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Java I/O Streams
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Outline: I/O Streams

• I/O Streams
- Byte stream: Input Stream and Output Stream

- Filter Stream

- Buffered Stream

- Data Stream

- Print Stream

- File Stream

- Character Stream: Reader and Writer

- Input Stream Reader and Output Stream Writer

- Buffered Reader/Writer

- File Reader/Writer
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I/O Streams

• What is a stream?
- A stream is a sequence of data of undetermined length.

- Input streams move data into a Java program usually from an external 

source.

- Output streams move data from a Java program to an external target.

• Java Streams

- A Java stream is composed of discrete bytes (characters) of data.
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InputStream Class

• java.io.InputStream is an abstract class for all input streams.

• It contains methods for reading in raw bytes of data from input 

stream: key board, files, network client.

- public abstract int read()

- public int read (byte[] buf)

- public int read(byte[] buf, int offset, int length)
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InputStream Class

- public long skip(long n)

. skip n number of bytes

- public int available( )

. how many bytes can be read before blocking

- pcublic void close( )

- public synchronized void mark (int readlimit)

. bookmark current position in the stream

- public boolean markSupported( )

- public synchronized void reset( )

. rewind the stream to the marked position

• All but the last two methods throw an IOException.
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The read( ) method

• The basic read() method reads a single unsigned byte of data 

and returns the integer value of the unsigned byte.

• This is a number between 0 and 255

• Returns a -1 if the end of a stream is encountered.

• The method blocks until input data are available, the end of 

stream is detected or an exception is thrown.
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The read( ) method

int[] data = new int[10];

for (int i =0; i <data.length, i++)

data [i]= System.in.read( );

}

• This code reads in 10 bytes from the System.in input stream 

and stores it in the int array data.

• Notice that although read() reads in a byte, it returns a value of 

type int. If you want the raw byte, cast the int into a byte.
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The read( ) method

• read() has a possibility of throwing an exception.

try {

int data[] = new int[10] ;

for (int i=0; i<data.length; i++) {

int datum = System.in.read();

if (datum == -1) break;

data[il = datum;

}//for

}//try

catch (IOException e) {

System.err.println(e);

}

End of stream
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The read( ) method

• The value of -1 is returned when the end of stream is reached. 

This can be used as a check for the stream end.

• Remember that read() blocks. So if there is any other 

important work to do in your program, try to put your I/O in a 

separate thread. 

• read() is abstract method defined in InputStream. This means 

you can't instantiate InputStream directly: work with one of it's 

subclasses instead.
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Echo Example(l)

import java.io.*,

public class Echo {

public static void main(String[] args){

echo(System.in);

}//main

public static void echo(InputStream is) {

try { 

for (int j = 0; j < 20; j++) {int i = is.read( );

BufferedInputStream

An instance of a subclass

of InputStream

(remember: upcasting)
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Echo Example(2)

// -1 returned for end of stream

if (i == -1)

break;

char c = (char) i ;

System.out.print(c);

}//for loop

}//try

catch (IOException e){

System.err.println();

}//catch

System.out.println( );

}//echo method

}//Echo class
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Reading Multiple Bytes

• Since accessing I/O is slow in comparison to memory access, 

limiting the number of reads and writes is essential.

• The basic read() method only reads in a byte at a time.

• The following two overloading read() methods read in multiple 

bytes into an array of bytes.

- public int read(byte b[])

- public int read(byte b[], int offset, int length)
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Reading Multiple Bytes

• The first method tries to read enough bytes to fill the array b[].

try {

byte[ ] b = new byte[10];

int j  = Svstem.in.read(b);

}

catch (IOException e){ }

• This method blocks until data are available just like the read() 

method.
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Reading Multiple Bytes

• The second method reads length bytes from the input stream 

and stores them in the array b[] starting at the location offset. 

try {//what does this loop do 

byte[] b = new byte[100]; 

int offset = 0;

while (offset < b.length) {

int bytesRead = System.in.read(b, offset, b.length - offset);

if (bytesRead == -1) break;

offset += bytesRead; }//while

catch (IOException e){}
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Closing Input Streams

• For well behaved programs, all streams should be closed

before exiting the program.

• Allows OS to free any resources associated with the stream.

