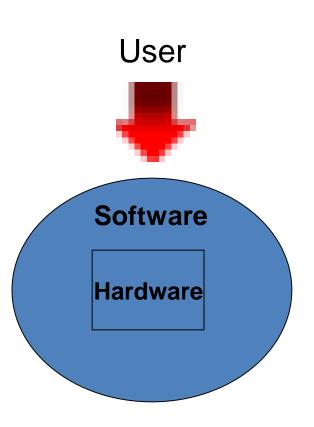
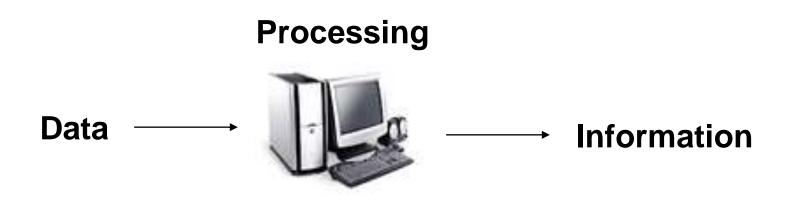

Basics Of Computers



A Desktop Machine


A Computer System

- Hardware
- Software
- User

A Computer System (Contd.)

 In general, a computer is a machine which accepts data, processes it and returns new information as output.

Software

- Software is set of programs (which are step by step instructions) telling the computer how to process data.
- Software needs to be installed on a computer, usually from a CD.
- Softwares can be divided into two groups:
 - System SW
 - Application SW

Software (Contd.)

System Software

- It controls the overall operation of the system.
- It is stored in the computer's memory and instructs the computer to load, store, and execute an application.
- Examples: Operating System (OS), Translators DOS, Windows, Unix etc.

Software (Contd..)

Application Software

They are Softwares written to perform specific tasks.

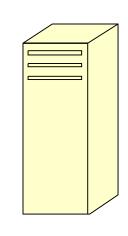
 The basic types of application software are: word processing, database, spreadsheet, desktop publishing, and communication.

Examples: Msoffice, Tally, MsOutlook,

Advantages of Using Computers

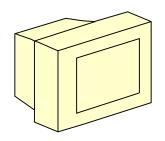
- **Speed:** Computers can carry out instructions in less than a millionth of a second.
- Accuracy: Computers can do the calculations without errors and very accurately.
- **Diligence:** Computers are capable of performing any task given to them repetitively.
- Storage Capacity: Computers can store large volume of data and information on magnetic media.

History of Evolution Of Computers


Two Eras:

- Mechanical Era (Before 1945)
- Electronic Era (1945)

Can be divided into generations.


- First Generation (1945 1954)
- Second Generation (1955 1964)
- Third Generation (1965 1974)
- Fourth Generation (1975)

CPU (Central Processing Unit)

- The central processing unit (CPU), also known as just a "processor", is the "brain" of your computer.
- It contains various electronic circuits.

VDU (Monitor)

 This is the television-like screen where the results of a computer's tasks are displayed.

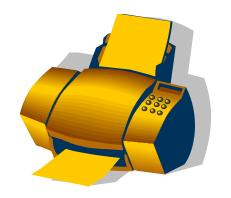
Monitors come in all sizes, but most commonly they are either 15 or 17 inches

 (measured diagonally from one corner of the screen to the opposite corner).

Keyboard

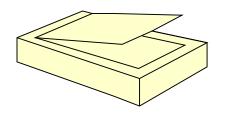
The keyboard looks like a typewriter.

 It contains all the letters of the alphabet, numbers and some special symbols.


 It operates like a typewriter keypad, but instead of moving an arm, which strikes the paper, it sends an electronic impulse to the computer, which displays a character on the monitor.

Mouse

- Its a device that is used to control the computer.
 A cable connects the mouse to the computer.
- When the mouse is moved on a pad, called a mouse pad, the cursor on the screen moves.
- A cursor is a small symbol displayed on the computer screen (normally a diagonal arrow that is used as a pointer) that shows you what the mouse is referencing on the screen.


