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Rigid Rotator

Let us examine the three-dimensional rigid rotator. Consider two particles of masses m;
and m2 joined about an axis passing through a point O. The particle of mass m; is at a
distance r; from O and the other particle is at a distance ro from O and r; + 12 = R
(Fig. ). Such a system is called a rigid rotator because the distances r; and r, are
fixed. The magnitude of the vibration of a diatomic molecule is generally small compared
with the equilibrium bond length so the rigid rotator is a good first approximation.
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Flg ure 1: parameters of the rigid rotator AB.
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Hamiltonian and Schrodinger Equation

Let us denote the coordinates of the two particles with respect to the origin O as

(r1,y1,21) and (z2,y2, z2), respectively. The classical equation of motion for the rigid

rotator is
1 1 1

Kinetic Energy (K.E) = Emlv% + Emgvg =3 (mlr% + mgrg) w? | (1)
where v; = r1w, vo = row and w is the angular frequency of rotation. Thus,
K.E. = Iw?/2 where I = mi7% + mar2 is the moment of inertia. The potential of the
system is zero because there is no external force on the system and hence H = Iw? /2.

The system is spherically symmetric; therefore, it is convenient to deal it in spherical
polar coordinates. In this coordinates system the coordinates of the particles are
(a,0,¢) and (b, — 0, ™ + ¢), respectively. We have

xr1 = asinfcos¢, x2 = bsinb cos o, (2a)
y1 = asinfsin¢, y2 = bsinfsin P, (2b)
z1 = acosb, zo = —bcos0. (2¢)
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Hamiltonian and Schrodinger Equation

The component of velocity of the particles are

Vix =

V1z =

Then

U1

d do d
it a (cos@ cos¢ — — sinf singb—(b) ,
dt dt dt

d deo d

% =a (COSH sinqba + sin 6 cos ¢ d—f) ,
dzq , do

—— = —asinf — .

dt

= v + v%y + 03 =ri (92 + sin? 6 qb2) :

(3a)

(3b)

(3¢)

4)

Similarly, v2 = r2 (62 + sin2 0 ¢2 ). Then the total kinetic energy of the two particles is
2 2

written as
KE. =

T+ 15 = (mlr% + mgr%) ((92 + sin? 9$2>

1
2
%I (92 + sin? 9&2) :

(5)
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Hamiltonian and Schrodinger Equation

For a particle of mass I moving on the surface of a sphere of radius r the kinetic energy

is given by
1 1 : i
KE = I(@+4g%+2%) =1 (02 +sin?047) . (©6)
2 2
The Laplacian V? in spherical polar coordinates is
1 0 0 1 9 s, 1 02
v2 - 2 7 inf — . 7
i r2 Or (T 8r> + r2sinf 00 (sm 89) + r2sin 0 O¢2 L
For the rigid rotator r is constant so
1 0 0 1 02
V? = — [ sinf— . 8
sin 6 96 (Sm ae) T SinZ0 992 )
The Hamiltonian is
2 1 0 o 1 o2
H=— inf— : 9
21 [sin@ o0 (Sm ae) T sz o a¢2} ©)

The orientation of the rigid rotator depends only on 6 and ¢; therefore, its ¢ depends
only on 6 and ¢ and is independent of r.
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Hamiltonian and Schrodinger Equation

The Schroédinger equation Hy = Ev) takes the form

21 0 (. 0 1 2 B
21 Lin@ o0 (Sme %> T nZo 8¢2} V(6. 9) = By (0, 9) (10)

or

2
L a(sin08—¢>—|— 1 9% 21E¢:O. (11)

sin 06 sin? 6 O¢2 i h2

The operator in the left-side of Eq. (10) is identified as L2 /21 where L? is the square of
the orbital angular momentum. Equation (10Q) implies that the eigenvalues F of the rigid
rotator are (1/217) times the eigenvalues of the operator L2.
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Eigenfunctions and Eigenvalues

We show that the solution of Eq. (11)) is simply the spherical harmonics. We obtain the
solution by variable separable method. Assume the solution of the form

Y(0,¢) = O(0)2(¢) . (12)
Substituting Eq. (12) in Eq. (1) and multiplying by sin? §/(©®) we get

d d doe © d2® 2I
— — (Sine —) — + = EOP =0. (13)
sin 6 d6 dé sin? 0 d¢?  h
That is
in6 d d 2I E 1 d2®
MY 2 (sin@ —@> 5 sin?f = —— —— . (14)
© d6 do A o de?