• Use the close() method

- public void close() throws IOException

• Not all streams have to be closed.

- System.in does not have to be closed.
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Closing Input Streams

try {

URL u = new URL(“http://java.sun.com”);

InputStream in = u.openStream();

/ read from stream ... 

in.close();

}

catch (IOException e){}

• Once an input stream has been closed, you can no longer read 

from it. Doing so will cause an IOException to be thrown.
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Reading from File Input Streams

import java.io.*;

class FileInputStreamDemo {

public static void main(String args[]) {

try {//Create a file input stream

FileInputStream fis = new FileInputStream(args[0]);

//read 12 byte from the file

int i;

while ((i = fis.read()) != -1)

{System.out.println(i);}

//Close file output stream

fis.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}
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Reading from Buffered Input Streams

import java.io.*;

class FileBufferedStreamDemo {

public static void main(String args[]) {

try {//Create a file input stream

FileInputStream fis = new FileInputStream(args[0]);

//Create a buffered input stream

BufferedInputStream bis = new BufferedInputStream(fis);

//read 12 byte from the file

int i;

while ((i = bis.read()) != -1)

{System.out.println(i);}

//Close file output stream

fis.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}
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Reading from Data Input Streams

import java.io.*;

class DataInputStreamDemo {

public static void main(String args[]) {

try {//Create a file input stream

FileInputStream fis = new FileInputStream(args[0]);

//Create a data input straem

DataInputStream dis = new DataInputStream(fis);

//read and display data

System.out.println(dis.readBoolean());

System.out.println(dis.readByte());
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Reading from Data Input Streams

System.out.println(dis.readChar());

System.out.println(dis.readDouble());

System.out.println(dis.readFloat());

System.out.println(dis.readInt());

System.out.println(dis.readLong());

System.out.println(dis.readShort());

//Close file input stream

fis.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}
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Output Streams

• java.io.OutputStream class sends raw bytes of data to a target 

such as the console, a file, or a network server.

• Methods within this class are:
- public abstract void write(int b)

- public void write(byte b[])

- public void write(byte b[], int offset, int length)

- public void flush()

- public void close()

• All methods throw an IOException
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Output Streams

• The write() methods sends raw bytes of data to whomever is 

listening to the stream.

• Sometimes for performance reasons, the operating system 

buffers output streams.

• When the buffer fills up, the data are all written at once.

• The flush() method will force the data to be written whether 

the buffer is full or not.
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Writing to Output Streams

• The fundamental method in OutputStream is write()

• public abstract void write(byte b)

• This method writes a single unsigned byte of data that should 

be between 0 and 255.

• Larger numbers are reduced modulo 256 before writing.
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Ascii Chart Example

import java.io.*;

public class AsciiChart{

public static void main(String args[]) {

for (int i=32; i<127; i++) 

System.out.write(i); 

//break line after every 8 characters

if (i%8 == 7) System.out.write(‘\n’);

else System.out.write(‘\t’); 

}//for

System.out.write(‘\n’); 

}//main 

}//class
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Writing Arrays of Bytes

• The two remaining write methods write multiple bytes of data. 
- Public void write(byte b[])

- Public void write(byte b[], int offset, int length)

• The first writes an entire byte array of data, while the second 

writes a sub-array of data starting at offset and continuing for 

length bytes.

• Remember that these methods write bytes, so data must be 

converted into bytes.
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AsciiArray Example

import java.io.*;

public class AsciiArray{

public static void main(String args[]) {

int index=O;

byte[] b = new byte[(127-31)*2];

for (int i=32; i<127; i++) {

b[index++] = (byte)i;

//break line after every 8 characters

if (i%8==7) b[index++] = (byte)‘\n’;

else b[index++] = (byte) ‘\t’;
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AsciiArray Example

}//for

b[index++] = (byte) ‘\n’;

try {

System.out.write(b);

}

catch(IOException e) {}

}//main

}//class

• The output is the same as AsciiChart.
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Writing to File Output Streams

import java.io.*;

class FileOutputStreamDemo {

public static void main(String args[]) {

try {//Create a file output stream

FileOutputStream fos = new FileOutputStream(args[0]);

//Write 12 byte to the file

for (int i = 0; i < 12; i++) {

fos.write(i);}

//Close file output stream

fos.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}
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Flushing and Closing Output Streams

• As mentioned, many operating systems buffer output data to 

improve performance.