Printer

 A printer is designed to output information from a computer onto a piece of paper.

There are three kinds of printers:
 dot matrix, laser, and inkjet.

Scanner

 A scanner is a device used to copy an image off paper and convert it into a digital image, which can be saved as a computer file and stored on a hard drive.

 Scanners can also use a special kind of technology called Optical Character Recognition (OCR) to read text from paper and save it as an editable document file

Inside The CPU Cabinet

A Look Inside ...

power supply cards

CD-ROM drive

floppy drive

hard drive

motherboard

A Look Inside...

- Identify all the major components:
 - Power Supply
 - Motherboard
 - Memory
 - Card Slots
 - Cards (sound, video, network)
 - CPU, heatsink and fan
 - Drives (floppy, hard and CD-ROM)

A Look Inside....

RAM BANK

Card Slots (ISA & PCI)

CPU, Fan, Heatsink

What these components do.

- Power Supply (heart) supplies power to all the circuitry and devices.
- Motherboard (body) acts as a manager for everything on the computer – connects all the other components together.
- CPU Central Processing Unit (brain) this does all the work of computing.

What these components do..

- RAM Random Access Memory (short-term memory) holds data and program instructions that the computer is currently using.
- Hard Drive (long-term memory) holds all of the information that needs to be stored between uses of the computer.
- Floppy and CD-ROM drives (mouth/ears)
 allow you to give data to the computer and
 take data away from the computer.

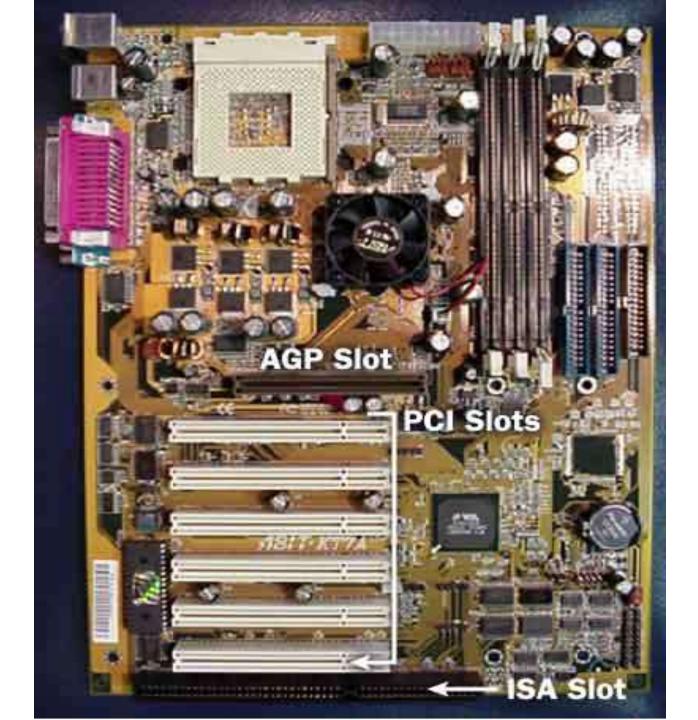
What these components do...

 Card Slots – (fingers) Allows other components to be added to the computer.

 Video card – (face) Does all of the processing necessary to get stuff looking nice on screen, quickly.

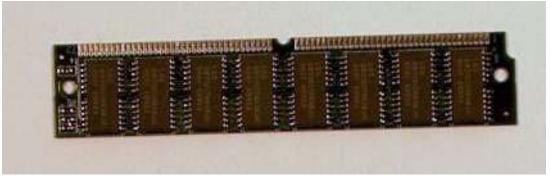
 Sound card – (vocal cords) Allows sounds from HD or CD-ROM to be played.

• Network Card – (telephone) allows computer to talk to other computers over a wire.


