
Course: Java Programming

unit-4

Bharathidasan University

Centre for Differently Abled Persons
Khajamalai Campus

Tiruchirappalli-620 023

Tamilnadu

Bachelor of Computer Applications
(For Students with Speech and Hearing Impairment)

Compiled By

Dr.M.Prabavathy
(Assistant Professor)

Ms.V.Vijayalakshmi

2

Java I/O Streams

3

Outline: I/O Streams

• I/O Streams
- Byte stream: Input Stream and Output Stream

- Filter Stream

- Buffered Stream

- Data Stream

- Print Stream

- File Stream

- Character Stream: Reader and Writer

- Input Stream Reader and Output Stream Writer

- Buffered Reader/Writer

- File Reader/Writer

4

I/O Streams

• What is a stream?
- A stream is a sequence of data of undetermined length.

- Input streams move data into a Java program usually from an external

source.

- Output streams move data from a Java program to an external target.

• Java Streams

- A Java stream is composed of discrete bytes (characters) of data.

5

Object

InputStream

Byte Streams

OutputStream

FileInputStream

FilterInputStream

FileOutputStream

FilterOutputStream

BufferedInputStream

DataInputStream

BufferedOutputStream

DataOutputStream

PrintStream

6

Object

Reader

Character Streams

writer

BufferedReader

InputStreamReader FileReader

BufferedWriter

OutputStreamWriter

PrintWriter

FileWriter

7

InputStream Class

• java.io.InputStream is an abstract class for all input streams.

• It contains methods for reading in raw bytes of data from input

stream: key board, files, network client.

- public abstract int read()

- public int read (byte[] buf)

- public int read(byte[] buf, int offset, int length)

8

InputStream Class

- public long skip(long n)

. skip n number of bytes

- public int available()

. how many bytes can be read before blocking

- pcublic void close()

- public synchronized void mark (int readlimit)

. bookmark current position in the stream

- public boolean markSupported()

- public synchronized void reset()

. rewind the stream to the marked position

• All but the last two methods throw an IOException.

9

The read() method

• The basic read() method reads a single unsigned byte of data

and returns the integer value of the unsigned byte.

• This is a number between 0 and 255

• Returns a -1 if the end of a stream is encountered.

• The method blocks until input data are available, the end of

stream is detected or an exception is thrown.

10

The read() method

int[] data = new int[10];

for (int i =0; i <data.length, i++)

data [i]= System.in.read();

}

• This code reads in 10 bytes from the System.in input stream

and stores it in the int array data.

• Notice that although read() reads in a byte, it returns a value of

type int. If you want the raw byte, cast the int into a byte.

11

The read() method

• read() has a possibility of throwing an exception.

try {

int data[] = new int[10] ;

for (int i=0; i<data.length; i++) {

int datum = System.in.read();

if (datum == -1) break;

data[il = datum;

}//for

}//try

catch (IOException e) {

System.err.println(e);

}

End of stream

12

The read() method

• The value of -1 is returned when the end of stream is reached.

This can be used as a check for the stream end.

• Remember that read() blocks. So if there is any other

important work to do in your program, try to put your I/O in a

separate thread.

• read() is abstract method defined in InputStream. This means

you can't instantiate InputStream directly: work with one of it's

subclasses instead.

13

Echo Example(l)

import java.io.*,

public class Echo {

public static void main(String[] args){

echo(System.in);

}//main

public static void echo(InputStream is) {

try {

for (int j = 0; j < 20; j++) {int i = is.read();

BufferedInputStream

An instance of a subclass

of InputStream

(remember: upcasting)

14

Echo Example(2)

// -1 returned for end of stream

if (i == -1)

break;

char c = (char) i ;

System.out.print(c);

}//for loop

}//try

catch (IOException e){

System.err.println();

}//catch

System.out.println();

}//echo method

}//Echo class

15

Reading Multiple Bytes

• Since accessing I/O is slow in comparison to memory access,

limiting the number of reads and writes is essential.

• The basic read() method only reads in a byte at a time.

• The following two overloading read() methods read in multiple

bytes into an array of bytes.

- public int read(byte b[])

- public int read(byte b[], int offset, int length)

16

Reading Multiple Bytes

• The first method tries to read enough bytes to fill the array b[].

try {

byte[] b = new byte[10];

int j = Svstem.in.read(b);

}

catch (IOException e){ }

• This method blocks until data are available just like the read()

method.

