Bharathidasan University

Centre for Differently Abled Persons
Khajamalai Campus
Tiruchirappalli-620 023
Tamilnadu

Bachelor of Computer Applications

(For Students with Speech and Hearing Impairment)
Course: Java Programming
unit-4

Compiled By
Dr.M.Prabavathy

SMO

(Assistant Professor)
Ms.V.Vijayalakshmi

PN 2

»
Java I/O Streams
%‘Fb

Qutline: 1/0O Streams

« |/O Streams
- Byte stream: Input Stream and Output Stream
- Filter Stream
- Buffered Stream
- Data Stream
- Print Stream
- File Stream

- Character Stream: Reader and Writer
- Input Stream Reader and Output Stream Writer
- Buffered Reader/Writer
- File Reader/Writer

/O Streams

 \What Is a stream?

A stream is a sequence of data of undetermined length.

Input streams move data into a Java program usually from an external
source.

Output streams move data from a Java program to an external target.

« Java Streams
- AlJava stream is composed of discrete bytes (characters) of data.

Byte Streams

FilelnputStream
BufferedInputStream

InputStream [

FilterInputStream
DatalnputStream

FileOutputStream - g fferedOutputStream
OutputStream

FilterOutputStream | DataOutputStream

. PrintStream

Character Streams

BufferedReader
Reader
InputStreamReader — FileReader

- BufferedWriter

writer { OutputStreamWriter — FileWriter

U PrintWriter

InputStream Class

 Java.lo.InputStream is an abstract class for all input streams.
« It contains methods for reading in raw bytes of data from input
stream: key board, files, network client.

public abstract int read()

public int read (byte[] buf)
public int read(byte[] buf, int offset, int length)

InputStream Class

public long skip(long n)

. Skip n number of bytes

public int available()

. how many bytes can be read before blocking
pcublic void close()

public synchronized void mark (int readlimit)
. bookmark current position in the stream
public boolean markSupported()

public synchronized void reset()

. rewind the stream to the marked position

All but the last two methods throw an IOEXxception.

The read() method

The basic read() method reads a single unsigned byte of data
and returns the integer value of the unsigned byte.

This 1s a number between 0 and 255
Returns a -1 if the end of a stream iIs encountered.

The method blocks until input data are available, the end of
stream is detected or an exception is thrown.

The read() method

Int[] data = new int[10];
for (int i =0; i <data.length, i++)
data [i]= System.in.read();

| \ BufferedlnputStream

This code reads in 10 bytes from the System.in input stream
and stores it in the int array data.

Notice that although read() reads in a byte, it returns a value of
type int. If you want the raw byte, cast the int into a byte.

The read() method

 read() has a possibility of throwing an exception.

try {
int data[] = new int[10] ;
for (int i=0; i<data.length; i++) {
int datum = System.in.read();
If (datum == -1) break;

data[il = datum;
Yifor
End of stream

Hitry
catch (IOException e) {

System.err.printin(e);

}

The read() method

« The value of -1 is returned when the end of stream is reached.
This can be used as a check for the stream end.
Remember that read() blocks. So if there is any other
Important work to do in your program, try to put your 1/O in a
separate thread.
read() Is abstract method defined in InputStream. This means

you can't instantiate InputStream directly: work with one of it's
subclasses instead.

Echo Example(l)

import java.io.*,

public class Echo {
public static void main(String[] args){
echo(System.in);

}/main \
BufferedInputStream
public static void echo(InputStream is) { Aninst f ool
n instance of a subclass
e \ of InputStream
(remember: upcasting)
for (intj =0; < 20; j++) {int 1 =is.read();

Echo Example(2)

/l -1 returned for end of stream
if (i==-1)
break;
char c = (char) i;
System.out.print(c);
}H/for loop
Hitry
catch (IOException e){
System.err.printin();
}/catch
System.out.printin();
}/echo method
}/Echo class

Reading Multiple Bytes

Since accessing 1/O is slow in comparison to memory access,
limiting the number of reads and writes Is essential.

The basic read() method only reads in a byte at a time.

The following two overloading read() methods read in multiple
bytes into an array of bytes.

- public int read(byte b[])
public int read(byte b[], int offset, int length)

Reading Multiple Bytes

« The first method tries to read enough bytes to fill the array b[].

try {
byte[] b = new byte[10];
int j = Svstem.in.read(b);

}
catch (IOException e){ }

« This method blocks until data are available just like the read()
method.

