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@ Numerical Methods
@ Why numerical solutions?
@ Ordinary differential equations
@ Runge-Kutta method
@ Error analysis

© Linear Oscillators
@ Free Oscillations
@ Damped Oscillations
@ Damped and Forced Oscillations

© Nonlinear Oscillators
o Duffing oscilltor
@ van der Pol oscillator

P. Muruganandam Nonlinear Dynamics



Numerical Methods
.

Why numerical solutions?

@ In most of the occasions nonlinear differential equations
(describing dynamical systems) — may not possess closed
solutions (or) not exactly solvable.

@ Local stability analysis can be done to understand the local
dynamics to some extent.

@ Numerical solutions becomes essential in order to study the
complete dynamics (For eg. chaos and other related
phenomena).
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Numerical Methods
®0

dx;
dt
Any n-th order ODE of the form

= fi(x1,x2, X3, -+ ,Xn,t), i=1,2,....n (1)

AP e S
dtn I gt

+an(t)x =0, (2)

can always be written in the form (1) as x; = x,

).(1 = X2,
X2 = X3,
Xp = —al(t)x,,_l — = a,,_l(t)xz — a,,(t)xl (3)
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Numerical Methods
oe

Euler method

@ Simple technique for handling first order initial value problems.

@ Basic explicit method for solving ordinary differential
equations.

e For simplicity, consider first order ODE x = f(x, t) with initial
condition: x(to) = xo

Xp+1 = Xp + hf(Xm tn)y (4)

where t, = ty + nh, h time step, and x, = x(t5).
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Numerical Methods
.

Forth order Runge-Kutta method

@ Most commonly used method for solving ordinary differential
equations — often referred to as “RK4".

o Consider the first order ODE x = f(x, t) with initial condition:

X(to) = X0
1
Xn+1 = Xp + 5 (ki + 2ko + 2ks + ka) , (5)
tht1 = th + ha
where
k h
klzhf(Xn,tn), k2:hf<Xn+2l,tn+2),

k h
k3:hf<x,,—|—22,t,,+2>, ks =hf(xn+ ks, ta+h). (6)
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Numerical Methods
.

o Euler method
E(x(b), h) = O(h), t € (a,b)
@ Forth order Runge-Kutta method

E(x(b), h) = O(h"), t € (a,b)
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Linear Oscillators
°

Linear Oscillators

d? d
F;(—i—ad—); + wix = fsinwt (7)
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Linear Oscillators
°0

Free Oscillations

Free linear harmonic oscillator (w =0, f = 0)

x(t) = Acoswot. (8)

Initial conditions: x(0) = A, x(0) =0
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Linear Oscillators
oe

Free Oscillations

Free linear harmonic oscillator (aw =0, f =
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Figure: Solution curve and phase portrait of the free linear harmonic
oscillator

P. Muruganandam Nonlinear Dynamics



Linear Oscillators
°0

Damped Oscillations

az#0and f=0

The explicit solution
x(t) = Ay exp (myt) + Az exp (mat), (9)

where

1
2= [—ai \/ a? —4w8] ,

A1 and A, are constants

@ Under damping: 0 < a < 2wy
o Critical damping: a = 2wyg

@ Over damping : a > 2wy

<
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Linear Oscillators
oce

Damped linear harmonic oscillator (a # 0, f = 0)
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X+ ax 4 wix = fsinwt. (10)
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