17

Reading Multiple Bytes

• The second method reads length bytes from the input stream

and stores them in the array b[] starting at the location offset.

try {//what does this loop do

byte[] b = new byte[100];

int offset = 0;

while (offset < b.length) {

int bytesRead = System.in.read(b, offset, b.length - offset);

if (bytesRead == -1) break;

offset += bytesRead; }//while

catch (IOException e){}

18

Closing Input Streams

• For well behaved programs, all streams should be closed

before exiting the program.

• Allows OS to free any resources associated with the stream.

• Use the close() method

- public void close() throws IOException

• Not all streams have to be closed.

- System.in does not have to be closed.

19

Closing Input Streams

try {

URL u = new URL(“http://java.sun.com”);

InputStream in = u.openStream();

/ read from stream ...

in.close();

}

catch (IOException e){}

• Once an input stream has been closed, you can no longer read

from it. Doing so will cause an IOException to be thrown.

20

Reading from File Input Streams

import java.io.*;

class FileInputStreamDemo {

public static void main(String args[]) {

try {//Create a file input stream

FileInputStream fis = new FileInputStream(args[0]);

//read 12 byte from the file

int i;

while ((i = fis.read()) != -1)

{System.out.println(i);}

//Close file output stream

fis.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}

21

Reading from Buffered Input Streams

import java.io.*;

class FileBufferedStreamDemo {

public static void main(String args[]) {

try {//Create a file input stream

FileInputStream fis = new FileInputStream(args[0]);

//Create a buffered input stream

BufferedInputStream bis = new BufferedInputStream(fis);

//read 12 byte from the file

int i;

while ((i = bis.read()) != -1)

{System.out.println(i);}

//Close file output stream

fis.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}

22

Reading from Data Input Streams

import java.io.*;

class DataInputStreamDemo {

public static void main(String args[]) {

try {//Create a file input stream

FileInputStream fis = new FileInputStream(args[0]);

//Create a data input straem

DataInputStream dis = new DataInputStream(fis);

//read and display data

System.out.println(dis.readBoolean());

System.out.println(dis.readByte());

23

Reading from Data Input Streams

System.out.println(dis.readChar());

System.out.println(dis.readDouble());

System.out.println(dis.readFloat());

System.out.println(dis.readInt());

System.out.println(dis.readLong());

System.out.println(dis.readShort());

//Close file input stream

fis.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}

24

Output Streams

• java.io.OutputStream class sends raw bytes of data to a target

such as the console, a file, or a network server.

• Methods within this class are:
- public abstract void write(int b)

- public void write(byte b[])

- public void write(byte b[], int offset, int length)

- public void flush()

- public void close()

• All methods throw an IOException

25

Output Streams

• The write() methods sends raw bytes of data to whomever is

listening to the stream.

• Sometimes for performance reasons, the operating system

buffers output streams.

• When the buffer fills up, the data are all written at once.

• The flush() method will force the data to be written whether

the buffer is full or not.

26

Writing to Output Streams

• The fundamental method in OutputStream is write()

• public abstract void write(byte b)

• This method writes a single unsigned byte of data that should

be between 0 and 255.

• Larger numbers are reduced modulo 256 before writing.

27

Ascii Chart Example

import java.io.*;

public class AsciiChart{

public static void main(String args[]) {

for (int i=32; i<127; i++)

System.out.write(i);

//break line after every 8 characters

if (i%8 == 7) System.out.write(‘\n’);

else System.out.write(‘\t’);

}//for

System.out.write(‘\n’);

}//main

}//class

28

Writing Arrays of Bytes

• The two remaining write methods write multiple bytes of data.
- Public void write(byte b[])

- Public void write(byte b[], int offset, int length)

• The first writes an entire byte array of data, while the second

writes a sub-array of data starting at offset and continuing for

length bytes.

• Remember that these methods write bytes, so data must be

converted into bytes.

29

AsciiArray Example

import java.io.*;

public class AsciiArray{

public static void main(String args[]) {

int index=O;

byte[] b = new byte[(127-31)*2];

for (int i=32; i<127; i++) {

b[index++] = (byte)i;

//break line after every 8 characters

if (i%8==7) b[index++] = (byte)‘\n’;

else b[index++] = (byte) ‘\t’;

30

AsciiArray Example

}//for

b[index++] = (byte) ‘\n’;

try {

System.out.write(b);

}

catch(IOException e) {}

}//main

}//class

• The output is the same as AsciiChart.

