bnaratniaasan vniversity
Centre for Differently Abled
Persons
Khajamalai Campus, Tiruchirappalli
Tamil Nu, India

(For Students with Speech and Hearing Impairment)

Course: Database Management System

Unit -3 Compiled By
Dr.M.Prabavathy

(Assistant Professor)

Dr.R.Nandhakumar

Modification of the Database

» Deletion of tuples from a given relation.
» Insertion of new tuples into a given relation

» Updating of values in some fuples in a given relation

File Organization

» The database is stored as a collection of files. Each file is a sequence of
records. Arecord is a sequence of fields.

» One approach:

»assume record size is fixed
»each file has records of one particular type only
»different files are used for different relations

This case is easiest to implement; will consider variable length records later.

Fixed-Length Records

» Simple approach:
»Store record i starting from byte n * (i— 1), where n is the size of each record.

»Record access is simple but records may cross blocks

» Modification: do not allow records o cross block boundaries

» Deletion of record i; .]
oo
-
b move recordsit e
oy A
»move record n 1o i

»do not move records, but
link all free records on a
free list

Free Lists

>
>

Store the address of the first deleted record in the file header.

Use this first record to store the address of the second deleted record,
and so on

Can think of these stored addresses as since they “point” to the
location of a record.

More space efficient representation: reuse space for normal attributes
of free records to store pointers. (No pointers stored in in-use records.)

R
65000
I
0000
95000
I
7000
R -
2000

76543 ngh
ick

vyl
-
o]
5]
Q.
=

ool oo ®
SININO
=1k=1i=1E=]
=1k=1k=11=]
=1k=1k=1=

Variable-Length Records

» Variable-length records arise in database systems in several ways:
»Storage of multiple record types in a file.

»Record types that allow variable lengths for one or more fields such as strings
(varchar)

»Record types that allow repeating fields (used in some older data models).
» Attributes are stored in order

» Variable length aftfributes represented by fixed size (offset, length), with
actual data stored after all fixed length attributes

» Null values represented by null-value bitmap

21,5 2610]36,10 | e300 | | 10101 Sinvasan| Comp. 6.

Variable-Length Records: Slotted Page Structure

T

> header contains:
»number of record entries
»end of free space in the block
»|location and size of each record

» Records can be moved around within a page to keep them contiguous
with no empty space between them; entry in the header must be

updated.

» Pointers should not point directly to record — instead they should point to
the entry for the record in header.

Organization of Records in Files

> — arecord can be placed anywhere in the file where there is space

> — store records in sequential order, based on the value of the
search key of each record

> — a hash function computed on some attribute of each record; the
result specifies in which block of the file the record should be placed

» Records of each relafion may be stored in a separate file. In @
records of several different relations can be stored

iNn the same file

»Motivation: store related records on the same block fo minimize |/O

Sequential File Organization

» Suitable for applications that require sequential processing of the entire file
» The records in the file are ordered by a

10101
1212
1515
2222
3234
3345
4556
58583
7654
7676
8382
98345

Srinivasan 500
Wu
Mozart
Einstein
El Said
Gold
Katz
Califieri
Singh
Crick
Brandt

Kim

Comp. Sci.
Finance 000
Music 000
Physics 9500
History 000
Physics 8700
Comp. Sci. 500
History 200
Finance 000

200

200
80000

p—d
[\O | O\
OIOO

N
)

W

D
@)

@)}
@)

AN
)

Biolo
Comp. Sci.
Elec. En

= QN

2
O || Q
QOO

N
)

10101
15151
| 22222
32343
33456
58583
| 76766
83821
| 98345

QQ

Seqguential File Organization (Cont.)

