
Bharathidasan University

Centre for Differently Abled Persons

Khajamalai Campus

Tiruchirappalli-620 023

Tamilnadu

Bachelor of Computer Applications
(For Students with Speech and Hearing Impairment)

Compiled By

Dr.M.Prabavathy
(Assistant Professor)

Ms.V.Vijayalakshmi

 Functional/procedural programming:
◦ program is a list of instructions to the computer

 Object-oriented programming
◦ program is composed of a collection objects that

communicate with each other

 Object

 Class

 Inheritance

 Encapsulation

 identity – unique identification of an object

 attributes – data/state

 services – methods/operations
◦ supported by the object

◦ within objects responsibility to provide these
services to other clients

 “type”

 object is an instance of class

 class groups similar objects
◦ same (structure of) attributes

◦ same services

 object holds values of its class’s attributes

 Class hierarchy

 Generalization and Specialization
◦ subclass inherits attributes and services from

its superclass

◦ subclass may add new attributes and services

◦ subclass may reuse the code in the superclass

◦ subclasses provide specialized behaviors
(overriding and dynamic binding)

◦ partially define and implement common
behaviors (abstract)

 Separation between internal state of the
object and its external aspects

 How ?
◦ control access to members of the class

◦ interface “type”

 Modularity
◦ source code for an object can be written and

maintained independently of the source code for
other objects

◦ easier maintainance and reuse

 Information hiding
◦ other objects can ignore implementation details
◦ security (object has control over its internal state)

 but
◦ shared data need special design patterns (e.g.,

DB)
◦ performance overhead

 Portable

 Easy to learn

 [Designed to be used on the Internet]

 JVM stands for

Java Virtual Machine

 Unlike other languages, Java “executables”
are executed on a CPU that does not exist.

OS/Hardware

machine code
C source code

myprog.c
gcc

myprog.exe

Platform Dependent

JVM

bytecode
Java source code

myprog.java
javac

myprog.class

OS/Hardware

Platform Independent

• int 4 bytes

• short 2 bytes

• long 8 bytes

• byte 1 byte

• float 4 bytes

• double 8 bytes

• char Unicode encoding (2 bytes)

• boolean {true,false}

Behaviors is

exactly as in

C++

Note:

Primitive type

always begin

with lower-case

• Constants

37 integer

37.2 float

42F float

0754 integer (octal)

0xfe integer (hexadecimal)

Primitive types

Java provides Objects which wrap

primitive types and supply methods.

Example:

Integer n = new Integer(“4”);

int m = n.intValue();

http://www.eminemworld.com/miscpics.html

class Hello {

public static void main(String[] args) {

System.out.println(“Hello World !!!”);

}

}

Hello.java

C:\javac Hello.java

C:\java Hello

(compilation creates Hello.class)

(Execution on the local JVM)

class Kyle {

private boolean kennyIsAlive_;

public Kyle() { kennyIsAlive_ = true; }

public Kyle(Kyle aKyle) {

kennyIsAlive_ = aKyle.kennyIsAlive_;

}

public String theyKilledKenny() {

if (kennyIsAlive_) {

kennyIsAlive_ = false;

return “You bastards !!!”;

} else {

return “?”;

}

}

public static void main(String[] args) {

Kyle k = new Kyle();

String s = k.theyKilledKenny();

System.out.println(“Kyle: “ + s);

}

}

Default

C’tor

Copy

C’tor

javac Kyle.java (to compile)

java Kyle (to execute)

Kyle: You bastards !!!

• Array is an object

• Array size is fixed

Animal[] arr; // nothing yet …

arr = new Animal[4]; // only array of pointers

for(int i=0 ; i < arr.length ; i++) {

arr[i] = new Animal();

// now we have a complete array

 In C++

Animal arr[2][2]

Is:

• In Java

What is the type of

the object here ?

Animal[][] arr=

new Animal[2][2]

 Member data - Same data is used for all
the instances (objects) of some Class.

Class A {

public int y = 0;

public static int x_ = 1;

};

A a = new A();

A b = new A();

System.out.println(b.x_);

a.x_ = 5;

System.out.println(b.x_);

A.x_ = 10;

System.out.println(b.x_);

Assignment performed

on the first access to the

Class.

