Chaotic Dynamics: Numerical Simulations

Paulsamy Muruganandam

Department of Physics Bharathidasan University Tiruchirappalli – 620024

E-mail: anand@bdu.ac.in

Introduction

Outline

What is chaos

Chaos in simple maps and oscillators

Numerical Methods

Why numerical solutions?

Ordinary differential equations

Runge-Kutta method

Error

Python

Modules

Simulations using Python

- What is chaos?
- Chaos in prototype models
- Numerical methods
- Simulations using Python

Chaos

Bounded aperiodic motion in deterministic nonlinear dynamical systems with sensitive dependence on initial conditions

Chaos

Bounded aperiodic motion in deterministic nonlinear dynamical systems with sensitive dependence on initial conditions

Characteristic features

unpredictability (long time)

Introduction

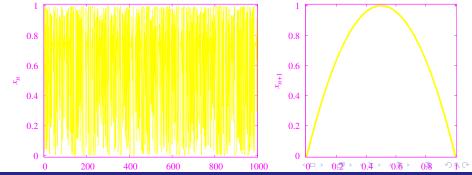
- neighbouring trajectories diverges exponentially (positive Lyapunov exponent)
- broad band (noise like) spectrum
- strange attractor and fractal dimensions

Chaotic Dynamics

Chaos in simple maps and oscillators

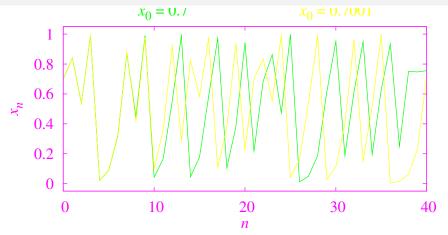
Logistic map

$$x_{n+1} = ax_n(1-x_n), \quad x \in (0,1), \quad a \in (0,4)$$



Paulsamy Muruganandam Chaotic Dynamics Bharathidasan University

Logistic map



Sensitive dependence on initial conditions

Why numerical solutions?

Why numerical solutions?

- ▶ In most of the occasions nonlinear differential equations (describing dynamical systems) – may not possess closed solutions (or) not exactly solvable.
- Local stability analysis can be done to understand the local dynamics to some extent.
- Numerical solutions becomes essential in order to study the complete dynamics (For eg. chaos and other related phenomena).

ODEs

Outline

$$\frac{dx_i}{dt} = f_i(x_1, x_2, x_3, \dots, x_n, t), \quad i = 1, 2, \dots, n$$
 (1)

Any n-th order ODE of the form

$$\frac{d^n x}{dt^n} + a_1(t) \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{dx}{dt} + a_n(t)x = 0,$$
 (2)

can always be written in the form (1) as $x_1 = x$,

$$\dot{x}_1 = x_2,$$

 $\dot{x}_2 = x_3,$
:

$$\dot{x}_n = -a_1(t)x_{n-1} - \dots - a_{n-1}(t)x_{2} - a_n(t)x_{1}$$

00

Euler method

- Simple technique for handling first order initial value problems.
- Basic explicit method for solving ordinary differential equations.
- For simplicity, consider first order ODE $\dot{x} = f(x,t)$ with initial condition: $x(t_0) = x_0$

$$x_{n+1} = x_n + hf(x_n, t_n),$$
 (4)

Python

where $t_n = t_0 + nh$, h time step, and $x_n = x(t_n)$.

Outline

Forth order Runge-Kutta method

- Most commonly used method for solving ordinary differential equations – often referred to as "RK4".
- Consider the first order ODE $\dot{x} = f(x,t)$ with initial condition: $x(t_0) = x_0$

$$x_{n+1} = x_n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4),$$

$$t_{n+1} = t_n + h,$$
(5)

where

$$k_{1} = h f(x_{n}, t_{n}), k_{2} = h f\left(x_{n} + \frac{k_{1}}{2}, t_{n} + \frac{h}{2}\right),$$

$$k_{3} = h f\left(x_{n} + \frac{k_{2}}{2}, t_{n} + \frac{h}{2}\right), k_{3} = h f\left(x_{n} + k_{3}, t_{n} + h\right). (6)$$

Outline

► Euler method

$$E(x(b), h) = O(h), \ t \in (a, b)$$

► Forth order Runge-Kutta method

$$E(x(b), h) = O(h^4), t \in (a, b)$$

Python

Python

- an interpreted, object-oriented, high-level programming language
- Simple and easy to learn syntax
- Scripting and non-scripting contexts

Python

Python Modules

- SciPy an open source library of algorithms and mathematical tools
- NumPy an extension to Python support of large multi-dimensional arrays and matrices – library of high-level mathematical function – free alternative to MATLAB
- Matplotlib plotting library for the Python programming language and its NumPy numerical mathematics extensions

Duffing oscillator

Duffing oscillator

$$\ddot{x} + \alpha \dot{x} + \omega_0^2 x + \beta x^3 = f \sin \omega t$$

$$\alpha = 0.5, \quad \omega_0^2 = -1, \quad \omega = 1$$

