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Attractors

> A set of numerical values toward which a system tends to evolve, for a
wide variety of starting conditions of the system.

» If the evolving variable is two- or three-dimensional, the attractor of
the dynamic process can be represented geometrically in two or three
dimensions

» An attractor can be a point, a finite set of points, a curve, a manifold,
or even a complicated set with a fractal structure known as a strange
attractor.

» Describing the attractors of chaotic dynamical systems has been one
of the achievements of chaos theory.

Paulsamy Muruganandam Bharathidasan University

Nonlinear Dynamics)



Types of attractors

» Point attractor (eg. equilibrium point)

» An attractive fixed point is easy to
find because many inputs lead to it.

» This means that if you meant to
start with a particular initial value,
but messed up and started with a
slightly-incorrect value, you will still
probably end up with the same
output.

» This captures a stability that
attractive fixed points.

» Periodic (eg. limit cycle)
» A phenomenon, process or motion,

which repeats itself after equal
intervals of time is called periodic.
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Types of attractors

» Quasiperiodic (eg. torus)
— property of a system that
displays irregular periodicity.

— a pattern of recurrence with a

component of unpredictability
that does not lend itself to
precise measurement.

» Strange (Chaos) — bounded
aperiodic long-termed behavior
in a deterministic nonlinear
system with sensitive
dependence on initial conditions.
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When the present determines the future, but the approximate

Chaos present does not approximately determine the future
— Edward Lorenz
» Chaos is bounded aperiodic 20
long-termed behavior of a 10

)
-10

deterministic system that
exhibits sensitive dependence
on initial conditions. 0
» One of the first models which was
shown to exhibit chaotic behaviour
in numerical simulation was the
fluid convection model introduced
in 1963 by Lorenz.
t=o0(y—x)
j=z(p—2)—y
z2=uxz—bz
=10, p=14, b=8/3
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Routes to Chaos

» Period doubling route

> A period T orbit (limit cycle) loses stability to an attracting period-2T
orbit as the parameter passes some critical value. At some later parameter
value, the period-2T" orbit loses stability to a period-4T orbit, etc.

» The parameter values at which these period doublings occur form an
increasing sequence converging to some finite value jio, at which the
original fixed point is replaced by an aperiodic attractor (which may be
chaotic for p > p.).

» The parameter values at which the bifurcations occur form an increasing
sequence {ug, k =1,2,--- 00} that is bounded above by a number with
the property that

li Pk — Pk—1
im —————

= ¢ (Feigenbaum constant)
k—oo pig1 — Hk

» Logistic map: 11 = px,(1 —x,), * € (0,1) and p € (0,4)
Moo = 3.5699 and § ~ 4.6692
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Period doubling phenomenon: Duffing osciillator

15

» Introduced by the Dutch f=03 f=035 f=0357
physicist Duffing in 1981 to . , 4 \“3 @ 7 @@
describe the hardening spring ~/ ~ :
effect. -15

1.5
» Describes the motion of a

damped oscillator with a s 00
more complicated potential.

-1.5

» Eg. a spring pendulum whose -5 o0 05-15 00 0-15 00 15
spring’s stiffness does not
exactly obey Hooke's law.

—

=

i+ ad +wir + B = fsinwt "

wi=-1, =02, =1 w=1 =

-6
0.32 0.34 0.36 0.38 0.40 0.42
forcing-amplitude (f)
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Intermittency Transition

» An attracting periodic orbit for ;v < p. (or p > p.) can disappear and
be replaced by a chaotic attractor for u > p. (or p < p).

» For u slightly larger than g, initial conditions near the periodic orbit
remain there for a long time.

» This regular behaviour is interrupted by a “burst” in which the
trajectory moves away from a neighbourhood of the periodic orbit and
exhibits possibly irregular behaviour.

» The dynamical behaviour for 11 > p. is characterized by an infinite
sequence of intervals of nearly periodic (laminar) motion followed by
bursts.

» The length of the laminar regions scales as (u — uc)_% for u near p,

[§ Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 189 (1980)
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Intermittency Transition

» When a motion alternates randomly between long regular or laminar
phases and relatively short irregular bursts, it is said that the motion is
intermittent or that there is an intermittency.