Only one instance of ‘x’

exists in memory

Output:

1

5

10

a b

y y

A.x_

0 0

1

 Member function
◦ Static member function can access only static

members

◦ Static member function can be called without
an instance.Class TeaPot {

private static int numOfTP = 0;

private Color myColor_;

public TeaPot(Color c) {

myColor_ = c;

numOfTP++;

}

public static int howManyTeaPots()

{ return numOfTP; }

// error :

public static Color getColor()

{ return myColor_; }

}

Usage:

TeaPot tp1 = new TeaPot(Color.RED);

TeaPot tp2 = new TeaPot(Color.GREEN);

System.out.println(“We have “ +

TeaPot.howManyTeaPots()+ “Tea Pots”);

 Block
◦ Code that is executed in the first reference to the

class.

◦ Several static blocks can exist in the same class
(Execution order is by the appearance order in the
class definition).

◦ Only static members can be accessed.

class RandomGenerator {

private static int seed_;

static {

int t = System.getTime() % 100;

seed_ = System.getTime();

while(t-- > 0)

seed_ = getNextNumber(seed_);

}

}

}

• Constant strings as in C, does not exist

• The function call foo(“Hello”) creates a String object,

containing “Hello”, and passes reference to it to foo.

• There is no point in writing :

• The String object is a constant. It can’t be changed using

a reference to it.

String s = new String(“Hello”);

Basically, it is exactly like c/c++.

if/else

do/while

for

switch

If(x==4) {

// act1

} else {

// act2

}

int i=5;

do {

// act1

i--;

} while(i!=0);

int j;

for(int i=0;i<=9;i++)

{

j+=i;

}

char

c=IN.getChar();

switch(c) {

case ‘a’:

case ‘b’:

// act1

break;

default:

// act2

}

 Java code has hierarchical structure.

 The environment variable CLASSPATH
contains the directory names of the roots.

 Every Object belongs to a package (
‘package’ keyword)

 Object full name contains the name full
name of the package containing it.

 public member (function/data)
◦ Can be called/modified from outside.

 protected
◦ Can be called/modified from derived classes

 private
◦ Can be called/modified only from the current class

 default (if no access modifier stated)
◦ Usually referred to as “Friendly”.

◦ Can be called/modified/instantiated from the same
package.

Base

Derived

class Base {

Base(){}

Base(int i) {}

protected void foo() {…}

}

class Derived extends Base {

Derived() {}

protected void foo() {…}

Derived(int i) {

super(i);

…

super.foo();

}

}

As opposed to C++, it is possible to inherit only from

ONE class.

Pros avoids many potential problems and bugs.

Cons might cause code replication

 Inheritance creates an “is a” relation:

For example, if B inherits from A, than we
say that “B is also an A”.

Implications are:
◦ access rights (Java forbids reducing access

rights) - derived class can receive all the
messages that the base class can.

◦ behavior

◦ precondition and postcondition

Inheritance

• In Java, all methods are virtual :

class Base {

void foo() {

System.out.println(“Base”);

}

}

class Derived extends Base {

void foo() {

System.out.println(“Derived”);

}

}

public class Test {

public static void main(String[] args) {

Base b = new Derived();

b.foo(); // Derived.foo() will be activated

}

}

Inheritance
class classC extends classB {

classC(int arg1, int arg2){

this(arg1);

System.out.println("In classC(int arg1, int arg2)");

}

classC(int arg1){

super(arg1);

System.out.println("In classC(int arg1)");

}

}

class classB extends classA {

classB(int arg1){

super(arg1);

System.out.println("In classB(int arg1)");

}

classB(){

System.out.println("In classB()");

}

}

Inheritance
class classA {

classA(int arg1){

System.out.println("In classA(int arg1)");

}

classA(){

System.out.println("In classA()");

}

}

class classB extends classA {

classB(int arg1, int arg2){

this(arg1);

System.out.println("In classB(int arg1, int arg2)");

}

classB(int arg1){

super(arg1);

System.out.println("In classB(int arg1)");

}

class B() {

System.out.println("In classB()");

}

}

 abstract member function, means that the function does not have an
implementation.

 abstract class, is class that can not be instantiated.