Power Supply

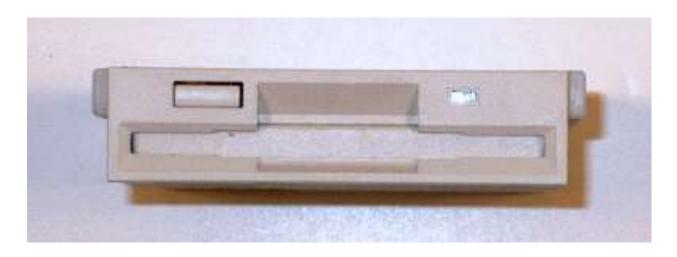
SMPS – Switch Mode Power Supply Switching Transistors

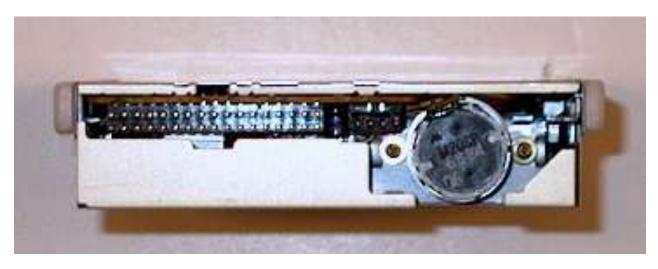
Outputs + 5V, -5V, +12 V, -12 V


Usually, SMPS comes with the CPU Cabinet.

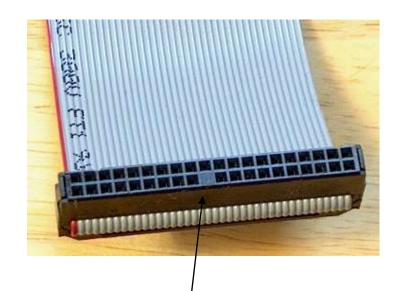
Motherboard

RAM


Hard Drive

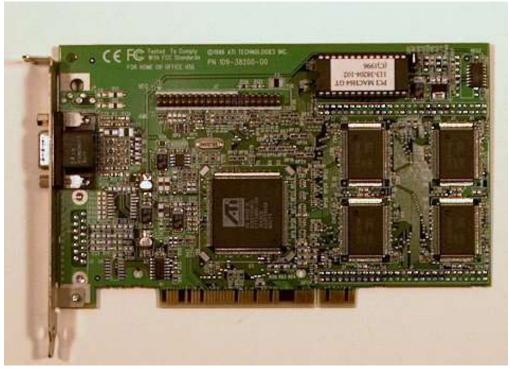

We won't remove this.

Floppy Drive



CD-ROM Drive

Ribbon Cables



polarized

Video Card

Sound Card

Back of Computer

Remove these screws

CPU

- The central processing unit or (CPU) is the "brain" of your computer. It contains the electronic circuits that cause the computer to follow instructions from memory.
- The CPU contains three main parts, all housed in a single package (Chip):
 - Control Unit (CU)
 - Arithmetic Logic Unit (ALU)
 - Memory

Computer Peripherals

Major Peripherals

- Keyboard
- Mouse
- Hard Disk
- Floppy Disk
- CD ROM
- Printer
- Scanner
- Joystick

Keyboard

- Keypad contains:
 - Alphabets
 - Numbers
 - Special Symbols
 - Function Keys

- qwert Keyboard (Typewriter Keyboard).
- On key press it sends a code (ASCII Code) to the CPU.
- Plug N Play device.
- Typical Cost is Rs.300 Rs.1200

Mouse

- Pointing & Click Device.
- Two / Three Buttons
- Wheel / Optical Mouse
- Normally Left Click Select/ Run

Right Click – Popup Menu

Hard Disk

- Magnetic Memory Device.
- Non-removable storage device.
- Several Circular Magnetic Disks are housed in a single case.
- Data is stored as 1s & 0s.
- Typical Capacity is 20 GB -80 GB
- Typical Cost is Rs.2200 Rs6000
- Cost/Bit is Low.