31

Writing to File Output Streams

import java.io.*;

class FileOutputStreamDemo {

public static void main(String args[]) {

try {//Create a file output stream

FileOutputStream fos = new FileOutputStream(args[0]);

//Write 12 byte to the file

for (int i = 0; i < 12; i++) {

fos.write(i);}

//Close file output stream

fos.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}

32

Flushing and Closing Output Streams

• As mentioned, many operating systems buffer output data to

improve performance.

• Rather than sending a bytes at a time, bytes are accumulated

until the buffer is full, and one write occurs.

• The flush() method forces the data to be written even if the

buffer is not full.
- public void flush() throws IOException

• Like input streams, output streams should be closed. For

output streams, closing them will also flush the contents of the

buffer.

33

Filter Streams

• java. io.FilterInputStream and java. io.FilterOutputStream

are subclasses of InputStream and OutputStream, respectively.

• These classes are rarely used, but their subclasses are extremely

important.

34

Filter Streams Classes

• Buffered Streams

- These classes will buffer reads and writes by first reading the data into

a buffer(array of bytes)

• Data Streams

- These classes read and write primitive data types and Strings.

• Print Stream
- referenced by System.out and System.err.

- It uses the platforms default character encoding to convert characters

into bytes.

35

Buffered Streams

• Buffered input stream read more data than initially needed and

store them in a buffer.

• So when the buffered stream's read() method is called, the data

is removed from the buffer rather than from the underlying

system.

• When the buffer is empty, the buffered stream refills the

buffer.

• Buffered output stream store data in an internal byte array until

the buffer is full or the stream is flushed. The data is then

written out once.

36

Buffered Streams

• Constructors
- BufferedInputStream(InputStream in)

- BufferedInputStream(Inputftream in, int size)

- BufferedOutputStream(OutputStream out)

- BufferedOutputStream(CrutputStream out, int size)

• The size argument is the size of the buffer.

• If not specified, a default of 512 bytes is used.

37

Buffered Streams

• Example:

URL u=new URL(“httP://java.sun.Com”);

BufferedInputStream bis;

bis= new BufferedlnputStream(u.openStream(), 256)

• BufferedInputStreamand and BufferedOutputStream do not

declare any new methods but rather override methods from

Inputstream and outputstream, respectively.

38

Writing to Buffered Output Streams

import java.io.*;

class BufferedOutputStreamDemo {

public static void main(String args[]) {

try {//Create a file output stream

FileOutputStream fos = new FileOutputStream(args[0]);

//Create a buffered output straem

BufferedOutputStream bos = new BufferedOutputStream(fos);

//Write 12 byte to the file

for (int i = 0; i < 12; i++) {

bos.write(i);}

//Close file output stream

bos.close(); fos.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}

39

Data Streams

• java.io.DataInputStream and java.io.DataOutputStream read

and write primitive data types and strings using the

java.io.DataInputand java.io.DataOutput interfaces,

respectively.

40

Data Streams

• Generally you use DataInputStream to read data written by

DataOutputStream

• public DataInputStrem(InputStream in)

• public DataOutputStream(OutputStream out)

• The usual methods associated with input and output streams

are present in data stream as well.

• However, data streams have other methods that allow them to

read and write primitive type.

41

Writing to Data Output Streams

import java.io.*;

class DataOutputStreamDemo {

public static void main(String args[]) {

try {//Create a file output stream

FileOutputStream fos = new FileOutputStream(args[0]);

//Create a data output straem

DataOutputStream dos = new DataOutputStream(fos);

//Write various types of data to the file

dos.writeBoolean(false);

dos.writeByte(Byte.MAX_VALUE);

42

Writing to Data Output Streams

dos.writeChar(‘A’);

dos.writeDouble(Double.MAX_VALUE);

dos.writeFloat(Float. MAX_VALUE);

dos.writeInt(int. MAX_VALUE);

dos.writeLong(Long. MAX_VALUE);

dos.writeShort(Short. MAX_VALUE);

//Close file output stream

fos.close();

}catch(Exception e) {System.out.println(“Exception: ” + e);}

}}

43

Print Streams

• Allows very simple printing of both primitive values, objects,

string literals.

• There are many overloaded print() and println() methods.

• This method is deprecated in Java 1.1.

• The biggest problem with this class is that it does not properly

handle international character sets.

• Use the PrintWriter class instead.

44

Readers and Writers

• Classes that read and write character based data.

