# Nanophysics

(II - MSc PHYSICS - 3<sup>rd</sup> Semester)

# **Quantum Confinement**

(Unit-I)

Course Teacher: Dr. K. JEGANATAN

# **Physics of Quantum Confinement**

**History**: In 1970 Esaki & Tsu proposed fabrication of an artificial structure, consisting of alternating layers of 2 different semiconductors

# Layer Thickness

$$\approx 1 \text{ nm} = 10 \text{ Å} = 10^{-9} \text{ m} \equiv SUPERLATTICE}$$

- **PHYSICS:** The **main idea** was that introduction of an **artificial periodicity** will "fold" the Brillouin Zones into smaller BZ's ≡ "**mini-zones**".
- ⇒ The idea was that this would raise the conduction band minima, which is needed to observe novel physics and can be employed for some quantum and nano device applications.

- Modern growth techniques (starting in the 1980's), especially
   MBE & MOCVD, make fabrication of such structures possible!
- For the same reason, it is also possible to fabricate many other kinds of artificial structures on the scale of nm

(nanometers) ≡ "Nanostructures"

- Clearly, it is not only the electronic properties of materials which can be drastically altered in this way. Also, vibrational properties (phonons). Here, only electronic properties & only an overview!
- For many years, quantum confinement has been a fast growing field in both theory & experiment! It is at the forefront of current research!
- Note that I am not an expert on it!

#### **Quantum Confinement in Nanostructures: Overview**

#### Electrons <u>Confined in 1 Direction</u>:

**Quantum Wells** (thin films):

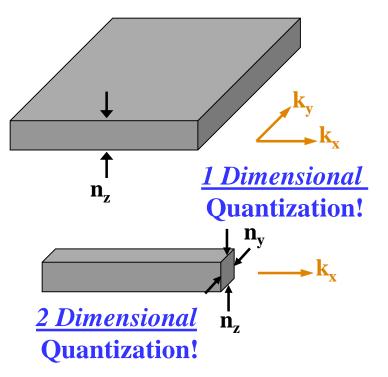
⇒ Electrons can easily move in 2 *Dimensions*!

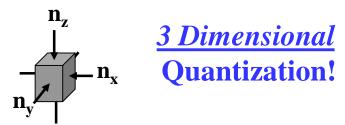
# **Electrons** <u>Confined in 2 Directions</u>: Quantum Wires:

⇒ Electrons can easily move in 1 Dimension!

# **Electrons** <u>Confined in 3 Directions</u>: Quantum Dots:

⇒ Electrons can easily move in <u>0 Dimensions!</u>





Each further confinement direction changes a continuous k component to a discrete component characterized by a quantum number n.

- **PHYSICS**: Revisit the band structure
  - Consider the 1<sup>st</sup> Brillouin Zone for the infinite crystal.
     The maximum wave vectors are of the order

$$k_m \approx (\pi/a)$$

 $\mathbf{a} = \text{lattice constant}$ . The potential  $\mathbf{V}$  is periodic with period  $\mathbf{a}$ . In the almost free  $e^-$  approximation, the bands are free  $e^-$  like except near the Brillouin Zone edge. That is, they are of the form:

$$E \approx (\hbar k)^2/(2m_0)$$

So, the <u>energy at the Brillouin Zone edge</u> has the form:

$$E_{\rm m} \approx (\hbar k_{\rm m})^2/(2m_{\rm o})$$
or
$$E_{\rm m} \approx (\hbar \pi)^2/(2m_{\rm o}a^2)$$

# **PHYSICS**

- <u>SUPERLATTICES</u>  $\equiv$  Alternating layers of material. Periodic, with periodicity L (layer thickness). Let  $\mathbf{k_z} =$  wavevector perpendicular to the layers.
- In a superlattice, the potential V has a new periodicity in the z direction with periodicity L >> a
  - ⇒ In the z direction, the Brillouin Zone is much smaller than that for an infinite crystal. The maximum wavevectors are of the order:  $k_s \approx (\pi/L)$ 
    - $\Rightarrow$  At the BZ edge in the z direction, the energy has the form:

$$E_s \approx (\hbar \pi)^2 / (2m_0 L^2) + E_2(k)$$

 $\mathbf{E_2}(\mathbf{k})$  = the 2 dimensional energy for  $\mathbf{k}$  in the  $\mathbf{x}$ , $\mathbf{y}$  plane.

