STARK EFFECT IN HYDROGEN ATOM

S. Rajasekar

School of Physics Bharathidasan University Tiruchirapalli - 620 024 email: rajasekar@cnld.bdu.ac.in srj.bdu@gmail.com

Stark Effect

The splitting of energy levels of an atom by a uniform external field E is known as Stark effect. The effect was discovered by Stark in 1913 during the observation of Balmer series of hydrogen.

Suppose the hydrogen atom is subjected to an electric field along z-direction. The first excited energy level is found to split into three energy levels. This is explained using perturbation theory. The perturbation is $\lambda H^{(1)} = -e\mathcal{E}r\cos\theta$ where \mathcal{E} is the strength of the field. Choosing $\lambda = e\mathcal{E}$ we write $H^{(1)} = -r\cos\theta$. The normalized eigenfunctions of the hydrogen atome are designated as ψ_{nlm} . Here $n=1,2,\cdots,m,\ l=0,1,\cdots,n-1$ and $m=-l,-(l-1),\cdots,0,\cdots,l$. Applying the perturbation theory we calculate the change in the energy of the ground state and first excited state due to the applied field.

Ground State n=1

Ground State: n=1

The ground state eigenfunction is $\psi_{100} = \left(1/\sqrt{\pi a_0^3}\right) \mathrm{e}^{-r/a_0}$. According to the first-order perturbation theory for nondegenerate case the change in (ground state)energy E_1 is given by

$$E_{1}^{(1)} = \lambda \langle H_{100}^{(1)} \rangle$$

$$= \lambda \int \psi_{100}^{*} H_{100}^{(1)} \psi_{100} d\tau$$

$$= -\frac{e\mathcal{E}}{\pi a_{0}^{3}} \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} r^{3} e^{-2r/a_{0}} \cos \theta \sin \theta dr d\theta d\phi.$$
 (1)

For the above we find $\int_0^{\pi} \sin \theta \cos \theta d\theta = \sin^2 \theta / 2 \Big|_0^{\pi} = 0$. Therefore, $E_1^{(1)} = 0$. Thus, there is *no change in ground state energy* according to first-order perturbation theory.

Since the first-order correction to E_1 is zero we proceed to calculate the second-order correction. The result is $E_1^{(2)} = -(9/4)\mathcal{E}^2 a_0^3$. Before perturbation, that is, before applying the electric field, the system has one ground state eigenfunction with an eigenvalue $E_1^{(0)}$. Now, the energy is changed to $E_1^{(0)} + E_1^{(1)}$ by the applied field. There is no Stark effect in the ground state.

First Excited State: n=2

Next, work out the effect of the applied field on the first excited state corresponding to n=2. The possible values of (l,m) are (0,0), (1,0), (1,1), (1,-1) (since l=0,1 and m=-l to l). There are four states given by $\psi_{nlm} \to \psi_{200}, \psi_{210}, \psi_{211}$ and ψ_{21-1} . The first excited state is thus *four-fold degenerate*. In this case the zeroth-order wave function is

$$\psi^{(0)} = c_{00}\psi_{200} + c_{10}\psi_{210} + c_{11}\psi_{211} + c_{1-1}\psi_{21-1} . \tag{2}$$

The secular equation is written as

$$=0, (3)$$

where

$$H_{nlm,nl'm'}^{(1)} = \int \psi_{nlm}^* H^{(1)} \psi_{nl'm'} \, d\tau . \tag{4}$$

The eigenfunctions ψ_{200} , ψ_{210} , ψ_{211} , ψ_{21-1} are given by

$$\psi_{200} = N\left(2 - \frac{r}{a_0}\right) e^{-r/2a_0} e^{im\phi}, \quad m = 0$$
 (5a)

$$\psi_{210} = N \frac{r}{a_0} e^{-r/2a_0} \cos \theta e^{im\phi}, \quad m = 1$$
 (5b)

$$\psi_{211} = N \frac{r}{\sqrt{2} a_0} e^{-r/2a_0} \sin \theta e^{im\phi}, \quad m = 1$$
 (5c)

$$\psi_{21-1} = N \frac{r}{\sqrt{2} a_0} e^{-r/2a_0} \sin \theta e^{im\phi}, \quad m = -1$$
 (5d)

where $N=1/\sqrt{32\pi a_0^3}$. The quantities $H^{(1)}_{2lm,2l'm'}$ are given by

$$H_{2lm,2l'm'}^{(1)} = \int_0^\infty \int_0^\pi \int_0^{2\pi} \psi_{2lm}^* H^{(1)} \psi_{2l'm'} r^2 \sin\theta \, dr \, d\theta \, d\phi$$
$$= -\int_0^\infty \int_0^\pi \int_0^{2\pi} \psi_{2lm}^* \psi_{2l'm'} r^3 \cos\theta \sin\theta \, dr \, d\theta \, d\phi. \tag{6}$$

