
Bharathidasan University

Centre for Differently Abled Persons
Khajamalai Campus

Tiruchirappalli-620 023

Tamilnadu

Compiled By

Dr.M.Prabavathy
(Assistant Professor)

Ms.V.Vijayalakshmi

Bachelor of Computer Applications
For Students with Speech and Hearing Impairment)

Course: Java Programming

Unit-5

 Multithreaded Programming in Java

2

 Introduction
 Thread Applications
 Defining Threads
 Java Threads and States
 Examples

3

class ABC
{
….

public void main(..)

{

…

..

}

}

4

begin

body

end

5

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/results

6

Internet

Server

PC client

Local Area Network

PDA

7

Server

Threads

Server ProcessClient 1 Process

Client 2 Process

 Internet

8

Printing Thread

Editing Thread

9

reader()

{

- - - - - - - - -

-

lock(buff[i]);

read(src,buff[i]);

unlock(buff[i]);

- - - - - - - - -

-

}

writer()

{

- - - - - - - - - -

lock(buff[i]);

write(src,buff[i]);

unlock(buff[i]);

- - - - - - - - - -

}

buff[0]

buff[1]

Cooperative Parallel Synchronized
Threads

10

Code-Granularity

Code Item

Large grain

(task level)

Program

Medium grain

(control level)

Function (thread)

Fine grain

(data level)

Loop (Compiler)

Very fine grain

(multiple issue)

With hardware

Task i-l Task i Task i+1

func1 ()

{

....

....

}

func2 ()

{

....

....

}

func3 ()

{

....

....

}

a (0) =..

b (0) =..

a (1)=..

b (1)=..

a (2)=..

b (2)=..

+ x Load

Sockets/

PVM/MPI

Threads

Compilers

CPU

11

Single-threaded Process

Single instruction stream Multiple instruction stream

Multiplethreaded Process

Threads of

Execution

Common

Address Space

Threads are light-weight processes within a process

12

Process Parallelism

P1

P2

P3

time

No of execution process more the number of CPUs

CPU

CPU

CPU

 Concurrency Vs Parallelism

13

 Process Concurrency

Number of Simultaneous execution units > number of CPUs

P1

P2

P3

time

CPU

 A piece of code that run in concurrent with other
threads.

 Each thread is a statically ordered sequence of
instructions.

 Threads are being extensively used express
concurrency on both single and multiprocessors
machines.

 Programming a task having multiple threads of
control – Multithreading or Multithreaded
Programming.

14

 Java has built in thread support for Multithreading
 Synchronization
 Thread Scheduling
 Inter-Thread Communication:
 currentThread start setPriority

 yield run getPriority

 sleep stop suspend

 resume
 Java Garbage Collector is a low-priority thread

15

 Create a class that extends the Thread class
 Create a class that implements the Runnable

interface

16

 Threads are implemented as objects that contains
a method called run()

class MyThread extends Thread
{

public void run()
{

// thread body of execution
}

}
 Create a thread:

MyThread thr1 = new MyThread();
 Start Execution of threads:

thr1.start();

17

class MyThread extends Thread {
// the thread

public void run() {
System.out.println(" this thread is running ... ");

}
}
// end class MyThread

class ThreadEx1 {
// a program that utilizes the thread

public static void main(String [] args) {

MyThread t = new MyThread();
// due to extending the Thread class (above)
// I can call start(), and this will call
// run(). start() is a method in class Thread.

t.start();
} // end main()

} // end class ThreadEx1

18

class MyThread implements Runnable

{

.....

public void run()

{

// thread body of execution

}

}

 Creating Object:
MyThread myObject = new MyThread();

 Creating Thread Object:
Thread thr1 = new Thread(myObject);

 Start Execution:
thr1.start();

19

class MyThread implements Runnable {
public void run() {

System.out.println(" this thread is running ... ");
}

} // end class MyThread

class ThreadEx2 {
public static void main(String [] args) {

Thread t = new Thread(new MyThread());
// due to implementing the Runnable interface

// I can call start(), and this will call run().
t.start();

} // end main()
} // end class ThreadEx2

20

21

new

runnable non-runnable

dead

wait()

sleep()

suspend()

blocked

notify()

slept

resume()

unblocked

start()

stop()

