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Physics of Quantum Confinement

History: In 1970 Esaki & Tsu proposed fabrication of an
artificial structure, consisting of alternating layers of 2
different semiconductors

L aver Thickness

~1nm=10A=10°m =SUPERLATTICE

« PHYSICS: The main idea was that introduction of an
artificial periodicity will “fold” the Brillouin Zones into

smaller BZ’s = “mini-zones”.

—> The idea was that this would raise the conduction band

minima, which is needed to observe novel physics and can be
employed for some quantum and nano device applications.



Modern growth techniques (starting in the 1980°s), especially
MBE & MOCVD, make fabrication of such structures possible!

For the same reason, it is also possible to fabricate many other
Kinds of artificial structures on the scale of nm

(nanometers) = “Nanostructures”

Superlattices = ¢“2 dimensional” structures
Quantum Wells = “2 dimensional” structures
Quantum Wires = “1 dimensional” structures
Quantum Dots = “0 dimensional ” structures!!

Clearly, it is not only the electronic properties of materials which can
be drastically altered in this way. Also, vibrational properties
(phonons). Here, only electronic properties & only an overview!

For many years, guantum confinement has been a fast growing field in
both theory & experiment! It is at the forefront of current research!

Note that | am not an expert on it!



Quantum Confinement in Nanostructures: Overview

Electrons Confined in 1 Direction:
Quantum Wells (thin films):
= Electrons can easily move in
2 Dimensions!

ity

1 Dimensional

Electrons Confined in 2 Directions: N, Quantization!
Quantum Wires: y
— Electrons can easily move in —k
1 Dimension! 2 Dimensional n,

I ion!
Electrons Confined in 3 Directions: 2o 2o

Quantum Dots: n, . .
= Electrons can easily move in i Imensiona
ny

0 Dimensions! Quantization!

Each further confinement direction changes a continuous k component
to a discrete component characterized by a quantum number n.



« PHYSICS: Revisit the band structure

— Consider the 15t Brillouin Zone for the infinite crystal.
The maximum wave vectors are of the order

K., = (m/a)

a = lattice constant. The potential V is periodic with period a. In
the almost free e~ approximation, the bands are free e like except
near the Brillouin Zone edge. That is, they are of the form:

E ~ (hk)%/(2m,)
So, the energy at the Brillouin Zone edge has the form:
En, = (K,)*/(2m,)
or

E_~ (hm)%(2m,a?)




PHYSICS

« SUPERLATTICES = Alternating layers of material.
Periodic, with periodicity L (layer thickness). Let k, =
wavevector perpendicular to the layers.

 |n a superlattice, the potential \ has a new periodicity in the
z direction with periodicity L >> a

— In the z direction, the Brillouin Zone is much smaller than
that for an infinite crystal. The maximum wavevectors are of

the order: K, =~ (m/L)
= At the BZ edge in the z direction, the energy has the form:

E, ~ (hm)2/(2m,L2) + E5(K)
E,(k) = the 2 dimensional energy for k in the x,y plane.
Note that:  (%r)?/(2m,L?) << (Ar)?/(2m a?)



Primary Qualitative Effects of Quantum Confinement

« Consider electrons confined along 1 direction (say, z) to a layer of
width L:

Energies

« The energy bands are quantized (instead of continuous) in
k, & shifted upward. So k, Is quantized:

k, =k =[(nm)/L],n =1,2, 3

« So, in the effective mass approximation (m¥*), the bottom of the
conduction band is quantized (like a particle in a 1 d box) & shifted:

E. = (nAn)4/(2m*L?)
« Energies are guantized! Also, the wavefunctions are 2

dimensional Bloch functions (traveling waves) for k in
the x,y plane & standing waves in the z direction.




Quantum Confinement Terminology
Quantum Well = QW

= A single layer of material A (layer thickness L), sandwiched between 2
macroscopically large layers of material B. Usually, the bandgaps satisfy:

EgA < EgB
Multiple Quantum Well = MQW
= Alternating layers of materials A (thickness L) & B (thickness L’). In this case:
L'>> L

So, the e & e* in one A layer are independent of those in other A layers.

Superlattice = SL

= Alternating layers of materials A & B with similar layer thicknesses.




Brief Elementary Quantum Mechanics &
Solid State Physics Review

Quantum Mechanics of a Free Electron:

— The energies are continuous: E = (Ak)%/(2m,) (1d, 2d, or 3d)
— The wavefunctions are traveling waves:

v (X) = A e (1d) v, (r) = A ek (2d or 3d)
« Solid State Physics: Quantum Mechanics of an Electron in a

Periodic Potential in an infinite crystal :

— The energy bands are (approximately) continuous: E= E_,

— At the bottom of the conduction band or the top of the valence band,
In the effective mass approximation the bands can be written:

E, .« = (BK)%/(2m™*)
— The wavefunctions are Bloch Functions = traveling waves:
Tnk(r) — eik-r unk(r); unk(r) — unk(r+R)




Some Basic Physics

» Density of states (DoS)
dN dN dk
DOS — — —.. dN/dE~const
dE dk dE ey L
in 3D: k I dN/dE~E "} :
Space vo
N (k) = " %
vol per state nK e
dN/dE~G(E)
4343 @ . !
(272-)3 /\/ l I D : of carriers in structures Th_ different
Structure Degree of d_N
Confinement dE
Bulk Material 0D \/E
Quantum Well 1D 1
Quantum Wire 2D UVE
Quantum Dot 3D O(E)




QM Review: The 1D (infinite) Potential Well

(“particle in a box”)

« We want to solve the Schrodinger Equation for:

Xx<0,V>o0;0<x<L V=0;x>L, Voo  * 4
= -[A2/(2m,)](d? y/dx?) = Ey
« Boundary Conditions:
y=0atx=0&x=L (V> oo there)
« Energies:
E. = (Anm)?/(2m,L?), n=1,2,3
Wavefunctions:
v, (X) = (2/L)”sin(nmtx/L) (a standing wave!) e -

Qualitative Effects of Quantum Confinement:

Energies are guantized & y changes from a
traveling wave to a standing wave.



