Objectives

= Why PL-SQL ?
m Language features

m Basic Structure of PL/SQL
program

m Data Types
m Control Flow in PL-SQL
m Loops in PL-SQL

Why PL SQL ?

PL/SQL stands for Procedural
Language/SQL.

m PL/SQL extends SQL by adding
constructs found in procedural
languages like procedures, loops,
variables, objects etc.

Resulting a structural language that
IS more powerful than SQL

PL SQL, Is there any

Advantage ?
S e

PL-SQL Block

~om

m In case of SQL to send 3 queries we will need three
network trips between client and server.

= In PL-SQL we bundle any number of queries in a
block and in single network trip task is done.

Language features

m Supports constructs like any other
4th generation language:

e Variables and Data types

e Loops and Control statements
e Procedures and Functions

e Packages

e Triggers

e Objects

e Records (Its like structure in C
language)

PL SQL program structure

Declare

<All Variables, cursors, exception etc are
declared here>

Begin
<All programming logic , queries , program
statements are written here>

Exception

<All Error Handling code is written here>
End,;

--It ends the program

PL SQL nested block

<<Quter Block>>
Declare

Begin
<<Inner Block>>
Declare
Begin
Exception
End;

Exception

End:;

PL SQL Block

Remember :

Declare is optional and only required when
variables need to be declared.

Exception is optional and required when
Error/Exception handling is done.

Begin and End are mandatory as all logic and
gueries are written inside it.

Declare
Begin
Exception
End:;

PL SQL program- Sample |

BEGIN

Insert into Dept values(70,’HR’,’Pune’);
Insert into Dept values(80,'PSD’,’Mumbai’);
Insert into Dept values(90,'ESG’,’Pune’);

END;

--This program will insert three records at the same time in the table dept.

PL SQL program- Sample I

-- This program displays the sum of two numbers

DECLARE

v_num1 Number;
v_num2 Number;
v_sum Number;

BEGIN

V_numl = &Numberl;
V_num2 := &Number2;
V_sum:=v _numl+v num2;

Dbms_Output.Put_Line (‘The Sum of number is :" || v_sum);

END;

Save , Edit and Execute program

Type your program in SQL * plus

To save : Save <File Name>

Program is saved in the bin directory to save in other
folder give complete path.

Eg: Save ‘C:\ESG\FirstPrg.sql’

To make changes:

Edit <File Name>

To edit program saved in folder other then bin
Edit ‘C:\ESG\FirstPrg.Sql’

To Execute:

@ File Name

To execute program saved in folder other then bin.
@ ‘C:\ESG\FirstPrg.Sql’

Important Keywords

= Following are the keywords in PL-SQL ,
should not be used as a variable name.

DECLARE

BEGIN

END

EXCEPTION
LOOP , END LOOP

IF , ELSE , ELSIF , END IF
CURSOR

PROCEDURE

FUNCTION

Cont..

Important Keywords

= Keywords
e PACKAGE
e TRIGGER
e GRANT
e REVOKE
e FOR
e WHILE
e CASE
e VARRAY
e TYPE
e OBJECT

Operators

= Important operators in PL SQL

e Airthmetic : (+,-,*,))
e Logical: (AND , OR, NOT)
e Comparison: (<=, <, >, 9)
e Comments (Two hyphens): --

e Assignment operator: In PL SQL assignment

operator is

So to assign values we need to write :=

Examples:
Z = X+y
Z =X

z =100

name = ‘MBT’

Operators

= |Important operators in PL SQL

e Line ends with operator: ,
e To join two strings: |
e To accept value: &

e Power o
2**3 means 2 raise to power 3

e Inloop we use
Example:
For X in 1..5 means
1to5

e Non numeric data
(string or date)
IS written In single
guote:

Accept a value

= Examples:
e numl = &Numberl;
At run time this will prompt as

Follows
Enter a value for Number1:

Whatever value user will enter
here will be assign to variable
numl

Accept a value

m Examples:
e name = ‘&Name’;
At run time this will prompt as
Follows

Enter a value for Name:

Whatever value user will enter
here will be assign to variable
name

" "is used in case if entered data is not
numeric

Display value

m To display on same line:
dbms_ output.put()

m To display on new line.
dbms_output.put_line()

= Here dbms_output is a Oracle package its
like header file or library in C language.