Note that: 
$$(\hbar\pi)^2/(2m_0L^2) << (\hbar\pi)^2/(2m_0a^2)$$

### **Primary Qualitative Effects of Quantum Confinement**

• Consider *electrons confined along 1 direction* (say, **z**) to a layer of width **L**:

# **Energies**

• The *energy bands are <u>quantized</u>* (instead of continuous) in **k**<sub>z</sub> & shifted **upward**. So **k**<sub>z</sub> is **quantized**:

$$k_z = k_n = [(n\pi)/L], n = 1, 2, 3$$

• So, in the effective mass approximation (m\*), the bottom of the conduction band is quantized (like a particle in a 1 d box) & shifted:

$$E_n = (n\hbar\pi)^2/(2m*L^2)$$

• <u>Energies are quantized!</u> Also, the wavefunctions are 2 dimensional Bloch functions (<u>traveling waves</u>) for k in the x,y plane & <u>standing waves in the z direction</u>.

# **Quantum Confinement Terminology Quantum Well** = **QW**

= A single layer of material **A** (layer thickness **L**), sandwiched between 2 macroscopically large layers of material **B**. Usually, the bandgaps satisfy:

$$E_{gA} < E_{gB}$$

# **Multiple Quantum Well ≡ MQW**

= Alternating layers of materials A (thickness L) & B (thickness L'). In this case:

So, the e<sup>-</sup> & e<sup>+</sup> in one A layer are independent of those in other A layers.

$$Superlattice = SL$$

= Alternating layers of materials **A** & **B** with similar layer thicknesses.

# Brief Elementary Quantum Mechanics & Solid State Physics Review

- Quantum Mechanics of a Free Electron:
  - The energies are <u>continuous</u>:  $E = (\hbar k)^2/(2m_0)$  (1d, 2d, or 3d)
  - The wavefunctions are <u>traveling waves</u>:

$$\psi_{\mathbf{k}}(\mathbf{x}) = \mathbf{A} \ \mathbf{e}^{\mathbf{i}\mathbf{k}\mathbf{x}}$$
 (1d)  $\psi_{\mathbf{k}}(\mathbf{r}) = \mathbf{A} \ \mathbf{e}^{\mathbf{i}\mathbf{k}\bullet\mathbf{r}}$  (2d or 3d)

- Solid State Physics: Quantum Mechanics of an Electron in a Periodic Potential in an infinite crystal:
  - The energy bands are (approximately) continuous:  $E = E_{nk}$
  - At the bottom of the conduction band or the top of the valence band,
     in the effective mass approximation, the bands can be written:

$$\mathbf{E}_{nk} \cong (\hbar \mathbf{k})^2 / (2\mathbf{m}^*)$$

- The wavefunctions are Bloch Functions =  $\underline{traveling\ waves}$ :

$$\Psi_{nk}(r) = e^{ik \cdot r} u_{nk}(r); u_{nk}(r) = u_{nk}(r+R)$$

# Some Basic Physics

• Density of states (DoS)

$$DoS = \frac{dN}{dE} = \frac{dN}{dk} \frac{dk}{dE}$$

**in 3D**:

$$N(k) = \frac{\text{k space vol}}{\text{vol per state}}$$
$$= \frac{4/3 \pi k^3}{(2\pi)^3/V}$$

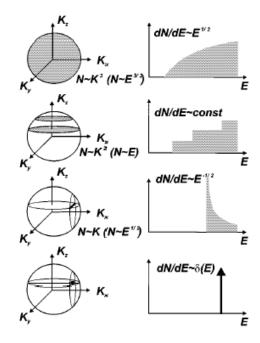


Fig. 1. Density of states for charge carriers in structures with different dimensionalities.