Reading Multiple Bytes

« The second method reads length bytes from the input stream
and stores them in the array b[] starting at the location offset.

try {//what does this loop do
byte[] b = new byte[100];
int offset = 0;
while (offset < b.length) {
Int bytesRead = System.in.read(b, offset, b.length - offset);
If (bytesRead == -1) break;
offset += bytesRead; }//while
catch (IOException e){}

Closing Input Streams

For well behaved programs, all streams should be closed
before exiting the program.

Allows OS to free any resources associated with the stream.
Use the close() method

- public void close() throws IOEXxception

Not all streams have to be closed.

- System.in does not have to be closed.

Closing Input Streams

try {
URL u = new URL(*“http://java.sun.com”);

InputStream in = u.openStream();
/ read from stream ...
in.close();

}
catch (IOException e){}

* Once an input stream has been closed, you can no longer read
from it. Doing so will cause an IOException to be thrown.

Reading from File Input Streams

Import java.lo.*;
class FilelnputStreamDemo {
public static void main(String args[]) {
try {//Create a file input stream
FilelnputStream fis = new FilelnputStream(args[0]);
//read 12 byte from the file
Int i;
while ((i = fis.read()) !=-1)
{System.out.printin(i);}
//Close file output stream
fis.close();
tcatch(Exception €) {System.out.printin(“Exception: ” + ¢);}

3

Reading from Buffered Input Streams

Import java.io.*;
class FileBufferedStreamDemo {
public static void main(String args[]) {
try {//Create a file input stream
FilelnputStream fis = new FilelnputStream(args[0]);
//Create a buffered input stream
BufferedInputStream bis = new BufferedInputStream(fis);
//read 12 byte from the file
Int i;
while ((i = bis.read()) !'=-1)
{System.out.printin(i); }
//Close file output stream
fis.close();
}catch(Exception e) {System.out.println(“Exception: ” + e);}

3}

Reading from Data Input Streams

Import java.io.*;
class DatalnputStreamDemo {
public static void main(String args[]) {
try {//Create a file input stream

FilelnputStream fis = new FilelnputStream(args[0]);
//Create a data input straem
DatalnputStream dis = new DatalnputStream(fis);
//read and display data
System.out.printin(dis.readBoolean());
System.out.printin(dis.readByte());

Reading from Data Input Streams

System.out.printin(dis.readChar());
System.out.printin(dis.readDouble());
System.out.printin(dis.readFloat());
System.out.printin(dis.readint());
System.out.printin(dis.readLong());
System.out.printin(dis.readShort());
//Close file input stream
fis.close();

+catch(Exception e) {System.out.println(“Exception: ” + e);}

3

Output Streams

 Java.lo.OutputStream class sends raw bytes of data to a target
such as the console, a file, or a network server.

« Methods within this class are:
public abstract void write(int b)
public void write(byte b[])
public void write(byte b[], int offset, int length)
public void flush()
public void close()

» All methods throw an IOException

Output Streams

The write() methods sends raw bytes of data to whomever is
listening to the stream.

Sometimes for performance reasons, the operating system
buffers output streams.

When the buffer fills up, the data are all written at once.

The flush() method will force the data to be written whether
the buffer is full or not.

Writing to Output Streams

The fundamental method in OutputStream is write()

public abstract void write(byte b)

This method writes a single unsigned byte of data that should
be between 0 and 255.

Larger numbers are reduced modulo 256 before writing.

Ascil Chart Example

import java.io.*;
public class AsciiChart{
public static void main(String args[]) {
for (int 1=32; 1<127; i++)

System.out.write(i);

//break line after every 8 characters
if (1%8 == 7) System.out.write(‘\n’);
else System.out.write(‘\t’);

Yifor
System.out.write(‘\n’);
}/main
}lclass

Writing Arrays of Bytes

* The two remaining write methods write multiple bytes of data.
Public void write(byte b[])
Public void write(byte b[], int offset, int length)

« The first writes an entire byte array of data, while the second
writes a sub-array of data starting at offset and continuing for
length bytes.

« Remember that these methods write bytes, so data must be
converted into bytes.

AsciiArray Example

import java.io.*;
public class AsciiArray{
public static void main(String args[]) {
int index=0,;
byte[] b = new byte[(127-31)*2];
for (int1=32; 1<127; i++) {
b[index++] = (byte)i;
//break line after every 8 characters
if (1%8==7) b[index++] = (byte)‘\n’;
else b[index++] = (byte) “\t’;

AscliArray Example

Hifor
b[index++] = (byte) ‘\n’;

try {
System.out.write(b);
}

catch(IOException e) {}

}H/main
}/class

« The output is the same as AsciiChart.

