be committed or rolled back explicitly by

 SQLTransact(conn, SQL_COMMIT) or

 SQLTransact(conn, SQL_ROLLBACK)

ODBC Conformance Levels

 Conformance levels specify subsets of the functionality defined

by the standard.

 Core

 Level 1 requires support for metadata querying

 Level 2 requires ability to send and retrieve arrays of parameter

values and more detailed catalog information.

 SQL Call Level Interface (CLI) standard similar to ODBC

interface, but with some minor differences.

JDBC

 JDBC is a Java API for communicating with database systems

supporting SQL

 JDBC supports a variety of features for querying and updating

data, and for retrieving query results

 JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of

relation attributes

 Model for communicating with the database:

 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries and

fetch results

 Exception mechanism to handle errors

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)

{

try {

Class.forName ("oracle.jdbc.driver.OracleDriver");

Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@aura.bell-labs.com:2000:bankdb", userid, passwd);

Statement stmt = conn.createStatement();

… Do Actual Work ….

stmt.close();

conn.close();

}

catch (SQLException sqle) {

System.out.println("SQLException : " + sqle);

}

}

JDBC Code (Cont.)

 Update to database

try {

stmt.executeUpdate("insert into account values
('A-9732', 'Perryridge', 1200)");

} catch (SQLException sqle) {

System.out.println("Could not insert tuple. " + sqle);

}

 Execute query and fetch and print results

ResultSet rset = stmt.executeQuery("select branch_name, avg(balance)
from account
group by branch_name");

while (rset.next()) {

System.out.println(
rset.getString("branch_name") + " " + rset.getFloat(2));

}

JDBC Code Details

 Getting result fields:

 rs.getString(“branchname”) and rs.getString(1) equivalent if

branchname is the first argument of select result.

 Dealing with Null values

int a = rs.getInt(“a”);

if (rs.wasNull()) Systems.out.println(“Got null value”);

Prepared Statement

 Prepared statement allows queries to be compiled and executed
multiple times with different arguments

PreparedStatement pStmt = conn.prepareStatement(

“insert into account values(?,?,?)”);
pStmt.setString(1, "A-9732");

pStmt.setString(2, "Perryridge");

pStmt.setInt(3, 1200);

pStmt.executeUpdate();

pStmt.setString(1, "A-9733");

pStmt.executeUpdate();

 Beware: If value to be stored in database contains a single quote or
other special character, prepared statements work fine, but creating
a query string and executing it directly would result in a syntax
error!

Other SQL Features

 SQL sessions

 client connects to an SQL server, establishing a session

 executes a series of statements

 disconnects the session

 can commit or rollback the work carried out in the session

 An SQL environment contains several components,

including a user identifier, and a schema, which

identifies which of several schemas a session is using.

Schemas, Catalogs, and Environments

 Three-level hierarchy for naming relations.

 Database contains multiple catalogs

 each catalog can contain multiple schemas

 SQL objects such as relations and views are contained within a

schema

 e.g. catalog5.bank-schema.account

 Each user has a default catalog and schema, and the

combination is unique to the user.

 Default catalog and schema are set up for a connection

 Catalog and schema can be omitted, defaults are assumed

 Multiple versions of an application (e.g. production and test) can

run under separate schemas

Procedural Extensions and Stored

Procedures

 SQL provides a module language

 permits definition of procedures in SQL, with if-then-else statements,

for and while loops, etc.

 more in Chapter 9

 Stored Procedures

 Can store procedures in the database

 then execute them using the call statement

 permit external applications to operate on the database without

knowing about internal details

 These features are covered in Chapter 9 (Object Relational

Databases)

Extra Material on JDBC and

Application Architectures

Transactions in JDBC

 As with ODBC, each statement gets committed automatically in
JDBC

 To turn off auto commit use
conn.setAutoCommit(false);

 To commit or abort transactions use
conn.commit() or conn.rollback()

 To turn auto commit on again, use
conn.setAutoCommit(true);

Procedure and Function Calls in JDBC

 JDBC provides a class CallableStatement which allows SQL stored
procedures/functions to be invoked.

CallableStatement cs1 = conn.prepareCall(“{call proc (?,?)}”) ;

CallableStatement cs2 = conn.prepareCall(“{? = call func (?,?)}”);

Result Set MetaData

 The class ResultSetMetaData provides information about all the

columns of the ResultSet.

 Instance of this class is obtained by getMetaData() function of

ResultSet.

 Provides Functions for getting number of columns, column name,

type, precision, scale, table from which the column is derived etc.

ResultSetMetaData rsmd = rs.getMetaData ();

for (int i = 1; i <= rsmd.getColumnCount(); i++) {

String name = rsmd.getColumnName(i);

String typeName = rsmd.getColumnTypeName(i);

}

Database Meta Data

 The class DatabaseMetaData provides information about database relations

 Has functions for getting all tables, all columns of the table, primary keys etc.

 E.g. to print column names and types of a relation

DatabaseMetaData dbmd = conn.getMetaData();

ResultSet rs = dbmd.getColumns(null, “BANK-DB”, “account”, “%”);

//Arguments: catalog, schema-pattern, table-pattern, column-pattern

// Returns: 1 row for each column, with several attributes such as

// COLUMN_NAME, TYPE_NAME, etc.

while (rs.next()) {

System.out.println(rs.getString(“COLUMN_NAME”) ,

rs.getString(“TYPE_NAME”);

}

 There are also functions for getting information such as

 Foreign key references in the schema

 Database limits like maximum row size, maximum no. of connections, etc

Application Architectures

 Applications can be built using one of two architectures

 Two tier model

 Application program running at user site directly uses

JDBC/ODBC to communicate with the database

 Three tier model

 Users/programs running at user sites communicate with an

application server. The application server in turn communicates

with the database

Two-tier Model

 E.g. Java code runs at client site and uses JDBC to

communicate with the backend server

 Benefits:

 flexible, need not be restricted to predefined queries

 Problems:

 Security: passwords available at client site, all database operation

possible

 More code shipped to client

 Not appropriate across organizations, or in large ones like

universities

Three Tier Model

CGI Program

Database

Server
Application/HTTP

Server
Servlets

JDBC

Network

Client Client Client

HTTP/Application Specific Protocol

Three-tier Model (Cont.)

 E.g. Web client + Java Servlet using JDBC to talk with database

server

 Client sends request over http or application-specific protocol

 Application or Web server receives request

 Request handled by CGI program or servlets

 Security handled by application at server

 Better security

 Fine granularity security

 Simple client, but only packaged transactions

End of Chapter

The loan and borrower Relations

The Result of loan inner join borrower

on loan.loan-number = borrower.loan-

number

The Result of loan left outer join

borrower on loan-number

The Result of loan natural inner join

borrower

Join Types and Join Conditions

The Result of loan natural right outer

join borrower

The Result of loan full outer join

borrower using(loan-number)

SQL Data Definition for Part of the Bank Database