 Write a program that creates 3 threads

22

 class A extends Thread
 {
 public void run()
 {
 for(int i=1;i<=5;i++)
 {
 System.out.println("\t From ThreadA: i= "+i);
 }

 System.out.println("Exit from A");
 }

 }

 class B extends Thread
 {
 public void run()
 {

 for(int j=1;j<=5;j++)
 {
 System.out.println("\t From ThreadB: j= "+j);
 }

 System.out.println("Exit from B");
 }

 }

23

 class C extends Thread
 {
 public void run()
 {

 for(int k=1;k<=5;k++)
 {
 System.out.println("\t From ThreadC: k= "+k);
 }

 System.out.println("Exit from C");
 }

 }

 class ThreadTest
 {
 public static void main(String args[])

 {
 new A().start();
 new B().start();
 new C().start();

 }

 }

24

 [raj@mundroo] threads [1:76] java ThreadTest
From ThreadA: i= 1
From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5

Exit from A
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B

25

 [raj@mundroo] threads [1:77] java ThreadTest
From ThreadA: i= 1
From ThreadA: i= 2
From ThreadA: i= 3
From ThreadA: i= 4
From ThreadA: i= 5
From ThreadC: k= 1
From ThreadC: k= 2
From ThreadC: k= 3
From ThreadC: k= 4
From ThreadC: k= 5

Exit from C
From ThreadB: j= 1
From ThreadB: j= 2
From ThreadB: j= 3
From ThreadB: j= 4
From ThreadB: j= 5

Exit from B
Exit from A

26

 int add (int a, int b, int & result)
 // function stuff
 int sub(int a, int b, int & result)
 // function stuff

27

pthread t1, t2;

pthread-create(&t1, add, a,b, & r1);

pthread-create(&t2, sub, c,d, & r2);

pthread-par (2, t1, t2);

MISD and MIMD Processing

a

b

r1

c

d

r2

add

sub

Processor

Data

IS1

IS2

Processor

 sort(int *array, int count)
 //......
 //......

28

do

“

“

dn/2

dn2/+1

“

“

dn

Sort

Data

IS

pthread-t, thread1, thread2;

“

“

pthread-create(& thread1, sort, array, N/2);

pthread-create(& thread2, sort, array, N/2);

pthread-par(2, thread1, thread2);

SIMD Processing

Sort

Processor

Processor

 Thread Synchronisation
 Thread Priorities

29

 Applications Access to Shared Resources
need to be coordinated.

 Printer (two person jobs cannot be printed at the
same time)

 Simultaneous operations on your bank account

30

31

Internet Bank

Server

PC client

Local Area Network

PDA
Bank

Database

 If one thread tries to read the data and other thread
tries to update the same date, it leads to
inconsistent state.

 This can be prevented by synchronising access to
data.

 In Java: “Synchronized” method:
 syncronised void update()

 {
▪ …

 }

32

33

class InternetBankingSystem {

public static void main(String [] args) {

Account accountObject = new Account ();

Thread t1 = new Thread(new MyThread(accountObject));

Thread t2 = new Thread(new YourThread(accountObject));

Thread t3 = new Thread(new HerThread(accountObject));

t1.start();

t2.start();

t3.start();

// DO some other operation

} // end main()

}

34

class MyThread implements Runnable {

Account account;

public MyThread (Account s) { account = s;}

public void run() { account.deposit(); }

} // end class MyThread

class YourThread implements Runnable {

Account account;

public YourThread (Account s) { account = s;

}

public void run() { account.withdraw(); }

} // end class YourThread

class HerThread implements Runnable {

Account account;

public HerThread (Account s) { account = s; }

public void run() {account.enquire(); }

} // end class HerThread

account

class Account { // the 'monitor'
// DATA Members

int balance;

// if 'synchronized' is removed, the outcome is unpredictable
public synchronized void deposit() {

// METHOD BODY : balance += deposit_amount;
}

public synchronized void withdraw() {
// METHOD BODY: balance -= deposit_amount;

}
public synchronized void enquire() {

// METHOD BODY: display balance.
}

}

35

 In Java, each thread is assigned priority, which
affects the order in which it is scheduled for running.
The threads so far had same default priority
(ORM_PRIORITY) and they are served using FCFS
policy.