Floppy Disk

- Magnetic Memory Device.
- Removable storage.
- A single circular mylar plastic disk, coated with magnetic material is packed in a protective plastic casing.
- Typical size is 3.5" & Capacity is 1.44MB
- Typical Costs are:
 - Floppy Drive -- Rs.300
 - Floppy Disk -- Rs.10

CD ROM

- Optical Device.
- Removable Storage.
- Read Only Memory.
- Typical Capacity is 550 Mb 800MB
- Typical Costs are:
 - Drive -- Rs.1000
 - Disk Rs10 Rs.35
- Related Terms:
 - CD Writer
 - WORM
 - CD RW

Printer

- Output Device, Produces Hard Copy
- Types:
 - Dot Matrix
 - Inkjet
 - Laser
- Typical Cost Ranges from Rs.3500 Rs.2 lacs
- Related Terms:
 - Impact Non Impact
 - Ribbon, Cartridge, Toner, Duty Cycle
- Major Vendors in India:
 - HP, Cannon, Samsung, TVS, Epson etc.

Scanner

- Input Device, Converts a hard copy into a computer file.
- Used to Scan Signatures, Photographs etc.
- Optical Device.
- Typical Cost Rs.4000 Rs.75000
- Major Vendors in India:
 - HP, Umax, Cannon
- Nowadays Scanners with OCR produces editable documents.

Algorithms and Flow Charts

ALGORITHMS AND FLOWCHARTS

 A typical programming task can be divided into two phases:

Problem solving phase

- produce an ordered sequence of steps that describe solution of problem
- this sequence of steps is called an algorithm

Implementation phase

implement the program in some programming language

Steps in Problem Solving

- First produce a general algorithm
- Refine the algorithm successively to get step by step detailed *algorithm* that is very close to a computer language.

Pseudocode & Algorithm

• **Example 1:** Write an algorithm to determine a student's final grade and indicate whether it is passing or failing. The final grade is calculated as the average of four marks.

Pseudocode & Algorithm

Pseudocode:

- Input a set of 4 marks
- Calculate their average by summing and dividing by 4
- if average is below 50
 Print "FAIL"
 else
 Print "PASS"

Pseudocode & Algorithm

Detailed Algorithm

```
Step 1: Input M1,M2,M3,M4
```

```
Step 2: GRADE \leftarrow (M1+M2+M3+M4)/4
```

Step 3: if (GRADE < 50) then

Print "FAIL"

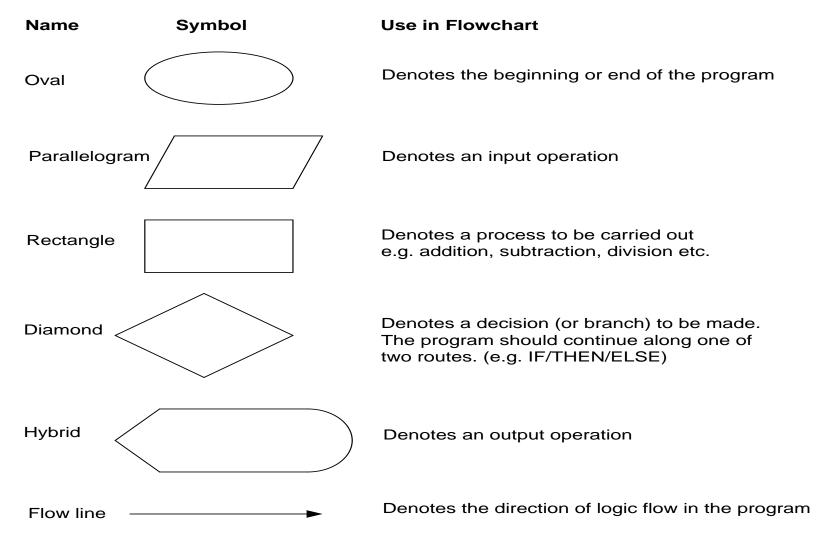
else

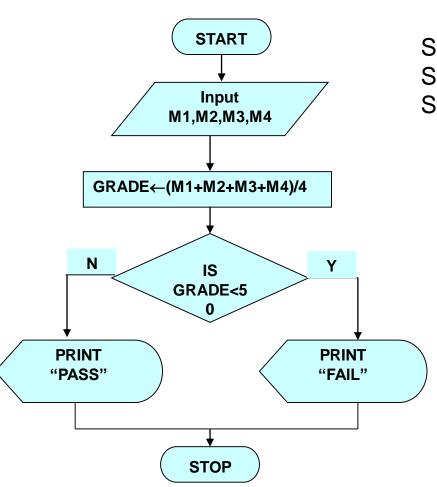
Print "PASS"