AbstractTest.java:6: class AbstractTest is an abstract class.

It can't be instantiated.

new AbstractTest();

^

1 error

NOTE:

An abstract class is not required to have an abstract method in it.

But any class that has an abstract method in it or that does

not provide an implementation for any abstract methods declared

in its superclasses must be declared as an abstract class.

package java.lang;

public abstract class Shape {

public abstract void draw();

public void move(int x, int y) {

setColor(BackGroundColor);

draw();

setCenter(x,y);

setColor(ForeGroundColor);

draw();

}

}

package java.lang;

public class Circle extends Shape {

public void draw() {

// draw the circle ...

}

}

Interfaces are useful for the following:

 Capturing similarities among unrelated
classes without artificially forcing a class
relationship.

 Declaring methods that one or more
classes are expected to implement.

 Revealing an object's programming
interface without revealing its class.

 abstract “class”

 Helps defining a “usage contract”
between classes

 All methods are public

 Java’s compensation for removing the
multiple inheritance. You can “inherit” as
many interfaces as you want.

interface SouthParkCharacter {

void curse();

}

interface IChef {

void cook(Food food);

}

interface BabyKicker {

void kickTheBaby(Baby);

}

class Chef implements IChef, SouthParkCharacter {

// overridden methods MUST be public

// can you tell why ?

public void curse() { … }

public void cook(Food f) { … }

}

Perfect tool for encapsulating the

classes inner structure. Only the

interface will be exposed

 Collection/container
◦ object that groups multiple elements

◦ used to store, retrieve, manipulate, communicate
aggregate data

 Iterator - object used for traversing a collection
and selectively remove elements

 Generics – implementation is parametric in the
type of elements

 Goal: Implement reusable data-structures and
functionality

 Collection interfaces - manipulate collections
independently of representation details

 Collection implementations - reusable data
structures
List<String> list = new ArrayList<String>(c);

 Algorithms - reusable functionality
◦ computations on objects that implement collection

interfaces

◦ e.g., searching, sorting
◦ polymorphic: the same method can be used on many

different implementations of the appropriate collection
interface

Collection

Set List Queue

SortedSet

Map

Sorted Map

 Basic Operations
◦ int size();
◦ boolean isEmpty();
◦ boolean contains(Object element);
◦ boolean add(E element);
◦ boolean remove(Object element);
◦ Iterator iterator();

 Bulk Operations
◦ boolean containsAll(Collection<?> c);
◦ boolean addAll(Collection<? extends E> c);
◦ boolean removeAll(Collection<?> c);
◦ boolean retainAll(Collection<?> c);
◦ void clear();

 Array Operations
◦ Object[] toArray(); <T> T[] toArray(T[] a); }

Collection

Set List Queue

SortedSet

Map

Sorted Map

HashSet HashMap

List<String> list1 = new ArrayList<String>(c);

ArrayListTreeSet TreeMapLinkedList

List<String> list2 = new LinkedList<String>(c);

 final member data
Constant member

 final member
function
The method can’t be
overridden.

 final class
‘Base’ is final, thus it
can’t be extended

final class Base {

final int i=5;

final void foo() {

i=10;

//what will the compiler say

about this?

}

}

class Derived extends Base {

// Error

// another foo ...

void foo() {

}

}(String class is final)

Derived.java:6: Can't subclass final classes: class Base

class class Derived extends Base {

^

1 error

final class Base {

final int i=5;

final void foo() {

i=10;

}

}

class Derived extends Base {

// Error

// another foo ...

void foo() {

}

}

 Definition
◦ Stream is a flow of data

 characters read from a file

 bytes written to the network

 …

 Philosophy
◦ All streams in the world are basically the same.

◦ Streams can be divided (as the name “IO” suggests) to
Input and Output streams.

 Implementation
◦ Incoming flow of data (characters) implements “Reader”

(InputStream for bytes)

◦ Outgoing flow of data (characters) implements “Writer”
(OutputStream for bytes –eg. Images, sounds etc.)