Writing to File Output Streams

Import java.lo.*;
class FileOutputStreamDemo {
public static void main(String args[]) {
try {//Create a file output stream
FileOutputStream fos = new FileOutputStream(args[0]);
[/\Write 12 byte to the file
for (inti=0;i<12;i++){
fos.write(i);}
//Close file output stream
fos.close();
+catch(Exception e) {System.out.println(“Exception: ” + ¢);}

3

Flushing and Closing Output Streams

As mentioned, many operating systems buffer output data to
Improve performance.

Rather than sending a bytes at a time, bytes are accumulated
until the buffer is full, and one write occurs.

The flush() method forces the data to be written even if the

buffer is not full.
- public void flush() throws IOEXxception

Like input streams, output streams should be closed. For

output streams, closing them will also flush the contents of the
buffer.

Filter Streams

 Java. lo.FilterInputStream and java. io0.FilterOutputStream
are subclasses of InputStream and OutputStream, respectively.

« These classes are rarely used, but their subclasses are extremely
Important.

Filter Streams Classes

» Buffered Streams
- These classes will buffer reads and writes by first reading the data into
a buffer(array of bytes)
* Data Streams
- These classes read and write primitive data types and Strings.
* Print Stream

- referenced by System.out and System.err.
- It uses the platforms default character encoding to convert characters

Into bytes.

Buffered Streams

Buffered input stream read more data than initially needed and
store them in a buffer.

So when the buffered stream's read() method is called, the data
Is removed from the buffer rather than from the underlying
system.

When the buffer is empty, the buffered stream refills the
buffer.

Buffered output stream store data in an internal byte array until
the buffer is full or the stream is flushed. The data is then
written out once.

Buffered Streams

Constructors

- BufferedInputStream(InputStream in)

- BufferedInputStream(Inputftream in, int size)

- BufferedOutputStream(OutputStream out)

- BufferedOutputStream(CrutputStream out, int size)

The size argument is the size of the buffer.
If not specified, a default of 512 bytes is used.

Buffered Streams

« Example:

URL u=new URL(“httP://java.sun.Com”);
BufferedInputStream bis;
bis= new BufferedInputStream(u.openStream(), 256)

BufferedInputStreamand and BufferedOutputStream do not
declare any new methods but rather override methods from
Inputstream and outputstream, respectively.

Writing to Buffered Output Streams

Import java.io.*;
class BufferedOutputStreamDemo {
public static void main(String args[]) {
try {//Create a file output stream
FileOutputStream fos = new FileOutputStream(args[0]);
//Create a buffered output straem
BufferedOutputStream bos = new BufferedOutputStream(fos);
[/\Write 12 byte to the file
for (inti=0;1<12;i++) {
bos.write(i);}
//Close file output stream
bos.close(); fos.close();
}catch(Exception e) {System.out.println(“Exception: ” + ¢);}

3

Data Streams

 Java.lo.DatalnputStream and java.io.DataOutputStream read
and write primitive data types and strings using the
java.io.Datalnputand java.io.DataOutput interfaces,
respectively.

Data Streams

Generally you use DatalnputStream to read data written by
DataOutputStream

public DatalnputStrem(InputStream in)

public DataOutputStream(OutputStream out)

The usual methods associated with input and output streams
are present in data stream as well.

However, data streams have other methods that allow them to
read and write primitive type.

Writing to Data Output Streams

Import java.io.*;
class DataOutputStreamDemo {
public static void main(String args[]) {
try {//Create a file output stream

FileOutputStream fos = new FileOutputStream(args[0]);
//Create a data output straem
DataOutputStream dos = new DataOutputStream(fos);
[/\Write various types of data to the file
dos.writeBoolean(false);
dos.writeByte(Byte. MAX_VALUE);

Writing to Data Output Streams

dos.writeChar(‘A’);
dos.writeDouble(Double. MAX_VALUE);
dos.writeFloat(Float. MAX_ VALUE);
dos.writelnt(int. MAX_VALUE);
dos.writeLong(Long. MAX_ VALUE);
dos.writeShort(Short. MAX_VALUE);
//Close file output stream
fos.close();
+catch(Exception e) {System.out.println(“Exception: ” + e);}

3

Print Streams

Allows very simple printing of both primitive values, objects,
string literals.

There are many overloaded print() and printin(') methods.

This method is deprecated in Java 1.1.

The biggest problem with this class is that it does not properly
handle international character sets.

