Lecture Introduction to Ensembles

M. Senthilvelan
Department of Nonlinear Dynamics
Bharathidasan University
Tiruchirappalli – 620 024.

E-mail id: senv0000@gmail.com velan@cnld.bdu.ac.in

Classical Mechanics: Some Basic Facts

Newton's Second Law

One Particle – 1 Dimension



Equation of Motion

$$\frac{d^2x}{dt^2} = F\left(t, x, \frac{dx}{dt}\right)$$

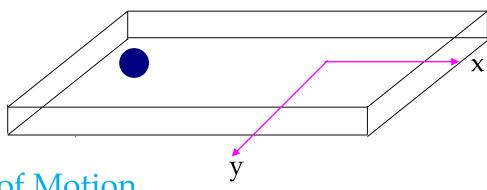
Solution

$$x(t) = f(t, c_1, c_2)$$

 c_1 , c_2 are constants

I.C Needed 2

One Particle - 2 Dimension



Equation of Motion

$$\frac{d^2x}{dt^2} = F(t, x, y, \dot{x}, \dot{y})$$
$$\frac{d^2y}{dt^2} = G(t, x, y, \dot{x}, \dot{y})$$

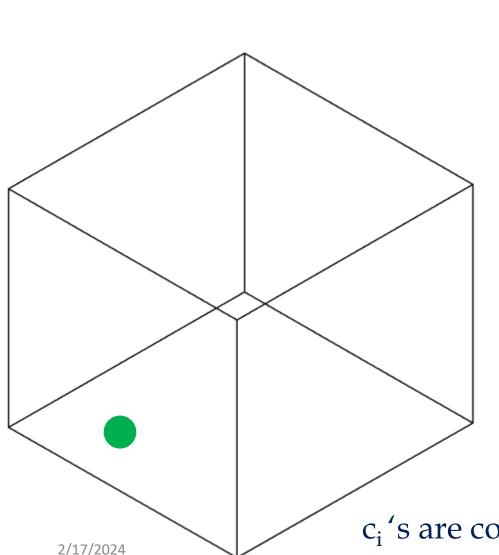
Solution

$$x(t) = f_1(t, c_1, c_2, c_3, c_4)$$

$$y(t) = f_2(t, c_1, c_2, c_3, c_4)$$

I.C Needed 4

One Particle - 3 Dimension



$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = F(t, x, y, z, \dot{x}, \dot{y}, \dot{z})$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = G(t, x, y, z, \dot{x}, \dot{y}, \dot{z})$$

$$\frac{d^2z}{dt^2} = H(t, x, y, z, \dot{x}, \dot{y}, \dot{z})$$

Solution

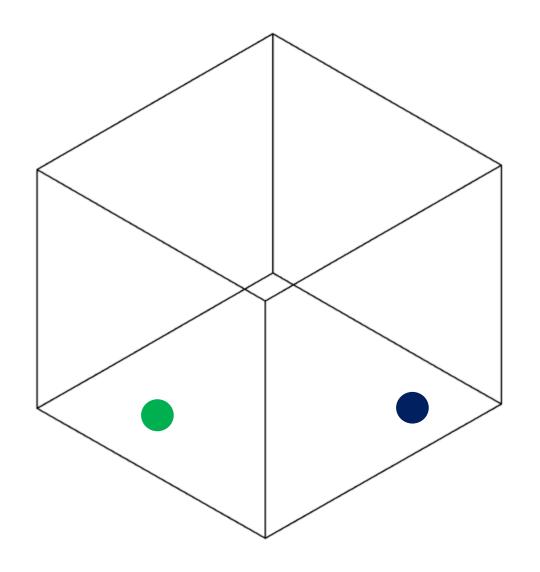
$$x(t) = f_1(t, c_1, c_2, c_3, c_4, c_5, c_6)$$

$$y(t) = f_2(t, c_1, c_2, c_3, c_4, c_5, c_6)$$

$$\mathbf{z}(\mathbf{t}) = f_2(t, c_1, c_2, c_3, c_4, c_5, c_6)$$

c_i's are constants (6) I.C Needed 6

Two Particles – 3 Dimension



Equation of Motion > 1st Particle

quation of Motion
$$\Rightarrow$$
 1st Particle
$$\frac{d^2x_1}{dt^2} = F_1(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$$