• Rather than sending a bytes at a time, bytes are accumulated 

until the buffer is full, and one write occurs.

• The flush() method forces the data to be written even if the 

buffer is not full.
- public void flush( ) throws IOException

• Like input streams, output streams should be closed. For 

output streams, closing them will also flush the contents of the 

buffer.
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Filter Streams

• java. io.FilterInputStream and java. io.FilterOutputStream

are subclasses of InputStream and OutputStream, respectively.

• These classes are rarely used, but their subclasses are extremely 

important.
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Filter Streams Classes

• Buffered Streams

- These classes will buffer reads and writes by first reading the data into 

a buffer(array of bytes)

• Data Streams

- These classes read and write primitive data types and Strings.

• Print Stream
- referenced by System.out and System.err.

- It uses the platforms default character encoding to convert characters 

into bytes.
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Buffered Streams

• Buffered input stream read more data than initially needed and 

store them in a buffer.

• So when the buffered stream's read() method is called, the data 

is removed from the buffer rather than from the underlying 

system. 

• When the buffer is empty, the buffered stream refills the 

buffer.

• Buffered output stream store data in an internal byte array until 

the buffer is full or the stream is flushed. The data is then 

written out once.
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Buffered Streams

• Constructors
- BufferedInputStream(InputStream in)

- BufferedInputStream(Inputftream in, int size) 

- BufferedOutputStream(OutputStream out) 

- BufferedOutputStream(CrutputStream out, int size)

• The size argument is the size of the buffer.

• If not specified, a default of 512 bytes is used.
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Buffered Streams

• Example:

URL u=new URL(“httP://java.sun.Com”);

BufferedInputStream bis;

bis= new BufferedlnputStream(u.openStream( ), 256)

• BufferedInputStreamand and BufferedOutputStream do not 

declare any new methods but rather override methods from 

Inputstream and outputstream, respectively.
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Writing to Buffered Output Streams

import java.io.*;

class BufferedOutputStreamDemo {

public static void main(String args[]) {

try {//Create a file output stream

FileOutputStream fos = new FileOutputStream(args[0]);

//Create a buffered output straem

BufferedOutputStream bos = new BufferedOutputStream(fos);

//Write 12 byte to the file

for (int i = 0; i < 12; i++) {

bos.write(i);}

//Close file output stream

bos.close(); fos.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}
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Data Streams

• java.io.DataInputStream and java.io.DataOutputStream read 

and write primitive data types and strings using the 

java.io.DataInputand java.io.DataOutput interfaces, 

respectively.
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Data Streams

• Generally you use DataInputStream to read data written by 

DataOutputStream

• public DataInputStrem(InputStream in)

• public DataOutputStream(OutputStream out)

• The usual methods associated with input and output streams 

are present in data stream as well.

• However, data streams have other methods that allow them to 

read and write primitive type.
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Writing to Data Output Streams

import java.io.*;

class DataOutputStreamDemo {

public static void main(String args[]) {

try {//Create a file output stream

FileOutputStream fos = new FileOutputStream(args[0]);

//Create a data output straem

DataOutputStream dos = new DataOutputStream(fos);

//Write various types of data to the file

dos.writeBoolean(false);

dos.writeByte(Byte.MAX_VALUE);
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Writing to Data Output Streams

dos.writeChar(‘A’);

dos.writeDouble(Double.MAX_VALUE);

dos.writeFloat(Float. MAX_VALUE);

dos.writeInt(int. MAX_VALUE);

dos.writeLong(Long. MAX_VALUE);

dos.writeShort(Short. MAX_VALUE);

//Close file output stream

fos.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}
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Print Streams

• Allows very simple printing of both primitive values, objects, 

string literals.

• There are many overloaded print( ) and println( ) methods.

• This method is deprecated in Java 1.1.

• The biggest problem with this class is that it does not properly 

handle international character sets.

• Use the PrintWriter class instead.
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Readers and Writers

• Classes that read and write character based data.

• These characters can have varying widths depending on the 

character set being used.

• Readers and writers know how to handle many different 

character sets.
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Reader Class

• java.io.Reader

• This class is deliberately similar to the java.io.InputStream 

class.

