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Rigid Rotator

Let us examine the three-dimensional rigid rotator. Consider two particles of masses m1

and m2 joined about an axis passing through a point O. The particle of mass m1 is at a

distance r1 from O and the other particle is at a distance r2 from O and r1 + r2 = R

(Fig. 1). Such a system is called a rigid rotator because the distances r1 and r2 are

fixed. The magnitude of the vibration of a diatomic molecule is generally small compared

with the equilibrium bond length so the rigid rotator is a good first approximation.
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Figure 1: Parameters of the rigid rotator AB.
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Hamiltonian and Schrödinger Equation

Let us denote the coordinates of the two particles with respect to the origin O as

(x1, y1, z1) and (x2, y2, z2), respectively. The classical equation of motion for the rigid

rotator is

Kinetic Energy (K.E) =
1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2

(

m1r
2
1 +m2r

2
2

)

ω2 , (1)

where v1 = r1ω, v2 = r2ω and ω is the angular frequency of rotation. Thus,

K.E. = Iω2/2 where I = m1r2 +m2r22 is the moment of inertia. The potential of the

system is zero because there is no external force on the system and hence H = Iω2/2.

The system is spherically symmetric; therefore, it is convenient to deal it in spherical

polar coordinates. In this coordinates system the coordinates of the particles are

(a, θ, φ) and (b, π − θ, π + φ), respectively. We have

x1 = a sin θ cosφ, x2 = b sin θ cosφ, (2a)

y1 = a sin θ sinφ, y2 = b sin θ sinφ, (2b)

z1 = a cos θ, z2 = −b cos θ. (2c)
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Hamiltonian and Schrödinger Equation

The component of velocity of the particles are

v1x =
dx1

dt
= a

(

cos θ cosφ
dθ

dt
− sin θ sinφ

dφ

dt

)

, (3a)

v1y =
dy1

dt
= a

(

cos θ sinφ
dθ

dt
+ sin θ cosφ

dφ

dt

)

, (3b)

v1z =
dz1

dt
= −a sin θ dθ

dt
. (3c)

Then
v21 = v21x + v21y + v21z = r21

(

θ̇2 + sin2 θ φ̇2
)

. (4)

Similarly, v22 = r22

(

θ̇2 + sin2 θ φ̇2
)

. Then the total kinetic energy of the two particles is

written as

K.E. = T1 + T2 =
1

2

(

m1r
2
1 +m2r

2
2

)

(

θ̇2 + sin2 θφ̇2
)

=
1

2
I
(

θ̇2 + sin2 θφ̇2
)

. (5)
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Hamiltonian and Schrödinger Equation

For a particle of mass I moving on the surface of a sphere of radius r the kinetic energy

is given by

K.E. =
1

2
I
(

ẋ2 + ẏ2 + ż2
)

=
1

2
Ir2

(

θ̇2 + sin2 θ φ̇2
)

. (6)

The Laplacian ∇2 in spherical polar coordinates is

∇2 =
1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2
. (7)

For the rigid rotator r is constant so

∇2 =
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2
. (8)

The Hamiltonian is

H = − h̄
2

2I

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

. (9)

The orientation of the rigid rotator depends only on θ and φ; therefore, its ψ depends

only on θ and φ and is independent of r.
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Hamiltonian and Schrödinger Equation

The Schrödinger equation Hψ = Eψ takes the form

− h̄
2

2I

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

ψ(θ, φ) = Eψ(θ, φ) (10)

or
1

sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

sin2 θ

∂2ψ

∂φ2
+

2I

h̄2
Eψ = 0 . (11)

The operator in the left-side of Eq. (10) is identified as ~L2/2I where ~L2 is the square of

the orbital angular momentum. Equation (10) implies that the eigenvalues E of the rigid

rotator are (1/2I) times the eigenvalues of the operator ~L2.
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Eigenfunctions and Eigenvalues

We show that the solution of Eq. (11) is simply the spherical harmonics. We obtain the

solution by variable separable method. Assume the solution of the form

ψ(θ, φ) = Θ(θ)Φ(φ) . (12)

Substituting Eq. (12) in Eq. (11) and multiplying by sin2 θ/(ΘΦ) we get

Φ

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+
Θ

sin2 θ

d2Φ

dφ2
+

2I

h̄2
EΘΦ = 0 . (13)

That is

sin θ

Θ

d

dθ

(

sin θ
dΘ

dθ

)

+
2IE

h̄2
sin2 θ = − 1

Φ

d2Φ

dφ2
. (14)

Since θ and φ are two independent variables the above equation is true only if both sides

are equal to the same constant. We choose the constant as m2. Then

− 1

Φ

d2Φ2

dφ2
= m2 . (15)

The solution of it is

Φm = Ae±imφ . (16)

