Bharathidasan University
Centre for Differently Abled

Persons

Khajamalai Campus, Tiruchirappalli
Tamil Nadu, India

(For Students with Speech and Hearing Impairment)

Course: Database Management System

Ulllt = 4 Compiled By
Dr.M.Prabavathy

(Assistant Professor)
BY Dr.R.Nandhakumar

Distributed Database

» A single logical dafabase that is spread physically across
computers in multiple locations that are connected by a
data communications link

» Decentralized Database: A collection of Iindependent
databases on non-networked computers

Reasons for Distributed

vV vV v v v v v

Business unit autonomy and distribution
Data sharing

Data communication costs

Data communication reliability and costs
Multiple application vendors

Database recovery

Transaction and analytic processing

Database

Distributed database environments

Homogeneous Heterogeneous

O\ 7~ N

Autonomous Non-Autonomous Systems Gateways

7 N

Full DBMS functionality Partial-Multidatabase

2 N

Federated Unfederated

F .

Loose integration Tight integration

Distributed Database Options

» Homogeneous - Same DBMS at each node

» Autonomous - Independent DBMSs
»Non-autonomous - Central, coordinating DBMS
»Easy to manage, difficult to enforce

» Heterogeneous - Ditfferent DBMSs at different nodes

»Systems — With full or partial DBMS functionality

»Gateways - Simple paths are created to other databases without the benefits of
one logical database

»Difficult to manage, preferred by independent organizations

Distributed

Database Options (cont.)

» Systems - Supports some or all functionality of one
logical database

»Full DBMS Functionality - All distributed DB functions
»Partial-Multi database - Some distributed DB functions

»Federated - Supports local databases for unique data requests

»Loose Integration - Local dbs have their own schemas

»Tight Integration - Local dbs use common schema

»Unfederated

- Requires all access to go through a centradl,

coordinating module

Homogeneous, Non-Autonomous
Database

» Data is distributed across all the nodes
» Same DBMS at each node

» All data is managed by the distributed DBMS (no exclusively local
data)

» All access is through one, global schema

» The global schema is the union of all the local schema

Global User Global User

[] B

Typical Heterogeneous Environment

» Data distributed across all the nodes
» Different DBMSs may be used at each node
» Local access is done using the local DBMS and schema

» Remote access is done using the global schema

Source: adapted from Bell and Grimson, 1992.

Global User

Local User
Local User r — —l
r_] | I .
n ; =

.-Ilm E ﬁ -.-
i "I
i 1

Global
Distributed Schema
DBEMS

ntical DBMSs |

= I =

Typical Heterogeneous Environment

Major Objectives

» Location Transparency
»User does not have to know the location of the data
»Data requests automatically forwarded to appropriate sites
» Local Autonomy

»Local site can operate with its database when network connections fail

»Each site controls its own data, security, logging, recovery

Significant Trade-Offs

» Synchronous Distributed Database

» All copies of the same data are always identical

»Data updates are immediately applied to all copies throughout network
»Good for data integrity

»High overhead = slow response fimes

» Asynchronous Distributed Database

»Some data inconsistency is tolerated

»Data update propagation is delayed
»Lower data integrity

»Less overhead = faster response time

Advantages of
Distributed Database over Centralized
Databases

Increased reliability/availability
Local confrol over data
Modular growth

Lower communication costs

vV v. v v YV

Faster response for certain queries

Disadvantages of Distributed Database
Compared to Centralized Databases

» Software cost and complexity
» Processing overhead
» Data integrity exposure

» Slower response for certain queries

Options for Distributing a Database

» Data replication

. . : : » Advantages:
»Copies of data distributed to different sites

Reliability

: il Fast response
» Horizontal partitfioning

, i , . May avoid complicated distributed
»Different rows of a table distributed to different sites

vV v Vv Y

transaction integrity routines (if
replicated do’ro is refreshed at
» Vertical partitioning scheduled infervals)
»Different columns of a table distributed to different sites > Decouples nodes (fransactions

proceed even if some nodes are

down)

» Combinations of the above » Reduced network fraffic at prime
time (if updates can be delayed)