» In the intermittent route to chaos, initially the time series consists of
regular laminar motion interrupted by irregular bursts. The laminar
motions between two successive bursts have different durations which
are randomly distributed over the time intervals.

> As a control parameter is increased, the length of the laminar region
decreases and the bursts become very frequent so that at a critical
value of the parameter the laminar phases disappear altogether and
the motion becomes fully chaotic.

» Three bifurcations, namely saddle-node, Hopf and inverse-period
doubling, and the corresponding intermittency transitions are called
type-l, type-1l and type-lll, respectively.
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Intermittency Transition

» Logistic map

Tnt1 = axn(l —xp)

» Bifurcation diagram 0.0-

00 .. - g
3.82 383 384 0.04 . . . . a= 2827
a 0 250 500 750 1000 1250 1500
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Quasiperiodic Route to Chaos

| 2

| 2

Quasiperiodicity is the property of a system that displays irregular
periodicity.

Quasiperiodic behavior is a pattern of recurrence with a component
of unpredictability that does not lend itself to precise measurement.

The system is initially in a stationary state and becomes unstable and
undergoes Hopf bifurcation after a change of the control parameter.

At the Hopf bifurcation, a limit cycle is generated around the
equilibrium point the stability of which depends on the control
parameter.

If the two frequencies of this oscillation, w1 and ws, are not
commensurate (that is, wy /we is not a rational number), then the
observed motion is not periodic but quasiperiodic.
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Quasiperiodic Route to Chaos » Simple nonlinear circuit model
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¢ =ws

g(z) =bx+0.5(a —b)(|lx + 1| — |z — 1|)
a=-—102, b= —-0.55

» The parameters are

> v =0.015
> Q_Jl:%
> fi = 0.08
| 4

f2 € (0.05,0.20)

E A.J‘Venkatesarn et al, Phys. Lett. A 259, 246 (1999)

Paulsamy Muruganandam

Bharathidasan University

Nonlinear Dynamics)



Quasiperiodic Route to Chaos

Maximal Lyapunov exponent A
versus fy for f; = 0.08.

0.0 //‘\/‘
<
—0.2+
1.2
—0.4

0.05 0.10 0.15 0.20
forcing amplitude ( f2) =

1.0

Projections of attractors (Poincaré
section) in the (z,¢) plane with ¢
modulo 27 for f; = 0.08 and several
values of fs.
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Characterization of Chaos

» Lyapunov exponents

» Can be used to characterize the sensitive dependence of initial
conditions.

> Describes the rate of divergence (or convergence) of nearby trajectories
onto the attractor in different directions (in the phase space).

> It is sufficient to consider the largest (nonzero) Lyapunov exponent,
A

> )\, <0 : equilibrium points and periodic (including quasi-periodic)
orbits.

> )\, >0: chaos

» Power spectrum

> A simple way to check for periodicity and chaos.
» Fourier transform of the time series data.
» Broadband spectrum with spikes indicating predominant frequencies.

» Correlation function and dimension
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Strange nonchaotic attractor

» SNAs which are commonly occur in quasiperiodically forced systems
were first described by Grabogi, Ott and Yorke in 1984.

» Strange nonchaotic attractors are not chaotic but aperiodic and
display strange geometric properties. They are generic in the
quasiperiodically forced systems and are typically found in the
neighbourhood of related periodic or quasiperiodic or strange chaotic
attractors in parameter space.

» In a sense they represent dynamics which is intermediate between
quasiperiodic and chaotic: there is no sensitive dependence on initial
conditions, similar to motion on regular (periodic or quasiperiodic)
attractors, but the motion is aperiodic similar to the dynamics of
chaotic attractors.
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Strange nonchaotic attractor

>

| 2

SNAs are not at all rare. They are typical attractors in
quasiperiodically driven nonlinear system.

