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Physics of Quantum Confinement

History: In 1970 Esaki & Tsu proposed fabrication of an 

artificial structure, consisting of alternating layers of 2 

different semiconductors

Layer Thickness

 1 nm = 10 Å = 10-9 m  SUPERLATTICE

• PHYSICS: The main idea was that introduction of an 

artificial periodicity will “fold” the Brillouin Zones into 

smaller BZ’s  “mini-zones”.

 The idea was that this would raise the conduction band

minima, which  is needed to observe novel physics and can be 

employed for  some quantum and nano device applications.  



• Modern growth techniques (starting in the 1980’s), especially 

MBE & MOCVD, make fabrication of such structures possible!

• For the same reason, it is also possible to fabricate many other 

kinds of artificial structures on the scale of nm

(nanometers)  “Nanostructures”

Superlattices = “2 dimensional” structures                                  

Quantum Wells = “2 dimensional” structures 

Quantum Wires = “1 dimensional” structures 

Quantum Dots = “0 dimensional” structures!!

• Clearly, it is not only the electronic properties of materials which can 

be drastically altered in this way. Also, vibrational properties 

(phonons). Here, only electronic properties & only an overview!

• For many years, quantum confinement has been a fast growing field in 

both theory & experiment! It is at the forefront of current research!

• Note that I am not an expert on it!



Quantum Confinement in Nanostructures: Overview

Electrons Confined in 1 Direction:

Quantum Wells (thin films):

 Electrons can easily move in

2 Dimensions!

Electrons Confined in 2 Directions:                                                    

Quantum Wires:                                                                                           

 Electrons can easily move in

1 Dimension!

Electrons Confined in 3 Directions:

Quantum Dots:                                                                                                         

 Electrons can easily move in

0 Dimensions!

Each further confinement direction changes a continuous k component 

to a discrete component characterized by a quantum number n. 
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• PHYSICS: Revisit the band structure

– Consider the 1st Brillouin Zone for the infinite crystal.

The maximum wave vectors are of the order

km  (/a)

a = lattice constant. The potential V is periodic with period a. In 

the almost free e- approximation, the bands are free e- like except 

near the Brillouin Zone edge. That is, they are of the form:

E  (k)2/(2mo)

So, the energy at the Brillouin Zone edge has the form:

Em  (km)2/(2mo) 

or

Em  ()2/(2moa
2)



PHYSICS

• SUPERLATTICES  Alternating layers of material. 

Periodic, with periodicity L (layer thickness). Let kz =

wavevector perpendicular to the layers.

• In a superlattice, the potential V has a new periodicity in the 

z direction with periodicity L >> a

 In the z direction, the Brillouin Zone is much smaller than 

that for an infinite crystal. The maximum wavevectors are of 

the order:          ks  (/L)

 At the BZ edge in the z direction, the energy has the form:

Es  ()2/(2moL
2) + E2(k)

E2(k) = the 2 dimensional energy for k in the x,y plane.

Note that: ()2/(2moL
2) << ()2/(2moa

2) 



• Consider electrons confined along 1 direction (say, z) to a layer of 

width L:

Energies

• The energy bands are quantized (instead of continuous) in 

kz & shifted upward. So kz is quantized:

kz = kn = [(n)/L], n  = 1, 2, 3

• So, in the effective mass approximation (m*), the bottom of the 

conduction band is quantized (like a particle in a 1 d box) & shifted:

En = (n)2/(2m*L2)  

• Energies are quantized! Also, the wavefunctions are 2 

dimensional Bloch functions (traveling waves) for k in 

the x,y plane & standing waves in the z direction.

Primary Qualitative Effects of Quantum Confinement



Quantum Well  QW

= A single layer of material A (layer thickness L), sandwiched between 2 

macroscopically large layers of material B. Usually, the bandgaps satisfy: 

EgA < EgB

Multiple Quantum Well  MQW

= Alternating layers of materials A (thickness L) & B (thickness L). In this case:

L >> L

So, the e- & e+ in one A layer are independent of those in other A layers.

Superlattice  SL

= Alternating layers of materials A & B with similar layer thicknesses.

