
Objectives

 Why PL-SQL ?

 Language features

 Basic Structure of PL/SQL

program

 Data Types

 Control Flow in PL-SQL

 Loops in PL-SQL

Why PL SQL ?

 PL/SQL stands for Procedural
Language/SQL.

 PL/SQL extends SQL by adding
constructs found in procedural
languages like procedures, loops,
variables, objects etc.

 Resulting a structural language that
is more powerful than SQL

PL SQL, Is there any

Advantage ?

 In case of SQL to send 3 queries we will need three
network trips between client and server.

 In PL-SQL we bundle any number of queries in a
block and in single network trip task is done.

SQL

Query1

SQL

Query2

SQL

Query3

Client

Server

SQL

Query1

SQL

Query2

SQL

Query3

Client

Server

PL-SQL Block

Language features

 Supports constructs like any other
4th generation language:

 Variables and Data types

 Loops and Control statements

 Procedures and Functions

 Packages

 Triggers

 Objects

 Records (Its like structure in C
language)

PL SQL program structure

Declare

<All Variables, cursors, exception etc are
declared here>

Begin

<All programming logic , queries , program
statements are written here>

Exception

<All Error Handling code is written here>

End;

--It ends the program

PL SQL nested block

<<Outer Block>>

Declare

Begin

<<Inner Block>>

Declare

Begin

Exception

End;

Exception

End;

PL SQL Block

Remember :

Declare is optional and only required when
variables need to be declared.

Exception is optional and required when
Error/Exception handling is done.

Begin and End are mandatory as all logic and
queries are written inside it.

Declare

Begin

Exception

End;

PL SQL program- Sample I

BEGIN
Insert into Dept values(70,’HR’,’Pune’);

Insert into Dept values(80,’PSD’,’Mumbai’);

Insert into Dept values(90,’ESG’,’Pune’);

END;

--This program will insert three records at the same time in the table dept.

PL SQL program- Sample II

-- This program displays the sum of two numbers

DECLARE

v_num1 Number;

v_num2 Number;

v_sum Number;

BEGIN

V_num1 := &Number1;

V_num2 := &Number2;

V_sum := v_num1 + v_num2 ;

Dbms_Output.Put_Line (‘The Sum of number is :’ || v_sum);

END;

Save , Edit and Execute program

 Type your program in SQL * plus

 To save : Save <File Name>

Program is saved in the bin directory to save in other
folder give complete path.

Eg: Save ‘C:\ESG\FirstPrg.sql’

 To make changes:

Edit <File Name>

To edit program saved in folder other then bin

Edit ‘C:\ESG\FirstPrg.Sql’

 To Execute:

@ File Name

To execute program saved in folder other then bin.

@ ‘C:\ESG\FirstPrg.Sql’

Important Keywords

 Following are the keywords in PL-SQL ,
should not be used as a variable name.

 DECLARE

 BEGIN

 END

 EXCEPTION

 LOOP , END LOOP

 IF , ELSE , ELSIF , END IF

 CURSOR

 PROCEDURE

 FUNCTION

Cont..

Important Keywords

 Keywords
 PACKAGE

 TRIGGER

 GRANT

 REVOKE

 FOR

 WHILE

 CASE

 VARRAY

 TYPE

 OBJECT

Operators

 Important operators in PL SQL
 Airthmetic : (+ , - , * , /)

 Logical: (AND , OR , NOT)

 Comparison: (<=, <, >, =)

 Comments (Two hyphens): --

 Assignment operator: In PL SQL assignment
operator is

:=

So to assign values we need to write :=

Examples:

z := x + y

z := x

z := 100

name := ‘MBT’

Operators

 Important operators in PL SQL

 Line ends with operator: ;
 To join two strings: ||

 To accept value: &

 Power **

2**3 means 2 raise to power 3

 In loop we use ..
Example:

For X in 1..5 means

1 to 5

 Non numeric data

(string or date)

is written in single

quote: ‘ ‘

Accept a value

 Examples:

 num1 := &Number1;

At run time this will prompt as

Follows

Whatever value user will enter

here will be assign to variable

num1

Enter a value for Number1:

Accept a value

 Examples:
 name := ‘&Name’;

At run time this will prompt as

Follows

Whatever value user will enter

here will be assign to variable

name

‘ ‘ is used in case if entered data is not
numeric

Enter a value for Name:

Display value

 To display on same line:

dbms_output.put()

 To display on new line.

dbms_output.put_line()

 Here dbms_output is a Oracle package its
like header file or library in C language.

