A Recollection on Probability

Average Value

* The Average Value (or Mean Value) of a set of 'N' values $x_1, x_2, ..., x_n$ of 'x' is denoted by either x or <x> and is given by

$$\overline{x} = \langle x \rangle = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{j=1}^{N} x_j$$

* The Summation is over all the 'N' values of x_i 's.

• For example, if the values \mathbf{x}_i , are 6,7,6,7,7,8,9,7,5,8 the average value of 'x' is

$$\bar{x} = \langle x \rangle = \frac{(6+7+6+7+7+8+9+7+5+8)}{10} = 7$$

Since there are five, two sixes, four sevens, two eights and one *nine*, the expression for 'x' can be written in the form

$$\bar{x} = \frac{(1 \times 5 + 2 \times 6 + 4 \times 7 + 2 \times 8 + 1 \times 9)}{10}$$

$$= \frac{1}{10} \times 5 + \frac{2}{10} \times 6 + \frac{4}{10} \times 7 + \frac{2}{10} \times 8 + \frac{1}{10} \times 9$$
Probabilit y of getting a 5 = $\frac{1}{10}$

Probability of getting a $6 = \frac{2}{10}$and so on

$$\therefore \overline{x} = \langle x \rangle = \sum_{i} x P_{i}$$

Probability of getting the value of x_{ij}

Microstates and Macrostates

Microstates	Possible arrangement in compartment 1	Possible arrangement in compartment 2	No. of Microstates
(0,4)	0	abcd	1
(2,2)	a b c d ab ac ad bc db cd	bed acd abd abc cd bd bc ad ac ad	6
(3,1)	bcd acd abd abc	a b c d	4
(4 , 0) 2/17/2024	abcd	0	1