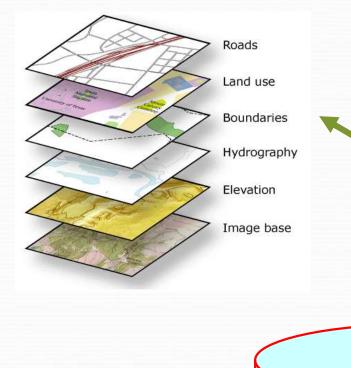
GEOSPATIAL / GEOGRAPHIC INFORMATION SYSTEMS (GIS)

UNIT - 3
DATA INPUT, VERIFICATION, STORAGE & OUTPUT


Dr. K. Palanivel
Assistant Professor
Centre for Remote Sensing
Bharathidasan University
Khajamalai Campus
Tiruchirappalli – 620 023

GIS Unit - 3

 Data Input, Verification, Storage and Output: Spatial Data Input Processes and Devices (Sources of data, -Different Types of Data Entry methods, viz., Manual input, Run length code, Digitization, Automated Scanning, etc. - Vector to Raster conversion - Raster to Vector conversion - Input devices) - Entry of nonspatial data - Linking of Spatial & Non-spatial data -Data Verification (Errors of different types) - Correction (Rubber Sheet Transformation, Bilinear interpolation, Cubic Convolution, etc.) - GIS capabilities for Data correction - Data output (Types of Output, GIS Capabilities for output, Output devices).

GIS Can hold large amount of geospatial data / maps

Geospatial data / maps

Data Base **Storage** Unit

Non spatial / Attribute data /

BLOCK NAME	IIK AREA	SALI AREA	PERCENTAGE SALINITY TYPE
AGASTISWARAM	97795036 16	47651257.35	48.75 COASTAL SALINE SO
ALWAPTHERUNAGARE	314987683.28	13483201 16	
ARANTANDI	546979186.79	10000064 03	
ARRAN AM	360443584 63	30056.28	
AVUCALYARKOL.	317311598 56	124505284.05	
BHLNANAGIR	199729518.35	26522096.91	13.35-COASTAL SALME SO
CHERRIN	173279620 57	116210295-56	67 07 CDASTAL BALFIE SO
CHTHAMUR	266707307.11	62036026.70	
D CUDDALORE	301090086.77	234349321 02	
1 GUMMDEOONDE	410232626 00	198405820 60	47.46 COASTAL SALINE SO
KADALADI	801377568.81	518714069.36	
3 KANDAMANGALAM	233637210.04	3561928.61	1.53 COASTAL SAUNE SO
4 KEELAIYUR	173073950 20	1000640 12	
5 KEERAPALAYAM	123096965.35	6010446265	
KILLYOOR :	27797206 53	975230 86	
Z KOLLDAM	272680637.73	465,799,90	
RUTTUR	30319067B 64	437663.63	
M KURRURPADI	400074696.26	102504013.42	
B KURLINTHENCODE	15064368438	76575441.17	40.89 COASTAL SALINE SO
FLATHUR	378322678.78	227214144.85	60.06 COASTAL SALINE SO
Z MANAMELICIDI	10796/3286 34	90731336.29	49.27 COASTAL SALINE SO
9 MANDAPAM	221958482 90	221958449.74	100 00 COASTAL SALME SO
4 MARAGGANAM	423770925 99	189722836.96	40.06 COASTAL SALINE SO
5 MPLLE	459603003.70	452909481 54	99 46 COASTAL BALINE SC
6 MUNCHRAI	167406797.71	121207679.60	65.74 COASTAL SAUNE SO
MUTHUPETTAL	372762749.00	279672726.32	73.95 COASTAL BALINE SO
NANARKOL.	265298425.88	9889174.16	2.21 COASTAL BALINE SO
9 OTTAPIDAGAM	789995062.30	59580178.42	7.42 COASTAL BALRIE SO
B PARANGPETTAL	232530511.60	202013776.06	67.22 COASTAL SALINE SC
E PATTUROKOTTA)	414210062.49	142415280.27	34.38 COASTAL SALINE SO
PONDI	304809120 44	168067150.76	55.14 COASTAL BALINE SO
B PUDUL	134550000 49	77617267.23	57.61 COASTAL SALINE SO
M RADHAPURAM	309679174 59	151774863.02	49.01 COASTAL SALINE SO
S RAJAKKAMANGALAM	147954170.04	80895022.01	68.89 COASTAL SALESE SO

DATA INPUT

4.2.1 ENTERING SPATIAL DATA

4.2.2 ENTERING NON SPATIAL DATA

4.2.3 LINKING SPATIAL DATA TO NON SPATIAL DATA

Field surveys

Collecting latitude and longitude coordinates with a Global Positioning System (GPS) receiver.