Definition: An exception is an event that
occurs during the execution of a program
that disrupts the normal flow of
instructions.

• Exception is an Object

• Exception class must be descendent of Throwable.

By using exceptions to manage errors, Java

programs have the following advantages over

traditional error management techniques:

1: Separating Error Handling Code from "Regular"

Code

2: Propagating Errors Up the Call Stack

3: Grouping Error Types and Error Differentiation

readFile {

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

}

errorCodeType readFile {
initialize errorCode = 0;
open the file;
if (theFileIsOpen) {

determine the length of the file;
if (gotTheFileLength) {

allocate that much memory;
if (gotEnoughMemory) {

read the file into memory;
if (readFailed) {

errorCode = -1;
}

} else {
errorCode = -2;

}
} else {

errorCode = -3;
}
close the file;
if (theFileDidntClose && errorCode == 0) {

errorCode = -4;
} else {

errorCode = errorCode and -4;
}

} else {
errorCode = -5;

}
return errorCode;

}

readFile {

try {

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

} catch (fileOpenFailed) {

doSomething;

} catch (sizeDeterminationFailed) {

doSomething;

} catch (memoryAllocationFailed) {

doSomething;

} catch (readFailed) {

doSomething;

} catch (fileCloseFailed) {

doSomething;

}

}

method1 {

try {

call method2;

} catch (exception) {

doErrorProcessing;

}

}

method2 throws exception {

call method3;

}

method3 throws exception {

call readFile;

}

Comments are almost like

C++

The java doc program generates HTML

API documentation from the “java doc”

style comments in your code.

/* This kind of comment can span multiple lines */

// This kind is to the end of the line

/**

* This kind of comment is a special

* ‘javadoc’ style comment

*/

An example of a class

class Person {

String name;

int age; Variable

void birthday () { Method

age++;

System.out.println (name + ' is now ' +

age);

}

}

Scoping

As in C/C++, scope is determined by the placement of

curly braces {}.

A variable defined within a scope is available only to the

end of that scope.

{ int x = 12;

/* only x available */

{ int q = 96;

/* both x and q available */

}

/* only x available */

/* q “out of scope” */

}

This is ok in C/C++ but not in

Java.

{ int x = 12;

{ int x = 96; /* illegal */

}

}

An array is an object

Person mary = new Person ();

int myArray[] = new int[5];

int myArray[] = {1, 4, 9, 16, 25};

String languages [] = {"Prolog",

"Java"};

Since arrays are objects they are allocated dynamically

Arrays, like all objects, are subject to garbage collection

when no more references remain

so fewer memory leaks

Java doesn’t have pointers!

Scope of Objects

Java objects don’t have the same lifetimes as primitives.

When you create a Java object using new, it hangs around

past the end of the scope.

Here, the scope of name s is delimited by the {}s but the

String object hangs around until GC’d

{

String s = new String("a string");

} /* end of scope */

Methods, arguments and return values

Java methods are like C/C++ functions. General case:

returnType methodName (arg1, arg2, … argN) {

 methodBody

}

The return keyword exits a method optionally with a value

int storage(String s) {return s.length() * 2;}

boolean flag() { return true; }

float naturalLogBase() { return 2.718f; }

void nothing() { return; }

void nothing2() {}

The static keyword

Java methods and variables can be declared static

These exist independent of any object

This means that a Class’s

static methods can be called even if no objects of that

class have been created and

static data is “shared” by all instances (i.e., one rvalue

per class instead of one per instance

class StaticTest {static int i = 47;}

StaticTest st1 = new StaticTest();

StaticTest st2 = new StaticTest();

// st1.i == st2.I == 47

StaticTest.i++; // or st1.I++ or st2.I++

// st1.i == st2.I == 48

Array Operations

Subscripts always start at 0 as in C

Subscript checking is done automatically

Certain operations are defined on arrays of objects, as for other

classes

e.g. myArray.length == 5

Echo.java

C:\UMBC\331\java>type echo.java

// This is the Echo example from the Sun

tutorial

class echo {

public static void main(String args[]) {

for (int i=0; i < args.length; i++) {

System.out.println(args[i]);