| Structure          | Degree of Confinement | $\frac{dN}{dE}$ |  |
|--------------------|-----------------------|-----------------|--|
| Bulk Material      | 0D                    | $\sqrt{E}$      |  |
| Quantum Well       | 1D                    | 1               |  |
| Quantum Wire       | 2D                    | $1/\sqrt{E}$    |  |
| <b>Quantum Dot</b> | 3D                    | δ(E)            |  |

# QM Review: The 1D (infinite) Potential Well

("particle in a box")

We want to solve the Schrödinger Equation for:

$$x < 0, V \rightarrow \infty$$
;  $0 < x < L, V = 0$ ;  $x > L, V \rightarrow \infty$   
 $\Rightarrow -[\hbar^2/(2m_0)](d^2\psi/dx^2) = E\psi$ 

Boundary Conditions:

$$\psi = 0$$
 at  $x = 0$  &  $x = L$  ( $V \rightarrow \infty$  there)

• Energies:

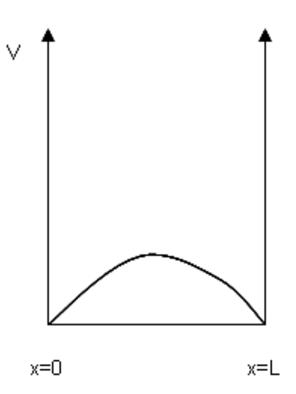
$$E_n = (\hbar n\pi)^2/(2m_0L^2), \quad n = 1,2,3$$

Wavefunctions:

$$\psi_n(\mathbf{x}) = (2/\mathbf{L})^{1/2} \sin(n\pi \mathbf{x}/\mathbf{L})$$
 (a standing wave!)

Qualitative Effects of Quantum Confinement:

**Energies are quantized** & ψ changes from a traveling wave to a **standing wave**.



## In 3D<sub>imensions</sub>...

• For the **3D** infinite potential well:

$$\Psi(x, y, z) \sim \sin(\frac{n\pi x}{L_x}) \sin(\frac{m\pi y}{L_y}) \sin(\frac{q\pi z}{L_z}), \text{ n, m, q = integer}$$

$$\text{Energy levels} = \frac{n^2 h^2}{8mL_x^2} + \frac{m^2 h^2}{8mL_y^2} + \frac{q^2 h^2}{8mL_z^2}$$

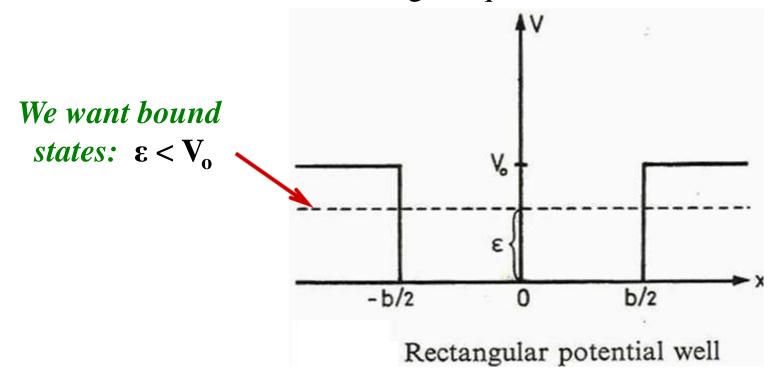
$$\textit{Real Quantum Structures aren't this simple!!}$$

- In Superlattices & Quantum Wells, the potential barrier is obviously not infinite!
- In Quantum Dots, there is usually ~ spherical confinement, not rectangular.
- The simple problem only considers a single electron. But, in real structures, there are many electrons & also holes!
- Also, there is often an effective mass mismatch at the boundaries. That is *the boundary conditions we've used are too simple*!