• Methods in the Reader class are similar to the InputStream 

class except that the methods work on characters not bytes.
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Writer Class

• Java.io.Writer

• This class is similar to the

java.io.OutputStream class.

• Methods in the Writer class now work on characters and not 

bytes.
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InputStreamReader

• java. io.InputStreamReader acts as a translater between byte 

streams and character streams.

• It reads bytes from the input stream and translates them into 

characters according to a specified character encoding.



48

InputStreamReader Class

• You can set the encoding scheme or you can use the platforms 

default setting.

• public InputstreamReader(Inputstream in)

• public InputStreamReader(InputStream in, String enc)

throws UnsupportedEncoding Exception
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OutputStreamWriter

• java. io.OutputStreamWriter will write bytes of data to the 

output stream after translating the characters according to the 

specified encoding.

• public OutputStreamWriter(OutputStream out)

• public OutputStreamWriter(OutputStream out, String enc) 

throws UnsupportedEncodingException
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Buffered Reads/Writes

• There are classes that allow for a more efficient reading and 

writing of characters by buffering.

• java.io.BufferedReader

• java.io.BufferedWriter

• These classes are similar to the Buffered Stream classes.

• Most notable for the readLine() Method. This allows data to be 

read a line at a time. 

• public String readLine() throws IOException
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Buffered Reads/Writes

import java.io.*;

public class StringInputFile {

public static void main(String[] arg) throws Exception {

PrintStream backup;

FileOutputStream backupFileStream;

File backupFile;

backupFile = new File(“backup”);

backupFileStream = new FileOutputStream(backupFile);

backup = new PrintStream(backupFileStream);
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System.out.println(“This is my first data file”);

backup.println(“This is my first data file”);

System.out.println(“... but it won't be my last”);

backup.println(“... but it won’t be my last”);

}

}

Buffered Reads/Writes
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Writing output to a file involves three steps as follows:

• Create an File object

• Create an FileOutputStream object

• Create a PrintStream object

Buffered Reads/Writes
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Buffered Reads/Writes

import java.io.*;

public class StringInputFile {

public static void main(String[] arg) throws Exception {

InputStreamReader backup;

BufferedReader br;

FileInputStream backupFileStream;

File backupFile;

String inputline;
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backupFile = new File(“backup”);

backupFileStream = new FileInputStream(backupFile);

backup = new InputStreamReader(backupFileStream);

br = new BufferedReader(backup);

inputline = br.readLine();

System.out.println(inputline);

inputline = br.readLine();

System.out.println(inputline);

}

}

Buffered Reads/Writes
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Reading data from a file involves three steps as follows:

• Create an FileInputStream or BufferedInputStream object

• Create an InputStreamReader object which we use to

• Create a BufferedReader object

Buffered Reads/Writes
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Example: Send Data

import java.net.*; import java.io.*;

public class SendData extends Thread  {

Socket sock;

public SendData (Socket sock) {

this.sock = sock;

}//SendData constructor

public void run() {

string line;
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Example: Send Data

try {

OutputStreamWriter outw=new

outputstreamwriter(sock.getOutputStream());

BufferedWriter sockout=new

BufferedWriter(outw);

InputStreamReader inr = new InputStreamReader(System.in);

BufferedReader in = new BufferedReader(inr);

while ((line = in.readLine()) != null) {

sockout.write(line+ “\n”);
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Example: Send Data

sockout.flush(); yield( ); 

}//while 

} //try

catch (java.io.IoException e) {

System.out.println(e);

System.exit(0);

}//catch

} //run

}//SendData
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Example: Receive Data(l)

import java.net.*;

import java.io.*;

public class RcveData extends Thread  {

Socket sock;

public RcveData(Socket sock) {

this.sock = sock;

}

public void run() {

String line;
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Example: Receive Data

try {

InputStreamReader inr = new

InputStreamReader(sock.getlnputStream());

BufferedReader in = new BufferedReader(inr);

while ((line = in.readLine()) != null) {

System.out.print(mReceiving:

System.out.println(line);

yield();

}//while

)//try
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Example: Receive Data

catch (java.io.IOException e) {

System.out.println(e);

System.exit(0);

I }//catch

}//run

}//RCVeData



Jan. 2004

63

Thank You


