RIGID ROTATOR

S. Rajasekar

School of Physics
Bharathidasan University
Tiruchirapalli - 620 024
email: rajasekar@cnld.bdu.ac.in
srj.bdu@gmail.com

Rigid Rotator

Let us examine the three-dimensional rigid rotator. Consider two particles of masses m_1 and m_2 joined about an axis passing through a point O. The particle of mass m_1 is at a distance r_1 from O and the other particle is at a distance r_2 from O and $r_1 + r_2 = R$ (Fig. 1). Such a system is called a *rigid rotator* because the distances r_1 and r_2 are fixed. The magnitude of the vibration of a diatomic molecule is generally small compared with the equilibrium bond length so the rigid rotator is a good first approximation.

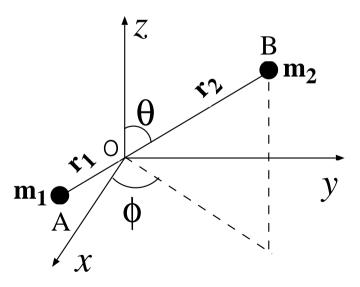


Figure 1: Parameters of the rigid rotator AB.

Let us denote the coordinates of the two particles with respect to the origin O as (x_1,y_1,z_1) and (x_2,y_2,z_2) , respectively. The classical equation of motion for the rigid rotator is

Kinetic Energy (K.E) =
$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}(m_1r_1^2 + m_2r_2^2)\omega^2$$
, (1)

where $v_1=r_1\omega$, $v_2=r_2\omega$ and ω is the angular frequency of rotation. Thus, K.E. $=I\omega^2/2$ where $I=m_1r^2+m_2r_2^2$ is the moment of inertia. The potential of the system is zero because there is no external force on the system and hence $H=I\omega^2/2$.

The system is spherically symmetric; therefore, it is convenient to deal it in spherical polar coordinates. In this coordinates system the coordinates of the particles are (a, θ, ϕ) and $(b, \pi - \theta, \pi + \phi)$, respectively. We have

$$x_1 = a\sin\theta\cos\phi, \quad x_2 = b\sin\theta\cos\phi,$$
 (2a)

$$y_1 = a\sin\theta\sin\phi, \quad y_2 = b\sin\theta\sin\phi,$$
 (2b)

$$z_1 = a\cos\theta, \qquad z_2 = -b\cos\theta.$$
 (2c)

The component of velocity of the particles are

$$v_{1x} = \frac{\mathrm{d}x_1}{\mathrm{d}t} = a\left(\cos\theta\cos\phi\frac{\mathrm{d}\theta}{\mathrm{d}t} - \sin\theta\sin\phi\frac{\mathrm{d}\phi}{\mathrm{d}t}\right),$$
 (3a)

$$v_{1y} = \frac{\mathrm{d}y_1}{\mathrm{d}t} = a\left(\cos\theta\,\sin\phi\,\frac{\mathrm{d}\theta}{\mathrm{d}t} + \sin\theta\,\cos\phi\,\frac{\mathrm{d}\phi}{\mathrm{d}t}\right)\,,$$
 (3b)

$$v_{1z} = \frac{\mathrm{d}z_1}{\mathrm{d}t} = -a\sin\theta \,\frac{\mathrm{d}\theta}{\mathrm{d}t} \,. \tag{3c}$$

Then

$$v_1^2 = v_{1x}^2 + v_{1y}^2 + v_{1z}^2 = r_1^2 \left(\dot{\theta}^2 + \sin^2 \theta \, \dot{\phi}^2 \right) . \tag{4}$$

Similarly, $v_2^2=r_2^2\left(\dot{\theta}^2+\sin^2\theta\,\dot{\phi}^2\right)$. Then the total kinetic energy of the two particles is written as

K.E.
$$= T_1 + T_2 = \frac{1}{2} \left(m_1 r_1^2 + m_2 r_2^2 \right) \left(\dot{\theta}^2 + \sin^2 \theta \dot{\phi}^2 \right)$$
$$= \frac{1}{2} I \left(\dot{\theta}^2 + \sin^2 \theta \dot{\phi}^2 \right) .$$
 (5)

For a particle of mass I moving on the surface of a sphere of radius r the kinetic energy is given by

K.E.
$$= \frac{1}{2}I(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) = \frac{1}{2}Ir^2(\dot{\theta}^2 + \sin^2\theta\,\dot{\phi}^2)$$
 (6)

The Laplacian ∇^2 in spherical polar coordinates is

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} . \tag{7}$$

For the rigid rotator r is constant so

$$\nabla^2 = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} . \tag{8}$$

The Hamiltonian is

$$H = -\frac{\hbar^2}{2I} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] . \tag{9}$$

The orientation of the rigid rotator depends only on θ and ϕ ; therefore, its ψ depends only on θ and ϕ and is independent of r.