Issues for Data Replication

Data timeliness — high tolerance for out-of-date data may be required

DBMS capabilities — if DBMS cannot support multi-node queries, replication may be
necessary

Performance implications — refreshing may cause performance problems for busy
nodes

Network heterogeneity — complicates replication

Network communication capabilities — complete refreshes place heavy demand on
telecommunications

Engineear Manutac _ Manufac
ing furing

. q_:i:.‘i'.:l]::l-"i, tj‘._dl'dh:l.:_#;

Gateway

CADACAM workstaticns

Local areq
b

Five Distributed Database
Organizations

vV v v VvV VY

Centralized database, distributed access

Replication with periodic snapshot update

Replication with near real-time synchronization of updates
Partitioned, one logical database

Partitioned, independent, nonintegrated segments

Distributed DBMS

» Distributed database requires distributed DBMS
» Functions of a distributed DBMS:

»Locate data with a distributed data dictionary

»Determine location from which to retrieve data and process query components
»DBMS franslation between nodes with different local DBMSs (using middleware)
»Data consistency (via multiphase commit protocols)

»Global primary key control

»Scalability

»Security, concurrency, query optimization, failure recovery

e e n
Distributed! Distributed/
dala fata
L reposilory . repository

(To other sites)
..--"""IIr

Distributed : Distributed

Application Communications Communicalions Application
programs controller controller progiams

Lser : User
terminals _ terminals

Database Dalabase

L sited site
“"‘—-—-_._n—".’r H"‘—-_-_._l—"..r

Local Transaction Steps

Application makes request to distributed DBMS

Distributed DBMS checks distributed data repository for
location of data. Finds that it is local

Distributed DBMS sends request to local DBMS
Local DBMS processes request

Local DBMS sends results to application

o

e S
Distributed/ Distributed/
ala dala
. feposilory _repository

[(To other sites)
ff

=

- Distributed : | Distributed
L]
: ;

B

Application L nmmunimtinns Communications Application
programs ' controller controller programs
' User

User
terminals

terminals

4

Dalbise [ocal transaction —
\ sl all data stored locally

Global Transaction Steps

Application makes request to distributed DBMS

Distributed DBMS checks distributed data repository for location of data. Finds that it is remote

Distributed DBMS routes request to remote site

Distributed DBMS at remote site translates request for its local DBMS if necessary, and sends request to local DBMS
Local DBMS at remote site processes request

Local DBMS atf remote site sends results to distributed DBMS at remote site

Remote distributed DBMS sends results back to originating site

Distributed DBMS at originating site sends results to application

e
Distribuled/
data

L reposilory

Distributed

terminals

Database

' site 1

(To other sites)
s

.m mmunications Communications

cantroller controller

Global transaction — some
data 1s at remote site(s)

™
T —

Distributed/
data
\ ;epﬂsir_nw

Application
programs

Dalabase

site n

Distributed DBMS Transparency Objectives

» Location Transparency
»User/application does not need to know where data resides

» Replication Transparency
»User/application does not need to know about duplication

» Failure Transparency
»Either all or none of the actions of a transaction are committed
»Each site has a fransaction manager

»Logs transactions and before and after images

»Concurrency control scheme to ensure data integrity

»Requires special commit protocol

Two-Phase Commit

» Prepare Phase
»Coordinator receives a commit request

»Coordinator instructs all resource managers to get ready to “go either way” on the
transaction. Each resource manager writes all updates from that tfransaction to its own
physical log

»Coordinator receives replies from all resource managers. If all are ok, it writes commit to
its own log; if not then it writes rollback to ifs log

» Commit Phase

»Coordinator then informs each resource manager of its decision and broadcasts a
message to either commit or rollback (abort). If the message is commit, then each
resource manager transfers the update from its log to its database

» A failure during the commit phase puts a fransaction “in limbo.” This has to be tested for
and handled with timeouts or polling

Concurrency Control

» Concurrency Transparency
»Design goal for distributed database
» Timestamping

»Concurrency control mechanism

» Alternative to locks in distributed datalbases

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