= .Putand .Put_Line are functions like printf
in ‘C’ language

Display value : Examples

Dbms_output.put (‘Centre for’);
Dbms_output.put (‘Remote’);
Dbms_output.put (‘Sensing’);
Dbms_output.put_line(" ‘);

It will display Centre for Remote Sensing on
same line.

Note :

On SQL prompt after Login you need to set one command
to see displayed values.

SET SERVEROUTPUT ON

It is important that at least once you write .put_line after
any number of .put functions else values are not displayed.

Display value : Examples

= Dbms_output.put_line (‘Centre for’);
Dbms_output.put_line (‘Remote ');
Dbms_output.put_line (‘Sensing’);
It will display
Mahindra
British
Telecom
on different lines.

Note :

1. On SQL prompt after Login you need to set one command
to see displayed values.

SET SERVEROUTPUT ON

DML operations in PI-SQL

= All DML operations (Insert/Update/Delete
{ﬁelte)lct) Iflre to be written in Begin part of
e block.

= No chan%e In the Syntax of Insert , Update
and Delete , it is same as SQL.

m Select syntax is different then SQL , it
contains INTO clause.

m |f Select query can return more then one
rows then you should always use cursors .

Select Syntax for a Single
Row Query.

m Select columnl, column2
INTO Variablel,Variable2
From Table Name
Where condition

= The only change sas columns you
ttoyet ?rogn h gou neea 8/
ec are that many va and use INTO
clause.

= All other parts of query are unchanged

0 If here con Il nhere HCh that agere\;
é ultiple recor ?] en CU
error e used Without that it will give

Data Types in PL SQL

m Scalar Types
e Char

CHAR datatype to store fixed-length character data.
Maximum size = 2000 bytes

e Varchar?2

VARCHAR?2 datatype to store variable-length character .
Maximum size = 4000 bytes

e Number

Number types let you store numeric data (integers, real

numbers, and floating-point numbers), represent quantities,
and do calculations.

Data Types in PL SQL

m Scalar Types

e Binary Integer

The BINARY_INTEGER datatype to store signed
integers (-2**31to 2**31)

e Date
DATE datatype to store fixed-length datetimes

e Long

The LONG datatype to store variable-length character
strings. The LONG datatype is like the VARCHAR2
datatype, except that the maximum size of a LONG
value is 32760 bytes.

Data Types in PL SQL

m Scalar Types
e NChar

To store multi byte fixed length character data. Its

same as Char only difference is it is used to store
characters of different language like Japenese ,
chinese etc.

Number of characters it can store depend on
language.

e NVarchar

To store multi byte variable length character data. Its
same as Varchar2 only difference is it is used to store
characters of differentlanguage like Japenese,
chinese etc.

Number of characters it can store depend on
language.

Data Types in PL SQL

= Composite Types

e Record

33 like structure in C Language. To be discussed in Second
ay session.

e Table

Its like Array in C Language. To be discussed in detail in
Second day session.

This Array type is un-constrained array

e VArray

Its like Array in C Language. To be discussed in detail in
Fourth day session.

This Array type is constrained array

Data Types in PL SQL

m Reference Types

e Ref Cursor

Its used for dynamic cursor. To be discussed in
Second day session.

Data Types in PL SQL

m LOB

e BLOB

Binary Large Object A column or variable of type BLOB can
store up to 4GB of binary data in each record.

e CLOB

Character Large Object A column or variable of type CLOB
can store up to 4GB of character data in each record.

e BFILE

It can store a file of size 4GB externally outside database for
each record and can refer to that from inside the database.