The Schrödinger equation $H\psi=E\psi$ takes the form

$$-\frac{\hbar^2}{2I} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] \psi(\theta, \phi) = E\psi(\theta, \phi) \tag{10}$$

or

$$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\psi}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2\psi}{\partial\phi^2} + \frac{2I}{\hbar^2} E\psi = 0. \tag{11}$$

The operator in the left-side of Eq. (10) is identified as $\vec{L}^2/2I$ where \vec{L}^2 is the square of the orbital angular momentum. Equation (10) implies that the eigenvalues E of the rigid rotator are (1/2I) times the eigenvalues of the operator \vec{L}^2 .

We show that the solution of Eq. (11) is simply the spherical harmonics. We obtain the solution by variable separable method. Assume the solution of the form

$$\psi(\theta, \phi) = \Theta(\theta)\Phi(\phi) . \tag{12}$$

Substituting Eq. (12) in Eq. (11) and multiplying by $\sin^2\theta/(\Theta\Phi)$ we get

$$\frac{\Phi}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + \frac{\Theta}{\sin^2\theta} \frac{\mathrm{d}^2\Phi}{\mathrm{d}\phi^2} + \frac{2I}{\hbar^2} E\Theta\Phi = 0.$$
 (13)

That is

$$\frac{\sin \theta}{\Theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \, \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + \frac{2IE}{\hbar^2} \sin^2 \theta = -\frac{1}{\Phi} \, \frac{\mathrm{d}^2 \Phi}{\mathrm{d}\phi^2} \,. \tag{14}$$

Since θ and ϕ are two independent variables the above equation is true only if both sides are equal to the same constant. We choose the constant as m^2 . Then

$$-\frac{1}{\Phi} \frac{\mathrm{d}^2 \Phi^2}{\mathrm{d}\phi^2} = m^2 \ . \tag{15}$$

The solution of it is

$$\Phi_m = A e^{\pm im\phi} . ag{16}$$

A is determined from the normalization condition

$$\int_0^{2\pi} \Phi^* \Phi \, \mathrm{d}\phi = 1. \tag{17}$$

A is obtained as $1/\sqrt{2\pi}$. Equation (14) is now written as

$$\frac{\sin \theta}{\Theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \, \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + \frac{2IE \sin^2 \theta}{\hbar^2} = m^2 \tag{18}$$

or

$$-\frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{\sin^2\Theta}{\sin\theta} \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) - \left(\frac{2IE}{\hbar^2} - \frac{m^2}{\sin^2\theta} \right) \Theta = 0.$$
 (19)

Substituting

$$\cos \theta = x, \quad 2IE/\hbar^2 = l(l+1) \tag{20}$$

in Eq. (19) we have

$$(1 - x^2)\Theta'' - 2x\Theta' + \left[l(l+1) - \frac{m^2}{1 - x^2}\right]\Theta = 0$$
 (21)

which is the associated Legendre differential equation.

Let us find a solution of Eq. (21) of the form

$$\Theta(x) = (1 - x^2)^{m/2} X(x) . (22)$$

Now Eq. (21) becomes

$$(1-x^2)\frac{\mathrm{d}^2 X}{\mathrm{d}x^2} - 2(m+1)x\frac{\mathrm{d}X}{\mathrm{d}x} + [l(l+1) - m(m+1)]X = 0.$$
 (23)

Differentiating the Legendre differential equation

$$(1-x^2)\frac{d^2P_l}{dx^2} - 2x\frac{dP_l}{dx} + l(l+1)P_l = 0$$
(24)

m times we get

$$(1-x^2)\frac{\mathrm{d}^2}{\mathrm{d}x^2}\left(\frac{\mathrm{d}^m P_l}{\mathrm{d}x^m}\right) - 2(m+1)x\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}^m P_l}{\mathrm{d}x^m}\right) + \left[l(l+1) - m(m+1)\right]\frac{\mathrm{d}^m P_l}{\mathrm{d}x^m} = 0.$$
(25)

