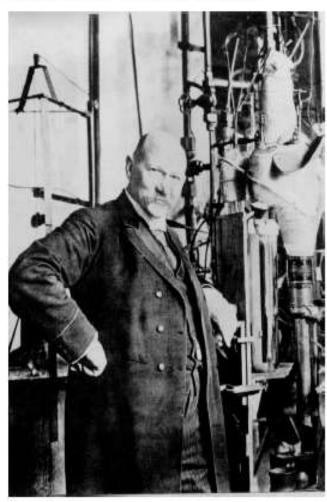
Condensed Matter Physics

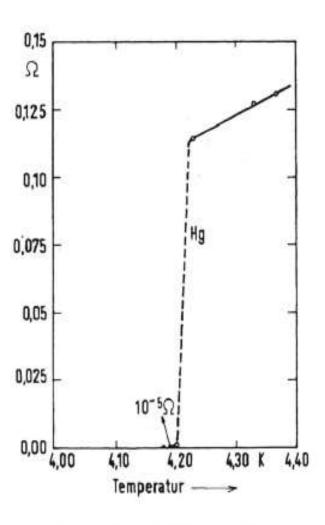
Superconductivity

By
Dr. Ramesh Babu
Assistant Professor
Department of Physics
Bharathidasan University
Trichy-24

- Occurrence of Superconductivity
- Destruction of Superconductivity byMagnetic Fields
- Meissner Effect
- TYPE I & TYPE II SCs

Superconductivity


K.Onnes (1911):


$$\rho \to 0$$
 as $T \to T_C$

Superconductivity was discovered by Kamerlingh-Onnes in 1911 in mercury (Hg),

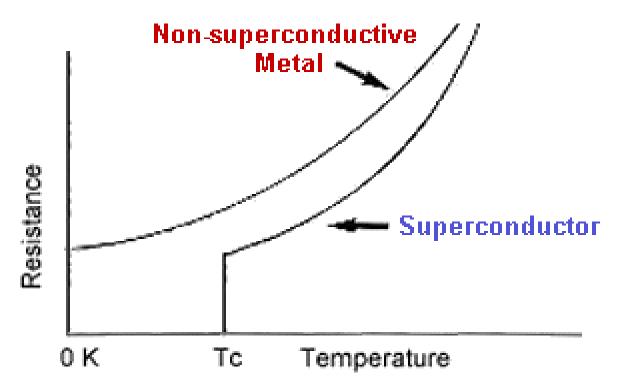
having $T_c \approx 4 \text{ K}$

".. Mercury has passed into a new state, which on account of its extraordinary electrical properties may be called the superconductive state"

Dependence of the resistance on temperature

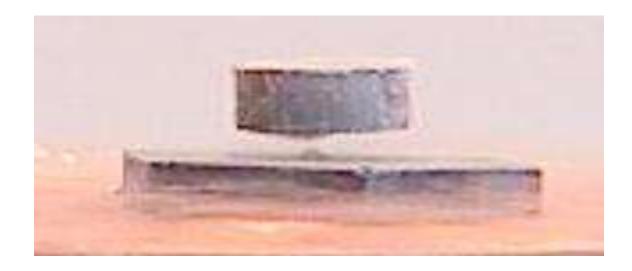
SUPERCONDUCTIVITY

Superconductivity is one of the most important area of solid state chemistry


Superconductors have two technologically important properties:

ZERO ELECTRICAL RESISTANCE

Superconductors carry current without energy loss


PERFECT DIAMAGNETISM

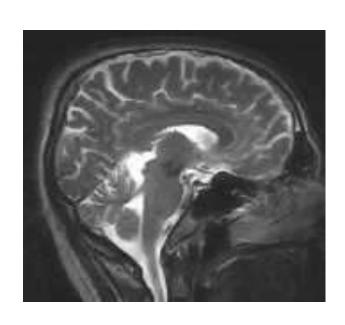
Superconductors float (levitate) above magnetic fields

R=0, below T_c

Perfect diamagnetism

Historic Milestones

- 1908 Making liquid helium (4.2 K)
- 1911 Discovery of zero resistance
- 1933 Meissner effect
 - 1935 Londons' theory
- 1950 Ginzburg-Landau theory
- 1957 Bardeen-Cooper-Schrieffer (BCS) theory
 - 1960 Magnetic flux quantization
- 1962 Josephson effect
- 1986 High-temperature superconductors


Nobel Prizes

APPLICATIONS OF SUPERCONDUCTORS

The wide applicability of superconductors is due to

- Diamagnetism
- Zero resistance
- Higher current

Medical Industry

MRI Exploits the high magnetic fields expelled by superconducting wires for medical applications

Since the superconducting coils are capable of producing very stable, large magnetic field strengths, they generate high quality images.

