Bharathidasan University
Centre for Differently Abled Persons
Khajamalali Campus
Tiruchirappalli-620 023

(For Students with Speech and Hearing Impairment)
Course: Java Programming
unit-3

Object-Oriented
Programming

Different Programming Paradigms

» Functional/procedural programming:
- program is a list of instructions to the computer

» Object-oriented programming

- program is composed of a collection objects that
communicate with each other

Main Concepts

» Object

» Class

» Inheritance

» Encapsulation

.

Objects

» identity - unique identification of an object
» attributes - data/state
» services - methods/operations

> supported by the object

- within objects responsibility to provide these
services to other clients

Class

} “type”
» object is an instance of class

» class groups similar objects

> same (structure of) attributes
o same services

» object holds values of its class’s attributes

Inheritance

» Class hierarchy

» Generalization and Specialization
- subclass inherits attributes and services from
its superclass
- subclass may add new attributes and services
- subclass may reuse the code in the superclass
> subclasses provide specialized behaviors
(overriding and dynamic binding)

- partially define and implement common
behaviors (abstract)

Encapsulation

» Separation between internal state of the
object and its external aspects

» How ?
- control access to members of the class
- interface “type”

What does it buy us ?

» Modularity

- source code for an object can be written and
maintained independently of the source code for
other objects

> easier maintainance and reuse
» Information hiding

- other objects can ignore implementation details

> security (object has control over its internal state)
» but

- shared data need special design patterns (e.g.,
DB)

erformance overhead

JAVA

Why Java ?

» Portable

» Easy to learn

» [Designed to be used on the Internet]

JVM

» JVM stands for
Java Virtual Machine

» Unlike other languages, Java “executables”
are executed on a CPU that does not exist.

\ M

myprog.c
C source code

Platform Indepen

myprog.java

Java source code

:>:>

7

myprog.class

bytecode

NAVALY

OS/Hardware

Primitive types

* Int 4 pbytes
« short 2 bytes —
. long 8 bytes Behaviors Is

>~ lexactly as in
- byte 1 byte

C++

 float 4 bytes
» double 8 bytes —

Primitive type

I‘ue,false} always begin

with lower-case

» char Unicode encoding (2 bytes) |note

Primitive types

e Constants

37 Integer

37.2 float

42F float

0754 Integer (octal)

Oxfe Integer (hexadecimal)

Wrappers

Java provides Objects which wrap
primitive types and supply methods.

Example:

Integer n = new Integer (%V4”);
int m = n.intValue();

http://www.eminemworld.com/miscpics.html

Hello World

Hello.java

class Hello {
public static void main(String[] args) {
System.out.println(“Hello World !!'!”);

}

C:\javac Hello.java (compilation creates Hello.class)

C:\java Hello (Execution on the local JVM)

More sophisticated

class Kyle {
private boolean kennyIsAlive ;

public Kyle() { kennyIsAlive = true; }
public Kyle (Kyle aKyle) {
kennylIsAlive = aKyle.kennyIsAlive ;

}
public String theyKilledKenny () {

if (kennyIsAlive) {

kennylIsAlive = false;
return “You bastards !'!!”;
} else {

return “?7;

}
}

public static void main(String[] args) {
Kyle k = new Kyle()

String s = k.theyKilledKenny () ;

System.out.println(“Kyle: “ + s);

Result

javac Kyle. ja

java Kyle

Kyle: You bastards !!!

Arrays

* Array Is an object

* Array size is fixed

Animal[] arr; // nothing yet ..
arr = new Animal[4]; // only array of pointers

for(int i=0 ; i < arr.length ; i++) {
arr[i] = new Animal () ;

now we have a complete array

Arrays - Multidimensional

» In C++

Animal arr[2][2]

|S:

e |n Java

Animal[][] arr=
new Animal[2][2]

hat is the type'of
e?

Static

» Member data - Same data is used for all
the instances (objects) of some Class.

Class A {

public int y = 0; L

1;

public static int x =

};

A a = new A();

A b = new A();
System.out.println(b.x);
a.x =5;
System.out.println(b.x);
A.x = 10;
System.out.println(b.x);

Assignment performed
on the first access to the
Class.