}

}

}

C:\UMBC\331\java>javac echo.java

C:\UMBC\331\java>java echo this is pretty

silly

this

is

pretty

silly

C:\UMBC\331\java>

Factorial Example

/**

* This program computes the factorial of a number

*/

public class Factorial { // Define a class

public static void main(String[] args) { // The program starts here

int input = Integer.parseInt(args[0]); // Get the user's input

double result = factorial(input); // Compute the factorial

System.out.println(result); // Print out the result

} // The main() method ends here

public static double factorial(int x) { // This method computes x!

if (x < 0) // Check for bad input

return 0.0; // if bad, return 0

double fact = 1.0; // Begin with an initial value

while(x > 1) { // Loop until x equals 1

fact = fact * x; // multiply by x each time

x = x - 1; // and then decrement x

} // Jump back to the star of

loop

return fact; // Return the result

} // factorial() ends here

} // The class ends here

JAVA Classes

The class is the fundamental concept in JAVA (and other

OOPLs)

A class describes some data object(s), and the operations

(or methods) that can be applied to those objects

Every object and method in Java belongs to a class

Classes have data (fields) and code (methods) and classes

(member classes or inner classes)

Static methods and fields belong to the class itself

Others belong to instances

Constructors

Classes should define one or more methods to create or
construct instances of the class

Their name is the same as the class name
note deviation from convention that methods begin with

lower case
Constructors are differentiated by the number and types of

their arguments
An example of overloading

If you don’t define a constructor, a default one will be
created.

Constructors automatically invoke the zero argument
constructor of their superclass when they begin (note that
this yields a recursive process!)

Constructor example

public class Circle {

public static final double PI = 3.14159; // A

constant

public double r; // instance field holds circle’s

radius

// The constructor method: initialize the radius field

public Circle(double r) { this.r = r; }

// Constructor to use if no arguments

public Circle() { r = 1.0; }

// better: public Circle() { this(1.0); }

// The instance methods: compute values based on

radius

public double circumference() { return 2 * PI * r; }

public double area() { return PI * r*r; }

}

Overloading, overwriting,

and shadowing

Overloading occurs when Java can distinguish

two procedures with the same name by examining

the number or types of their parameters.

Shadowing or overriding occurs when two

procedures with the same signature (name, the same

number of parameters, and the same parameter

types) are defined in different classes, one of which

is a superclass of the other.

On designing class hierarchies
Programs should obey the explicit-representation principle, with classes

included to reflect natural categories.

Programs should obey the no-duplication principle, with instance

methods situated among class definitions to facilitate sharing.

Programs should obey the look-it-up principle, with class definitions

including instance variables for stable, frequently requested information.

Programs should obey the need-to-know principle, with public interfaces

designed to restrict instance-variable and instance-method access, thus

facilitating the improvement and maintenance of nonpublic program

elements.

If you find yourself using the phrase an X is a Y when describing the

relation between two classes, then the X class is a subclass of the Y class.

If you find yourself using X has a Y when describing the relation

between two classes, then instances of the Y class appear as parts of

instances of the X class.

Data hiding and encapsulation

Data-hiding or encapsulation is an important part of the
OO paradigm.
Classes should carefully control access to their data and
methods in order to
Hide the irrelevant implementation-level details so

they can be easily changed
Protect the class against accidental or malicious

damage.
Keep the externally visible class simple and easy to

document
Java has a simple access control mechanism to help
with encapsulation
Modifiers: public, protected, private, and package

(default)

Abstract classes and methods

Abstract vs. concrete classes

Abstract classes can not be instantiated

public abstract class shape { }

An abstract method is a method w/o a body

public abstract double area();

(Only) Abstract classes can have abstract methods

In fact, any class with an abstract method is

automatically an abstract class

Syntax Notes

No global variables

class variables and methods may be applied to any

instance of an object

methods may have local (private?) variables

No pointers

but complex data objects are “referenced”

Other parts of Java are borrowed from PL/I, Modula, and

other languages

Thank You

