Introduction to Nonlinear Dynamics

Linear Oscillators

Paulsamy Muruganandam

Deaprtment of Physics Bharathidasan University Tiruchirappalli - 620024 India

- Numerical Methods
 - Why numerical solutions?
 - Ordinary differential equations
 - Runge-Kutta method
 - Error analysis
- 2 Linear Oscillators
 - Free Oscillations
 - Damped Oscillations
 - Damped and Forced Oscillations
- Nonlinear Oscillators
 - Duffing oscilltor
 - van der Pol oscillator

Outline

- In most of the occasions nonlinear differential equations (describing dynamical systems) – may not possess closed solutions (or) not exactly solvable.
- Local stability analysis can be done to understand the local dynamics to some extent.
- Numerical solutions becomes essential in order to study the complete dynamics (For eg. chaos and other related phenomena).

ODEs

$$\frac{dx_i}{dt} = f_i(x_1, x_2, x_3, \cdots, x_n, t), \quad i = 1, 2, \dots, n$$
 (1)

Linear Oscillators

Any *n*-th order ODE of the form

$$\frac{d^n x}{dt^n} + a_1(t) \frac{d^{n-1} x}{dt^{n-1}} + \dots + a_{n-1}(t) \frac{dx}{dt} + a_n(t) x = 0, \quad (2)$$

can always be written in the form (1) as $x_1 = x$,

$$\dot{x}_1 = x_2,
\dot{x}_2 = x_3,
\vdots
\dot{x}_n = -a_1(t)x_{n-1} - \dots - a_{n-1}(t)x_2 - a_n(t)x_1$$
(3)

Linear Oscillators

Euler method

- Simple technique for handling first order initial value problems.
- Basic explicit method for solving ordinary differential equations.
- For simplicity, consider first order ODE $\dot{x} = f(x, t)$ with initial condition: $x(t_0) = x_0$

$$x_{n+1} = x_n + hf(x_n, t_n),$$
 (4)

where $t_n = t_0 + nh$, h time step, and $x_n = x(t_n)$.

Forth order Runge-Kutta method

- Most commonly used method for solving ordinary differential equations – often referred to as "RK4".
- Consider the first order ODE $\dot{x} = f(x, t)$ with initial condition: $x(t_0) = x_0$

$$x_{n+1} = x_n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4),$$
 (5)
$$t_{n+1} = t_n + h,$$

Linear Oscillators

where

$$k_1 = h f(x_n, t_n),$$
 $k_2 = h f\left(x_n + \frac{k_1}{2}, t_n + \frac{h}{2}\right),$ $k_3 = h f\left(x_n + \frac{k_2}{2}, t_n + \frac{h}{2}\right),$ $k_3 = h f\left(x_n + k_3, t_n + h\right).$ (6)

Euler method

$$E(x(b), h) = O(h), t \in (a, b)$$

Linear Oscillators

• Forth order Runge-Kutta method

$$E(x(b), h) = O(h^4), t \in (a, b)$$

Linear Oscillators

$$\frac{d^2x}{dt^2} + \alpha \frac{dx}{dt} + \omega_0^2 x = f \sin \omega t \tag{7}$$

Linear Oscillators

00000

Free Oscillations

Free linear harmonic oscillator ($\alpha = 0$, f = 0)

$$x(t) = A\cos\omega_0 t. \tag{8}$$

Linear Oscillators

000000

Initial conditions: x(0) = A, $\dot{x}(0) = 0$

Free Oscillations

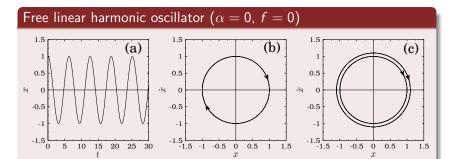


Figure: Solution curve and phase portrait of the free linear harmonic oscillator

Linear Oscillators

000000

Damped Oscillations

$\alpha \neq 0$ and f = 0

The explicit solution

$$x(t) = A_1 \exp(m_1 t) + A_2 \exp(m_2 t),$$
 (9)

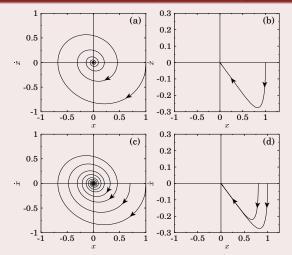
where

$$m_{1,2} = \frac{1}{2} \left[-\alpha \pm \sqrt{\alpha^2 - 4\omega_0^2} \right],$$

 A_1 and A_2 are constants

- Under damping: $0 < \alpha < 2\omega_0$
- Critical damping: $\alpha = 2\omega_0$
- Over damping : $\alpha > 2\omega_0$

Damped linear harmonic oscillator ($\alpha \neq 0$, f = 0)

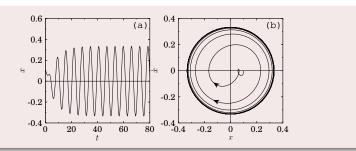


Damped and Forced Oscillations

$$\ddot{x} + \alpha \dot{x} + \omega_0^2 x = f \sin \omega t. \tag{10}$$

Linear Oscillators

00000



Resonance