 Java allows users to change priority:
▪ ThreadName.setPriority(intNumber)

▪ MIN_PRIORITY = 1

▪ NORM_PRIORITY=5

▪ MAX_PRIORITY=10

36

class A extends Thread
{

public void run()
{

System.out.println("Thread A started");

for(int i=1;i<=4;i++)
{

System.out.println("\t From ThreadA: i= "+i);
}

System.out.println("Exit from A");
}

}

class B extends Thread
{

public void run()
{

System.out.println("Thread B started");

for(int j=1;j<=4;j++)
{

System.out.println("\t From ThreadB: j= "+j);
}

System.out.println("Exit from B");
}

}

37

class C extends Thread
{

public void run()
{

System.out.println("Thread C started");

for(int k=1;k<=4;k++)
{

System.out.println("\t From ThreadC: k= "+k);
}
System.out.println("Exit from C");

}
}
class ThreadPriority
{

public static void main(String args[])
{

A threadA=new A();
B threadB=new B();
C threadC=new C();

threadC.setPriority(Thread.MAX_PRIORITY);
threadB.setPriority(threadA.getPriority()+1);
threadA.setPriority(Thread.MIN_PRIORITY);

System.out.println("Started Thread A");
threadA.start();

System.out.println("Started Thread B");
threadB.start();

System.out.println("Started Thread C");
threadC.start();

System.out.println("End of main thread");
}

}
38



APPLETS

 Applets are small applications that are
accessed on an Internet server, transported over
the Internet, automatically installed, and run as
part of a Web document

 After an applet arrives on the client, it has
limited access to resources, so that it can
produce an arbitrary multimedia user interface
and run complex computations without
introducing the risk of viruses or breaching data
integrity.

40

import java.awt.*;
import java.applet.*;
public class SimpleApplet extends Applet {
public void paint(Graphics g) {
g.drawString("A Simple Applet", 20, 20);
} }

• Applets interact with the user through the
AWT, not through the console-based I/O
classes. The AWT contains support for a
window-based, graphical interface.

• The second import statement imports the
applet package, which contains the class
Applet.

• Inside paint() is a call to drawString(), which
is a member of the Graphics class. This method
outputs a string beginning at the specified X,Y
location. It has the following general form:
void drawString(String message, int x, int y)

• The applet does not have a main() method.
Unlike Java programs, applets do not begin
execution at main().

• An applet begins execution when the name of
its class is passed to an applet viewer or to a
network browser.

• Compile in the same way that you have been
compiling programs.

• Two ways in which you can run an applet:
• Executing the applet within a Java-compatible

Web browser.
• Using an applet viewer, such as the standard

SDK tool, appletviewer. An applet viewer
executes your applet in a window.

• To execute an applet in a Web browser, you
need to write a short HTML text file that
contains the appropriate APPLET tag.
<applet code="SimpleApplet" width=200
height=60>
</applet>

• To execute SimpleApplet with an applet viewer,
you may also execute the HTML file shown
earlier. For example, if the preceding HTML file is
called RunApp.html, then the following
command line will run SimpleApplet:
C:\>appletviewer RunApp.html

• In general, you can quickly iterate through applet
development by using these three steps:
1. Edit a Java source file.
2. Compile your program.
3. Execute the applet viewer, specifying the name
of your applet’s source file. The applet viewer will
encounter the APPLET tag within the comment
and execute your applet.

• Applets do not need a main() method.
• Applets must be run under an applet viewer

or a Java-compatible browser.
• User I/O is not accomplished with Java’s

stream I/O classes. Instead, applets use the
interface provided by the AWT.

The Applet Class
• Applet provides all of the necessary support

for window-based activities (methods that
load and display images, load and display
audio clips). Applet extends panel, extends
container, extends component.

• Methods defined by applet follows:
45

46

47

 An applet is a window-based program

 First, Applets are event driven; An applet
waits until an event occurs

 The AWT notifies the applet about an event
by calling an event handler that has been
provided by the applet

 Once this happens, the applet must take
appropriate action and then quickly return
control to the AWT

48

 Second, the user initiates interaction with an
applet—not the other way around (non-
window based programs)

 The user interacts with the applet as he or she
wants. These interactions are sent to the
applet as events to which the applet must
respond

 For example, when the user clicks a mouse
inside the applet’s window, a mouse-clicked
event is generated

 When the user interacts with one of these
controls, an event is generated.