They have been found in many theoretical models such as Pendulum,
Duffing oscillator. Logistic Map, Henon Map, Circular Map etc.
Number of experiments have verified the existence of SNAs

> Magneto elastic ribbon exponent [Ditto et al. PRL 65, 533 (1990)]

> Model of SQUID system Zhou et al. [PRA 45, 5394 (1992)]

P Electronic circuits - Udea's circuit, Chua's circuit, MLC circuit.
Experiments of glow discharge in neon gas plasma in which SNA are
observed [Ding et al., PRE 55, 3769 (1997)]

Model study of a neuronal membrane system as well as EEG data in
which SNAs are found [Mandell and Selz, J. Stat. Phys. 70, 355
(1993)].
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Strange nonchaotic attractor

» An important area where the study of SNAs finds conceptual application is the
case of quantum mechanical systems with quasiperiodic potentials.

» There is an unexpected link between
wave-function localization phenomena and
the related strange nonchaotic dynamics of ..
an auxiliary variable, which was first pointed o=
out by Bondeson et al [PRL 55, 2103 (1985)]. °°
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> For Kepler's “golden” stars, Ditto et al. [PRL 114, 054101 (2015)] have shown
the evidence of the first observation of strange nonchaotic dynamics in nature

outside the laboratory.

» This discovery could aid the
classification and detailed modelling of
variable stars.
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Characterization of SNA

» Lyapunov Exponent (LE) 0.04
» The Lyapunov exponents describe 0.02
essentially the rate of divergence
or convergence of nearby = 0.00
trajectories onto the attractor in
different directions in the phase —0.02
space.
P —0.04

» At least one of the Lyapunov
exponents is always positive for
chaos and all are negative for
Torus and SNA
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Finite time Lyapunov exponent (FTLE)

» The probability distribution of FTLE can
be taken as another statistical measure  Zn+1 = @[l +ecos(2mn]zn (1 — zn)

for characterizing the dynamics. $n+1 = ¢n +w (modl)
» The distribution takes on negative _4
values for quasiperiodic behaviour
> It distribution takes on positive ~ 6
values for chaos. g 5 (Y
> In the case of SNA, it takes on = Z s ‘ .
both positive and negative values ™~ —10 N AT :;01()) L
with tail extending predominantly R Teme v o =047 .
into the negative region. 01 00 00 0o
1 A
_ 1 (1 — 9 1
AN N ;ln\a [1+ ecos (2m;)] (1 — 2z;)] e— 005 w— 5 (\/g _ 1)

P(N,dX\) = Probability that Ay lies between A and A + dA
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0-1 Test

> 0-1 test clearly helps to distinguish tori, ~ 1.00
SNA and chaos, from the time series
alone.

> Gopal et al., Chaos 23, 023123 (2013) =< 0.50

» value ‘0’ for torus, 0.2
» value in between '0" and '1’ for SNA
» value tends to '1' for Chaos

3.35 3.40 3.45
«
> Given an observation x(j) for j = 1,--- , N. Define a set of translational
variables as
n n
p(n) =Y x(j)coscj, q(n)=> =z(j)sincj, c€ (0,m)
j=1 j=1

> The diffusive (or non-diffusive) behaviour of p and ¢ can be investigated by
analyzing the mean square displacement M.
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0-1 Test

» If the dynamics is regular then the mean square displacement is a
bounded function in time, whereas ithe mean square displacement
scales linearly with time for chaos.

» Compute the mean squared displacement as

M) = Jim g 2 (IpG + k) = pG)I + [l + k) — a(i))?)
k=1,2,...kn, kn, is usually taken as N/10.

> K is computed by a linear regression for the log-log plot of the mean
square displacement as

K = lim 8 M k)
k—oo logk
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0-1 Test
> Alternatively, K can be computed by the correlation method as
M
K =corr(§, M) = cov(&, M) ,
var(&)var(M)

where £ = {1,2,... kp,} and M = {M (1), M(2),..., M (kn)}.

@ G. A. Gottwald, and |. Melbourne, The 0-1 Test for Chaos: A Review.
In: C. Skokos, G. Gottwald and J. Laskar (eds) Chaos Detection and
Predictability. Lecture Notes in Physics, vol 915 (Springer, Berlin,
Heidelberg, 2016)

@ R Gopal, A. Venkatesan, and M. Lakshmanan, Applicability of 0-1 test for
strange nonchaotic attractors, Chaos 23, 023123 (2013);
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Phase sensitivity

» Torus and SNA both show no exponential divergence to initial
separation of near by orbits, yet they can be distinguished with respect
to their sensitivities of the phases of the external force.