$$\frac{d^2y_1}{dt^2} = F_2(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$$

$$\frac{d^2z_1}{dt^2} = F_3(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$$

$$\frac{d^2x_2}{dt^2} = F_4(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$$

$$\frac{d^2y_2}{dt^2} = F_5(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$$

$$\frac{d^2z_2}{dt^2} = F_6(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$$

$$\frac{d^2z_2}{dt^2} = F_6(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$$

$$\frac{d^2z_2}{dt^2} = F_6(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$$

$$\frac{d^2z_2}{dt^2} = F_6(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$$

$$\frac{d^2z_2}{dt^2} = F_6(t, x_1, y_1, z_1, x_2, y_2, z_2, \dot{x}_1, \dot{y}_1, \dot{z}_1, \dot{x}_2, \dot{y}_2, \dot{z}_2)$$

Solution

$$x_{1} = f_{1}(t, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}, c_{10}, c_{11}, c_{12})$$

$$y_{1} = f_{2}(t, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}, c_{10}, c_{11}, c_{12})$$

$$z_{1} = f_{3}(t, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}, c_{10}, c_{11}, c_{12})$$

$$x_{2} = f_{4}(t, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}, c_{10}, c_{11}, c_{12})$$

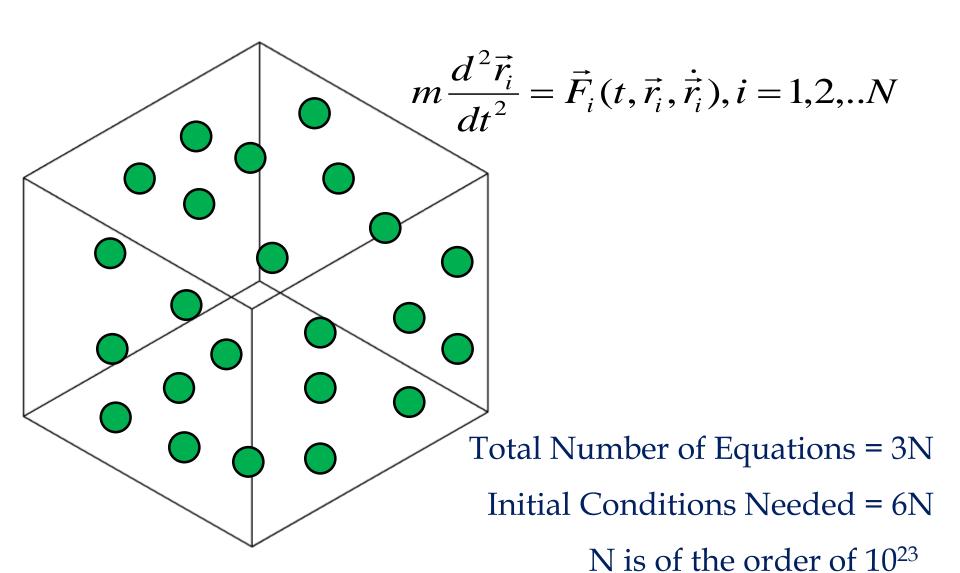
$$y_{2} = f_{5}(t, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}, c_{10}, c_{11}, c_{12})$$

$$z_{2} = f_{6}(t, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}, c_{10}, c_{11}, c_{12})$$

c_i 's are constants (12)

I.C Needed 12

'N' Particles - 3 Dimension



- ❖ As the particles/systems increases, the complexity also increases.
- ❖ It is difficult to specify the Initial Conditions and hence difficult to solve the Newton's equations.
- ❖ At the quantum level, difficulties arise while solving the Schrödinger equation in the *N* particle case.
- Need an alternate formalism.

STATISTICAL MECHANICS

- * By describing the individual microscopic states of a system and using statistical methods we derive the macroscopic properties from them.
- ❖ This approach received an additional impetus with the development of *quantum theory* which showed explicitly how to describe the microscopic quantum states.