Transportation Industry

Superconductor coils create strong magnetic fields that produce the effect of levitation by repulsion

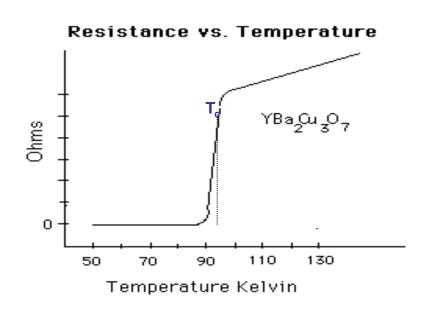
Maglev trains hover above a magnetic field without any contact with the tracks

As a result, high speeds of up to 500 miles per hour are possible with only a small consumption of energy

Electric Power Industry

High temperature superconductors (HTS) can be used in the production of more cost effective motors and generators

HTS power cables can carry two to ten times more power in equally or smaller sized cables

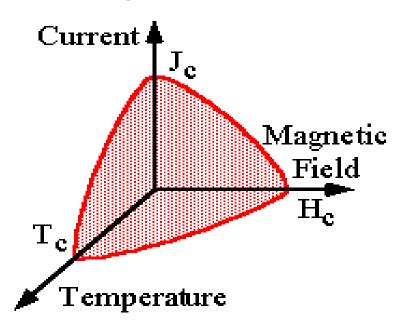


FUNDAMENTAL PROPERTIES OF SUPERCONDUCTORS

Superconductors are characterized by three fundamental properties

Tc

Transitions from normal state to the superconducting state occur at a *Critical Temperature* (T_c).


Jc

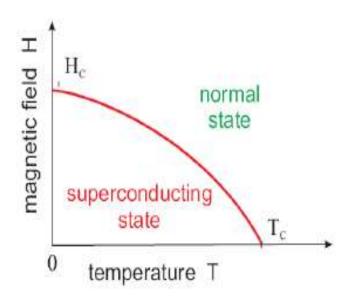
The *Critical Current Density* (J_c) is the maximum current that a superconductor can carry. Above J_c the normal state is re-installed

A superconductor in a magnetic field, at T<T_c expels the magnetic field (Meissner effect)

If the external magnetic field is increased to a critical point ($\mathbf{H_c}$) it penetrates the superconductor and re-instate the normal state

The *critical magnetic field* (H_c) is the value of the applied magnetic field for which a transition from superconducting to normal state is induced

A superconducting material exhibits superconductivity only below its critical temperature T_c , its critical magnetic field H_c , and its critical current density J_c .


FUNDAMENTAL PROPERTIES OF SUPERCONDUCTORS

Superconductivity is destroyed:

- by increasing temperature at T > T_c
- by large magnetic field H > H_c

Phase diagram of a superconductor in the H - T plane is described by an empirically found formula:

$$\frac{H_c(T)}{H_c(0)} = \left[1 - \left(\frac{T}{T_c}\right)^2\right]$$

 H - T diagram for the superconducting state

Occurrence:

Metallic elements, alloys, intermetallic compounds, doped semiconductors, organic metals, ...

Range of T_C :

90K for YBa₂Cu₃O₇. .001K for Rh.

Si: $T_C = 8.3$ K at P = 165 Kbar

Table 2 Superconductivity of selected compounds

Compound	T_c , in K	Compound	T_{\wp} in K
Nb ₃ Sn	18.05	V_3Ga	16.5
Nb ₃ Ge	23.2	V_3Si	17.1
Nb ₃ Al	17.5	YBa ₂ Cu ₃ O _{6 9}	90.0
NbN	16.0	Rb_2CsC_{60}	31.3
C_{60}	19.2	MgB_2	39.0