Only one instance of X’
exists in memory

Output:

[

Static

» Member function
- Static member function can access only static
members
> Static me
an instanc-‘?lass TeaPot {

private static int numOfTP = O;
private Color myColor ;
public TeaPot (Color c) {
myColor = c;
numOfTP++;
}
public static int howManyTeaPots ()
{ return numOfTP; }

// error :
public static Color getColor ()
{ return myColor ; }

Static

Usage:

TeaPot tpl new TeaPot (Color.RED);

TeaPot tp?Z2

new TeaPot (Color.GREEN) ;

System.out.println (“We have “ +
TeaPot.howManyTeaPots () + “Tea Pots”);

Static

» Block

- Code that is executed in the first reference to the
class.

- Several static blocks can exist in the same class
(Execution order is by the appearance order in the
class definition).

> Only static members can be accessed.

class RandomGenerator {
private static int seed ;

static {
int t = System.getTime() % 100;
seed = System.getTime()

while (t-- > 0)
seed = getNextNumber (seed) ;
}

String is an Object

 Constant strings as in C, does not exist

* The function call foo (“Hel10”) creates a String object,
containing “Hello”, and passes reference to i1t to foo.

 There Is no point in writing :
String s = new String(“Hello”);

 The String object Is a constant. It can’t be changed using
ence to It.

.f@@ill..-_;

Flow control

Basically, it is exactly like ¢/c++.

int io5, switch|
_liflelse] oo chaz

If (x==4) { // actl c=IN.getChar () ;
// actl i--; switch(c) {
} else { } while (1'=0) ; case ‘a’:
// act2 case ‘b’:
) for| /7 act
BT break;
S default:
for(lnt 1=0;i<=9;1++) /) act2
Jj+=1i; J

}

Packages

» Java code has hierarchical structure.

» The environment variable CLASSPATH
contains the directory names of the roots.

» Every Object belongs to a package (
‘package’ keyword)

» Object full name contains the name full
name of the package containing it.

Access Control

» public member (function/data)
- Can be called/modified from outside.
» protected
- Can be called/modified from derived classes
» private
- Can be called/modified only from the current class
v default (if no access modifier stated)

- Usually referred to as “Friendly”.

> Can be called/modified/instantiated from the same
package.

Class outside of
Packagel sees

public A

A summary of Java scoping visibility

class Base {

Inheritance Base () {}

Base (int i) {}
protected void foo () {..}

}

Base class Derived extends Base {
ZS& Derived () {}
protected void foo () {..}
Derived (int i) {
super (i) ;
Derived super.foo () ;

}

}

As opposed to C++, it Is possible to inherit only from
ONE class.

Pros avoids many potential problems and bugs.
might cause code replication

Polymorphism

» Inheritance creates an “is a’ relation:

For example, if B inherits from A, than we
say that “B is also an A".

Implications are:

- access rights (Java forbids reducing access
rights) - derived class can receive all the
messages that the base class can.

> behavior

> precondition and postcondition

Inheritance

e |In Java, all methods are virtual :

class Base {
void foo () {
System.out.println(“Base”) ;
}
}

class Derived extends Base {
void foo () {
System.out.println(“Derived”) ;
}

}
public class Test {

public static void main(String[] args) {
Base b = new Derived() ;
b.foo(); // Derived.foo() will be activated

Inheritance

class classC extends classB {
classC(int argl, int arg2) {
this (argl) ;
System.out.println("In classC(int argl, int arg2)");
}
classC(int argl) {
super (argl) ;
System.out.println("In classC(int argl)");
}
}

class classB extends classA {
classB(int argl) {
super (argl) ;
System.out.println("In classB(int argl)");
}
classB() {
System.out.println("In classB()")

Inheritance

class classA {
classA(int argl) {
System.out.println("In classA(int argl)");
}
classA () {
System.out.println("In classA()");
}
}

class classB extends classA {
classB(int argl, int arg2?) {
this (arqgl) ;
System.out.println("In classB(int argl, int arg2)");
}
classB(int argl) {
super (argl) ;
System.out.println("In classB(int argl)");
}

class B() {
_ System.out.println("In classB()");

Abstract

» abstract member function, means that the function does not have an
implementation.

v abstractclass, is class that can not be instantiated.