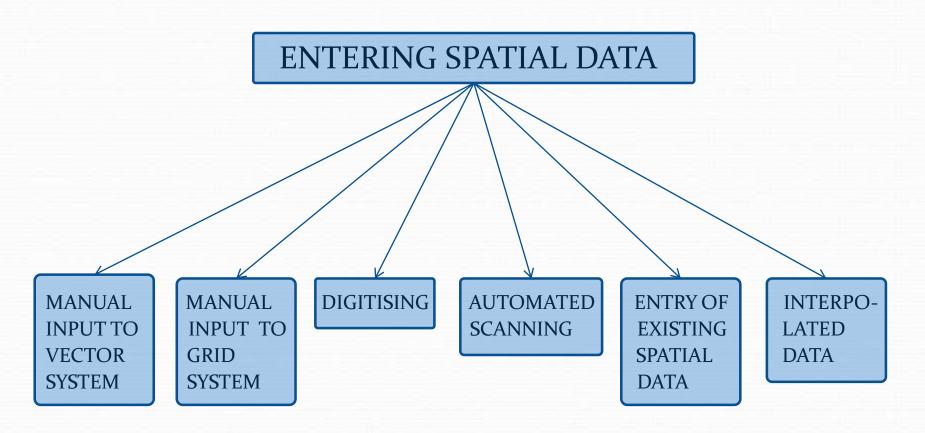
BOTH SPATIAL & NON-SPATIAL DATA

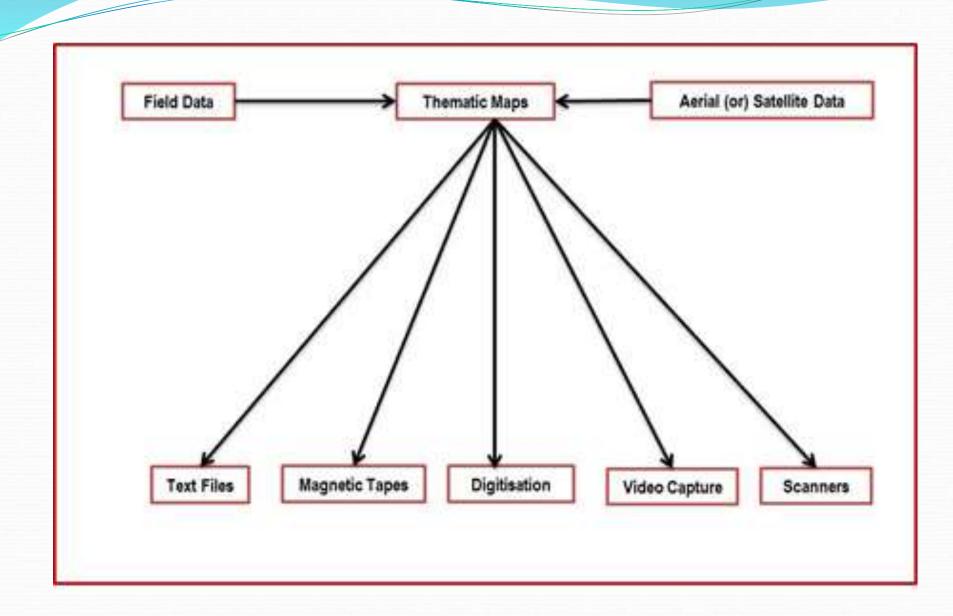
Remote sensing data

Data Sources for GIS

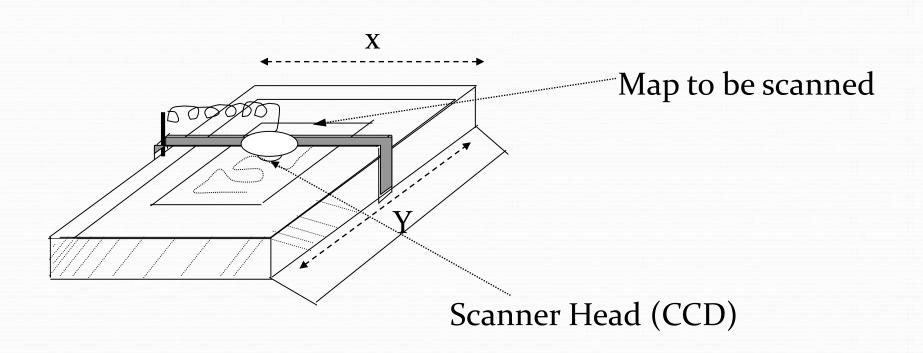
Digital data files

Collateral or Secondary data collection

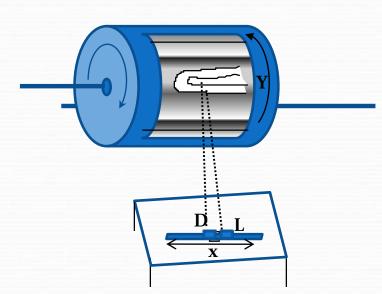


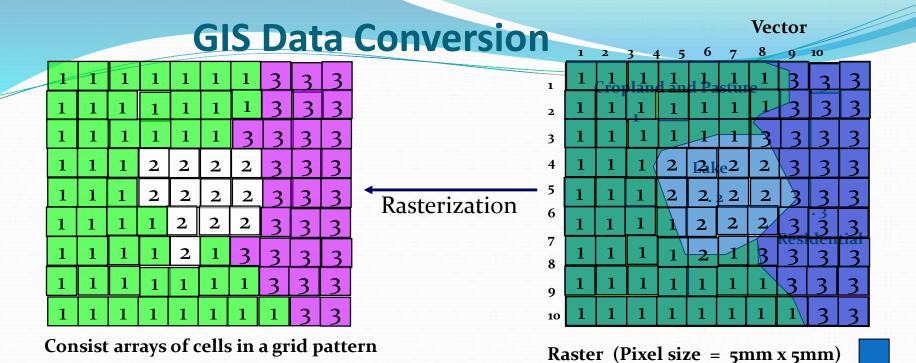

Literatures & References