endif

The Flowchart

- (Dictionary) A schematic representation of a sequence of operations, as in a manufacturing process or computer program.
- (Technical) A graphical representation of the sequence of operations in an information system or program. Information system flowcharts show how data flows from source documents through the computer to final distribution to users. Program flowcharts show the sequence of instructions in a single program or subroutine. Different symbols are used to draw each type of flowchart.


The Flowchart


A Flowchart

- shows logic of an algorithm
- emphasizes individual steps and their interconnections
- e.g. control flow from one action to the next

Flowchart Symbols

Basic

Step 1: Input M1,M2,M3,M4

Step 2: GRADE \leftarrow (M1+M2+M3+M4)/4

Step 3: if (GRADE <50) then

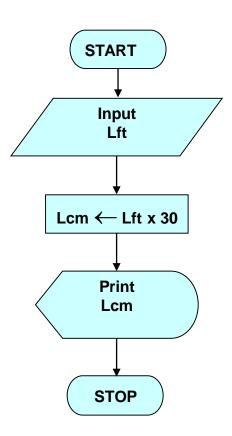
Print "FAIL"

else

Print "PASS"

endif

 Write an algorithm and draw a flowchart to convert the length in feet to centimeter.

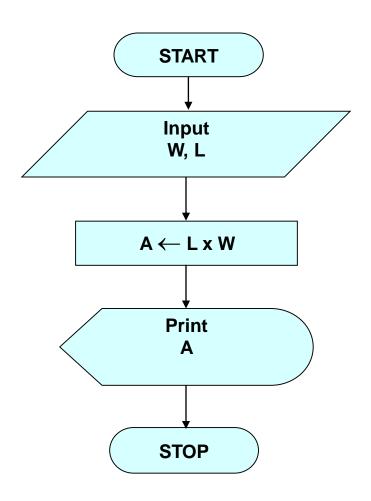

Pseudocode:

- Input the length in feet (Lft)
- Calculate the length in cm (Lcm) by multiplying LFT with 30
- Print length in cm (LCM)

Algorithm

- Step 1: Input Lft
- Step 2: Lcm ← Lft x 30
- Step 3: Print Lcm

Flowchart


Write an algorithm and draw a flowchart that will read the two sides of a rectangle and calculate its area.

Pseudocode

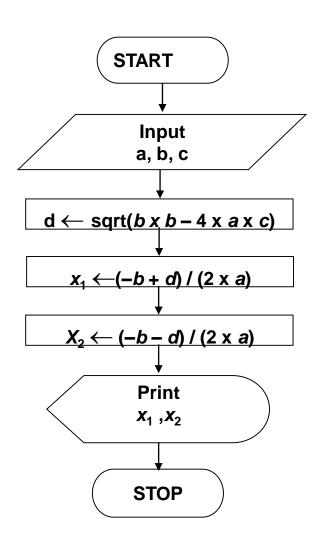
- Input the width (W) and Length (L) of a rectangle
- Calculate the area (A) by multiplying L with W
- Print A

Algorithm

- Step 1: Input W,L
- Step 2: A ← L x W
- Step 3: Print A

 Write an algorithm and draw a flowchart that will calculate the roots of a quadratic equation