49

• All but the most trivial applets override a set
of methods that provides the basic
mechanism by which the browser or applet
viewer interfaces to the applet and controls
its execution.

• Four of these methods—init(), start(),
stop(), and destroy()—are defined by
Applet.

• Another, paint(), is defined by the AWT
Component class.

• Default implementations for all of these
methods are provided. Applets do not need
to override those methods they do not use.

50

// An Applet skeleton.
import java.awt.*;
import java.applet.*;
/* <applet code="AppletSkel" width=300

height=100> </applet> */
public class AppletSkel extends Applet {
// Called first.
public void init() {
// initialization
}
/* Called second, after init(). Also called

whenever the applet is restarted. */
public void start() {
// start or resume execution
}

51

// Called when the applet is stopped.
public void stop() {
// suspends execution
}
/* Called when applet is terminated. This is the

last method executed. */
public void destroy() {
// perform shutdown activities
}
// Called when an applet's window must be

restored.
public void paint(Graphics g) {
// redisplay contents of window
}
}

 Although this skeleton does not do anything,
it can be compiled and run. When run, it
generates the following window when viewed
with an applet viewer:

53

• When an applet begins, the AWT calls the
following methods, in this sequence:
1. init()
2. start()
3. paint()

• When an applet is terminated, the following
sequence of method calls takes place:
1. stop()
2. destroy()

54

 The init() method is the first method to be
called

 This is where we should initialize variables

 This method is called only once during the
run time of the applet.

55

 The start() method is called after init()

 It is also called to restart an applet after it has
been stopped

 Whereas init() is called once - the first time
an applet is loaded - start() is called each
time an applet’s HTML document is displayed
onscreen

 So, if a user leaves a web page and comes
back, the applet resumes execution at start()

56

 The paint() method is called each time your
applet’s output must be redrawn

 This situation can occur for several reasons
 The window in which the applet is running

can be overwritten by another window and
then uncovered

 Or, the applet window can be minimized and
then restored

 paint() is also called when the applet begins
execution

 The paint() method has one parameter of
type Graphics

 This parameter contains the graphics context,
which describes the graphics environment in
which the applet is running 57

 The stop() method is called when a web
browser leaves the HTML document containing
the applet - when it goes to another page, for
example.

 When stop() is called, the applet is probably
running

 You should use stop() to suspend threads that
don’t need to run when the applet is not visible

 You can restart them when start() is called if
the user returns to the page

58

 The destroy() method is called when the
environment determines that your applet
needs to be removed completely from
memory

 At this point, you should free up any
resources the applet may be using

 The stop() method is always called before
destroy()

59

Overriding update()
• In some situations, your applet may need to override another

method defined by the AWT, called update(). This method is
called when your applet has requested that a portion of its
window be redrawn.

• The default version of update() first fills an applet with the
default background color and then calls paint().

• If you fill the background using a different color in paint(), the
user will experience a flash of the default background each
time update() is called—that is, whenever the window is
repainted.

• override the update() method so that it performs all
necessary display activities. Then have paint() simply call
update(). Thus, for some applications, the applet skeleton will
override paint() and update(), as shown here:
public void update(Graphics g) {
// redisplay your window, here. }
public void paint(Graphics g) {
update(g); }

 To output a string to an applet, use
drawString(), which is a member of the
Graphics class

void drawString(String message, int x, int y)

 Here, message is the string to be output
beginning at x,y

61

 The drawString() method will not recognize
newline characters

 If you want to start a line of text on another
line, you must do so manually, specifying the
precise X,Y location where you want the line
to begin

 To set the background color of an applet’s
window, use setBackground(). To set the
foreground color (the color in which text is
shown), use setForeground().