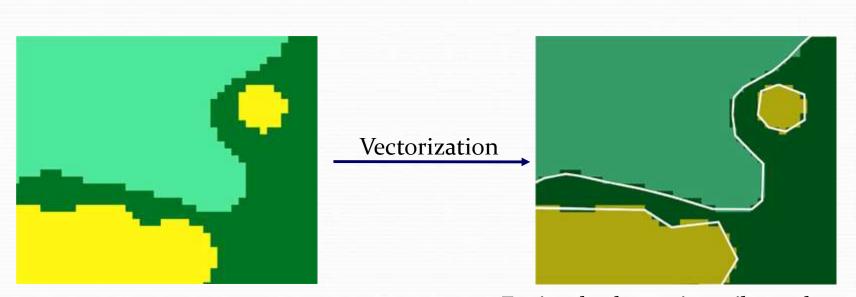
ENTERING SPATIAL DATA



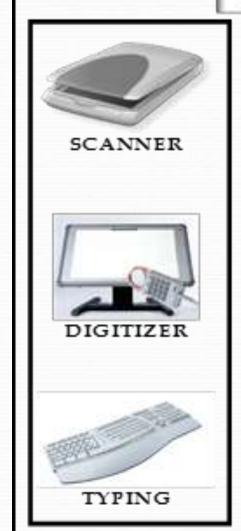
Data Entry in GIS

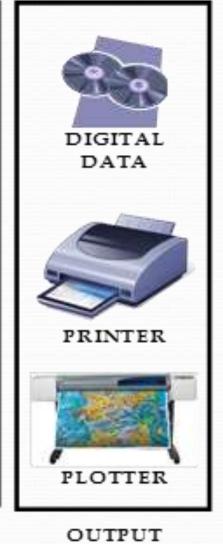

- Digitization using digitizer board
 - Stream mode & Point mode
- Onscreen digitization
 - Scanning
 - Georeferencing
 - Digitization
 - Projection
- Manual entry of series of X,Y data
- Automated Scanning