AbstractTest.java:6: class AbstractTest 1s an abstract class.
It can't be instantiated.
new AbstractTest () ;

A

1 error

NOTE:

An abstract class Is not required to have an abstract method in it.
But any class that has an abstract method in it or that does

not provide an implementation for any abstract methods declared

u erclasses must be declared as an abstract class.

setCenter (x,y) ;
setColor (ForeGroundColor) ;
draw () ;

}

package java.lang;
public class Circle extends Shape ({
public void draw() {
// draw the circle

}

Interface

Interfaces are useful for the following:

. Capturing similarities among unrelated
classes without artificially forcing a class
relationship.

. Declaring methods that one or more
classes are expected to implement.

- Revealing an object's programming
interface without revealing its class.

Interface

» abstract “class”

» Helps defining a “usage contract’
between classes

» All methods are public

» Java’s compensation for removing the
multiple inheritance. You can “inherit” as
many interfaces as you want.

Interface

interface IChef {
void cook (Food food) ;

}

interface BabyKicker { interface SouthParkCharacter ({
void kickTheBaby (Baby) ; void curse() ;

} }

class Chef implements IChef, SouthParkCharacter ({
// overridden methods MUST be public
// can you tell why °?
public void curse() { .. }
public void cook(Food £f) { .. }

When to use an interface ?

Perfect tool for encapsulating the
classes inner structure. Only the
Interface will be exposed

Collections

» Collection/container
- object that groups multiple elements

- used to store, retrieve, manipulate, communicate
aggregate data

» Iterator - object used for traversing a collection
and selectively remove elements

» Generics - implementation is parametric in the
type of elements

Java Collection Framework

» Goal: Implement reusable data-structures and
functionality

» Collection interfaces - manipulate collections
independently of representation details

» Collection implementations - reusable data
structures

List<String> list = new ArraylList<String>(c);

» Algorithms - reusable functionality

> computations on objects that implement collection
interfaces

> e.g., searching, sorting

- polymorphic: the same method can be used on many
different implementations of the appropriate collection

Set

SortedSet

Collection Interface

» Basic Operations
o int size();
- boolean isEmpty();
- boolean contains(Object element);
- boolean add(E element);
- boolean remove(Object element);
> |terator iterator();

» Bulk Operations
- boolean containsAll(Collection<?> ¢);
- boolean addAll(Collection<? extends E> ¢);
- boolean removeAll(Collection<?> ¢);
- boolean retainAll(Collection<?> ¢);
- void clear();

» Array Operations
> Object[] toArray(); <T> T[] toArray(T[] a); }

General

Set

SortedSet

L4
*
*
*
*
.0
[]
L 4
n *
*
*
.0
*

.
.
.
.
.
.
.
.
.
‘e
.

HashSet

TreeSet

ArrayLlst

LinkedList

TreeMap

HashMap

L|st<Str|ng> listl = new ArrayList<String>(c);

trlng> list2 = - new LmkedLlst<Str|ng>(c)

final

v final member data
Constant member—_|

» final member
function
The method can’t be
overridden.

-

» finalclass
‘Base’ is final, thus it
Cail be extended

final class Base {
—» final int i=5;
final void foo () {
7 im10;
//what will the compiler say
about this?

}
}

,e%EEE/B;;I;;;A;xtends Base {

// Error
// another foo ...
void foo () {

}

S ‘;‘\‘.‘
\ Y
L\

»
»
B~

}

final

Derived.java:b6:

Can't subclass final classes:

class Base

class class Derived extends Base {

A

1 error

final class Base {
final int i=5;
final void foo () {
1=10;

lass Derived extends Base {
\7? Error

// another foo

void foo () {

|O - Introduction

» Definition
- Stream is a flow of data

- characters read from a file
- bytes written to the network

» Philosophy
- All streams in the world are basically the same.

> Streams can be divided (as the name “IO” suggests) to
Input and Output streams.

» Implementation
- Incoming flow of data (characters) implements “Reader”
(InputStream for bytes)

- Qutgoing flow of data (characters) implements “Writer”
(OutputStream for bytes -eg. Images, sounds etc.)

\\\\\\\

Exception - What is it and why do |
care?

Definition: An exceptionis an event that
occurs during the execution of a program
that disrupts the normal flow of
Instructions.

 Exception is an Object
 Exception class must be descendent of Throwable.