 .Put and .Put_Line are functions like printf
in ‘C’ language

Display value : Examples

 Dbms_output.put (‘Centre for’);

Dbms_output.put (‘Remote’);

Dbms_output.put (‘Sensing’);

Dbms_output.put_line(‘ ‘);

It will display Centre for Remote Sensing on
same line.

Note :

1. On SQL prompt after Login you need to set one command
to see displayed values.

SET SERVEROUTPUT ON
2. It is important that at least once you write .put_line after

any number of .put functions else values are not displayed.

Display value : Examples

 Dbms_output.put_line (‘Centre for’);

Dbms_output.put_line (‘Remote ’);

Dbms_output.put_line (‘Sensing’);

It will display

Mahindra

British

Telecom

on different lines.

Note :

1. On SQL prompt after Login you need to set one command
to see displayed values.

SET SERVEROUTPUT ON

DML operations in Pl-SQL

 All DML operations (Insert/Update/Delete
/Select) are to be written in Begin part of
the block.

 No change in the Syntax of Insert , Update
and Delete , it is same as SQL.

 Select syntax is different then SQL , it
contains INTO clause.

 If Select query can return more then one
rows then you should always use cursors .

Select Syntax for a Single

Row Query.

 Select column1, column2
INTO Variable1,Variable2

From Table Name
Where condition …..

 The only change is as many columns you
want to get from the query you need to
declare that many variables and use INTO
clause.

 All other parts of query are unchanged

 If Where condition here is such that query
will return multiple records then CURSOR
should be used. Without that it will give
error.

Data Types in PL SQL

 Scalar Types
 Char

CHAR datatype to store fixed-length character data.

Maximum size = 2000 bytes

 Varchar2

VARCHAR2 datatype to store variable-length character .
Maximum size = 4000 bytes

 Number

Number types let you store numeric data (integers, real

numbers, and floating-point numbers), represent quantities,
and do calculations.

Data Types in PL SQL

 Scalar Types
 Binary_Integer

The BINARY_INTEGER datatype to store signed
integers (-2**31 to 2**31)

 Date

DATE datatype to store fixed-length datetimes

 Long

The LONG datatype to store variable-length character
strings. The LONG datatype is like the VARCHAR2
datatype, except that the maximum size of a LONG
value is 32760 bytes.

Data Types in PL SQL

 Scalar Types
 NChar

To store multi byte fixed length character data. Its
same as Char only difference is it is used to store
characters of different language like Japenese ,
chinese etc.

Number of characters it can store depend on
language.

 NVarchar

To store multi byte variable length character data. Its
same as Varchar2 only difference is it is used to store
characters of different language like Japenese ,
chinese etc.

Number of characters it can store depend on
language.

Data Types in PL SQL

 Composite Types
 Record

Its like structure in C Language. To be discussed in Second
day session.

 Table
Its like Array in C Language. To be discussed in detail in
Second day session.
This Array type is un-constrained array

 VArray
Its like Array in C Language. To be discussed in detail in
Fourth day session.

This Array type is constrained array

Data Types in PL SQL

Reference Types
 Ref Cursor

Its used for dynamic cursor. To be discussed in
Second day session.

Data Types in PL SQL

 LOB
 BLOB

Binary Large Object A column or variable of type BLOB can
store up to 4GB of binary data in each record.

 CLOB
Character Large Object A column or variable of type CLOB
can store up to 4GB of character data in each record.

 BFILE
It can store a file of size 4GB externally outside database for
each record and can refer to that from inside the database.

Data Types in PL SQL

LOB
 Column or variable of this type can be accessed only

using a Oracle package DBMS_LOB.

 This should be used only if required to store a large

amount of data in each record of a table

 You should avoid making un-necessary use of LOB’s.

 To be discussed in last session of PL-SQL

Variable Declaration in PL SQL

 Variables are always declared in

DECLARE section of the program.