A Recollection on Probability

Average Value

* The Average Value (or Mean Value) of a set of 'N' values x_1, x_2, x_n of 'x' is denoted by either x or <x> and is given by

$$\overline{x} = \langle x \rangle = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{j=1}^{N} x_j$$

* The Summation is over all the 'N' values of x_i 's.

• For example, if the values \mathbf{x}_{j} , are 6,7,6,7,7,8,9,7,5,8 the average value of 'x' is

$$\bar{x} = \langle x \rangle = \frac{(6+7+6+7+7+8+9+7+5+8)}{10} = 7$$

• Since there are **five**, **two sixes**, **four sevens**, **two eights** and *one nine*, the expression for 'x' can be written in the form

$$\overline{x} = \frac{(1 \times 5 + 2 \times 6 + 4 \times 7 + 2 \times 8 + 1 \times 9)}{10}$$

$$= \frac{1}{10} \times 5 + \frac{2}{10} \times 6 + \frac{4}{10} \times 7 + \frac{2}{10} \times 8 + \frac{1}{10} \times 9$$
Probabilit y of getting a 5 = $\frac{1}{10}$

Probability of getting $a 6 = \frac{2}{10}$and so on

$$\therefore \overline{x} = \langle x \rangle = \sum_{i} x P_{i}$$

Probability of getting the value of x_4

Microstates and Macrostates

Microstates	Possible arrangement in compartment 1	Possible arrangement in compartment 2	No. of Microstates
(0,4)	0	abcd	1
(1,3)	a b c d	bcd acd abd abc	4
(2,2)	ab ac ad bc db cd	cd bd bc ad ac ab	6
(3,1)	bcd acd abd abc	a b c d	4
(4 , 0)	abcd	0	1

Counting Total Number of Microstates of the Combined System in the Microcanonical Ensemble

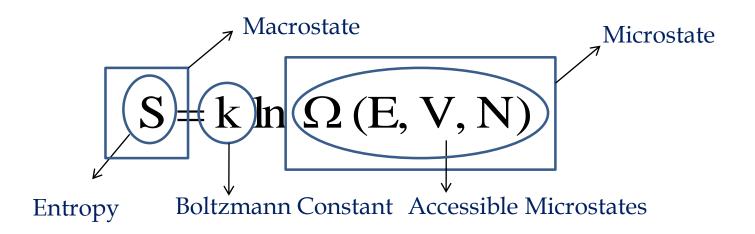
The Subsystem 'A' has $\Omega_A = 6$ accessible *Microstates*.

The Subsystem 'B' has $\Omega_B = 2$ accessible *Microstates*.

Total No of *Microstates* Ω_{tot} of the composite system.

$$\Omega_{\text{tot}} = \Omega_{\text{A}} \times \Omega_{\text{B}} = 12$$

The Partition prevents the transfer of energy from one subsystem to another and in this case keeps $E_A = 5$ and $E_B = 1$.



Thermodynamics

$$\frac{1}{T} = \left(\frac{\partial S}{\partial E}\right)_{V,N}$$

$$\frac{P}{T} = \left(\frac{\partial S}{\partial V}\right)_{E,N}$$

$$\frac{\mu}{T} = -\left(\frac{\partial S}{\partial N}\right)_{E,V}$$

Canonical Ensemble: Counting the Number of Microstates

The Microstates are given in the table for all the

5

4

3

2

0

1

2

3

4

5

6

2/17/2024

(5,0) (4,1) (3,2)

(2,3) (1,4) (0,5)

(4,0) (3,1) (2,2)

(1,3) (0,4)

(3,0) (0,3) (2,1)

(2,0) (1,1) (0,2)

(1,0) (0,1)

(0,0)

	possible values of E _A and E _B								
E_{A}	E_{B}	Microstates of E_A	Microstates of E_B	$\Omega_{\mathrm{A}}(\mathrm{E}_{\mathrm{A}})$	$\Omega_{\mathrm{A}}(\mathrm{E}_{\mathrm{B}})$	$oxed{\Omega_{ m A}\Omega_{ m B}}$	$P_A(E_A)$		
6	0	(6,0) (5,1) (4,2) (3,3) (2,4) (1,5)	(0,0)	7	1	7	7/84		