Exception - What is it and why do | care?

By using exceptions to manage errors, Java
programs have the following advantages over
traditional error management techniques:

1: Separating Error Handling Code from "Regular"
Code

2: Propagating Errors Up the Call Stack

3: Grouping Error Types and Error Differentiation

1: Separating Error Handling Code from "Regular" Code

readFile {

open the file;

determine 1its size;
allocate that much memory;
read the file into memory;
close the file;

1: Separating Error Handling Code from "Regular” Code

errorCodeType readFile ({
initialize errorCode = 0;
open the file;
if (theFileIsOpen) {
determine the length of the file;
if (gotTheFileLength) {
allocate that much memory;
if (gotEnoughMemory) {
read the file into memory;
if (readFailed) {
errorCode = -1;
}

} else {
errorCode = -2;
}

} else {
errorCode = -3;
}

close the file;
if (theFileDidntClose && errorCode == 0) {

errorCode = -4;
} else {
errorCode = errorCode and -4;
}
} else {
errorCode = -5;

}

return errorCode;

1: Separating Error Handling Code from "Regular” Code

readFile {

try {
open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

} catch (fileOpenFailed) {
doSomething;

} catch (sizeDeterminationFailed) {
doSomething;

} catch (memoryAllocationFailed) {
doSomething;

} catch (readFailed) {
doSomething;

} catch (fileCloseFailed) {
doSomething;

2: Propagating Errors Up the Call
Stack

methodl {
try {
call method2;
} catch (exception) {
doErrorProcessing;

}
}

method2 throws exception {
call method3;

}

method3 throws exception {
call readFile;

Comments are almost like
C++

»The java doc program generates HTML
APl documentation from the “java doc”
style comments in your code.

/* This kind of comment can span multiple lines */
// This kind is to the end of the line

/**
* This kind of comment is a special
* javadoc’ style comment

*/

An example of a class

class Person {
String name;
int age; Variable

/

vold birthday ()—A4— Method
agett+;
System.out.println (name + ' 1s now ' +

age) ;

J

Scoping

» As In C/C++, scope Is determined by the placement of

curly braces {}.
» A variable defined within a scope is available only to the

end of that scope.

{ intx=12;
[* only x available */ o _ _
| This i1s ok in C/C++ but not in
{intq=96;
Java.
[* both x and q available */
} { intx=12;
[* only x available */ it x = 96; /* llegal *
[* q “out of scope” */ }

}

An array Is an object

»Person mary = new Person ();

»int myArray[] = new int[5];

»int myArrav[] = {1, 4, 9, 16, 25};
»String languages [] = {"Prolog",
"Java"};

»Since arrays are objects they are allocated dynamically
» Arrays, like all objects, are subject to garbage collection

when no more references remain

»s0 fewer memory leaks

»Java doesn’t have pointers!

Scope of Objects

»Java objects don’t have the same lifetimes as primitives.
»\When you create a Java object using new, it hangs around

past the end of the scope.

» Here, the scope of name s is delimited by the {}s but the
String object hangs around until GC’d

{

String s = new String("a string");

} /* end of scope */

Methods, arguments and return values

»Java methods are like C/C++ functions. General case:
» returnType methodName (argl, arg2, ... argN) {
» methodBody
>}
» The return keyword exits a method optionally with a value
int storage (String s) {return s.length() * 2;)

boolean flag() { return true; }

float naturallLogBase () { return 2.718f; }
volid nothing () { return; }

void nothing2 () {}

The static keyword

“»+Java methods and variables can be declared static
*» These exist independent of any object
¢+ This means that a Class’s
ssstatic methods can be called even if no objects of that
class have been created and
ssstatic data is “shared” by all instances (i.e., one rvalue

per class instead of one per instance

class StaticTest {static inti=47;}
StaticTest st1 = new StaticTest();
StaticTest st2 = new StaticTest();

Il st1.i == st2.| == 47

StaticTest.i++; Il or st1.1++ or st2.|++
Il st1.i==st2.1 == 48

Array Operations

» Subscripts always start at 0 as in C

» Subscript checking Is done automatically

» Certain operations are defined on arrays of objects, as for other
classes

»e.g. myArray.length ==

Echo.java

C:\UMBC\331\java>type echo.java
// This is the Echo example from the Sun
tutorial
class echo {
public static void main (String args[]) {
for (int 1=0; i1 < args.length; i++) {
System.out.println(args([i])