## QM Review: The 1d (finite) Rectangular Potential Well

In most QM texts!! Analogous to a Quantum Well

We want to solve the Schrödinger Equation for:



$$[-\{\hbar^2/(2m_o)\}(d^2/dx^2) + V]\psi = \epsilon \psi \ (\epsilon \equiv E)$$
 
$$V = 0, -(b/2) < x < (b/2); \qquad V = V_o \ otherwise$$

Solve the Schrödinger Equation:

$$\begin{aligned} [-\{\hbar^2/(2m_o)\}(d^2/dx^2) + V]\psi &= \epsilon \psi \\ (\epsilon \equiv E) \ V &= 0, -(b/2) < x < (b/2) \\ V &= V_o \ otherwise \end{aligned}$$

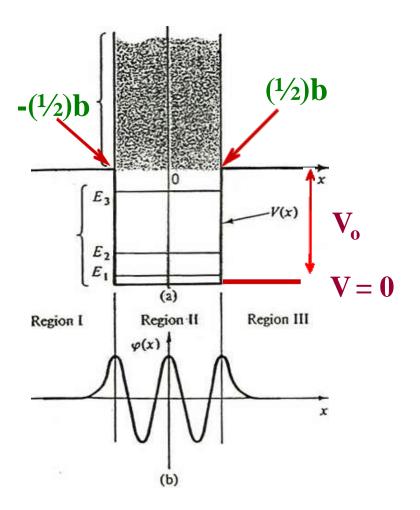
Bound states are in Region II

#### **Region II:**

 $\psi(x)$  is <u>oscillatory</u>

## Regions I & III:

 $\psi(x)$  is <u>decaying</u>



Finite rectangular potential well. (a) The potential function V(x) and energy spectrum. (b) Typical structure of a bound eigenstate. Function oscillates in region II where kinetic energy is positive and decays in regions I and III, where kinetic energy is negative.

#### The 1d (finite) rectangular potential well

A brief math summary!

**Define:** 
$$\alpha^2 \equiv (2m_0 \epsilon)/(\hbar^2)$$
;  $\beta^2 \equiv [2m_0 (\epsilon - V_0)]/(\hbar^2)$ 

The Schrödinger Equation becomes:

$$(d^2/dx^2) \psi + \alpha^2 \psi = 0$$
,  $-(1/2)b < x < (1/2)b$   
 $(d^2/dx^2) \psi - \beta^2 \psi = 0$ , otherwise.

#### $\Rightarrow$ Solutions:

$$\psi = \mathbf{C} \exp(\mathbf{i}\alpha \mathbf{x}) + \mathbf{D} \exp(\mathbf{-i}\alpha \mathbf{x}), \qquad -(\frac{1}{2})\mathbf{b} < \mathbf{x} < (\frac{1}{2})\mathbf{b}$$

$$\psi = \mathbf{A} \exp(\beta \mathbf{x}), \qquad \mathbf{x} < -(\frac{1}{2})\mathbf{b}$$

$$\psi = \mathbf{A} \exp(-\beta \mathbf{x}), \qquad \mathbf{x} > (\frac{1}{2})\mathbf{b}$$

## **Boundary Conditions:**

 $\Rightarrow \psi \& d\psi/dx$  are continuous SO:

• Algebra (2 pages!) leads to:

$$(\varepsilon/V_o) = (\hbar^2 \alpha^2)/(2m_o V_o)$$

 $\epsilon$ ,  $\alpha$ ,  $\beta$  are related to each other by transcendental equations. For example:

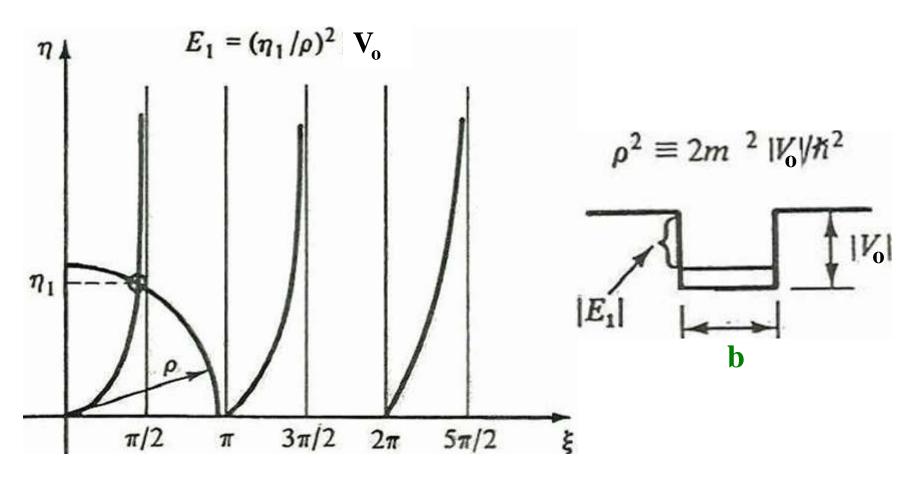
$$\tan(\alpha \mathbf{b}) = (2\alpha\beta)/(\alpha^2 - \beta^2)$$

• Solve graphically or numerically.

• Get: <u>Discrete Energy Levels</u> in the well (a finite number of finite well levels!)

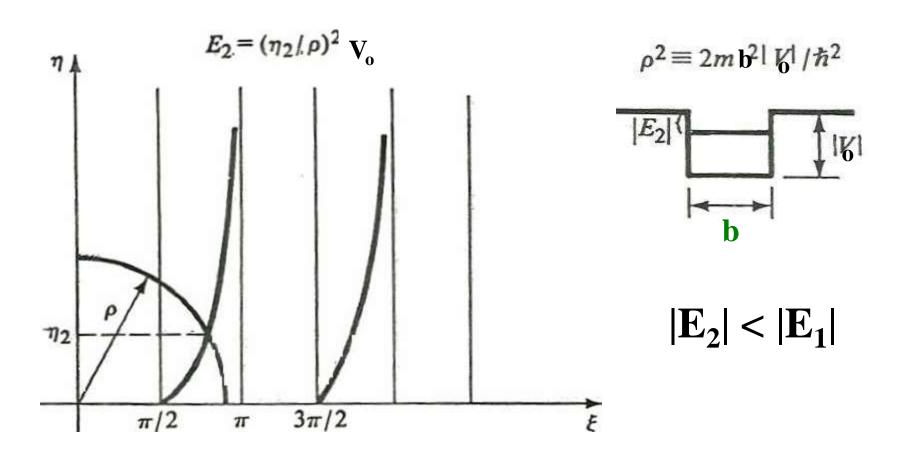
• Even eigenfunction solutions (a finite number):

Circle, 
$$\xi^2 + \eta^2 = \rho^2$$
, crosses  $\eta = \xi \tan(\xi)$ 



• Odd eigenfunction solutions:

Circle, 
$$\xi^2 + \eta^2 = \rho^2$$
, crosses  $\eta = -\xi \cot(\xi)$ 

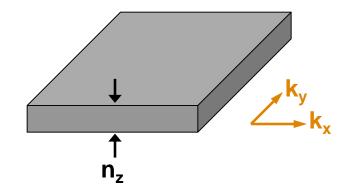


#### **Quantum Confinement in Nanostructures**

Confined in:

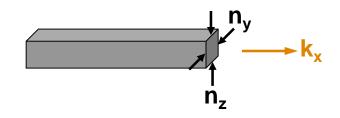
1 Direction: Quantum well (thin film)