 These methods are defined by Component,
and they have the following general forms:

62

 void setBackground(Color newColor)

 void setForeground(Color newColor)

 The class Color defines the constants that
can be used to specify colors

Color.black Color.magenta
Color.blue Color.orange
Color.cyan Color.pink
Color.darkGray Color.red
Color.gray Color.white
Color.green Color.yellow
Color.lightGray

63

 Examples to set foreground and background:
setBackground(Color.green);
setForeground(Color.red);
Color getBackground()
Color getForeground()

 Example program:
import java.awt.*;
import java.applet.*;
/* <applet code="Sample" width=300
height=50>
</applet> */
public class Sample extends Applet{
String msg;

64

// set the foreground and background colors.
public void init() {
setBackground(Color.cyan);
setForeground(Color.red);
msg = "Inside init() --";
}
// Initialize the string to be displayed.
public void start() {
msg += " Inside start() --";
}
// Display msg in applet window.
public void paint(Graphics g) {
msg += " Inside paint().";
g.drawString(msg, 10, 30);
} }

65

 This applet generates the window shown here:

66

 An applet writes to its window only when its
update() or paint() method is called by the
AWT

 an applet must quickly return control to the
AWT run-time system. It cannot create a loop
inside paint() to scroll

 Whenever your applet needs to update the
information displayed in its window, it simply
calls repaint()

67

 The repaint() method has four forms:

void repaint() - Causes the entire window to be
repainted

void repaint(int left, int top, int width, int height)
- The coordinates of the upper-left corner of the region
are specified by left and top, and the width and height
of the region are passed in width and height.
- These dimensions are specified in pixels
-You save time by specifying a region to repaint .
- If you need to update only a small portion of the
window, it is more efficient to repaint only that region.

68

 if your system is slow or busy, update() might
not be called immediately. Multiple requests
for repainting that occur within a short time
can be collapsed by the AWT in a manner such
that update() is only called sporadically. This
can be a problem in many situations, including
animation, in which a consistent update time is
necessary. One solution to this problem is to
use the following forms of repaint():
void repaint(long maxDelay)
void repaint(long maxDelay, int x, int y, int
width, int height)

 Here, maxDelay specifies the maximum
number of milliseconds that can elapse before
update() is called 69

/* A simple banner applet.
This applet creates a thread that scrolls
the message contained in msg right to left
across the applet's window.
*/
import java.awt.*;
import java.applet.*;
/*
<applet code="SimpleBanner" width=300
height=50>
</applet>
*/

public class SimpleBanner extends Applet
implements Runnable {

String msg = " A Simple Moving Banner.";
Thread t = null;
int state;
boolean stopFlag;
public void init() { // Set colors and initialize

thread.
setBackground(Color.cyan);
setForeground(Color.red);
}
public void start() { // Start() of applet
t = new Thread(this);
stopFlag = false;
t.start(); // Start thread
}

71

// Entry point for the thread that runs the
banner.

public void run() {
char ch;
// Display banner
for(; ;) {
try {
repaint();
Thread.sleep(250);
ch = msg.charAt(0);
msg = msg.substring(1, msg.length());
msg += ch;
if(stopFlag)
break;
} catch(InterruptedException e) {}
} }

// Pause the banner.
public void stop() {
stopFlag = true;
t = null;
}
// Display the banner.
public void paint(Graphics g) {
g.drawString(msg, 50, 30);
}
}

73

 Following is sample output:

74

 SimpleBanner extends Applet, but it also
implements Runnable. This is necessary,
since the applet will be creating a second
thread of execution that will be used to scroll
the banner.

 Inside init(), the foreground and background
colors of the applet are set.

 After initialization, the AWT run-time system
calls start() to start the applet running.
Inside start(), a new thread of execution is
created and assigned to the Thread variable
t.

 Then, the boolean variable stopFlag, which
controls the execution of the applet, is set to
false. Next, the thread is started by a call to
t.start().

 Inside run(), the characters in the string contained
in msg are repeatedly rotated left.

 Between each rotation, a call to repaint() is made.
This eventually causes the paint() method to be
called and the current contents of msg is
displayed. Between each iteration, run() sleeps for
a quarter of a second. The net effect of run() is
that the contents of msg is scrolled right to left in a
constantly moving display. The stopFlag variable is
checked on each iteration. When it is true, the run(
) method terminates.