Since 6 and ¢ are two independent variables the above equation is true only if both sides
are equal to the same constant. We choose the constant as m?. Then

1 d2®2
e m? . (15)
The solution of it is
®,, = AeTm? (16)
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Eigenfunctions and Eigenvalues

A is determined from the normalization condition

27
/ P*Pde = 1.
0

A is obtained as 1/+v/27 . Equation (14)) is now written as

sinf d ( d@) 21 F sin? 6 5
+

— | sinf — =m
© db do h?
or
1 d /sin?© dOe 2IE m?2
. . - 2 .. 9 @ =0.
sinf dé sinf do h sin“ 6
Substituting

cosf =z, 2IE/h*=1(1+1)

in Eq. (19) we have
2

(1—x2)@”—2w@/+[l(l—l—1)— ]@:0

2
— X
which is the associated Legendre differential equation.

(17)

(18)

(19)

(20)

2D
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Eigenfunctions and Eigenvalues

Let us find a solution of Eq. (21) of the form

O(z) = (1— xQ)m/Q X(x) .
Now Eq. (21 becomes

d?X dX
(1—2?) —2m+Dz— +[Il+1)—m(m+1)]X =0.
dz? dz
Differentiating the Legendre differential equation
d? P, dp,
1 — 2 —2r— +I(l+1)P, =0

m times we get

(-2 d2 (del>_2(m+1)xdd (del>

dx? \ dx™ x \ dx™

dm p,

dax™

LI+ 1) — m(m + 1)] ~0.

(22)

(23)

(24)

(25)
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Eigenfunctions and Eigenvalues

Comparing the Eq. (25) with Eq. (23) we write

dm
X(z) = ——PRi(z) (26)
dxz™
provided m assumes only positive integers. Then the solution @l(m) is
|m|
(m), \ _ ml|/2 d Pl
9, (z) = (1 -2 (@) = (27)

P)m| are called associated Legendre polynomials. We note that since Eq. (21) does not
depend on sign of m, because P;(x) are polynomials of degree [, we have
dl™l Py /dz!™! = 0if |m| > 1. Therefore, |m| < I. The orthogonality relation for the

associated Legendre polynomials @}”” IS

Lo im [ — 2
/ ool dp = L1 i (28)
. I+ |m)! 20 +1

which gives the normalization factor for @im|. Now

_ /
ol e, [(ZZ ()j(Ll|m||;'!%|)! 1 2P|m|(0089) img (29)
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Eigenfunctions and Eigenvalues

The right-side of Eq. (29) are the so-called spherical harmonics and are the
eigenfunctions of the rigid rotator.

What are the allowed energy eigenvalues of the system? From Eq. (20)

h2
E=—Il(l+1), [=0,1,---. 30
l 21(4' ) (30)

The energy levels are thus discrete. The separation between two successive energy
levels are given by

72 52
AE, =E; | — E = E[Z(H—l)—l(l—l)] — T(z+1). (31)

The distance between successive energy levels increases with an increase in [. For
each [ the allowed values of m are (21 + 1). For I = 0 only one value of m is possible:
m = 0. For other values of [ there are (2] + 1) allowed values of m: —I, -l +1,--- |
0,---,l—1,1. Therefore, each energy level is (2 + 1)-fold degenerate.
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Solved Problem

A rigid body freely rotates in the z — y plane. At t = 0 the wave function is assumed as

1 (0) = C'sin? ¢ where ¢ is the angle between the z-axis and the rotator axis. Express

1»(0) in terms of the eigenfunctions ®,,, = \/12_7Teim¢, m =0, +1, +2, ---.
In terms of ®,,, we can write an arbitrary wave function as
P(0) = ZCmqu =CoPo+C1P1 +C_1P_1 +CoP2+C_2P_o+--- . (32)
We can rewrite the given ¢ (0) as . o o
$(0) = Csin¢ = 5(1 — cos2¢) = 377 (e_12¢ + e_12¢)
~ (gcpo ~Ca, - %cp_z) . (33)

Comparison of the above two equations for ¢ (0) gives

C\m C\/m
Co=0C 2, Ci1 =0, C.1=0, (9 =————, C_9g=— 34
0 v/ 1 1 2 Wi 2 N5 (34)

and other C;’s are zero.
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