(1,0) (0,1)

(2,0)(1,1)(0,2)

(3,0) (0,3) (2,1)

(1,2)

(4,0) (3,1) (2,2)

(1,3) (0,4)

(5,0) (4,1) (3,2)

(2,3) (1,4) (0,5)

(5,1)

6

5

4

3

2

1

3

4

5

6

12/84

15/84

16/84

15/84

12/84

7/84

12

15

16

15

12

The Microstates are given in the table for all the

(2,3) (1,4) (0,5)

(4,0) (3,1) (2,2)

(1,3) (0,4)

(3,0) (0,3) (2,1)

(2,0) (1,1) (0,2)

(1,0) (0,1)

(0,0)

4

3

2

0

2

3

4

5

6

2/17/2024

	possible values of E_A and E_B								
E _A	E_{B}	Microstates of E_A	Microstates of E_B	$\Omega_{ m A}({ m E_A})$	$\Omega_{\mathrm{A}}(\mathrm{E}_{\mathrm{B}})$	$\Omega_{ m A}\Omega_{ m B}$	P _B		
6	0	(6,0) (5,1) (4,2) (3,3) (2,4) (1,5) (0,6)	(0,0)	7	1	7	7/		
5	1	(5,0) (4,1) (3,2)	(1.0) (0.1)	6	2	12	12		

(1,0) (0,1)

(2,0)(1,1)(0,2)

(3,0) (0,3) (2,1)

(1,2)

(4,0) (3,1) (2,2)

(1,3) (0,4)

(5,0) (4,1) (3,2)

(2,3) (1,4) (0,5)

(5,1)

(2,4)

(6,0)

(4,2)

6

5

4

3

2

1

3

4

5

6

7

 $_{\rm B}({\rm E}_{\rm B})$

/84

12/84

15/84

16/84

15/84

12/84

7/84

12

15

16

15

12

7

• The Total Number of Microstates $\Omega_{tot}(E_A + E_B)$ accessible to the isolated composite system whose subsystems have energy E_A and E_B is

•
$$\Omega_{tot}(E_A + E_B) = \Omega_A(E_A) \Omega_B(E_B)$$

- For example if E_A = 4 and E_B = 2, then 'A' can be any one of the 5 microstates and 'B' can be in an one of 3 microstates. There are two sets of microstates that can be combined to give 15 microstates.
- The Total Number of Microstates Ω_{tot} accessible to the composite system can be found by summing $\Omega_A(E_A)$ $\Omega_B(E_B)$ for the possible ways of E_A and E_B consistent with the condition $E_A + E_B = 6$.

$$\Omega = \sum_{E_A} \Omega_A(E_A) \Omega_B(E_B)$$
$$= \Sigma \Omega_A(E_A) \Omega_B(E_{tot} - E_A)$$

From Table,

•
$$\Omega_{\text{tot}} = (7 \times 1) + (6 \times 2) + (5 \times 3) + (4 \times 4) + (3 \times 5) + (2 \times 6) + (1 \times 7)$$

= 84

The *Composite System* is isolated. So all accessible *Microstates* are equally probable.

That is the composite is equally likely to be in any of its 84 accessible *Microstates*.

• Let $P_A(E_A)$ = Probability that subsystem 'A' has energy E_A .

$$P_A(E_A) = \frac{\Sigma \Omega_A(E_A) \Omega_B(E_{tot} - E_B)}{\Omega_{tot}}$$

• The mean energy of subsystem 'A' is found by calculating the *Ensemble* average over the 84 *Microstates* of the *Composite System*.