 If a browser is displaying the applet when a new
page is viewed, the stop() method is called, which
sets stopFlag to true, causing run() to terminate.
When the applet is brought back into view, start()
is once again called, which starts a new thread to
execute the banner.

Using the Status Window
 An applet can also output a message to the

status window of the browser or applet viewer
on which it is running

 To do so, call showStatus() with the string that
you want displayed

 The status window is a good place to give the
user feedback about what is occurring in the
applet, suggest options, or report errors.

 The status window also makes an excellent
debugging aid, because it gives you an easy way
to output information about your applet.

77

// Using the Status Window.
import java.awt.*;
import java.applet.*;
/*
<applet code="StatusWindow" width=300

height=50>
</applet> */
public class StatusWindow extends Applet{
public void init() {
setBackground(Color.cyan);
}
// Display msg in applet window.
public void paint(Graphics g) {
g.drawString("This is in the applet window.", 10,

20);
showStatus("This is shown in the status window.");
} }

78

 Sample output from this program is shown
here:

79

 The HTML APPLET Tag
 The APPLET tag is used to start an applet

from both an HTML document and from an
applet viewer

 An applet viewer will execute each APPLET
tag that it finds in a separate window, while
web browsers like Netscape Navigator,
Internet Explorer, and HotJava will allow
many applets on a single page

80

< APPLET
[CODEBASE = codebaseURL]
CODE = appletFile
[ALT = alternateText]
[NAME = appletInstanceName]
WIDTH = pixels HEIGHT = pixels
[ALIGN = alignment]
[VSPACE = pixels] [HSPACE = pixels] >
[< PARAM NAME = AttributeName VALUE =

AttributeValue>]
[< PARAM NAME = AttributeName2 VALUE =

AttributeValue>] . . .
[HTML Displayed in the absence of Java]
</APPLET>

81

CODEBASE
 Is an optional attribute that specifies the base

URL of the applet code, which is the directory
that will be searched for the applet’s
executable class file (specified by the CODE
tag)

CODE
 Is a required attribute that gives the name of

the file containing your applet’s
compiled .class file. This file is relative to the
code base URL of the applet

82

ALT
 Is an optional attribute used to specify a short

text message that should be displayed if the
browser understands the APPLET tag but can’t
currently run Java applets

NAME
 NAME is an optional attribute used to specify a

name for the applet instance

 Applets must be named in order for other
applets on the same page to find them by
name and communicate with them. To obtain
an applet by name, use
getApplet()

83

WIDTH AND HEIGHT
 WIDTH and HEIGHT are required attributes that give

the size (in pixels) of the applet display area

ALIGN
 ALIGN is an optional attribute that specifies the

alignment of the applet

 This attribute is treated the same as the HTML IMG tag
with these possible values: LEFT, RIGHT, TOP, BOTTOM,
MIDDLE, BASELINE, TEXTTOP, ABSMIDDLE, and
ABSBOTTOM

84

VSPACE AND HSPACE
 These attributes are optional

 VSPACE specifies the space, in pixels, above
and below the applet

 HSPACE specifies the space, in pixels, on
each side of the applet

85

PARAM NAME AND VALUE
 The PARAM tag allows you to specify

appletspecific arguments in an HTML page

 Applets access their attributes with the
getParameter() method

 [HTML Displayed in the absence of Java]

86

 the APPLET tag in HTML allows us to pass
parameters to the applet

 To retrieve a parameter, use the
getParameter() method

 It returns the value of the specified parameter
in the form of a String object

 For numeric and boolean values, you will
need to convert their string representations
into their internal formats

87

// Use Parameters
import java.awt.*;
import java.applet.*;
/* <applet code="ParamDemo" width=300

height=80>
<param name=fontName value=Courier>
<param name=fontSize value=14>
<param name=leading value=2>
<param name=accountEnabled value=true>
</applet> */
public class ParamDemo extends Applet{

String fontName;
int fontSize;
float leading;
boolean active;

88

// Initialize the string to be displayed.
public void start() {

String param;
fontName = getParameter("fontName");
if(fontName == null)

fontName = "Not Found";
param = getParameter("fontSize");
try {

if(param != null)
fontSize = Integer.parseInt(param);

else // if not found
fontSize = 0;

} catch(NumberFormatException e) {
fontSize = -1;

}

89

param = getParameter("leading");
try {

if(param != null)
leading =

Float.valueOf(param).floatValue();
else // if not found

leading = 0;
} catch(NumberFormatException e) {

leading = -1;
}

param = getParameter("accountEnabled");
if(param != null)

active =
Boolean.valueOf(param).booleanValue();

}
// Display parameters.