– p. 7/12



Eigenfunctions and Eigenvalues

A is determined from the normalization condition
∫ 2π

0
Φ∗Φdφ = 1. (17)

A is obtained as 1/
√
2π . Equation (14) is now written as

sin θ

Θ

d

dθ

(

sin θ
dΘ

dθ

)

+
2IE sin2 θ

h̄2
= m2 (18)

or

− 1

sin θ

d

dθ

(

sin2 Θ

sin θ

dΘ

dθ

)

−
(

2IE

h̄2
− m2

sin2 θ

)

Θ = 0 . (19)

Substituting

cos θ = x, 2IE/h̄2 = l(l + 1) (20)

in Eq. (19) we have

(

1− x2
)

Θ′′ − 2xΘ′ +

[

l(l+ 1)− m2

1− x2

]

Θ = 0 (21)

which is the associated Legendre differential equation.
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Eigenfunctions and Eigenvalues

Let us find a solution of Eq. (21) of the form

Θ(x) =
(

1− x2
)m/2

X(x) . (22)

Now Eq. (21) becomes

(

1− x2
) d2X

dx2
− 2(m+ 1)x

dX

dx
+ [l(l + 1)−m(m+ 1)]X = 0 . (23)

Differentiating the Legendre differential equation

(

1− x2
) d2Pl

dx2
− 2x

dPl

dx
+ l(l+ 1)Pl = 0 (24)

m times we get

(

1− x2
) d2

dx2

(

dmPl

dxm

)

− 2(m+ 1)x
d

dx

(

dmPl

dxm

)

+ [l(l+ 1)−m(m+ 1)]
dmPl

dxm
= 0 . (25)
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Eigenfunctions and Eigenvalues

Comparing the Eq. (25) with Eq. (23) we write

X(x) =
dm

dxm
Pl(x) (26)

provided m assumes only positive integers. Then the solution Θ
(m)
l is

Θ
(m)
l (x) =

(

1− x2
)|m|/2 d|m|

dx|m|
Pl(x) = P

|m|
l . (27)

P
|m|
l are called associated Legendre polynomials. We note that since Eq. (21) does not

depend on sign of m, because Pl(x) are polynomials of degree l, we have

d|m|Pl/dx
|m| = 0 if |m| > l. Therefore, |m| ≤ l. The orthogonality relation for the

associated Legendre polynomials Θ
|m|
l is

∫ 1

−1
Θ

|m|
l Θ

|m|
l′

dx =
(l − |m|)!
(l + |m|)!

2

2l + 1
δll′ (28)

which gives the normalization factor for Θ
|m|
l . Now

Θ
|m|
l Φm =

[

(2l + 1)(l − |m|)!
4π(l + |m|)!

]1/2

P
|m|
l (cos θ) eimφ . (29)
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Eigenfunctions and Eigenvalues

The right-side of Eq. (29) are the so-called spherical harmonics and are the

eigenfunctions of the rigid rotator.

What are the allowed energy eigenvalues of the system? From Eq. (20)

El =
h̄2

2I
l(l+ 1) , l = 0, 1, · · · . (30)

The energy levels are thus discrete. The separation between two successive energy

levels are given by

△El = El+1 − El =
h̄2

2I
[l(l+ 1)− l(l− 1)] =

h̄2

I
(l+ 1) . (31)

The distance between successive energy levels increases with an increase in l. For

each l the allowed values of m are (2l + 1). For l = 0 only one value of m is possible:

m = 0. For other values of l there are (2l + 1) allowed values of m: −l,−l + 1, · · · ,
0, · · · , l − 1, l. Therefore, each energy level is (2l + 1)-fold degenerate.
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Solved Problem

A rigid body freely rotates in the x− y plane. At t = 0 the wave function is assumed as

ψ(0) = C sin2 φ where φ is the angle between the x-axis and the rotator axis. Express

ψ(0) in terms of the eigenfunctions Φm =
1√
2π

eimφ, m = 0, ±1, ±2, · · · .

In terms of Φm we can write an arbitrary wave function as

ψ(0) =
∑

m

CmΦm = C0Φ0 + C1Φ1 + C−1Φ−1 + C2Φ2 + C−2Φ−2 + · · · . (32)

We can rewrite the given ψ(0) as

ψ(0) = C sin2 φ =
C

2
(1− cos 2φ) =

C

2
− C

4

(

e−i2φ + e−i2φ
)

=
√
2π

(

C

2
Φ0 − C

4
Φ2 − C

4
Φ−2

)

. (33)

Comparison of the above two equations for ψ(0) gives

C0 = C
√

π/2, C1 = 0, C−1 = 0, C2 = −C
√
π

2
√
2
, C−2 = −C

√
π

2
√
2

(34)

and other Ci’s are zero.
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