Use the PrintWriter class instead.

Readers and \Writers

Classes that read and write character based data.

These characters can have varying widths depending on the
character set being used.

Readers and writers know how to handle many different

character sets.

Reader Class

java.io.Reader

This class iIs deliberately similar to the java.io.InputStream
class.

Methods in the Reader class are similar to the InputStream
class except that the methods work on characters not bytes.

Writer Class

o Java.lo.Writer

» This class iIs similar to the
java.i0.OutputStream class.

* Methods in the Writer class now work on characters and not
bytes.

InputStreamReader

 Java. lo.InputStreamReader acts as a translater between byte
streams and character streams.

* It reads bytes from the input stream and translates them into
characters according to a specified character encoding.

InputStreamReader Class

« You can set the encoding scheme or you can use the platforms
default setting.

 public InputstreamReader(Inputstream in)

* public InputStreamReader(InputStream in, String enc)
throws UnsupportedEncoding Exception

OutputStreamWriter

java. 10.0OutputStreamWriter will write bytes of data to the
output stream after translating the characters according to the
specified encoding.

public OutputStreamWriter(OutputStream out)

public OutputStreamWriter(OutputStream out, String enc)
throws UnsupportedEncodingException

Buffered Reads/\Writes

There are classes that allow for a more efficient reading and
writing of characters by buffering.

jJava.io.BufferedReader

java.io.BufferedWriter

These classes are similar to the Buffered Stream classes.

Most notable for the readLine() Method. This allows data to be
read a line at a time.

public String readLine() throws IOEXxception

Buffered Reads/\Writes

Import java.lo.*;

public class StringlnputFile {
public static void main(String[] arg) throws Exception {
PrintStream backup;
FileOutputStream backupFileStream;
File backupFile;
backupFile = new File(“backup’);
backupFileStream = new FileOutputStream(backupFile);
backup = new PrintStream(backupFileStream);

Buffered Reads/\Writes

System.out.println(““This 1s my first data file”);
backup.println(““This 1s my first data file”);
System.out.println(*... but it won't be my last™);
backup.println(“... but it won’t be my last”);

}

Buffered Reads/\Writes

Writing output to a file involves three steps as follows:
« Create an File object
« Create an FileOutputStream object
 Create a PrintStream object

Buffered Reads/\Writes

Import java.lo.*;

public class StringlnputFile {
public static void main(String[] arg) throws Exception {

InputStreamReader backup;
BufferedReader br;
FilelnputStream backupFileStream;

File backupFile;

String inputline;

Buffered Reads/\Writes

backupFile = new File(“backup”);

backupFileStream = new FilelnputStream(backupFile);
backup = new InputStreamReader(backupFileStream);
br = new BufferedReader(backup);

Inputline = br.readLine();
System.out.printin(inputline);

Inputline = br.readLine();
System.out.printin(inputline);

}

Buffered Reads/\Writes

Reading data from a file involves three steps as follows:
 Create an FilelnputStream or BufferedInputStream object
 Create an InputStreamReader object which we use to
« Create a BufferedReader object

Example: Send Data

Import java.net.*; import java.io.*;

public class SendData extends Thread {
Socket sock;

public SendData (Socket sock) {

this.sock = sock;
}//SendData constructor

public void run() {
string line;

Example: Send Data

try {
OutputStreamWriter outw=new

outputstreamwriter(sock.getOutputStream());
BufferedWriter sockout=new
BufferedWriter(outw);

InputStreamReader inr = new InputStreamReader(System.in);
BufferedReader in = new BufferedReader(inr);

while ((line = in.readLine()) '=null) {

sockout.write(line+ “\n”);

Example: Send Data

sockout.flush(); yield();
}H/while
} iitry
catch (java.io.loExceptione) {
System.out.printin(e);
System.exit(0);
}/catch
} /lrun
}H/SendData

Example: Receive Data(l)

Import java.net.*;
import java.io.*;

public class RcveData extends Thread {
Socket sock;

public RcveData(Socket sock) {
this.sock = sock;

}

public void run() {

String line;

Example: Recelve Data

try {
InputStreamReader inr = new

InputStreamReader(sock.getinputStream());
BufferedReader in = new BufferedReader(inr);
while ((line = in.readLine()) '=null) {

System.out.print(mReceiving:
System.out.printin(line);
yield();
}H/while
) itry

Example: Recelve Data

catch (java.io.lOException e) {

System.out.printin(e);

System.exit(0);

}/catch
Hirun

}HIRCVeData

Thank You