In 3Dimensions"'
For the 3D infinite potential well:

¥ (X, Y, ) ~sin( =) sin( mL—’yzy)sin( ), n,m, g =integer

2h2

Energy levels = 20 4 mh® 4 9

smL’  8mL,®  8mL,’
Real Quantum Structures aren’t this simple!!

In Superlattices & Quantum Wells, the potential barrier is
obviously not infinite!

In Quantum Dots, there is usually ~ spherical confinement,
not rectangular.

The simple problem only considers a single electron. But, in real
structures, there are many electrons & also holes!

Also, there is often an effective mass mismatch at the boundaries.
That is the boundary conditions we’ve used are too simple!



QM Review: The 1d (finite) Rectangular Potential Well

In most QM texts!! Analogous to a Quantum Well
« \We want to solve the Schrodinger Equation for:
AV

We want bound

states: € <V, \ vi
NSRS S— ISR (S S

1
-b/2 0 b/2

Rectangular potential well

[-{h*/(2m,)}(d*/dx?) + V]y = ey (e =E)
V =0, -(b/2) <x < (b/2); V =V, otherwise



Solve the Schrodinger Equation: i
[-{h2/(2m)Hd/dx?) + Viy = ey -()bi| =
(e=E)V =0, -(b/2) <x < (b/2) A

V =V, otherwise (£
Bound states are in Reqion |1 Vi,
E,
= (2) V:
Region [ Region 11 Region III

Region I1I: J\(V\ /\

y(X) Is oscillatory \/ \/ :

(b)
Req IOnS I & I I I : Finite rectangular potential
well. (a) The potential function V(x) and
1 1 cnergy spectrum. (b) Typical structure of a
\I’(X) IS decavl nq bound eigenstate. Function oscillates in regioa

II where kinetic energy is positive and decays
in regions I and III, where kinctic energy is
negative.



The 1d (finite) rectangular potential well
A brief math summary!

Define: a2 = (2m,¢)/(h?); p2=[2m,( - V,)]/(h?)
The Schrodinger Equation becomes:
(d?/dx) y+ o2y = 0, -()b<x< ()b
(d?/dx?) y - By =0, otherwise.
= Solutions:

v = C exp(iax) + D exp(-lax), -(*2)b<x<(*%2)b
v = A exp(px), X < -(%2)b
v = A exp(-px), X > ()b

Boundary Conditions:
=y & dy/dx are continuous SO:



« Algebra (2 pages!) leads to:
(1) = (W2a?)/(2m,V,)

g, a, P are related to each other by transcendental equations.
For example:

tan(ab) = (2ap)/(a %- B?)
 Solve graphically or numerically.

» Get: Discrete Energy Levels in the well
(a finite number of finite well levels!)




« Even eigenfunction solutions (a finite number):
Circle, & + n?= p?, crosses n = & tan(&)

ni El =(77|/P)2 Vo

p2 = 27m 2 I%Vﬁz
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e Odd elgenfunction solutions:
Circle, & + n%= p?, crosses n = -& cot(&)

E, = (n2/p)? V, p2=2mP| gl |2
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Quantum Confinement in Nanostructures

Confined in:

1 Direction: Quantum well (thin film)

Two-dimensional electrons k

Lk

X

2 Directions: Quantum wire

n
y
One-dimensional electrons -/—>kx
nZ

A
3 Directions: Quantum dot #n
X
Zero-dimensional electrons "y

Each confinement direction converts a continuous k in a discrete quantum number n.



EVacuum

EFermi

0

N atomic layers with the spacing a =d/n

N quantized states with k,=n-n/d (n=1,...,N)
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Quantization in a Thin Crystal

An energy band with continuous k
IS quantized into N discrete points k,
in a thin film with N atomic layers.

Electron
> Scattering _— I
Inverse _.ava_
Photoemission
Photoemission g
d
A,=2d/n

K,=2rn/A,= n-n/d



Quantization in Thin Graphite Films

EVacuum

EFermi

0 =n/d k, n/a

N atomic layers with spacing a=d/n:

= N quantized states with k, =N . n/d

Lect. 7b,
Slide 11

Photoemission

(v "y

9l

1 layer =
graphene

2 layers

3 layers

4 layers

oo layers
= graphite



The Important Electrons in a Metal

Energy = E

Fermi

Energy Spread = 3.5 kgT

Transport (conductivity, magnetoresistance, screening length, ...)
Width of the Fermi function:
FWHM =~ 3.5 kgT

Phase transitions (superconductivity, magnetism, ...)
Superconducting gap:

E, ~ 3.5kgT, (T.= critical temperature)