 Variable Name <Data Type>

 Various way to declare them

v_empno Number;

V_ename varchar2;

v_job Char(10);

Variable Declaration in PL SQL

 Dynamic and preferred way to declare a variable

Variable Name TableName.ColName%Type

v_empno Emp.Empno%Type;

V_ename Emp.Ename%Type;

v_deptno Dept.Deptno%Type;

 Advantages of declaring in above way.
 Variable will always have same datatype as column

 Any change in column will change the type of variable
also, so we need not have to change and recompile
the program to run.

Variable Declaration in PL SQL

 %RowType

Variable Name TableName%RowType

v_emp Emp%RowType;

 Advantages of declaring in above way.
 Variable will become like a structure variable in

C (i.e. v_emp will have same structure like Emp
Table) and you can refer to individual element
as follows:

v_emp.empno

v_emp.ename

v_emp.sal

Variable Declaration in PL SQL

 Type : You can also make your own type in

program and use in the declare section to declare

variable.

Type t_name is Varchar2(50);

-- now you can make variable of this type

v_name t_name;

v_name2 t_name;

v_name and v_name2 both will become varchar2(50)

Conditional Statements

 IF … Then … ELSE

If <condition1> Then
<Code>

ELSIF <Condition2> Then
<Code>

ELSE
<Code>

END IF;

 Note here that for one IF we only need one END IF;
 No END IF is required for ELSIF i.e for one set of IF

condition only one END IF; is required

Conditional Statements

 IF … Then … ELSE

If v_deptno = 10 Then
DBMS_OUTPUT.PUT_LINE ('Accounting');

ELSIF v_deptno = 20 Then
DBMS_OUTPUT.PUT_LINE (‘ESG');

ELSE
DBMS_OUTPUT.PUT_LINE (‘Invalid');

END IF;

Conditional Statements

 CASE : This is available from ORACLE 8i
onwards only , not in ORACLE 8 and
version prior to that.

CASE
WHEN <Variable> = <Value1> Then

<Code>
WHEN <Variable> = <Value2> Then

<Code>
ELSE

<Code>

END CASE;

Conditional Statements

 CASE :

CASE
When v_deptno =10 Then

DBMS_OUTPUT.PUT_LINE ('Accounting');

When v_deptno =20 Then
DBMS_OUTPUT.PUT_LINE (‘ESG');

ELSE
DBMS_OUTPUT.PUT_LINE (‘Invalid');

END CASE;

TYPES OF LOOPS

 Simple Loop

Loop

Exit When <Condition>

<Code>

End Loop;

 Exit when is required to give the condition

to end the loop

 It is pre tested as condition is checked first

and then code is executed

TYPES OF LOOPS

 Simple Loop

Loop

Exit When i = 10

dbms_output.put_line (i);

End Loop;

--Pre Tested

TYPES OF LOOPS

 Simple Loop

Loop

<Code>

Exit When <Condition>

End Loop;

 Exit when is required to give the condition to end
the loop

 It is post tested as condition is checked after the
code is executed

TYPES OF LOOPS

 Simple Loop

Loop

dbms_output.put_line (i);

Exit When i = 10

End Loop;

--Post Tested

TYPES OF LOOPS

 While Loop

While <Condition>

Loop

<Code>

End Loop;

 While is required for condition to end the

Loop

 This is also pre tested.

TYPES OF LOOPS

 While Loop

While i < 10

Loop

dbms_output.put_line (i);

End Loop;

TYPES OF LOOPS

 FOR Loop

FOR <Variable> IN <Min> .. <Max>

Loop

<Code>

End Loop;

 This Loop is used when we know the

number of time the loop is to be executed.

 This is also pre tested.

TYPES OF LOOPS

 FOR Loop

FOR i IN 1 .. 100

Loop

<Code>

End Loop;

 This Loop will execute the given code 100

times for i = 1 to 100

TYPES OF LOOPS

 FOR Loop Reverse

FOR i IN Reverse 1 .. 100

Loop

<Code>

End Loop;

 This Loop will execute the given code 100

times for i = 100 to 1

 This is reverse i.e from last value to first

value