Data Types in PL SQL

= LOB

Column or variable of this type can be accessed only
using a Oracle package DBMS_LOB.

e This should be used only if required to store a large
amount of data in each record of a table

e You should avoid making un-necessary use of LOB'’s.

e To be discussed in last session of PL-SQL

Variable Declaration in PL SQL

m Variables are always declared in
DECLARE section of the program.

m Variable Name <Data Type>

= Various way to declare them
v_empno Number;
V_ename varcharz,;
v_job Char(10);

Variable Declaration in PL SQL

= Dynamic and preferred way to declare a variable
Variable Name TableName.ColName%Type

v_empno Emp.Empno%Type;
V_ename Emp.Ename%Type;
v_deptno Dept.Deptno%Type;

o Advantages of declaring in above way.
e Variable will always have same datatype as column

e Any change in column will change the type of variable
also, so we need not have to change and recompile
the program to run.

Variable Declaration in PL SQL

= %RowType
Variable Name TableName%RowType
v_emp Emp%RowType;

m Advantages of declaring in above way.

e Variable will become like a structure variable In
C (i.e. v_emp will have same structure like Emp
Table) and you can refer to individual element
as follows:

V_emp.empno
V_emp.ename
v_emp.sal

Variable Declaration in PL SQL

] Type . You can also make your own type in
program and use in the declare section to declare
variable.

Type t name is Varchar2(50);

-- now you can make variable of this type
V_name t name;
V_name2 t name;

v_name and v_name2 both will become varchar2(50)

Conditional Statements

m IF... Then... ELSE

If <condition1> Then
<Code>

ELSIF <Condition2> Then
<Code>

ELSE
<Code>

END IF;

= Note here that for one IF we only need one END IF;

m No END IF is required for ELSIF i.e for one set of IF
condition only one END IF; is required

Conditional Statements

m IF ... Then... ELSE

If v_deptno=10 Then
DBMS_OUTPUT.PUT_LINE (‘Accounting’);

ELSIF v_deptno = 20 Then
DBMS_OUTPUT.PUT_LINE (‘ESG);

ELSE
DBMS_OUTPUT.PUT_LINE (‘Invalid');
END IF;

Conditional Statements

m CASE : This is available from ORACLE 8i
onwards only , not in ORACLE 8 and
version prior to that.

CASE

WHEN <Variable> = <Valuel> Then
<Code>

WHEN <Variable> = <Value2> Then
<Code>

ELSE
<Code>

END CASE;

Conditional Statements

m CASE:

CASE
When v _deptno =10 Then
DBMS_OUTPUT.PUT_LINE (‘Accounting’);
When v_deptno =20 Then
DBMS_OUTPUT.PUT_LINE (‘ESG));
ELSE
DBMS_OUTPUT.PUT_LINE (‘Invalid");
END CASE;

TYPES OF LOOPS

= Simple Loop

Loop
Exit When <Condition>
<Code>

End Loop;

m Exit when is required to give the condition
to end the loop

m Itis pre tested as condition is checked first
and then code is executed

TYPES OF LOOPS

= Simple Loop

Loop
Exit Wheni =10
dbms_output.put_line (1);
End Loop;

--Pre Tested

TYPES OF LOOPS

= Simple Loop

Loop

<Code>

Exit When <Condition>
End Loop;

m EXit when is required to give the condition to end
the loop

m |tis post tested as condition is checked after the
code is executed

TYPES OF LOOPS

= Simple Loop

Loop
dbms_output.put_line (1);
Exit Wheni =10

End Loop;

--Post Tested

TYPES OF LOOPS

= While Loop

While <Condition>
Loop

<Code>
End Loop;

= While is required for condition to end the
Loop

m This is also pre tested.

TYPES OF LOOPS

= While Loop

While 1 < 10
Loop

dbms_output.put_line (i);
End Loop;

TYPES OF LOOPS

= FOR Loop

FOR <Variable> IN <Min> .. <Max>
Loop

<Code>
End Loop;

m This Loop is used when we know the
number of time the loop is to be executed.

m This is also pre tested.

TYPES OF LOOPS

= FOR Loop

FOR 1IN1..100

Loop
<Code>
End Loop;

m This Loop will execute the given code 100
times fori=1to 100

TYPES OF LOOPS

m FOR Loop Reverse

FOR 1IN Reverse 1 ..100
Loop

<Code>
End Loop;

= This Loop will execute the given code 100
times fori =100to 1

m Thisis reverse i.e from last value to first
value

