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Stark Effect

The splitting of energy levels of an atom by a uniform external field E is known as Stark

effect. The effect was discovered by Stark in 1913 during the observation of Balmer

series of hydrogen.

Suppose the hydrogen atom is subjected to an electric field along z-direction. The first

excited energy level is found to split into three energy levels. This is explained using

perturbation theory. The perturbation is λH(1) = −eEr cos θ where E is the strength of

the field. Choosing λ = eE we write H(1) = −r cos θ. The normalized eigenfunctions of

the hydrogen atome are designated as ψnlm. Here n = 1, 2, · · · ,m, l = 0, 1, · · · , n− 1

and m = −l,−(l − 1), · · · , 0, · · · , l. Applying the perturbation theory we calculate the

change in the energy of the ground state and first excited state due to the applied field.
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Ground State n = 1

Ground State: n = 1

The ground state eigenfunction is ψ100 =

(

1
/
√

πa30

)

e−r/a0 . According to the

first-order perturbation theory for nondegenerate case the change in (ground

state)energy E1 is given by

E
(1)
1 = λ〈H(1)

100〉

= λ

∫

ψ∗

100H
(1)
100ψ100 dτ

= − eE
πa30

∫

∞

0

∫ π

0

∫ 2π

0
r3e−2r/a0 cos θ sin θ dr dθ dφ . (1)

For the above we find
∫ π
0 sin θ cos θdθ = sin2 θ/2

∣

∣

∣

π

0
= 0. Therefore, E

(1)
1 = 0. Thus,

there is no change in ground state energy according to first-order perturbation theory.

Since the first-order correction to E1 is zero we proceed to calculate the second-order

correction. The result is E
(2)
1 = −(9/4)E2a30. Before perturbation, that is, before

applying the electric field, the system has one ground state eigenfunction with an

eigenvalue E
(0)
1 . Now, the energy is changed to E

(0)
1 + E

(1)
1 by the applied field. There

is no Stark effect in the ground state.
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First Excited State: n = 2

First Excited State: n = 2

Next, work out the effect of the applied field on the first excited state corresponding to

n = 2. The possible values of (l,m) are (0, 0), (1, 0), (1, 1), (1,−1) (since l = 0, 1 and

m = −l to l). There are four states given by ψnlm → ψ200, ψ210, ψ211 and ψ21−1. The

first excited state is thus four-fold degenerate. In this case the zeroth-order wave

function is
ψ(0) = c00ψ200 + c10ψ210 + c11ψ211 + c1−1ψ21−1 . (2)

The secular equation is written as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H
(1)
200,200 − E

(1)
2 H

(1)
200,210 H

(1)
200,211 H

(1)
200,21−1

H
(1)
210,200 H

(1)
210,210 − E

(1)
2 H

(1)
210,211 H

(1)
210,21−1

H
(1)
211,200 H

(1)
211,210 H

(1)
211,211 − E

(1)
2 H

(1)
211,21−1

H
(1)
21−1,200 H

(1)
21−1,210 H

(1)
21−1,211 H

(1)
21−1,21−1 − E

(1)
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 , (3)

where
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First Excited State: n = 2

H
(1)
nlm,nl′m′

=

∫

ψ∗

nlmH
(1)ψnl′m′ dτ . (4)

The eigenfunctions ψ200, ψ210, ψ211, ψ21−1 are given by

ψ200 = N

(

2− r

a0

)

e−r/2a0 eimφ , m = 0 (5a)

ψ210 = N
r

a0
e−r/2a0 cos θ eimφ , m = 1 (5b)

ψ211 = N
r√
2 a0

e−r/2a0 sin θ eimφ , m = 1 (5c)

ψ21−1 = N
r√
2 a0

e−r/2a0 sin θ eimφ , m = −1 (5d)

where N = 1/
√

32πa30 . The quantities H
(1)
2lm,2l′m′

are given by

H
(1)
2lm,2l′m′

=

∫

∞

0

∫ π

0

∫ 2π

0
ψ∗

2lmH
(1)ψ2l′m′r2 sin θ dr dθ dφ

= −
∫

∞

0

∫ π

0

∫ 2π

0
ψ∗

2lmψ2l′m′r3 cos θ sin θ dr dθ dφ. (6)
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First Excited State: n = 2

First, perform the integration with respect to φ. The result is

H
(1)
2lm,2l′m′

(φ) =

∫ 2π

0
ei(m

′
−m)φ dφ =







2π, if m′ = m

0, if m′ 6= m.
(7)

Hence the quantities H
(1)
2lm,2l′m′

with m′ 6= m are zero. Now, we need to evaluate the

quantities H
(1)
200,200, H

(1)
200,210, H

(1)
210,200, H

(1)
210,210, H

(1)
211,211, H

(1)
21−1,21−1. Integration

with respect to θ makes some of these integrals vanish:

H
(1)
200,200(θ) =

∫ π

0
sin θ cos θ dθ =

sin2 θ

2

∣

∣

∣

π

0
= 0 , (8a)

H
(1)
210,210(θ) =

∫ π

0
cos3 θ sin θ dθ = − cos4 θ

4

∣

∣

∣

π

0
= 0 , (8b)

H
(1)
211,211(θ) =

∫ π

0
sin3 θ cos θ dθ =

sin4 θ

4

∣

∣

∣

π

0
= 0 , (8c)

H
(1)
21−1,21−1(θ) =

∫ π

0
sin3 θ cos θ dθ =

sin4 θ

4

∣

∣

∣

π

0
= 0 . (8d)

Thus, only the integrals H
(1)
200,210 and H

(1)
210,200 have to be evaluated.

– p. 6/8



First Excited State: n = 2

We obtain

H
(1)
200,210 =

(

H
(1)
210,200

)

∗

=

∫

∞

0

∫ π

0

∫ 2π

0
ψ∗

210H
(1)ψ200r

2 sin θ dr dθ dφ

= −2πN2

a0

∫

∞

0

∫ π

0
r4

(

2− r

a0

)

e−r/a0 cos2 θ sin θ dr dθ

=
2πN2

a0

∫

∞

0
r4

(

2− r

a0

)

e−r/a0 dr
cos3 θ

3

∣

∣

∣

π

0

= − 1

24a40

∫

∞

0
r4

(

2− r

a0

)

e−r/a0 dr

= − 1

24a40

[

2

∫

∞

0
r4e−r/a0 dr − 1

a0

∫

∞

0
r5e−r/a0 dr

]

= 3a0 , (9)

where we have used the result

∫

∞

0
rne−r dr = n!.
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First Excited State: n = 2

Now, the secular equation is written as
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−E(1)
2 3a0 0 0

3a0 −E(1)
2 0 0

0 0 −E(1)
2 0

0 0 0 −E(1)
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 . (10)

Expanding the determinant we obtain

(

E
(1)
2

)2
[

(

E
(1)
2

)2
− 9a20

]

= 0 . (11)

The roots of the above equation are

E
(1)
2 = 0, 0, 3a0, −3a0. (12)

The energy E2 to the first-order correction is

E2 = E
(0)
2 + λE

(1)
2 = E

(0)
2 , E

(0)
2 , E

(0)
2 + 3λa0, E

(0)
2 − 3λa0 . (13)
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First Excited State: n = 2

The energy of the first excited state level in the presence of the applied field becomes

E
(0)
2 + 0, E

(0)
2 + 0, E

(0)
2 + 3λa0, E

(0)
2 − 3λa0. That is, the level n = 2 is splitted into

three levels. The middle level E
(0)
2 + 0 is still doubly degenerate.
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