» Deletion — use pointer chains
» Insertion —locate the position where the record is to be inserted

»if there is free space insert there
»if no free space, insert the record in an

»In either case, pointer chain mrict Batimdatad

G RN Clol(elolalr=Rigley 12121 |Wu | Finance | 9000
from time to time to resEE i

: 22222 9500
sequential order 32343 6000
33456 8700

5565 7500
G200
3000
7200
52000
98545 | Kim | Flec. Eng. | 80000 |

32222 Music 48000 | |

Data Dictionary Storage

The (also called) stores ; that is, data
about data, such as

» Information about relations
»names of relations
»names, types and lengths of attributes of each relation
»names and definitions of views
»infegrity constraints
» User and accounting information, including passwords
» Statistical and descriptive data
»number of tuples in each relation
» Physical file organization information
»How relation is stored (sequential/hash/...)
»Physical location of relation
» Information about indices (Chapter 11)

Relational Representation of System Metadata

» Relational Relation_metadata Attribute_metadata

representation
on disk

» Specialized
data structures
designed for
officient
access, in
memory

User metadata
View_metadata

Storage Access

» A database file is partitioned into fixed-length storage units called
Blocks are units of both storage allocation and data fransfer.

» Database system seeks to minimize the number of block transfers
between the disk and memory. We can reduce the number of disk
accesses by keeping as many blocks as possible in main memory.

> — portion of main memory available to store copies of disk blocks.

> — subsystem responsible for allocating buffer space in
main memory.

Buffer Manager

» Programs call on the buffer manager when they need a block from
disk.

1. If the block is already in the buffer, buffer manager returns the address of the
block in main memory

2. If the block is not in the buffer, the buffer manager

1. Allocates space in the buffer for the block
1. Replacing (throwing out) some other block, if required, to make space for the new block.

2. Replaced block written back to disk only if it was modified since the most recent time
that it was written to/fetched from the disk.

2. Reads the block from the disk to the buffer, and returns the address of the block in
main memory to requester.

Buffer-Replacement Policies

» Most operating systems replace the block ()

» |dea behind LRU - use past pattern of block references as a predictor of
future references

» Queries have well-defined access patterns (such as sequential scans), and
a database system can use the information in a user's query to predict
future references

»LRU can be a bad strategy for certain access patterns involving repeated scans of
data

»For example: when computing the join of 2 relations r and s by a nested loops
for each tuple fr of r do
for each tuple ts of s do
if the tuples tr and ts match ...

»Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable

Butfer-Replacement Policies (Cont.)

>

— memory block that is not allowed to be written back to disk.

strategy - frees the space occupied by a block as soon as the
final tuple of that block has been processed

— system must pin the block currently being
processed. After the final tuple of that block has been processed, the block is
unpinned, and it becomes the most recently used block.

Buffer manager can use statistical information regarding the probability that a
request will reference a particular relation

»E.g., the data dictionary is frequently accessed. Heuristic: keep data-dictionary
blocks in main memory buffer

Buffer managers also support of blocks for the purpose of
recovery (more in Chapter 16)

Deletion

» Delete all instructors

delete from instructor

» Delete all instructors from the Finance department
delete from instructor
where dept_name= 'Finance’;

» Delete all tuples in the instructor relation for those instructors associated with
a department located in the Watson building.

delete from instructor
where dept name in (select dept name
from deparfment
where building = "Watson');

Deletion (Cont.)

» Delete all instructors whose salary is less than the average salary of
instructors

delete from instructor
where salary < (select avg (salary)
from instructor);

® Problem: as we delete tuples from deposit, the average salary
changes

® Solution used in SQL.:
1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without
recomputing avg or retesting the tuples)

Insertion

» Add a new tuple to course

insert into course
values ('CA-04’, 'Database Systems’, 'BCA.’, 4);

» or equivalently

insert into course (course_id, title, dept_name, credits)
values ('CA-04’, 'Database Systems’, 'BCA.", 4);

» Add anew tuple to student with tot_creds set 1o null

insert into sfudent
values ('3003’, 'Green’, 'Finance’, null);

Insertion (Cont.)

» Add all instructors to the sfudent relation with tot _creds set to
0

insert into student
select ID, name, dept_name, 0
from insfructor

» The select from where statement is evaluated fully before any
of ifs results are inserted info the relation.

Otherwise queries like
insert into table1 select * from tablel

would cause problem

Case Statement for Condifional Updates

» Same query as before but with case statement

update insfructor

set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