• These characters can have varying widths depending on the

character set being used.

• Readers and writers know how to handle many different

character sets.

45

Reader Class

• java.io.Reader

• This class is deliberately similar to the java.io.InputStream

class.

• Methods in the Reader class are similar to the InputStream

class except that the methods work on characters not bytes.

46

Writer Class

• Java.io.Writer

• This class is similar to the

java.io.OutputStream class.

• Methods in the Writer class now work on characters and not

bytes.

47

InputStreamReader

• java. io.InputStreamReader acts as a translater between byte

streams and character streams.

• It reads bytes from the input stream and translates them into

characters according to a specified character encoding.

48

InputStreamReader Class

• You can set the encoding scheme or you can use the platforms

default setting.

• public InputstreamReader(Inputstream in)

• public InputStreamReader(InputStream in, String enc)

throws UnsupportedEncoding Exception

49

OutputStreamWriter

• java. io.OutputStreamWriter will write bytes of data to the

output stream after translating the characters according to the

specified encoding.

• public OutputStreamWriter(OutputStream out)

• public OutputStreamWriter(OutputStream out, String enc)

throws UnsupportedEncodingException

50

Buffered Reads/Writes

• There are classes that allow for a more efficient reading and

writing of characters by buffering.

• java.io.BufferedReader

• java.io.BufferedWriter

• These classes are similar to the Buffered Stream classes.

• Most notable for the readLine() Method. This allows data to be

read a line at a time.

• public String readLine() throws IOException

51

Buffered Reads/Writes

import java.io.*;

public class StringInputFile {

public static void main(String[] arg) throws Exception {

PrintStream backup;

FileOutputStream backupFileStream;

File backupFile;

backupFile = new File(“backup”);

backupFileStream = new FileOutputStream(backupFile);

backup = new PrintStream(backupFileStream);

52

System.out.println(“This is my first data file”);

backup.println(“This is my first data file”);

System.out.println(“... but it won't be my last”);

backup.println(“... but it won’t be my last”);

}

}

Buffered Reads/Writes

53

Writing output to a file involves three steps as follows:

• Create an File object

• Create an FileOutputStream object

• Create a PrintStream object

Buffered Reads/Writes

54

Buffered Reads/Writes

import java.io.*;

public class StringInputFile {

public static void main(String[] arg) throws Exception {

InputStreamReader backup;

BufferedReader br;

FileInputStream backupFileStream;

File backupFile;

String inputline;

55

backupFile = new File(“backup”);

backupFileStream = new FileInputStream(backupFile);

backup = new InputStreamReader(backupFileStream);

br = new BufferedReader(backup);

inputline = br.readLine();

System.out.println(inputline);

inputline = br.readLine();

System.out.println(inputline);

}

}

Buffered Reads/Writes

56

Reading data from a file involves three steps as follows:

• Create an FileInputStream or BufferedInputStream object

• Create an InputStreamReader object which we use to

• Create a BufferedReader object

Buffered Reads/Writes

57

Example: Send Data

import java.net.*; import java.io.*;

public class SendData extends Thread {

Socket sock;

public SendData (Socket sock) {

this.sock = sock;

}//SendData constructor

public void run() {

string line;

58

Example: Send Data

try {

OutputStreamWriter outw=new

outputstreamwriter(sock.getOutputStream());

BufferedWriter sockout=new

BufferedWriter(outw);

InputStreamReader inr = new InputStreamReader(System.in);

BufferedReader in = new BufferedReader(inr);

while ((line = in.readLine()) != null) {

sockout.write(line+ “\n”);

59

Example: Send Data

sockout.flush(); yield();

}//while

} //try

catch (java.io.IoException e) {

System.out.println(e);

System.exit(0);

}//catch

} //run

}//SendData

60

Example: Receive Data(l)

import java.net.*;

import java.io.*;

public class RcveData extends Thread {

Socket sock;

public RcveData(Socket sock) {

this.sock = sock;

}

public void run() {

String line;

61

Example: Receive Data

try {

InputStreamReader inr = new

InputStreamReader(sock.getlnputStream());

BufferedReader in = new BufferedReader(inr);

while ((line = in.readLine()) != null) {

System.out.print(mReceiving:

System.out.println(line);

yield();

}//while

)//try

62

Example: Receive Data

catch (java.io.IOException e) {

System.out.println(e);

System.exit(0);

I }//catch

}//run

}//RCVeData

Jan. 2004

63

Thank You