IA Garanta de la compansión																		
1	1		KNOWN SUPERCONDUCTIVE															2
	П	<u> </u>										ШΑ	IVA	VΑ	VIΑ	γIIA	He	
	3	4												6	7	8	9	10
2	Li	Be BLUE = AT AMBIENT PRESSURE GREEN = ONLY UNDER HIGH PRESSURE											В	С	N	О	F	Ne
	11	12		GREE	EN = 0	DNLY	UNDE	ER HIO	GH PF	RESS	URE		13	14	15	16	17	18
3	Na	Mg	IIIB	IVB	٧В	YIB	VIIB		— YII —		ΙB	IIB	ΑI	Si	Р	S	CI	Ar
,	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	Υ	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
_	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51		53	54
5	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	89	104	105	106	107	108	109	110	111	112						
7	Fr	Ra	+Ac	Rf	Ha	106	107	108	109	110	111	112						

×	Lanthanide
(Series

+ Actinide Series

٩	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

pure	
metal	S

 T_c ,K $H_c,$ Oe material year ΑІ 1.2 105 1933 lη 3.4 280 Sn 3.7 305 Pb 7.2 1913 803 Νb 1930 9.2 2060

NbN 15 1.4 10⁵ 1940 Nb₃Ge 23 3.7 10⁵ 1971

material

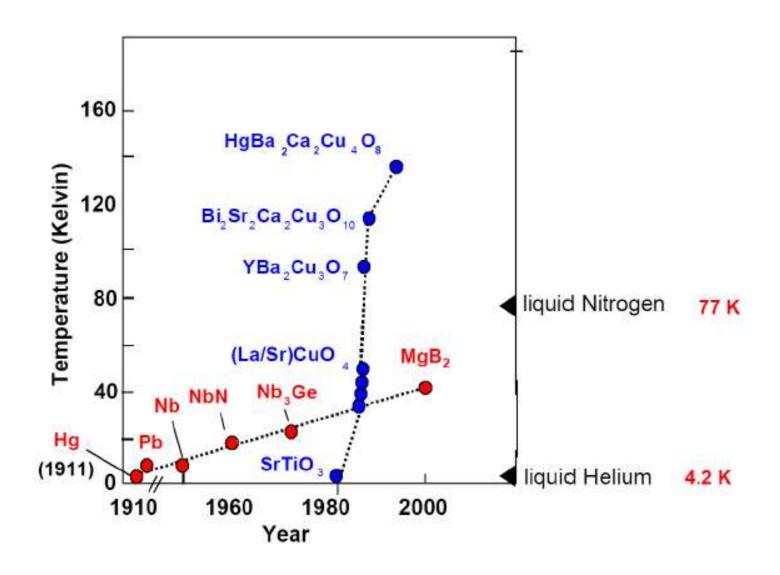
 $HgBa_2Ca_2Cu_3O_{8+x}$

Cold liquids required for reaching low temperatures:

helium ⁴He (4.2 K) hydrogen H₂ (20 K) neon Ne (27 K) nitrogen N₂ (77 K)

alloys

	maceriai	20,11	y can
	$La_{1.85}Ba_{0.15}CuO_4$	35	1986
	$YBa_2Cu_3O_7$	93	1987
	${\sf Bi}_2{\sf Sr}_2{\sf CaCu}_2{\sf O}_{8+x}$	94	1988
	$Ta_2Ba_2Ca_2Cu_3O_{10+x}$	125	1988
- 1			

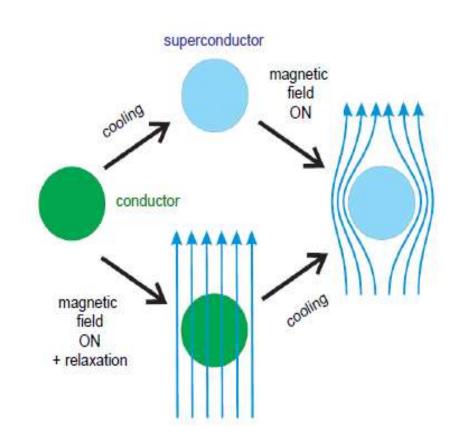

 T_a .K

150*

1993

ceramics

^{*} under pressure

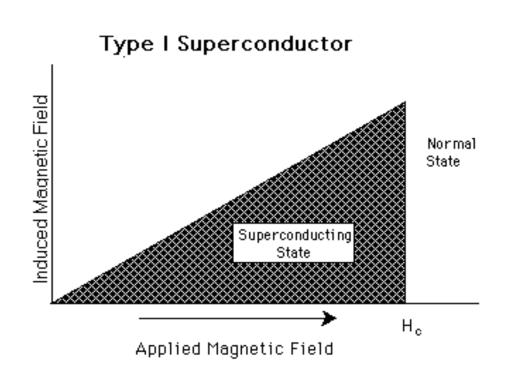


Meissner Effect

Example 3: finally, a superconductor

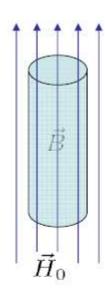
Meissner effect:

Superconductor always expels the magnetic flux


A superconductor in magnetic field

TYPES OF SUPERCONDUCTORS

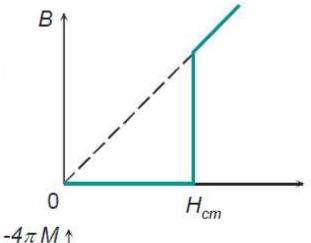
There are two types of superconductors, Type I and Type II, according to their behaviour in a magnetic field


Type I

Type 1 superconductors show an abrupt transition from superconducting to normal state or viceversa)

Type I superconductors are pure metals and alloys

TYPE I SUPERCONDUCTORS

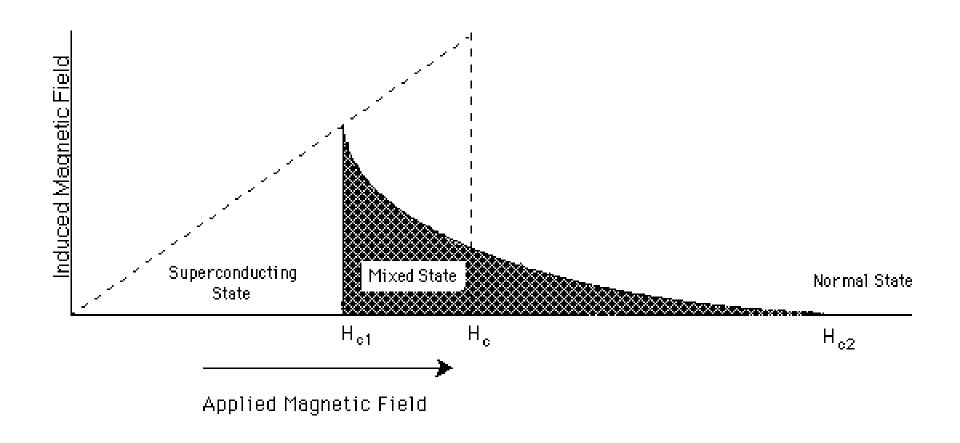

Magnetization curve

$$ec{B}=ec{H}_0+4\piec{M}$$
 [cgs $ec{B}=\mu_0(ec{H_0}+ec{M})$ [SI]

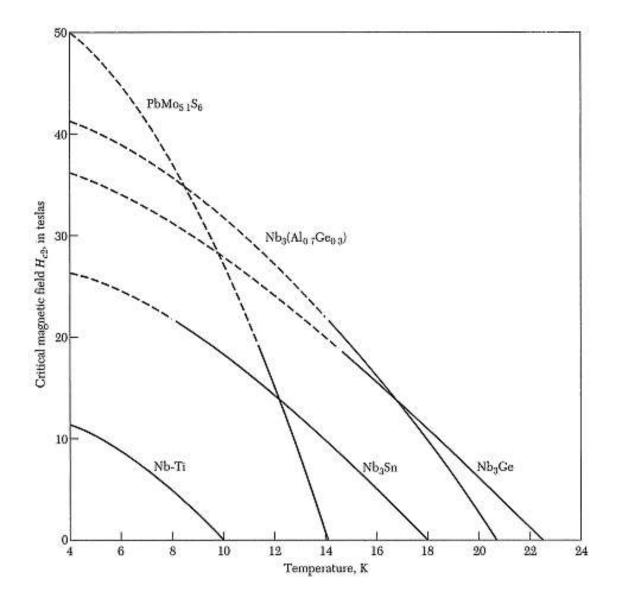
 $ec{B}$ magnetic induction

 $ec{H}_0$ magnetic field intensity

 $ec{M}$ magnetic moment per unit volume


 H_{cm}

 H_0


Magnetic properties can be derived from

Type-I are all elements-superconductors except Nb

TYPE II SUPERCONDUCTORS

Type 2 superconductors show a gradual transition from superconducting to normal state or vice-versa

 $H_{C2} \sim 41 \text{T for Nb}_3(\text{Al}_{0.7} \text{ Ge}_{0.3}).$ $H_{C2} \sim 54 \text{T for PbMo}_6 \text{S}_8.$

Commercial superconducting magnets of ~1T are readily available.