Comparing the Eq. (25) with Eq. (23) we write

$$X(x) = \frac{\mathrm{d}^m}{\mathrm{d}x^m} P_l(x) \tag{26}$$

provided m assumes only positive integers. Then the solution $\Theta_l^{(m)}$ is

$$\Theta_l^{(m)}(x) = (1 - x^2)^{|m|/2} \frac{\mathrm{d}^{|m|}}{\mathrm{d}x^{|m|}} P_l(x) = P_l^{|m|}. \tag{27}$$

 $P_l^{|m|}$ are called associated Legendre polynomials. We note that since Eq. (21) does not depend on sign of m, because $P_l(x)$ are polynomials of degree l, we have $\mathrm{d}^{|m|}P_l/\mathrm{d}x^{|m|}=0$ if |m|>l. Therefore, $|m|\leq l$. The orthogonality relation for the associated Legendre polynomials $\Theta_l^{|m|}$ is

$$\int_{-1}^{1} \Theta_{l}^{|m|} \Theta_{l'}^{|m|} dx = \frac{(l-|m|)!}{(l+|m|)!} \frac{2}{2l+1} \delta_{ll'}$$
 (28)

which gives the normalization factor for $\Theta_l^{|m|}$. Now

$$\Theta_l^{|m|} \Phi_m = \left[\frac{(2l+1)(l-|m|)!}{4\pi(l+|m|)!} \right]^{1/2} P_l^{|m|} (\cos \theta) e^{im\phi} . \tag{29}$$

The right-side of Eq. (29) are the so-called *spherical harmonics* and are the eigenfunctions of the rigid rotator.

What are the allowed energy eigenvalues of the system? From Eq. (20)

$$E_l = \frac{\hbar^2}{2I}l(l+1) , \quad l = 0, 1, \cdots .$$
 (30)

The energy levels are thus discrete. The separation between two successive energy levels are given by

$$\Delta E_l = E_{l+1} - E_l = \frac{\hbar^2}{2I} [l(l+1) - l(l-1)] = \frac{\hbar^2}{I} (l+1) . \tag{31}$$

The distance between successive energy levels increases with an increase in l. For each l the allowed values of m are (2l+1). For l=0 only one value of m is possible: m=0. For other values of l there are (2l+1) allowed values of m: $-l, -l+1, \cdots, 0, \cdots, l-1, l$. Therefore, each energy level is (2l+1)-fold degenerate.

Solved Problem

A rigid body freely rotates in the x-y plane. At t=0 the wave function is assumed as $\psi(0)=C\sin^2\phi$ where ϕ is the angle between the x-axis and the rotator axis. Express $\psi(0)$ in terms of the eigenfunctions $\Phi_m=\frac{1}{\sqrt{2\pi}}\mathrm{e}^{\mathrm{i}m\phi},\,m=0,\,\pm 1,\,\pm 2,\,\cdots$.

In terms of Φ_m we can write an arbitrary wave function as

$$\psi(0) = \sum_{m} C_m \Phi_m = C_0 \Phi_0 + C_1 \Phi_1 + C_{-1} \Phi_{-1} + C_2 \Phi_2 + C_{-2} \Phi_{-2} + \cdots$$
 (32)

We can rewrite the given $\psi(0)$ as

$$\psi(0) = C \sin^2 \phi = \frac{C}{2} (1 - \cos 2\phi) = \frac{C}{2} - \frac{C}{4} \left(e^{-i2\phi} + e^{-i2\phi} \right)$$

$$= \sqrt{2\pi} \left(\frac{C}{2} \Phi_0 - \frac{C}{4} \Phi_2 - \frac{C}{4} \Phi_{-2} \right) . \tag{33}$$

Comparison of the above two equations for $\psi(0)$ gives

$$C_0 = C\sqrt{\pi/2}, \quad C_1 = 0, \quad C_{-1} = 0, \quad C_2 = -\frac{C\sqrt{\pi}}{2\sqrt{2}}, \quad C_{-2} = -\frac{C\sqrt{\pi}}{2\sqrt{2}}$$
 (34)

and other C_i 's are zero.