$$\langle E_A \rangle = \overline{E}_A = \sum E_{A,i} P(E_{A,i})$$

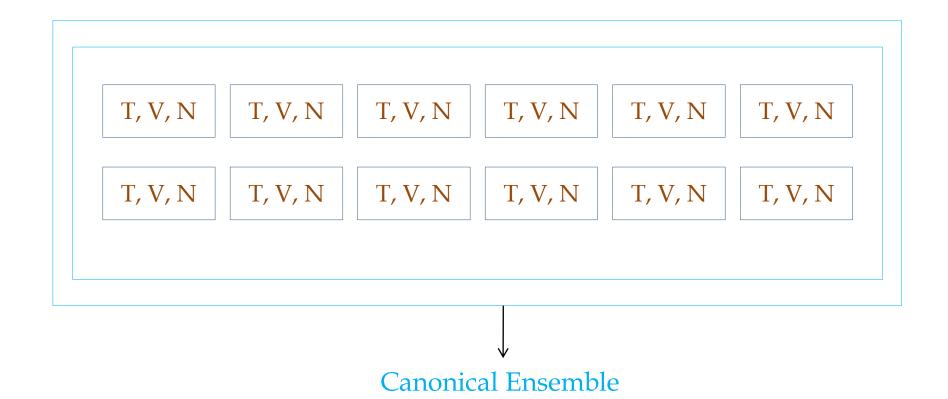
$$= \left(6 \times \frac{7}{84}\right) + \left(5 \times \frac{12}{84}\right) + \left(4 \times \frac{15}{84}\right) + \left(3 \times \frac{16}{84}\right) + \left(2 \times \frac{15}{84}\right)$$

$$+ \left(1 \times \frac{12}{84}\right) + \left(0 \times \frac{7}{84}\right)$$

$$= 3$$

Hence, it is reasonable to assume that when a closed isolated system had time to reach internal *Thermodynamic Equilibrium*, we are likely to find the closed system in any one of the microstates.

At *Thermal Equilibrium*, the probability of finding the *Composite System* in any one of the **84** accessible *Microstates* of the *Composite System* is 1/84.



In this example, the Ensemble consists of *84* systems each of which is in one of the *84* accessible Microstates.

Probability of finding the particle in a particular microstate

$$p_{i} = \frac{e^{-\beta\varepsilon_{i}}}{\sum e^{-\beta\varepsilon_{i}}} = \frac{e^{-\beta\varepsilon_{i}}}{z}$$

$$z = \sum e^{-\beta\varepsilon_{i}} \longrightarrow \text{Partition function}$$

- ❖ The partition function 'Z' contains all the information about the energies of the states of the system.
- * All thermodynamical quantities can be obtained from it.
- ❖ From 'Z', we can get thermodynamics functions energy, entropy, Helmholtz function, or heat capacity to simply drop out.

Thermodynamic quantities derived from the

partition function Z

 $d \ln Z$

 $-k_R T \log Z$

 $k_{\rm B} \ln Z + k_{\rm B} T \left(\frac{\partial \ln Z}{\partial T} \right)$

 $\mathbf{k}_{\mathrm{B}}\mathbf{T} \left[\mathbf{T} \left(\frac{\partial \ln \mathbf{Z}}{\partial \mathbf{V}} \right)_{-1} + \mathbf{V} \left(\frac{\partial \ln \mathbf{Z}}{\partial \mathbf{V}} \right)_{-1} \right]$

 $k_{\rm B}T \left| 2 \left(\frac{\partial \ln Z}{\partial T} \right)_{\rm V} + T \left(\frac{\partial^2 \ln Z}{\partial T^2} \right)_{\rm U} \right|_{29}$

 $k_B T \left[-\ln Z + V \left(\frac{\partial \ln Z}{\partial V} \right)_T \right]$

 $k_{B}T\left(\frac{\partial \ln Z}{\partial V}\right)_{T}$

IJ

 $S = -\left(\frac{\partial F}{\partial T}\right)_{U} = \frac{U - F}{T}$

G = F + pV = H - TS

 $p = -\left(\frac{\partial F}{\partial V}\right)_{T}$

H = U + pV

 $\mathbf{C}_{\mathbf{V}} = \left(\frac{\partial \mathbf{U}}{\partial \mathbf{V}}\right)_{\mathbf{V}}$