AUTOMATED SCANNING Flat bed Scanner

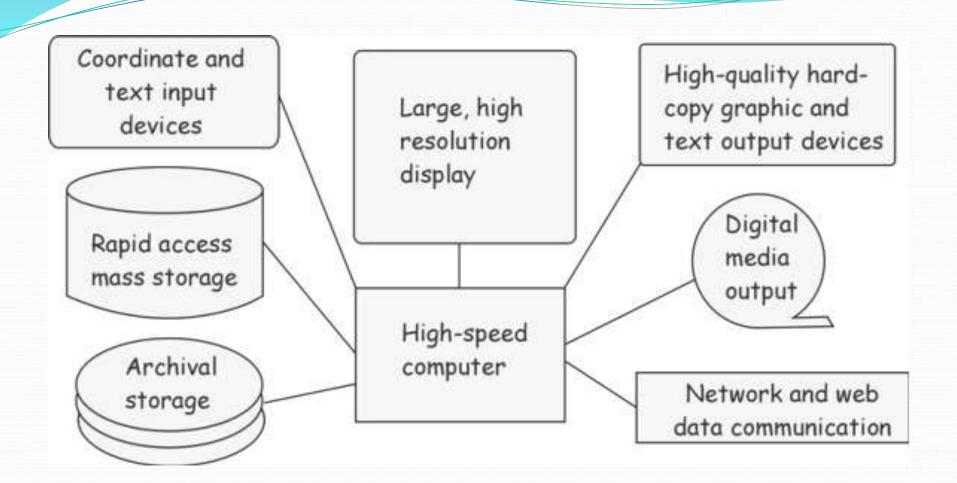


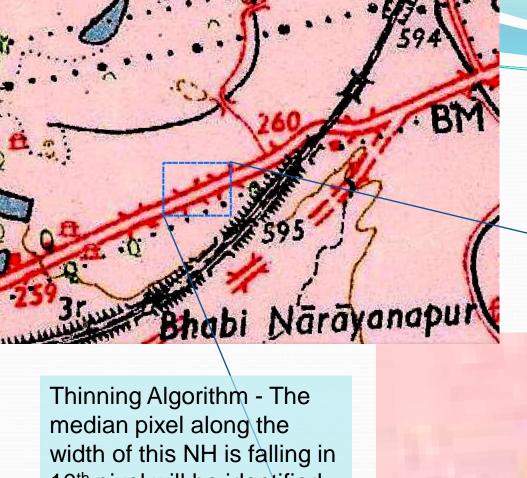
Drum Scanner


- L Laser beam
- D Detector
- X Direction of movement of laser source and Detector over a sliding bar
- Y Direction of scanning of map pasted over rotating Drum



Tracing the changes in attribute values as boundaries of polygons

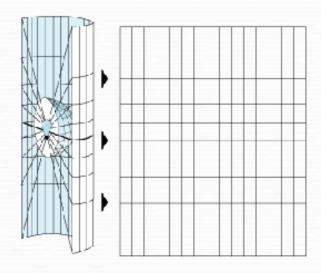

GIS HARDWARE

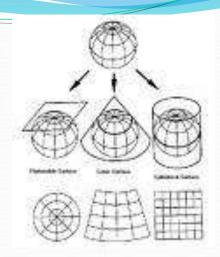

INPUT DATA
MANAGEMENT

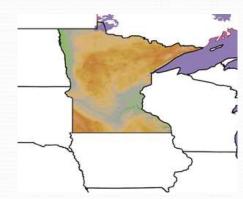
General-purpose and specialized GIS hardware components

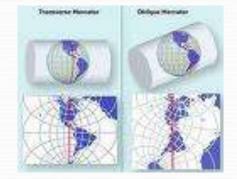
Thinning Algorithm

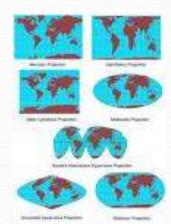
- The features seen in the scanned topos / maps must contain several rows of pixels representing the shape and size of them as depicted using various symbols
- For example, NH roads might have been scanned as a series of 5 adjacent pixels aligned in a row can be seen while it is zoomed to a maximum extent.
- Now, the GIS program consisting of algorithm which can identify the number of pixels occupied along the width of the required feature and find out the median pixel in each row all along the entire length of the feature
- Fix nodes at the centers of these pixels and finally
- Connect them to make it as boundary or linear feature or as polygon as per the conditions.

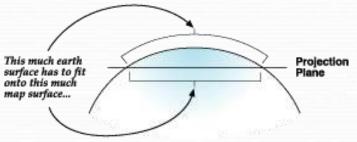



19 pixels are representing the red coloured double line symbol for NH in this area.