**Two-dimensional electrons** 



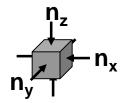
2 Directions: Quantum wire

**One-dimensional electrons** 

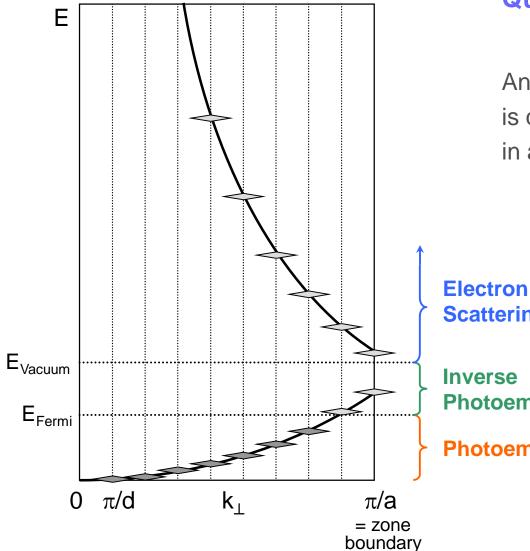


3 Directions: Quantum dot

**Zero-dimensional electrons** 



Each confinement direction converts a continuous k in a discrete quantum number n.



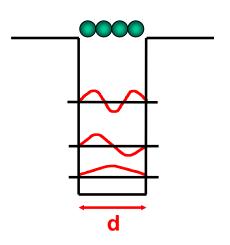
#### **Quantization in a Thin Crystal**

An energy band with continuous k is quantized into N discrete points k<sub>n</sub> in a thin film with N atomic layers.

**Scattering** 

**Photoemission** 

**Photoemission** 



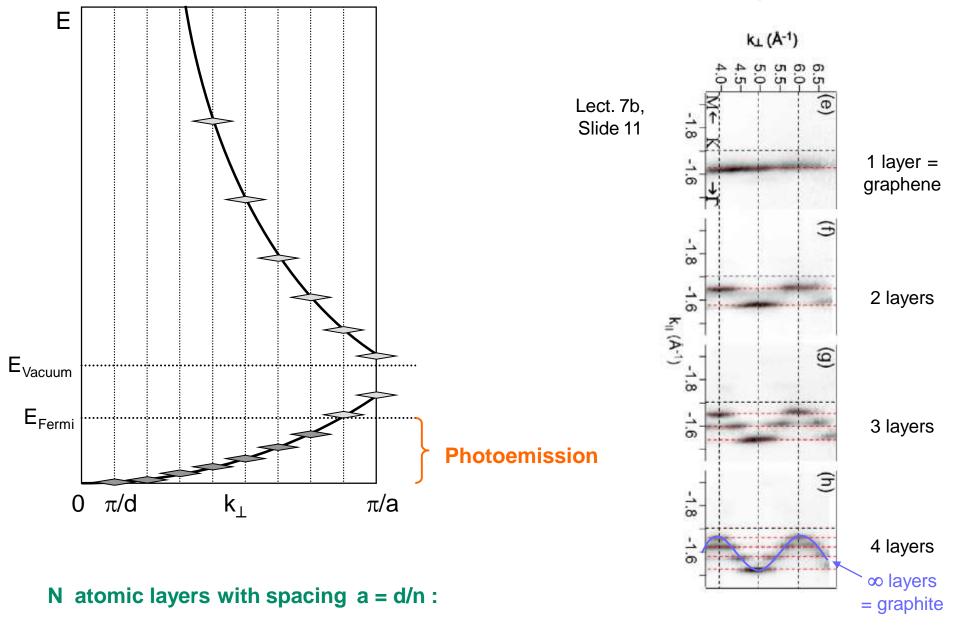
N atomic layers with the spacing a = d/n

N quantized states with  $k_n \approx n \cdot \pi/d$  (n = 1,...,N)

$$\lambda_n = 2d/n$$

$$k_n = 2\pi/\lambda_n = n \cdot \pi/d$$

#### **Quantization in Thin Graphite Films**



⇒ N quantized states with  $k_n \approx N \cdot \pi/d$ 

#### The Important Electrons in a Metal

Transport (conductivity, magnetoresistance, screening length, ...)

Width of the Fermi function:

 $FWHM \approx 3.5 k_BT$ 

Phase transitions (superconductivity, magnetism, ...)

Superconducting gap:

 $E_g \approx 3.5 k_B T_c$  ( $T_c$ = critical temperature)