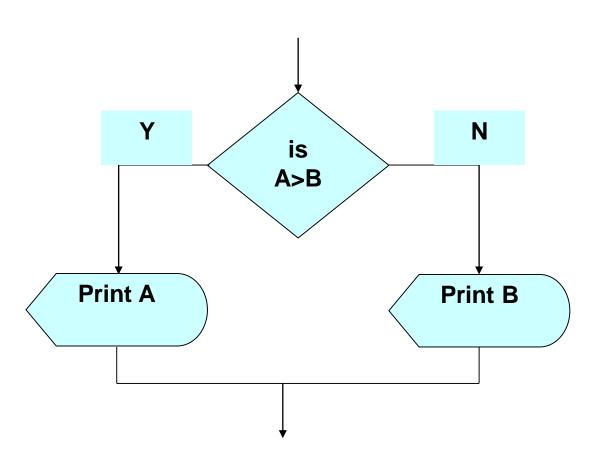
$$ax^2 + bx + c = 0$$


• Hint: $\mathbf{d} = \operatorname{sqrt} (b^2 - 4) a$ and the roots are: $\mathbf{x1} = (-b + d)/2a$ and $\mathbf{x2} = (-b - d)/2a$

Pseudocode:

- Input the coefficients (a, b, c) of the quadratic equation
- Calculate d
- Calculate x1
- Calculate x2
- Print x1 and x2

Algorithm:

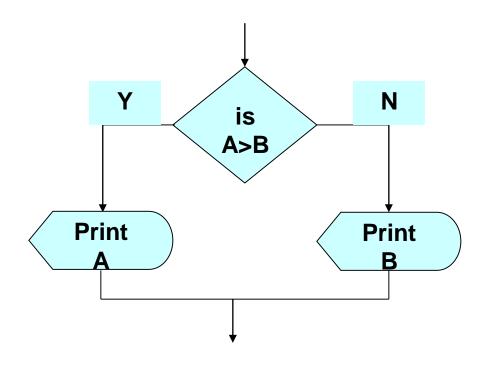

- Step 1: Input a, b, c
- Step 2: $d \leftarrow \text{sqrt} (b \times b 4 \times a) \times c$
- Step 3: $x1 \leftarrow (-b+d)/(2 \times a)$
- Step 4: $x2 \leftarrow (-b-d)/(2 \times a)$
- Step 5: Print *x*1, *x*2

DECISION STRUCTURES

- The expression A>B is a logical expression
- it describes a condition we want to test
- if A>B is true (if A is greater than B) we take the action on left
- print the value of A
- if A>B is false (if A is not greater than B) we take the action on right
- print the value of B

DECISION STRUCTURES

IF—THEN—ELSE STRUCTURE


The structure is as follows

```
If condition then
true alternative
else
false alternative
endif
```

IF—THEN—ELSE STRUCTURE

The algorithm for the flowchart is as follows:

```
If A>B then
print A
else
print B
endif
```


Relational Operators

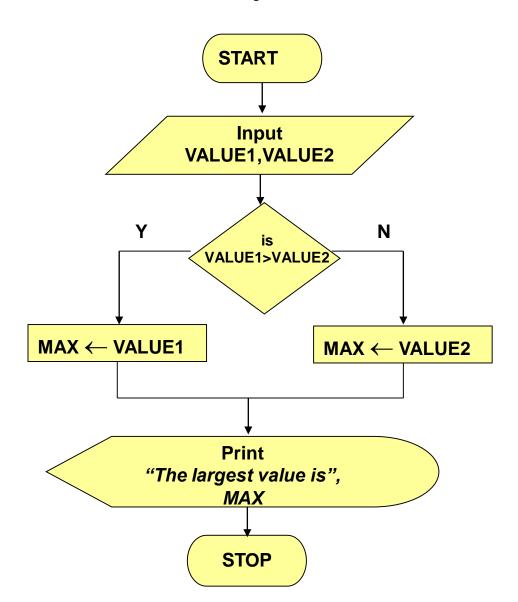
Relational Operators	
Operator	Description
>	Greater than
<	Less than
=	Equal to
<u>></u>	Greater than or equal to
<u>≤</u>	Less than or equal to
≠	Not equal to

 Write an algorithm that reads two values, determines the largest value and prints the largest value with an identifying message.