Thinning Algorithm - The median pixel along the width of this NH is falling in 10th pixel will be identified and a node will be inserted in its center position in each row and finally all the nodes will get connected to get vector feature of NH in GIS.


Map Projection





therefore, much of the earth's surface has to be represented smaller than the nominal scale.

Map Projection...contd...

A. MAP RECTIFICATION USING GROUND CONTROL POINTS (GCP's)

- RAW DIGITAL DATA ARE EITHER IN DIGITIZER BOARD UNIT OR DISPLAY SCREEN UNIT
- UPDATE THEIR CO-ORDINATE VALUES WITH DECIMAL DEGREES

 DD = (DEGREE + (MINUTE / 60) + (SECONDS / 3600))

B. PROJECT THEM TO THE REQUIRED PROJECTION SYSTEM

DETAILS REQUIRED:

1. INPUT DETAILS

PROJECTION TYPE – GEOGRAPHIC UNITS – DD

2. OUTPUT DETAILS

PROJECTION TYPE (EXPECTED) – POLYCONIC ...etc....
UNITS – METERS

3. CENTRAL MERIDIAN IN DD

(MAX – MIN LONGITUDE/2)

4. LATTITUDE OF PROJECTIONS ORIGIN IN DD

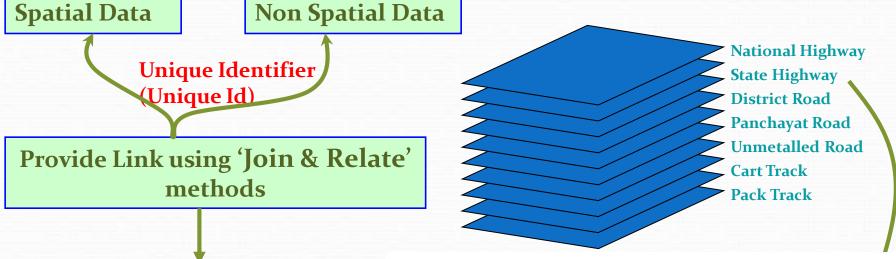
LAT. @ BOTTOM LEFT CORNER OF MAP

5. DATUM PLANE

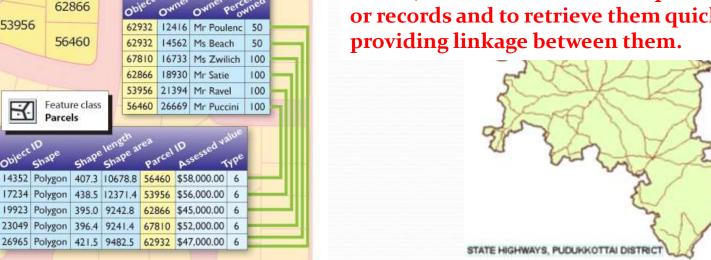
6. FALSE EASTING & FALSE NORTHING

Linking of Spatial and Aspatial data

- Entry of Spatial and Non-spatial data
- Check for accuracy and errors
- Add / Identify Unique Identifier in both Attribute Tables (PAT / AAT / PAT / DBMS Tables / Spread Sheets)
- Choose the method for providing linkage between them
 - One to One
 - One to Many
 - Many to One
 - Many to Many
- Choose 'Join' option when 'One-to-One' relation exists
- Choose 'Relate option for others


GIS Database Management

67810


62932

53956

Preferential display of map

Unique Identifier / (Unique Id) – is an unique value (as alphabets or numbers or alpha-numeric values) used as identifier for spatial objects and / or records and to retrieve them quickly by providing linkage between them.

DATA VERIFICATION IN GIS

ERRORS ARISES DURING ENCODING AND INPUT OF SPATIAL / NON-SPATIAL DATA

- i) SPATIAL DATA IN WRONG PLACE
- ii) SPATIAL DATA ARE DISTORTED
- iii) SPATIAL DATA ARE IN WRONG SCALE
- iv) SPATIAL DATA ARE INCOMPLETE OR DOUBLE
- v) SPATIAL DATA LINKED TO A WRONG NON SPATIAL DATA
- vi) SIMILAR ERRORS IN NON SPATIAL DATA

i) SPATIAL DATA IN WRONG PLACE

Mislocation of spatial data – minor error to gross spatial location errors

Minor - due to careless digitizing

- wrong data entry in item/field or in lab.