90

public void paint(Graphics g) {
g.drawString("Font name: " + fontName, 0,

10);
g.drawString("Font size: " + fontSize, 0, 26);
g.drawString("Leading: " + leading, 0, 42);
g.drawString("Account Active: " + active, 0,

58);
}

}

 Uncaught exceptions should never occur
within an applet.

91

// A parameterized banner
import java.awt.*;
import java.applet.*;
/*<applet code="ParamBanner" width=300 height=50>
<param name=message value="Java makes the Web move!">
</applet> */
public class ParamBanner extends Applet implements
Runnable {
String msg;
Thread t = null;
int state;
boolean stopFlag;
// Set colors and initialize thread.
public void init() {
setBackground(Color.cyan);

setForeground(Color.red);
}
public void start() { // Start thread
msg = getParameter("message");
if(msg == null) msg = "Message not found.";
msg = " " + msg;
t = new Thread(this);
stopFlag = false;
t.start();
} // Entry point for the thread that runs the banner.
public void run() {
char ch;
// Display banner
for(; ;) {

try { repaint();
Thread.sleep(250);
ch = msg.charAt(0);
msg = msg.substring(1, msg.length());
msg += ch;
if(stopFlag)
break;
} catch(InterruptedException e) {}
} } // Pause the banner.
public void stop() {
stopFlag = true;
t = null; } // Display the banner.
public void paint(Graphics g) {
g.drawString(msg, 50, 30);
} }

 Java will allow the applet to load data from
the directory holding the HTML file that
started the applet (the document base) and
the directory from which the applet’s class file
was loaded (the code base)

95

import java.awt.*;
import java.applet.*;
import java.net.*;
/*
<applet code="Bases" width=300 height=50>
</applet>
*/
public class Bases extends Applet{
// Display code and document bases.
public void paint(Graphics g) {
String msg;
URL url = getCodeBase(); // get code base
msg = "Code base: " + url.toString();
g.drawString(msg, 10, 20);

96

url = getDocumentBase(); // get document base
msg = "Document base: " + url.toString();
g.drawString(msg, 10, 40);
}
}

97

 To allow the applet to transfer control to
another URL, we must use the
showDocument() method defined by the
AppletContext interface

 AppletContext is an interface that lets us get
information from the applet’s execution
environment

 The context of the currently executing applet is
obtained by a call to the getAppletContext()
method defined by Applet

98

 Within an applet, once you have obtained the
applet’s context, you can bring another
document into view by calling
showDocument()

 This method has no return value and throws
no exception if it fails

 There are two showDocument() methods

 The method showDocument(URL) displays
the document at the specified URL

99

 The method showDocument(URL, where)
displays the specified document at the
specified location within the browser window

 Valid arguments for where are “_self” (show
in current frame), “_parent” (show in parent
frame), “_top” (show in topmost frame), and
“_blank” (show in new browser window)

100

import java.awt.*;
import java.applet.*;
import java.net.*;
/*
<applet code="ACDemo" width=300 height=50>
</applet>
*/
public class ACDemo extends Applet{
public void start() {
AppletContext ac = getAppletContext();
URL url = getCodeBase(); // get url of this applet
try {
ac.showDocument(new URL(url+"Test.html"));
} catch(MalformedURLException e) {
showStatus("URL not found");
} } }

101

 The AudioClip interface defines these
methods: play() (play a clip from the
beginning), stop() (stop playing the clip), and
loop() (play the loop continuously)

 After you have loaded an audio clip using
getAudioClip(), you can use these methods
to play it

102

 It is possible to use console output in the
applet—especially for debugging purposes

 In an applet, when you call a method such as
System.out.println(), the output is not sent
to your applet’s window

 Instead, it appears either in the console
session in which you launched the applet
viewer

103

 Thank You

104

