
Bharathidasan University
Centre for Differently Abled

Persons
Khajamalai Campus, Tiruchirappalli

 Tamil Nadu, India

Course: Database Management System
Unit - 3Unit - 3 Compiled By

Dr.M.Prabavathy
(Assistant Professor)
Dr.R.Nandhakumar

Bachelor of Computer Applications
(For Students with Speech and Hearing Impairment)

Modification of the Database

 Deletion of tuples from a given relation.
 Insertion of new tuples into a given relation
 Updating of values in some tuples in a given relation

File Organization
 The database is stored as a collection of files. Each file is a sequence of

records. A record is a sequence of fields.

 One approach:

assume record size is fixed
each file has records of one particular type only
different files are used for different relations

This case is easiest to implement; will consider variable length records later.

Fixed-Length Records
 Simple approach:

Store record i starting from byte n  (i – 1), where n is the size of each record.
Record access is simple but records may cross blocks

Modification: do not allow records to cross block boundaries

 Deletion of record i:
alternatives:
move records i + 1, . . ., n
to i, . . . , n – 1
move record n to i
do not move records, but
link all free records on a
free list

Free Lists
 Store the address of the first deleted record in the file header.
 Use this first record to store the address of the second deleted record,

and so on
 Can think of these stored addresses as pointers since they “point” to the

location of a record.
 More space efficient representation: reuse space for normal attributes

of free records to store pointers. (No pointers stored in in-use records.)

Variable-Length Records
 Variable-length records arise in database systems in several ways:

Storage of multiple record types in a file.
Record types that allow variable lengths for one or more fields such as strings
(varchar)
Record types that allow repeating fields (used in some older data models).

 Attributes are stored in order
 Variable length attributes represented by fixed size (offset, length), with

actual data stored after all fixed length attributes
 Null values represented by null-value bitmap

Variable-Length Records: Slotted Page Structure

 Slotted page header contains:
number of record entries
end of free space in the block
location and size of each record

 Records can be moved around within a page to keep them contiguous
with no empty space between them; entry in the header must be
updated.

 Pointers should not point directly to record — instead they should point to
the entry for the record in header.

Organization of Records in Files
 Heap – a record can be placed anywhere in the file where there is space

 Sequential – store records in sequential order, based on the value of the
search key of each record

 Hashing – a hash function computed on some attribute of each record; the
result specifies in which block of the file the record should be placed

 Records of each relation may be stored in a separate file. In a multiple
clustering file organization records of several different relations can be stored
in the same file

Motivation: store related records on the same block to minimize I/O

Sequential File Organization
 Suitable for applications that require sequential processing of the entire file
 The records in the file are ordered by a search-key

Sequential File Organization (Cont.)
 Deletion – use pointer chains
 Insertion –locate the position where the record is to be inserted

if there is free space insert there
if no free space, insert the record in an overflow block
In either case, pointer chain must be updated

 Need to reorganize the file
 from time to time to restore
 sequential order

Data Dictionary Storage

 Information about relations
names of relations
names, types and lengths of attributes of each relation
names and definitions of views
integrity constraints

 User and accounting information, including passwords
 Statistical and descriptive data

number of tuples in each relation
 Physical file organization information

How relation is stored (sequential/hash/…)
Physical location of relation

 Information about indices (Chapter 11)

The Data dictionary (also called system catalog) stores metadata; that is, data
about data, such as

Relational Representation of System Metadata

 Relational
representation
on disk

 Specialized
data structures
designed for
efficient
access, in
memory

Storage Access
 A database file is partitioned into fixed-length storage units called blocks

Blocks are units of both storage allocation and data transfer.

 Database system seeks to minimize the number of block transfers
between the disk and memory. We can reduce the number of disk
accesses by keeping as many blocks as possible in main memory.

 Buffer – portion of main memory available to store copies of disk blocks.

 Buffer manager – subsystem responsible for allocating buffer space in
main memory.

Buffer Manager
 Programs call on the buffer manager when they need a block from

disk.
1. If the block is already in the buffer, buffer manager returns the address of the

block in main memory

2. If the block is not in the buffer, the buffer manager

1. Allocates space in the buffer for the block
1. Replacing (throwing out) some other block, if required, to make space for the new block.

2. Replaced block written back to disk only if it was modified since the most recent time
that it was written to/fetched from the disk.

2. Reads the block from the disk to the buffer, and returns the address of the block in
main memory to requester.

Buffer-Replacement Policies
 Most operating systems replace the block least recently used (LRU strategy)
 Idea behind LRU – use past pattern of block references as a predictor of

future references
 Queries have well-defined access patterns (such as sequential scans), and

a database system can use the information in a user’s query to predict
future references
LRU can be a bad strategy for certain access patterns involving repeated scans of
data

For example: when computing the join of 2 relations r and s by a nested loops
 for each tuple tr of r do
 for each tuple ts of s do
 if the tuples tr and ts match …

Mixed strategy with hints on replacement strategy provided
by the query optimizer is preferable

Buffer-Replacement Policies (Cont.)
 Pinned block – memory block that is not allowed to be written back to disk.

 Toss-immediate strategy – frees the space occupied by a block as soon as the
final tuple of that block has been processed

 Most recently used (MRU) strategy – system must pin the block currently being
processed. After the final tuple of that block has been processed, the block is
unpinned, and it becomes the most recently used block.

 Buffer manager can use statistical information regarding the probability that a
request will reference a particular relation

E.g., the data dictionary is frequently accessed. Heuristic: keep data-dictionary
blocks in main memory buffer

 Buffer managers also support forced output of blocks for the purpose of
recovery (more in Chapter 16)

Deletion
 Delete all instructors

delete from instructor

 Delete all instructors from the Finance department
 delete from instructor
 where dept_name= ’Finance’;

 Delete all tuples in the instructor relation for those instructors associated with
a department located in the Watson building.

delete from instructor
 where dept name in (select dept name
 from department
 where building = ’Watson’);

Deletion (Cont.)
 Delete all instructors whose salary is less than the average salary of

instructors

delete from instructor
where salary < (select avg (salary)
 from instructor);

 Problem: as we delete tuples from deposit, the average salary
changes

 Solution used in SQL:
 1. First, compute avg (salary) and find all tuples to delete

 2. Next, delete all tuples found above (without
 recomputing avg or retesting the tuples)

Insertion
 Add a new tuple to course

 insert into course
 values (’CA-04’, ’Database Systems’, ’BCA.’, 4);

 or equivalently

 insert into course (course_id, title, dept_name, credits)
 values (’CA-04’, ’Database Systems’, ’BCA.’, 4);

 Add a new tuple to student with tot_creds set to null
 insert into student
 values (’3003’, ’Green’, ’Finance’, null);

Insertion (Cont.)
 Add all instructors to the student relation with tot_creds set to

0
 insert into student

select ID, name, dept_name, 0
 from instructor

 The select from where statement is evaluated fully before any
of its results are inserted into the relation.

 Otherwise queries like
 insert into table1 select * from table1
 would cause problem

Case Statement for Conditional Updates

 Same query as before but with case statement

 update instructor

 set salary = case
 when salary <= 100000 then salary * 1.05
 else salary * 1.03
 end

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

