Condensed Matter Physics

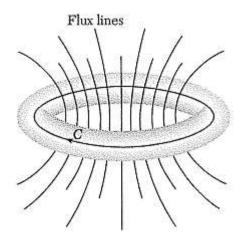
Magnetic Flux Quantization

by

Dr. R. Ramesh Babu Assistant Proffers Department of Physics Bharathidasan University Trichy-24

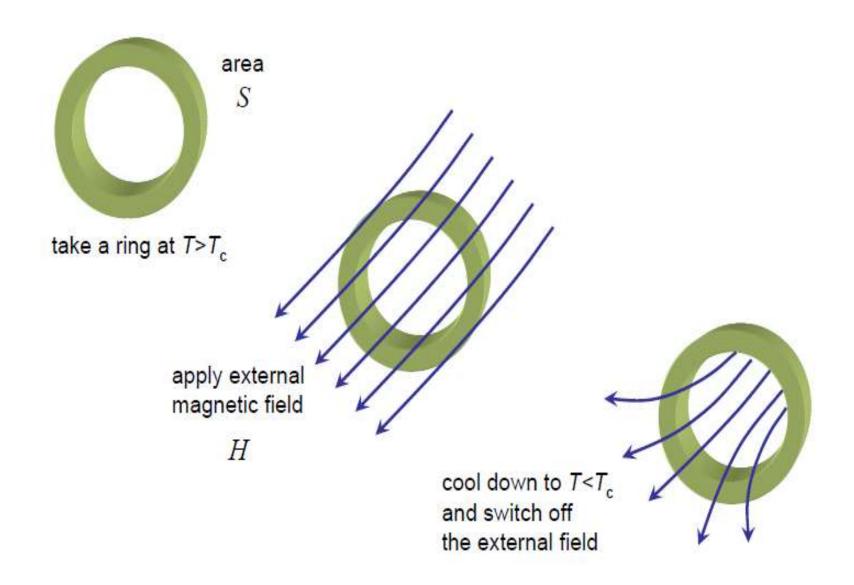
Flux quantization in a S/C ring

_



- Condensate contains cooper pairs with the density of order $10^{19}/\text{cm}^3$
- pairs are phase-locked producing a unique electrical fluid
- energy of the condensate is extremely low
- S/C in the absence of an applied magnetic field the phase is the same everywhere phase coherence in the whole sample

Magnetic Flux quantization



Magnetic Flux quantization



how large is the magnetic flux in the ring?

$$\Phi = \oint \vec{A} \cdot d\vec{\ell} \approx H \cdot S$$

Experimental result:

$$\Phi = n \, \Phi_0$$
 where $\Phi_0 = 2.07 \times 10^{-15} \, \mathrm{V \cdot s}$
$$n = 0, \pm 1, \pm 2, \dots$$

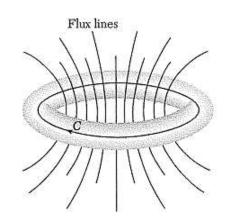
Flux quantization in a S/C ring

Let $\psi(\mathbf{r})$ be the super state wave function

Particle density $n = \psi^* \psi$

$$n = \text{constant} \rightarrow \psi = \sqrt{n} e^{i\theta(\mathbf{r})}$$
 $\psi^* = \sqrt{n} e^{-i\theta(\mathbf{r})}$

Velocity operator:
$$\mathbf{v} = \frac{1}{m} \left(\mathbf{p} - \frac{q}{c} \mathbf{A} \right) = \frac{1}{m} \left(\frac{\hbar}{i} \nabla - \frac{q}{c} \mathbf{A} \right)$$



Particle flux:
$$\psi * \mathbf{v} \psi = \frac{n}{m} e^{-i\theta} \left(\frac{\hbar}{i} \nabla - \frac{q}{c} \mathbf{A} \right) e^{i\theta} = \frac{n}{m} \left(\hbar \nabla \theta - \frac{q}{c} \mathbf{A} \right)$$

Electric current density:
$$\mathbf{j} = q \psi * \mathbf{v} \psi = \frac{n q}{m} \left(\hbar \nabla \theta - \frac{q}{c} \mathbf{A} \right)$$

$$\nabla \times \mathbf{j} = \frac{n \ q}{m} \left(-\frac{q}{c} \nabla \times \mathbf{A} \right) = -\frac{n \ q^2}{m \ c} \mathbf{B} \qquad \text{London eq. with} \quad \lambda_L = \sqrt{\frac{mc^2}{4\pi n q^2}}$$

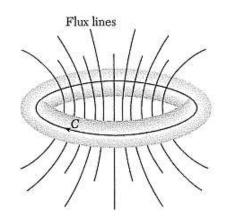
_

Flux quantization in a S/C ring

$$\mathbf{j} = \frac{n \ q}{m} \left(\hbar \nabla \theta - \frac{q}{c} \mathbf{A} \right)$$

Meissner effect: $\mathbf{B} = \mathbf{j} = 0$ inside super $\mathbf{C} \rightarrow \hbar \nabla \theta = \frac{q}{\mathbf{A}}$

$$\iint_{C} \hbar \nabla \theta \cdot d\mathbf{l} = \frac{q}{c} \iint_{C} \mathbf{A} \cdot d\mathbf{l}$$



$$\hbar \Delta \theta = \frac{q}{c} \int_{S} \nabla \times \mathbf{A} \cdot d\mathbf{\sigma} = \frac{q}{c} \int_{S} \mathbf{B} \cdot d\mathbf{\sigma} = \frac{q}{c} \Phi$$

 ψ measurable $\rightarrow \psi$ single-valued $\rightarrow \Delta = 2 \pi s$ $s \in Z$

$$s \in Z$$

$$\therefore \qquad \boxed{\Phi = \frac{h c}{q} s} \qquad \textbf{Flux quantization} \qquad q = -2e \rightarrow$$

$$q = -2e \rightarrow$$

$$\Phi_0 = \frac{h c}{2e} \approx 2.0678 \times 10^{-7} \text{ gauss cm}^2$$
 = fluxoid or fluxon

Verified London prediction Flux through ring:

$$\Phi = \Phi_{ext} + \Phi_{sc} = s \; \Phi_0$$

 $\Phi_{\rm ext}$ not quantized \rightarrow $\Phi_{\rm sc}$ must adjust