First, perform the integration with respect to ϕ . The result is

$$H_{2lm,2l'm'}^{(1)}(\phi) = \int_0^{2\pi} e^{i(m'-m)\phi} d\phi = \begin{cases} 2\pi, & \text{if } m' = m \\ 0, & \text{if } m' \neq m. \end{cases}$$
(7)

Hence the quantities $H^{(1)}_{2lm,2l'm'}$ with $m'\neq m$ are zero. Now, we need to evaluate the quantities $H^{(1)}_{200,200},\,H^{(1)}_{200,210},\,H^{(1)}_{210,200},\,H^{(1)}_{210,210},\,H^{(1)}_{211,211},\,H^{(1)}_{21-1,21-1}$. Integration with respect to θ makes some of these integrals vanish:

$$H_{200,200}^{(1)}(\theta) = \int_0^{\pi} \sin\theta \cos\theta \,d\theta = \frac{\sin^2\theta}{2} \Big|_0^{\pi} = 0,$$
 (8a)

$$H_{210,210}^{(1)}(\theta) = \int_0^{\pi} \cos^3 \theta \sin \theta \, d\theta = -\frac{\cos^4 \theta}{4} \Big|_0^{\pi} = 0,$$
 (8b)

$$H_{211,211}^{(1)}(\theta) = \int_0^{\pi} \sin^3 \theta \cos \theta \, d\theta = \frac{\sin^4 \theta}{4} \Big|_0^{\pi} = 0 , \qquad (8c)$$

$$H_{21-1,21-1}^{(1)}(\theta) = \int_0^{\pi} \sin^3 \theta \cos \theta \, d\theta = \frac{\sin^4 \theta}{4} \Big|_0^{\pi} = 0.$$
 (8d)

Thus, only the integrals $H_{200,210}^{(1)}$ and $H_{210,200}^{(1)}$ have to be evaluated.

We obtain

$$H_{200,210}^{(1)} = \left(H_{210,200}^{(1)}\right)^{*}$$

$$= \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} \psi_{210}^{*} H^{(1)} \psi_{200} r^{2} \sin \theta \, dr \, d\theta \, d\phi$$

$$= -\frac{2\pi N^{2}}{a_{0}} \int_{0}^{\infty} \int_{0}^{\pi} r^{4} \left(2 - \frac{r}{a_{0}}\right) e^{-r/a_{0}} \cos^{2} \theta \sin \theta \, dr \, d\theta$$

$$= \frac{2\pi N^{2}}{a_{0}} \int_{0}^{\infty} r^{4} \left(2 - \frac{r}{a_{0}}\right) e^{-r/a_{0}} \, dr \frac{\cos^{3} \theta}{3} \Big|_{0}^{\pi}$$

$$= -\frac{1}{24a_{0}^{4}} \int_{0}^{\infty} r^{4} \left(2 - \frac{r}{a_{0}}\right) e^{-r/a_{0}} \, dr$$

$$= -\frac{1}{24a_{0}^{4}} \left[2 \int_{0}^{\infty} r^{4} e^{-r/a_{0}} \, dr - \frac{1}{a_{0}} \int_{0}^{\infty} r^{5} e^{-r/a_{0}} \, dr\right]$$

$$= 3a_{0}, \qquad (9)$$

where we have used the result $\int_0^\infty r^n e^{-r} dr = n!$.

Now, the secular equation is written as

$$\begin{vmatrix}
-E_2^{(1)} & 3a_0 & 0 & 0 \\
3a_0 & -E_2^{(1)} & 0 & 0 \\
0 & 0 & -E_2^{(1)} & 0 \\
0 & 0 & 0 & -E_2^{(1)}
\end{vmatrix} = 0.$$
(10)

Expanding the determinant we obtain

$$\left(E_2^{(1)}\right)^2 \left[\left(E_2^{(1)}\right)^2 - 9a_0^2 \right] = 0. \tag{11}$$

The roots of the above equation are

$$E_2^{(1)} = 0, \ 0, \ 3a_0, \ -3a_0. \tag{12}$$

The energy E_2 to the first-order correction is

$$E_2 = E_2^{(0)} + \lambda E_2^{(1)} = E_2^{(0)}, \ E_2^{(0)}, \ E_2^{(0)} + 3\lambda a_0, \ E_2^{(0)} - 3\lambda a_0.$$
 (13)

The energy of the first excited state level in the presence of the applied field becomes $E_2^{(0)}+0, E_2^{(0)}+0, E_2^{(0)}+3\lambda a_0, E_2^{(0)}-3\lambda a_0$. That is, the level n=2 is splitted into three levels. The middle level $E_2^{(0)}+0$ is still doubly degenerate.