Quantum Confinement Terminology



• Quantum Mechanics of a Free Electron:

– The energies are continuous:  E = (k)2/(2mo)  (1d, 2d,  or 3d)

– The wavefunctions are traveling waves:

ψk(x) = A eikx (1d) ψk(r) = A eikr (2d or 3d)

• Solid State Physics: Quantum Mechanics of an Electron in a 

Periodic Potential in an infinite crystal :

– The energy bands are (approximately) continuous: E= Enk

– At the bottom of the conduction band or the top of the valence band, 

in the effective mass approximation, the bands can be written:

Enk  (k)2/(2m*)

– The wavefunctions are Bloch Functions = traveling waves:

Ψnk(r) = eikr unk(r);  unk(r) = unk(r+R) 

Brief Elementary Quantum Mechanics &                                           

Solid State Physics Review



Some Basic Physics
• Density of states (DoS)

in 3D:
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QM Review: The 1D (infinite) Potential Well
(“particle in a box”)

• We want to solve the Schrödinger Equation for:

x < 0, V  ; 0 < x < L, V = 0; x > L, V

 -[2/(2mo)](d
2 ψ/dx2) = Eψ

• Boundary Conditions:

ψ = 0 at x = 0 & x = L (V  there)

• Energies:

En = (n)2/(2moL
2),     n = 1,2,3

Wavefunctions:

ψn(x) = (2/L)½sin(nx/L)  (a standing wave!)

Qualitative Effects of Quantum Confinement:

Energies are quantized & ψ changes from a 

traveling wave to a standing wave.



In 3Dimensions…

• For the 3D infinite potential well:

R

Real Quantum Structures aren’t this simple!! 

• In Superlattices & Quantum Wells, the potential barrier is 

obviously not infinite!

• In Quantum Dots, there is usually ~ spherical confinement,
not rectangular.

• The simple problem only considers a single electron. But, in real 

structures, there are many electrons & also holes!

• Also, there is often an effective mass mismatch at the boundaries.

That is the boundary conditions we’ve used are too simple! 
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QM Review: The 1d (finite) Rectangular Potential Well 
In most QM texts!! Analogous to a Quantum Well

• We want to solve the Schrödinger Equation for:

[-{ħ2/(2mo)}(d2/dx2) + V]ψ = εψ (ε  E)

V = 0, -(b/2) < x < (b/2);         V = Vo otherwise

We want bound 

states: ε < Vo



Solve the Schrödinger Equation:

[-{ħ2/(2mo)}(d2/dx2) + V]ψ = εψ

(ε  E) V = 0, -(b/2) < x < (b/2)

V = Vo otherwise

Bound states are in Region II

Region II:

ψ(x) is oscillatory

Regions I & III:

ψ(x) is decaying

-(½)b
(½)b

Vo

V = 0



The 1d (finite) rectangular potential well
A brief math summary!

Define: α2  (2moε)/(ħ2); β2  [2mo(ε - Vo)]/(ħ
2)

The Schrödinger Equation becomes:

(d2/dx2) ψ + α2ψ =  0,   -(½)b < x < (½)b

(d2/dx2) ψ - β2ψ = 0,        otherwise.

 Solutions:

ψ = C exp(iαx) + D exp(-iαx),       -(½)b < x < (½)b

ψ =  A exp(βx), x < -(½)b

ψ = A exp(-βx), x > (½)b 

Boundary Conditions:

 ψ &  dψ/dx are continuous  SO:



• Algebra (2 pages!) leads to:

(ε/Vo) = (ħ2α2)/(2moVo)

ε, α, β are related to each other by transcendental equations. 

For example:

tan(αb) = (2αβ)/(α 2- β2)

• Solve graphically or numerically. 

• Get: Discrete Energy Levels in the well
(a finite number of finite well levels!) 



• Even eigenfunction solutions (a finite number):

Circle, ξ2 + η2 = ρ2, crosses η = ξ tan(ξ)
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• Odd eigenfunction solutions:

Circle, ξ2 + η2 = ρ2, crosses η = -ξ cot(ξ)

|E2| < |E1|
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b
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Vo





Quantum Confinement in Nanostructures

Confined in:

1 Direction: Quantum well (thin film)

Two-dimensional electrons

2 Directions: Quantum wire

One-dimensional electrons

3 Directions: Quantum dot

Zero-dimensional electrons

Each confinement direction converts a continuous k in a discrete quantum number n. 
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N  atomic layers with the spacing a = d/n  

N quantized states with  kn ≈ n  /d   ( n = 1,…,N )

Quantization in a Thin Crystal

An energy band with continuous k          

is quantized into N discrete points kn

in a thin film with N atomic layers.

n = 2d / n    

kn = 2 / n =  n  /d
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N  atomic layers with spacing a = d/n :  

 N quantized states with  kn ≈ N  /d

Quantization in Thin Graphite Films

E

0 /a/d

EFermi

EVacuum

Photoemission

Lect. 7b,                  

Slide 11

k

1 layer = 

graphene

2 layers

3 layers

4 layers

 layers   

= graphite



The Important Electrons in a Metal 

Energy    EFermi

Energy Spread   3.5 kBT

Transport (conductivity, magnetoresistance, screening length, ...)

Width  of the  Fermi function: 

FWHM  3.5 kBT

Phase transitions (superconductivity, magnetism, ...)

Superconducting gap:

Eg   3.5 kBTc (Tc= critical temperature)