ALGORITHM

Step 1: *Input* VALUE1, VALUE2

Step 2: *if (VALUE1 > VALUE2) then*


 $MAX \leftarrow VALUE1$

else

MAX ← VALUE2

endif

Step 3: *Print "The largest value is", MAX*

NESTED IFS

- One of the alternatives within an IF—THEN— ELSE statement
 - may involve further IF—THEN—ELSE statement

 Write an algorithm that reads three numbers and prints the value of the largest number.

```
Step 1: Input N1, N2, N3
Step 2: if (N1>N2) then
            if (N1>N3) then
                                   [N1>N2, N1>N3]
                  MAX \leftarrow N1
            else
                  MAX \leftarrow N3
                                   [N3>N1>N2]
           endif
        else
           if (N2>N3) then
                                   [N2>N1, N2>N3]
                  MAX \leftarrow N2
           else
                                   [N3>N2>N1]
                  MAX \leftarrow N3
          endif
        endif
Step 3: Print "The largest number is", MAX
```

Programming Fundaments

- CONSTANTS
- VARIABLES
- OPERATORS
- EXPRESSIONS

CONSTANTS

- A constant is an identifier (name) for a simple value. That value cannot change during the execution of the script. A constant is casesensitive by default. By convention, constant identifiers are always uppercase
- There are two built-in constants, TRUE and FALSE (case-insensitive), which represent the two possible boolean values.

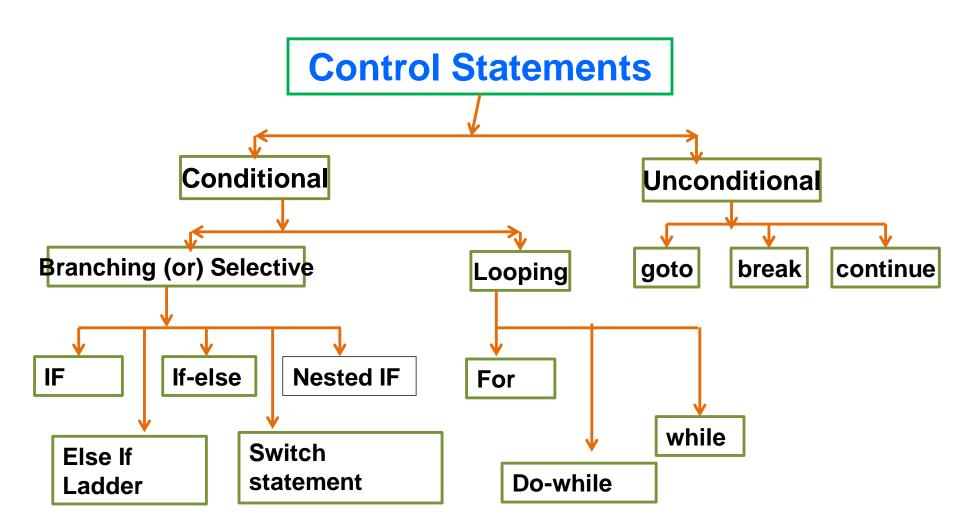
VARIABLES

Variables

- ▶ Variables in PHP are represented by a dollar sign followed by the name of the variable. The variable name is case-sensitive.
- ▶ PHP supports eight primitive types:
- Four scalar types:
 - boolean
 - integer
 - float (floating-point number, aka double)
 - string
- ▶ Two compound types:
 - array
 - object
- ▶ And finally three special types:
 - resource
 - NULL
 - callable

- Integers: decimal, octal or hexadecimal Var = 123; Floating point Var = 1.3e4; Arrays or vectors Var[2] = 123;
- Text Strings Var = "A Text String\u00e4n";
 Objects Var = new oMyClass();

The scope of a variable is the context within which it is defined.


OPERATORS

- Operator Precedence
- Arithmetic Operators
- Assignment Operators
- Bitwise Operators
- Comparison Operators
- Error Control Operators
- Execution Operators
- Incrementing/Decrementing Operators
- Logical Operators
- String Operators
- Array Operators
- Type Operators

EXPRESSIONS

- Expressions are the most important building stones of PHP. The most basic forms of expressions are constants and variables.
- A very common type of expressions are comparison expressions. These expressions evaluate to either FALSE or TRUE. These expressions are most commonly used inside conditional execution, such as if statements.

Programming Statements