Grand-Canonical Ensemble: Counting the Number of Microstates

N_{A}	N_{B}	$(E_{A'} E_B)$	$(\Omega_{ ext{A'}}\Omega_{ ext{B}})$	$\Omega_{ m A}\Omega_{ m B}$	$P_{E_A} \times N_A$	$P_{E_A} \times E_A$
0	4	(0,6)	(1, 84)	84	$\left(\frac{84}{420}\right) \times 0$	(84/420) x 0
		(0,6)	(0, 28)	28		$(28/420) \times 0$
		(1,5)	(1, 21)	21		$(21/420) \times 1$
7		(2, 4)	(1, 15)	15		$(15/420) \times 2$
1	3	(3, 3)	(1, 10)	10	$\left(\frac{84}{420}\right) \times 1$	$(10/420) \times 3$
		(4, 2)	(1, 6)	6	(420)	$(6/420) \times 4$
		(5, 1)	(1, 3)	3		$(3/420) \times 5$
		(6, 0)	(1, 1)	1		$(3/420) \times 6$
		(6, 0)	(7, 1)	7		(7/420) x 6
		(5, 1)	(6, 2)	12		$(12/420) \times 5$
	(4, 2) 2 (3, 3) (2, 4) (1, 5)	(5, 3)	15	(84)	(15/420) x 4	
2		(3, 3)	(4, 4)	16	$\left(\frac{3}{420}\right) \times 2$	$(16/420) \times 3$
		(2, 4)	(3, 5)	15		(15/420) x 2
2/17/2024		(1, 5)	(2, 6)	12		$(12/420) \times 1$
2/17/20	JZ 1	(0, 6)	(1, 7)	7		$(7/420) \times 0$

$\mathbf{N}_{\mathbf{A}}$	N_{B}	(E_A, E_B)	$(\Omega_{\mathrm{A}},\Omega_{\mathrm{B}})$	$\Omega_{ m A}\Omega_{ m B}$	$P_{E_A} \times N_A$	$P_{E_A} \times E_A$
		(0, 6)	(1, 1)	1		(1/420) x 0
		(1, 5)	(3, 1)	3		(3/420) x1
		(2, 4)	(6, 1)	6	(0.4)	(6/420) x 2
3	1	(3, 3)	(0, 1)	10	$\left(\frac{84}{420}\right) \times 3$	3 (10/420) x 3
		(4, 2)	(15, 1)	15	(+20)	(15/420) x 4
		(5, 1)	(21, 1)	21		(21/420) x 5
		(6, 0)	(28, 1)	28		(28/420) x 6
4	0	(6, 0)	(1, 84)	84	$\left(\frac{84}{420}\right) \times 4$	(7/420) x 6
2/17/2024	1			The picture can't be displayed.	$\overline{N}_A = 2$	$\overline{E}_A = 3$
2/1//2024	+					32

Grand Canonical Ensemble	T,V μ T,V μ	T,V μ T,V μ T,V μ T,V μ T,V μ T,V	T,V μ T,V	T,V	T,V	T,V μ T,V μ	Microstate $(E_A + E_B = E_T)$ $N_A + N_B = N_T$
	M	M	m	m	m	M	

In this example, the *Ensemble* consists of **420** systems each of which is in one of the **420** accessible *Microstates*.

Probability of finding the particle in a particular microstate

$$p_{i} = \frac{e^{-\beta(E_{A} - \mu N_{A})}}{\sum e^{-\beta E_{i} - \mu \beta N_{i}}}$$

$$\Xi = \sum_{i} e^{-\beta E_{i} - \mu \beta N_{i}}$$
Grand Partition function

- * The grand partition function $'\Xi'$ contains all the information about the energies of the states of the system.
- * All thermodynamical quantities can be obtained from it.
- \star From ' Ξ ', we can get thermodynamics functions energy, entropy, Helmholtz function, or heat capacity.

Gateway to Thermodynamics

$$\Phi_{G} = -k_{B}T \ln Z$$

$$S = -\left(\frac{\partial \Phi_{G}}{\partial T}\right)_{V,\mu}$$

$$p = -\left(\frac{\partial \Phi_{G}}{\partial V}\right)_{T,\mu}$$

$$N = -\left(\frac{\partial \Phi_{G}}{\partial \mu}\right)_{T,V}$$

END