- due to GPS errors

Gross - due to data origin

Sources of possible errors

- Obvious sources of error
 - i. Age of the data
 - ii. Areal coverage-partial or complete
 - iii. Map scale
 - iv. Density of observations
 - v. Relevance
 - vi. Format
 - vii. Accessibility
 - viii. Cost
- 2. Errors resulting from natural variations or from original measurements
 - Positional accuracy
 - 2. Accuracy of content-qualitative and quantitative
 - 3. Sources of variation in data
 - Data entry faults
 - 2. Data output faults
 - 3. Observer bias
 - 4. Natural variation

1. Errors arising through processing

- Numerical errors in the computer
- 2. Limitations of computer representations of numbers
- 3. Faults arising through topological analyses
- 4. Misuse of logic
- 5. Problems associated with map overlay
- 6. Classification and generalization problems
- 7. Methodology
- 8. Class interval definition
- Interpolation

Error types in Vector Data

Points - Un-labeled Points, Multi-labeled Points Missing Points, Multiple Points

Lines - Overshoots, Undershoots, Missing
Lines/Arcs, Un-labeled Lines, Multi-labeled
Lines, Missing Lines, Multiple Lines

Polygons - Sliver polygons, Dead ends, Gaps,
Weird Polygons, Floating Polygons,
Un-labeled Polys, Multi-labeled Polys
Missing Polys, Multiple Polygons

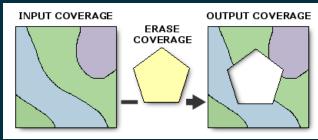
GIS CAPABILITIES FOR DATA VERIFICATION

Rubber sheet transformation and warping

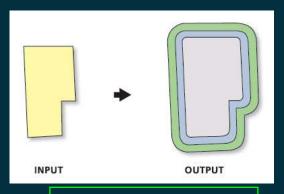
- Keeping the faulty digitized map as an elastic sheet that can be stretched in all directions so as to correct point positions by linking vectors of accurate base map.
- A number of points on the faulty map are linked by vectors to the correct positions on the base map
- The rubber sheeting algorithms stretch and compress the faulty map until the linking vectors have shrunk to zero length and the tie points are registered with each other.
- Now, values are calculated for all the other points on the faulty map and relocated correctly.

Data verification

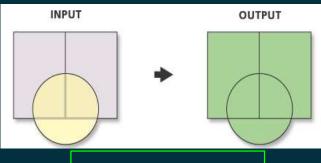
- Comparative checking physically over light table with transparent/transluscent/thin paper hardcopy of the digitized map in the same scale as that of the original map and mark the
 - Missing data
 - Locational errors
 - Multiple entry
- Generate topology Build Topology options
 - Utilizing topology rules
 - Locate and Display errors like, Node errors, Dangle errors-(overshoots), Pseudo-nodes, open polygons(undershoots),

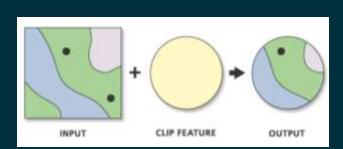

GIS CAPABILITIES FOR DATA VERIFICATION ... contd...

- ADD / DELETE / CHANGE interactive editing of the alignment, length, text, text font and attributes of graphic entities
- MOVE / ROTATE To a new position
- STRETCH / RECTIFY adjust co-ordinates to fit a true base
- TRANSFORM SCALE, PROJECTION
- ZOOM / WINDOW
- CLIP, UPDATE
- JOIN / EDGE MATCH map continuity
- POLYGON OVERLAY & MERGE
- 3D PROJECTION Block diagram
- Raster to vector, Vector to Raster
- GENERALIZATION & SMOOTHING
- DATA RETRIEVAL & REPORTING