» Phase Sensitivity Measure which gives an idea of how the phase of the
external force influence the state variables of the system.

> If the attractor x(6) is viewed as a fractal curve, then its
nondifferentiability can be detected by examining the separation of
points that are initially close in 6.

> calculating the derivative dx/df along an orbit, and finding its
maximal value. This yields the phase sensitivity function,

dl’N
de ||’

'y =mingy {maxKN

as the smallest such realization for arbitrary (x,8) so that a bound can
be set on the rate of growth of " over the entire attractor.
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Phase sensitivity

» For a chaotic attractor, the sensitivity grows exponentially while for a
SNA, I'y grows as power,
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Singular Continuous Spectra

» Quantitatively confirm the strange nonchaotic nature of the dynamics,
was first proposed in the investigations of a model of quasiperiodic
lattices and quasiperiodically forced quantum systems.

» In general, power spectra of dissipative dynamical system can be
either discrete, or continuous, or a combination of both.

» While discrete spectra are generated by regular motions such as
periodic or quasiperiodic, continuous spectra are usually generated by
irregular motions, either chaotic or random.

» A singular continuous spectrum is an intermediate stage between
discrete and continuous spectra.
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Routes to SNA

» Torus collisions
» Heagy and Hammel [Physica D 70, 140 (1994)] identified the birth of a
SNA with the collision between the doubled quasiperiodic torus and its

unstable parent.
> A torus collision is thus a general feature of forced systems and is a

common mechanism for SNA creation.
1.0
0.8
0.6

=
0.4

0.2 — B
0.0 a=3.387¢ =03 a=3389, ¢ =03

00 02 04 06 08 1000 02 04 06 08 10
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Routes to SNA Tny1 = o [1 4 ecos(2ngp] xn (1 — )

» Fractalization Gnt1 = ¢p +w (modl)
> “fractalization” route for the creation of SNAs [Kaneko, Prog. Theor.
Phys. 71, 1112 (1984); Nishikawa & Kaneko, PRE 54, 6114 (1996)]
> A quasiperiodic torus gets increasingly wrinkled and transforms into a
SNA without the apparent mediation of any nearby unstable periodic
orbit.
» This route to SNA and eventually to chaos has also been observed in
higher-dimensional systems [Sosnovtseva et al., PLA 218, 255 (1996)].
1.0
0.8
. 06
0.4
0.2
0.0
0.(
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Routes to SNA Tny1 = o [1 4 ecos(2ngp] xn (1 — )

> Intermittency Gnt+1 = ¢On +w (modl)
» Crisis-induced intermittency Collision of the wrinkled torus with the
boundary resulting in a sudden widening of the attractor and birth of
SNA.
> Type-lll intermittency Taming of torus doublings due to subharmonic
bifurcations.

1.0
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Routes to SNA

» The blowout bifurcation

> A symmetric low-dimensional invariant subspace containing a
quasiperiodic torus, a blowout bifurcation [Ott & Sommerer, PLA 188,
39 (1994)] leads to the formation of a SNA [Yalginkaya & Lai, PRL 77,
5039 (1996)].

> Trajectories starting in the invariant subspace, S, remain in S.

» The Lyapunov exponent A has two components, one of which, Ar , is
defined for trajectories in S with respect to perturbations in a
transverse subspace T .

> A positive A indicates that trajectories in the vicinity of S are repelled
away from it, and this gives rise to strangeness.

> At the blowout bifurcation, A7 changes its sign, becoming positive as
a system parameter varies. If, concurrently, A < 0, the attractor is a
SNA.
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Conclusion

» Strange nonchaotic attractors are an important class of dynamical
attractors that are generic in quasiperiodically driven nonlinear
dynamical systems, both mappings as well as flows.

» Systems where SNAs arise naturally span a wide range since the

possibility of such dynamics devolves on a combination of dissipation,
nonlinearity and quasiperiodic modulation.
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