C:\UMBC\331\java>javac echo.java

C:\UMBC\331\java>java echo this is pretty
silly

this

is

pretty

silly

: \UMBC\331\java>

Factorial Example

/‘k‘k
* This program computes the factorial of a number
*/
public class Factorial ({ // Define a class
public static void main (String[] args) { // The program starts here
int input = Integer.parselnt(args[0]); // Get the user's input
double result = factorial (input); // Compute the factorial
System.out.println (result) ; // Print out the result
} // The main() method ends here

public static double factorial (int x) { // This method computes x!

if (x < 0) // Check for bad input
return 0.0; // if bad, return O
double fact = 1.0; // Begin with an initial value
while(x > 1) { // Loop until x equals 1
fact = fact * x; // multiply by x each time
X =x - 1; // and then decrement x
} // Jump back to the star of
loop
return fact; // Return the result

// factorial () ends here
// The class ends here

JAVA Classes
» The class is the fundamental concept in JAVA (and other

OOPLs)

» A class describes some data object(s), and the operations
(or methods) that can be applied to those objects

» Every object and method in Java belongs to a class

» Classes have data (fields) and code (methods) and classes
(member classes or inner classes)

» Static methods and fields belong to the class itself

» Others belong to instances

Constructors

» Classes should define one or more methods to create or
construct instances of the class
» Their name Is the same as the class name
»note deviation from convention that methods begin with
lower case
» Constructors are differentiated by the number and types of
their arguments
» An example of overloading
» If you don’t define a constructor, a default one will be
created.
» Constructors automatically invoke the zero argument
constructor of their superclass when they begin (note that
this yields a recursive process!)

Constructor example

public class Circle {

public static final double PI = 3.14159; // A
constant

public double r; // instance field holds circle’s
radius

// The constructor method: initialize the radius field
public Circle (double r) { this.r = r; }

// Constructor to use if no arguments
public Circle() { r = 1.0; }
// better: public Circle() { this(1.0); }

// The instance methods: compute values based on
radius

public double circumference() { return 2 * PI * r; }

public double area () { return PI * r*r; }

Overloading, overwriting,
and shadowing

» Overloading occurs when Java can distinguish
two procedures with the same name by examining
the number or types of their parameters.
»Shadowing or overriding occurs when two
procedures with the same signature (name, the same
number of parameters, and the same parameter
types) are defined in different classes, one of which
IS a superclass of the other.

On designing class hierarchies

»Programs should obey the explicit-representation principle, with classes
included to reflect natural categories.

»Programs should obey the no-duplication principle, with instance
methods situated among class definitions to facilitate sharing.

»Programs should obey the look-it-up principle, with class definitions
Including instance variables for stable, frequently requested information.
»Programs should obey the need-to-know principle, with public interfaces
designed to restrict instance-variable and instance-method access, thus
facilitating the improvement and maintenance of nonpublic program
elements.

> If you find yourself using the phrase an X is a Y when describing the
relation between two classes, then the X class is a subclass of the Y class.
> If you find yourself using X has a Y when describing the relation
between two classes, then instances of the Y class appear as parts of
Instances of the X class.

Data hiding and encapsulation

» Data-hiding or encapsulation is an important part of the
OO paradigm.
» Classes should carefully control access to their data and
methods In order to
»Hide the irrelevant implementation-level details so
they can be easily changed
» Protect the class against accidental or malicious
damage.
» Keep the externally visible class simple and easy to
document
»Java has a simple access control mechanism to help
with encapsulation
» Modifiers: public, protected, private, and package
(default)

Abstract classes and methods

» Abstract vs. concrete classes
» Abstract classes can not be instantiated
»public abstract class shape { }
» An abstract method is a method w/o a body
»public abstract double area();
» (Only) Abstract classes can have abstract methods
» In fact, any class with an abstract method is

automatically an abstract class

Syntax Notes

»No global variables
»class variables and methods may be applied to any
Instance of an object
»methods may have local (private?) variables
»No pointers
»but complex data objects are “referenced”

» Other parts of Java are borrowed from PL/Il, Modula, and

other languages

Thank You

.