Data Preprocessing and Postprocessing capabilities

Classification/Grouping, Regrouping,/Reclassification



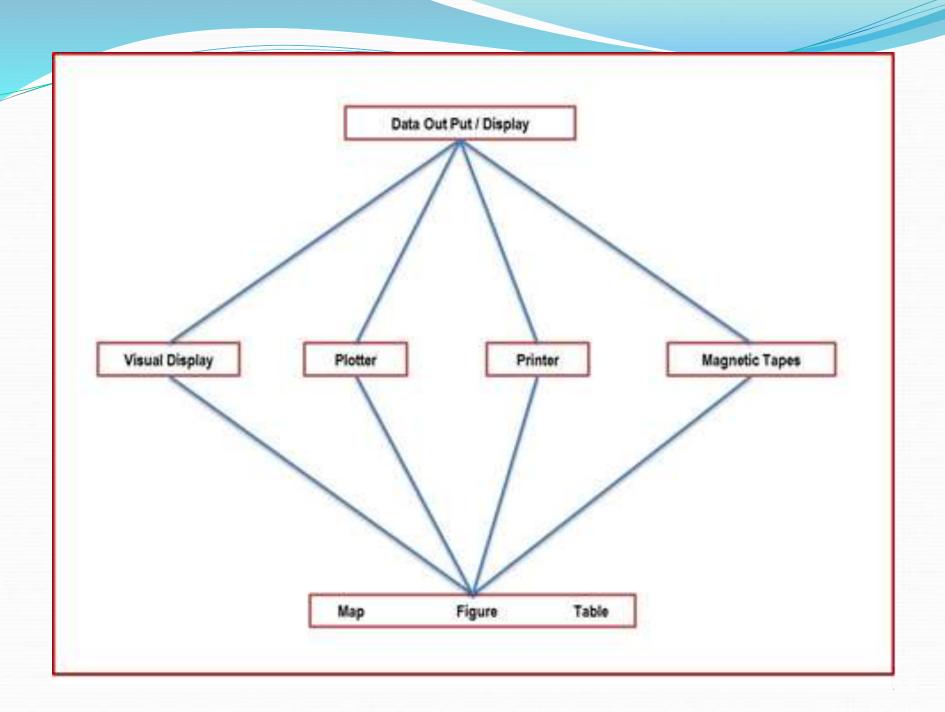


ERASE

BUFFER

INPUT

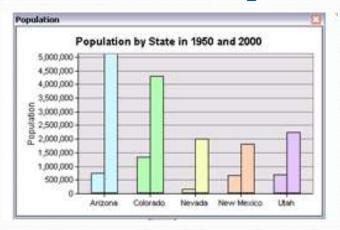
OUTPUT

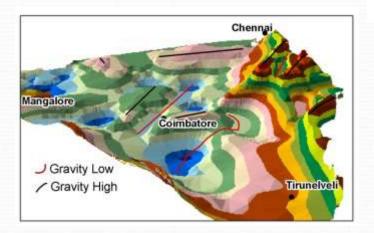

INTERSECT
FEATURE

UNION INTERSECT

CLIP

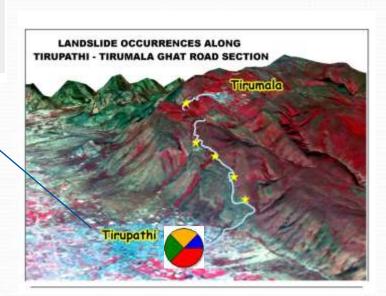
GIS OUTPUT CAPABILITIES


- → SIMPLE DISPLAY
- → ALL CARTOGRAPHIC LAYOUT OPTIONS
- → SCALE, STYLE & COLOR CHANGE
- →INCLUDE GRAPHS, PHOTOS, ETC.
- →3D DISPLAY
- →OVERLAY OF MANY THEMES
- → LIVE MAPS & INTERACTIVE MAPS
- → PLOTTER / PRINTER O/P, WEB DISPLAY


GIS can display in the form of Charts, Histograms,


Pie

3D visualized output, DEM, etc,.



Charts

Histograms

3D IMAGE

DIGITAL ELEVATION MODEL(DEM)

Functions commonly provided by GIS Software

Date Entry	Analysis	
 Manual coordinate capture 	Spatial query	
Attribute capture	Attribute query	
 Digital coordinate capture 	Interpolation	
Data import	Connectivity	
Editing	Proximity and adjacency	
Manual point, line and area	Buffering	
feature editing	Terrain analyses	
Manual attribute editing	Boundary dissolve	
Automated error detection	Spatial data overlay	
and editing	Moving window analyses	
	Map algebra	
Data Management	Output	
Copy, subset, merge data	Map design and layout	
Versioning	Hardcopy map printing	
Data registration and	Digital graphic production	
Projection	Export format generation	
Summarization, data	Metadata output	
reduction	Digital map serving	
Documentation		